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Unsupervised learning of pixel clustering in Mueller
matrix images for mapping microstructural features
in pathological tissues
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Xuewu Tian6, Ran Liao1, Honghui He 1, Nan Zeng1, Chao Li2,7 & Hui Ma 1,8✉

In histopathology, doctors identify diseases by characterizing abnormal cells and their spatial

organization within tissues. Polarization microscopy and supervised learning have been

proved as an effective tool for extracting polarization parameters to highlight pathological

features. Here, we present an alternative approach based on unsupervised learning to group

polarization-pixels into clusters, which correspond to distinct pathological structures. For

pathological samples from different patients, it is confirmed that such unsupervised learning

technique can decompose the histological structures into a stable basis of characteristic

microstructural clusters, some of which correspond to distinctive pathological features for

clinical diagnosis. Using hepatocellular carcinoma (HCC) and intrahepatic cholangiocarci-

noma (ICC) samples, we demonstrate how the proposed framework can be utilized for

segmentation of histological image, visualization of microstructure composition associated

with lesion, and identification of polarization-based microstructure markers that correlates

with specific pathology variation. This technique is capable of unraveling invisible micro-

structures in non-polarization images, and turn them into visible polarization features to

pathologists and researchers.
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In histopathology, doctors study the abnormality of tissue
microstructure caused by diseases1. For instance, cancers are
closely related to various microstructure alterations, such as

changes in cellular nucleus size and anisotropy1, collagen
organization2, or even composition of organelles in cytoplasm3,4.
As the gold standard in pathology, hematoxylin and eosin (H&E)
staining reveals tissue morphology and microstructure by dyeing
the nucleus and extracellular matrix with varying colors of blue
and pink5. Since malignant lesions induce changes in tissue
microstructures, cancer-type-specific microstructural patterns
observed on H&E slides provide crucial diagnostic information.

It has been known that interactions between polarized photons
and complex media encode microstructural information. The
4 × 4 polarization transformation matrix, i.e., Mueller matrix,
provide a comprehensive representation on the specimen’s
polarimetric properties, while non-polarization or other polar-
ization methods only reveal a subset of them. Since polarization
properties are closely related to the microstructural features of
scattering media6,7, particularly sensitive to super resolution
features at subwavelength scale8,9, Mueller matrix microscopy is
capable of mapping tissue architecture down to subcellular
level9,10. Being treated as an inverse problem, the pixel-level
correlation between microstructure and polarization features are
usually established by taking supervised learning approaches11–14,
as illustrated in Fig. 1. Pathologist segments regions on the H&E-
stained pathological images to provide spatial labeling of the
interested pathological structures, which in turn induces labeled
pixels on the co-registered polarization images as the ground
truth. Then polarization features corresponding to the labeled
pixels are identified using supervised machine learning techni-
ques. Such analysis can be performed on a low-magnification
optical system, based on the finding that polarimetric imaging’s
contrast mechanism is insensitive to image resolution15. This
approach has been used to study a variety of biological tissue
samples through the extraction of microstructure-specific polar-
ization features11,14,16,17. In particular, microstructures in liver
tissue during lesion have been analyzed to extract the simplest
form of polarization feature parameter for cancerous cell nucleus
identification in hepatocellular carcinoma samples16.

A Mueller matrix image encodes abundant microstructural
patterns that potentially correlate with pathological variation. In
this paper, we advocate an unsupervised learning approach to
clustering pixels based on distinctive polarization features, which
allows for identifying specific spatial organization via projection
from clustered pixels to H&E images. Such unsupervised learn-
ing approaches provide advantages for experienced pathologists
to exploit the rich information in Mueller matrix images and
their medical expertise to identify pathological features which
may not be clearly seen under normal optical microscopes in
clinics.

In this study, we take full advantage of the microstructural
information encoded in Mueller matrix images by adopting the
unsupervised approach, as illustrated in Fig. 1. We cluster the
polarization pixels and discover that these polarization clusters
correspond to distinct pathological structures. Such correspon-
dence between clusters and pathological structures appears resi-
lient to individual differences of patients. It indicates that by
combining Mueller matrix imaging with unsupervised pixel-level
clustering, we can effectively decompose the histological structure
into its basic constituent microstructure subtypes. We can further
extract the microstructure subtypes that are sensitive to patho-
logical variations, identifying them as polarization markers for
assisted diagnostic purposes. We demonstrate the viability of the
proposed method by applying it to analyze the H&E-stained
pathological slides of liver cancer, which has been examined
previously using Mueller polarimetry and supervised learning16,
and show that the identified clusters in polarization feature space
segment a variety of pathological structures. We propose a set of
promising polarization markers that can distinguish intrahepatic
cholangiocarcinoma (ICC) from hepatocellular carcinoma
(HCC), recognize HCC lesion, and identify HCC with different
cellular differentiation degrees. This framework of dividing tissues
into microstructural subtypes will be referred to as the tissue
microstructural composition analysis in this article. The frame-
work allows the exploration of the super-resolution micro-
structures, which are invisible in the non-polarization optical
images for routine clinical diagnosis. Optimistically, it may assist
pathological structure identification and quantitative diagnostic
evaluation, and become a new tool for pathological research and
practice.

Method
Samples. HCC accounts for 70% of primary liver tumor, one of
the cancers with the worst survival rate (20%)18. Undoubtedly,
accurate staging of HCC subtypes has impactful clinical impli-
cations. As the second most common type of primary liver tumor,
ICC is much more aggressive than HCC, and the differentiation
between them remains challenging19–22. Here, we use HCC and
ICC samples to demonstrate the validity of our proposed method.
Pathological slides of all patients are provided by Fujian Medical
University Cancer Hospital. Sampled from 41 patients, a total of
222 ROIs are used for the unsupervised model construction, in
which 181 ROIs are labeled. Among them, 71 ROIs are from ICC
samples, 85 ROIs are from HCC samples, and 25 ROIs are from
normal tissues around lesions. The thickness of pathological
slides is around 4 microns, which is within the single scattering
regime and usually corresponds to small depolarization. The
study was approved by the Ethics Committee of Fujian Medical
University Cancer Hospital (SQ-2022-103-01), and participants
provided written informed consent to take part in the study.

Fig. 1 Two different frameworks to identify the correlation between polarization and pathological features. The top path corresponds to the supervised
learning approach, where polarization features are extracted for the pathological labels. The bottom path corresponds to the unsupervised learning
approach, where the polarization pixels are first clustered into subtypes, and the subtypes that correlate with pathological variation are identified.
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Mueller matrix images. Histological slides obtained from biopsy
are measured using Mueller matrix microscope under 20 × 0.4NA
objective lens with 633 nm wavelength to obtain the complete
Mueller matrix (4 × 4) images. The choice of this moderate NA
allows us to achieve spatial resolution of 1 micron for resolving
subcellular structures but maintain optimal accuracy in the
Mueller matrix measurements. The homemade Mueller matrix
microscopes were upgraded from low-cost commercial upright
transmission microscopes by adding polarization optics modules
in the existing optical path. Most of the samples were imaged by a
MMM with a pair of fixed polarizer and rotating waveplate for
both the polarization state generator and analyzer10,23, and a
1001 × 1301 pixels 12-bit CCD camera (74-0107 A, QImaging,
Canada). It is capable of taking a Mueller matrix image in about
3 min with less than 0.02 average root mean square error (RMSE)
using standard samples including air, linear polarizer, and
waveplate. Details for optimization and calibration of the
microscope can be found in previous studies10,23–25. A small
number of samples were imaged by an upgraded MMM26 whose
polarization state analyzer and 2D detector were replaced by two
2048 × 2448 pixels 16-bit division of focal plane (DoFP) polari-
meters (PHX050S-PC, Lucid Vision Labs Inc., Canada). Extinc-
tion coefficient of the DoFP is 150 at 633 nm wavelength. The
new MMM is capable of more than a factor of 10 increase in
speed and a factor of 2 improvement in average RMSE, compared
with rotating waveplate MMM. Detailed specifications of both
MMMs can be found in reference26. RMSE can be reduced fur-
ther by rotating both the polarizer and the wave plate in the
polarization state generator27.

Once the Mueller matrix images are obtained, a Gaussian filter
is applied to reduce pixel value fluctuations while preserving the
polarization features of microstructures, because polarization
features is observed to be insensitive to changes in image
resolution15. Through the sum decomposition of Mueller matrix
introduced by Cloude, the physically unrealizable part of Mueller
matrices is filtered28.

Polarization super-pixel. Super-pixel approach is a proven
method to reduce data redundancy while decreasing computa-
tional complexity for downstream tasks in the field of image
processing29–32. Considering the large number of polarization
pixels to be processed, a polarization super-pixel strategy is taken
in our scheme to compress the volume of polarimetric data while
preserving its main polarization features13.

Specifically, the polarization super-pixels are created with the
following steps in this work. First of all, we standardize the
Mueller matrix elements of individual polarization pixels by
removing the mean and scaling them to unit variance33. Then, we
apply the minibatch KMeans algorithm34 to all the polarization
pixels in the ROI and group them into 1024 clusters, using the 15
Mueller matrix elements normalized by M11 as features. Lastly,
the average of the polarization basis parameters17 is calculated
and recorded for each polarization super-pixel. Note that we can
trace back the coordinates of the pixels that belong to the specific
super-pixel.

Instead of preserving the entirety of local information by
considering all the pixels, we characterize the local subset of
neighboring points in polarization feature space with their
centroids, and perform unsupervised algorithms on the set of
centroids. Note that the spatial constraint of generic super-pixels
is waived since it increases the compression rate for polarization
data. Using the described super-pixel approach, pixels with
similar polarization characterization are grouped, creating N
polarization super-pixels for each ROI. N can be chosen based on
the complexity of the images in polarization space. A larger N

preserves more polarization information, while a smaller N leads
to more compact data representation. Effectively, computing at
the scale of super-pixel level instead of pixel level allows us to
ignore the detailed local structure of polarization data and focus
on the global structure in polarization space, improving
robustness of the result. Through the aggressive use of super-
pixels, the data volume is decreased by 3 orders of magnitude.

Polarimetric basis parameters. Mueller matrix describes com-
prehensively the sample’s polarization properties, which provides
extensive microstructural information. However, the explicit
relationships between Mueller matrix elements and the char-
acteristic microstructures are usually unclear, and many of the
elements are sensitive to sample orientation. To accommodate
this shortcoming, various decomposition35–37 and
transformation38–41 methods have been proposed to provide
polarization parameters which are functions of Mueller matrix
elements but tend to have more explicit interpretability from the
perspective of physics. These polarization parameters are used as
the polarization basis parameters (PBP) for further statistical
analysis11,14,17. A comprehensive list of the used PBPs is provided
in Supplementary Table 1. More details are also available from
reference17,38.

UMAP and clustering. Polarimetric data lie on a nonlinear high-
dimensional manifold, so we used uniform manifold approx-
imation and projection (UMAP) for analysis, which offers non-
linear dimensionality reduction and projection of unseen data42.
UMAP reveals the underlining structure in the polarization data,
and the clusters in the UMAP space may correspond to specific
pathological structures, which are annotated and studied. UMAP
is used to visualize the global structure of polarization features in
this paper. After normalizing the super-pixels into zero mean and
unit variance, they are fed into the UMAP model using Canberra
distance and 30 neighbors. We chose the Canberra distance since
it is robust to outliers and sensitive to data around the origin.
With polarimetric data, Canberra distance produces superior
clustering results than conventional metrics such as Euclidean
and Manhattan distance, a phenomenon observed in other data
types as well29,43,44. In UMAP model, the number of neighbors
parameter controls the size of local neighborhood during the
manifold approximation process. Decreasing the parameter
means preserving more local information and shortening the
computation time. Empirically, number of neighbors is set as 30,
so it is near the sweet spot for both global structure preservation
and optimal computation time.

Once the data is projected onto the two-dimensional UMAP
axes, hierarchal clustering is applied45. Single linkage is used,
where the distance between two clusters is determined by the pair
of points that are the closest to each other, one from each cluster.
To focus on the main structure of the data, the points with low
surrounding density are removed before clustering, by using a
200 × 200 regular grid, and using 11 as the cut-off threshold to
remove the low-density areas. The cluster labels of the removed
points are recovered using a semi-supervised approach, deter-
mined by label spreading after clustering is conducted using the
trimmed data points46. In particular, a 41-fold cross-validation is
conducted, where ROIs from 1 patient is reserved as unseen test
data while the rest is used to construct the UMAP model.
Especially, in each fold, we compute the Euclidean distance
between the projection onto the UMAP axis of the test ROIs and
its projection onto the UMAP axis established with the whole
data from 41 patients. The mean distance is 0.012 with variance
0.00068, normalized with respect to the range of x- and y-axis,
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suggesting a stable UMAP configuration with respect to the
training set.

To verify the plausibility of decomposing tissue structures into
a stable basis of microstructural clusters using polarization
imaging, we first analyzed 37 ROIs containing characteristic
lesion structures, and closely monitored the changes in UMAP
projection as we added more ROIs from new patients covering a
variety of pathological structures. Using as little as 5% of the total
dataset, we observe clusters forming in the UMAP projection. As
we gradually increase the number of patients used during UMAP
training process, the overall configuration converges, as shown in
Fig.2. Different structures require different amount of data to
converge. For instance, the configuration of the two clusters on
the left (cluster 1 and 2) starts to emerge with as few as two
patients, and remains stable. Other clusters, especially the two
clusters on the right (cluster 3 and 4), struggle during
convergence due to their complex microstructure characteristic.
Overall, we confirm that the macroscopic structure of the UMAP
projection converges after roughly 20 patients (or equivalently
100 ROIs), and the layout remains consistent as the data size
increases even further.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Polarimetric feature-based microstructural mapping. Since
Mueller matrix describes how the optical and structural proper-
ties affect polarization states as the photons propagate and scatter
in the media, the differences in polarization feature imply dif-
ferences in the microstructures. Polarization super-pixels
obtained from Mueller images are clustered in polarization
space, creating a map of tissue microstructural clusters. Our study
reveals that the pixels from the sample clusters are spatially
correlated, and each microstructural cluster corresponds with a
specific pathological feature.

Several distinct clusters are observed, as shown in Fig. 3a. The
clusters are clearly separated into two main groups, and detailed
clusters can be seen in each group. Separated by a clear gap, two
subgroups (clusters 1 and 2) are identified on the left, along with a
few scattered clusters in the bottom left corner. The gap
separating the clusters indicates that there is a distinct difference
in polarization characteristic between cluster 1 and 2. On the
other hand, the clusters on the right side are more convoluted
compared to the left side. Cluster 6 is noticeably separated from
the other clusters, but cluster 3, 4 and 5 are close to each other,
with many visible subclusters. To interpret these clusters
pathologically, we project the points from the polarization feature
space onto the co-registered histological images. After the
observation and evaluation by pathologists, the sample segmented
structures from each polarimetric cluster are identified as
displayed in Fig. 3a. Pathologists infer that the two clusters 1

and 2 on the left correspond to normal and cancerous cell nuclei,
respectively. Furthermore, cluster 2 potentially correlates with
differentiation degree, which will be discussed in the next section.
Recall that the clear gap dividing cluster 1 and 2 indicates
distinctive polarization characteristics, which in turn infer that
the cancerous nuclei is microstructurally distinctive from benign
nuclei. On the top-right corner, cluster 3 and 4 are involved with
cell cytoplasm in liver H&E-stained pathological tissues. The two
clusters are connected, indicating similarities in polarization
feature, and the corresponding structural features, between the
clusters. Unlike the other clusters, cluster 3 and 4 has many
distinguishable detailed subsets. It suggests cell cytoplasm has
various complicated subtypes of different microstructure or
optical properties, which is plausible considering the rich variety
in sizes and shapes for organelles within cells. Inferred by
pathologists, cluster 5 and 6 mainly consist of collagen fiber and
fibrocytes, respectively. In cluster 6, there are two identifiable
subgroups, implying there are subtypes of fiber with different
microstructure properties, based on their histological morphol-
ogy. The unlabeled clusters correspond to noises or imaging
artifacts. In short, the polarization pixels form clusters on the
UMAP axes, and each cluster has a distinctive microstructure
characterization. We discover that pixels clustered in polarization
feature space are clustered spatially in histopathology images as
well, segmenting pathologically meaningful structures such as
normal and cancerous cell nucleus, cytoplasm, fibrocytes, and
collagen fiber.

Lesion-induced microstructural alteration. Pathological altera-
tion of tissues may induce changes in tissue microstructure, and
here, we aim to visualize the microstructure transition at different
stages of cellular differentiation. Specifically, cellular differentia-
tion affects tissue microstructures, and such changes in micro-
structure composition can be revealed in the polarization feature
space.

To explore the concept of visualizing microstructure transition
during pathological changes, we collected HCC samples at
different stages of differentiation degrees, and visualized the
microstructure composition at each stage using a density heatmap
on the UMAP atlas. Figure 3b demonstrates how ROIs from
normal, well differentiation, moderate differentiation, and poor
differentiation HCC samples differ in microstructural composi-
tion, represented by the UMAP density heatmap from the
respective tissue samples. There seems to be a characteristic
density distribution of polarization signatures at each stage of
cellular differentiation degree, where the overall layout of the map
remains stable, but the proportion and distribution of pixels that
belongs to each cluster varies. The density ratios of several
clusters appear to alter distinctly with different cellular differ-
entiation degree: the density of cluster 2 (identified as cell nuclei
by pathologists in pathological images) and cluster 6 (recognized
as fibrocyte) both increase monotonically as the differentiation
degree decreases. On the other hand, the lower right part of

Fig. 2 Convergence of the overall configuration in UMAP space as the number of ROIs increases. The numbers indicate the fraction of data used,
increasing at a step of 1/6, equivalent to 37 regions of interest (ROI) from samples of 6–7 patients. Above the numbers are the corresponding Uniform
Manifold Approximation and Projection (UMAP) using the specified fraction of total data.
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cluster 3 (realized as cytoplasm) vanishes gradually as the
differentiation degree decreases, while the upper left part of
cluster 3 changes abruptly between well and moderately
differentiated cellular states. Cluster 2 is clearly absent in benign
tissues but present in malignant tissues, which implies that the
presence of this specific microstructure characterization correlates
strongly with tumor malignancy. Such polarization signature can
be potentially used as the marker for HCC malignancy detection,
providing a quantitative way to identify HCC tumor. The idea is
thoroughly explored in the polarization marker section. Another
point we noticed is that the configuration of the primary clusters
is fixed, while the composition of clusters and the local density of
data points varies with respect to cellular differentiation.
Supplementary Video 1 is an animated version of Fig. 3b,
showing the dynamical change in polarization composition as

normal cell develop to cancerous cell, and subsequently
differentiate from well to poor differentiation degree, providing
straightforward visualization of the difference in polarization
composition at different stages of cellular differentiation. It
potentially allows interpolation of polarization composition in
between the states, such as between moderate and poor cellular
differentiation degree. To shortly summarize: (1) polarization
based microstructural clusters contain pathologically useful
information such as cellular differentiation degree, and (2) the
principal configuration of the microstructural map in UMAP
representation remains stable; only the inter-cluster proportion
changes with pathological variation.

Cluster dendrogram. Each cluster has its unique polarization
characteristic and corresponding pathological feature, and the

Fig. 3 The UMAP clustering result of Mueller matrix pixel images and their corresponding pathological features. The six polarization feature clusters
segment pathological features on the histological images (a), and pathologists identify them as cell nucleus (cluster 1 and 2), cytoplasm (cluster 3 and 4),
and collagen fiber and fibrocyte (cluster 5 and 6). The heatmap of the Uniform Manifold Approximation and Projection (UMAP) is drawn at various
hepatocellular carcinoma (HCC) differentiation degrees (b), to help visualize variations in polarization features corresponding to pathological variation. An
animated version of (b) is supplied in Supplementary Video 1.
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dendrogram plot in Fig. 4 illustrates how the pixels are separated
into clusters using polarization features. Dendrogram illustrates
how the clusters are formed, where the node indicates two clus-
ters are merged into one, and the abscissa axis indicates the
distance between clusters. Each branch corresponds to a certain
variation in polarization features, and variation in polarization
features infer variation in the microstructure. As shown in Fig. 4,
the entire set first splits into two main groups, which contain
nucleus structures (cluster 1, 2) and the rest (cluster 3, 4, 5, 6),
including collagen fiber and cytoplasm. This indicates that cell
nucleus and collagen fiber have very different microstructural
properties, unsurprisingly. In the top strand, the two main
nucleus clusters are extracted by stripping away the artifact
clusters, mostly utilizing the equalities of Mueller matrices. In the
bottom strand cluster 6 is the easiest to identify, as indicated by
the between-cluster distance. The polarization microstructural
map and dendrogram plot demonstrate that each subdivided
cluster corresponds to a meaningful pathological microstructure
in the H&E images, identifiable with distinctive polarization
features.

Polarization markers for diagnosis. Tissue microstructure var-
iation is pathologically meaningful. Here, we aim to extract
polarization-based microstructure markers and explore their
diagnostic value. Subwavelength microstructures, such as that of
the cytoplasm, are potential polarization markers as well. Once
the tissue microstructural subtypes are mapped using polarization
features, it enables the visualization of pathological transition
during primary liver cancer progression and the identification of
potential polarization markers for tumor classification. To
demonstrate, we attempt to tackle two different tasks: identifi-
cation of HCC with different differentiation degrees, and classi-
fication of ICC from HCC.

We first study the microstructural variation during HCC
progression and recognize cancerous tissues with different
differentiation degrees. We observe the tissue microstructural
composition alteration correlates with pathological variation in
HCC, from normal liver tissues to well, moderate, and poor
differentiation degree of HCC, which is clearly visualized in

Fig. 5a, and the animated heatmap provided in Supplementary
Video 1. As indicated in Fig. 4 and Fig. 5a, we identified cluster 2
and 6 as the polarization marker to distinguish HCC from normal
tissue. The cluster area proportion (area of pixels belonging to
that specific cluster divided by the total area in the ROI) of cluster
2 and cluster 6 are calculated for normal tissue, highly
differentiated, moderately differentiated, and poorly differentiated
cancer samples, respectively. The resulting box-whisker plots are
shown in Fig. 5b, and their corresponding p-values for the t-test
are calculated to test for statistical significance. When using
cluster 2 as the marker, the distinctions between neighboring sets
are statistically significant, but not between the well differentiated
and moderately differentiated samples (p= 2.22 ×10−5 for
normal vs well, p= 1.00 × 10−4 for moderate vs poor,
p= 1.16 × 10−1 for well vs moderate). The monotonically
increasing trend of cluster 2 proportion is observed as well. To
discriminate malignant HCC samples from normal tissues, we
have separated all the samples into two sets, namely the
malignant set (containing HCC samples of all three differentia-
tion degrees) and the normal set (containing all the normal
ROIs). Under this binary classification scenario, cluster 2 area
proportion achieves an AUC of 94.84%. Using cluster 6 as the
polarization marker shows a similar trend, as seen in Fig. 5c. The
area proportions of cluster 6 in normal tissues are relatively low,
most of which are under 5%. The separation between normal and
highly differentiated samples (p= 2.69 × 10−2), and between
moderately and highly differentiated samples (p= 1.48 × 10−4)
are statistically significant, but not between highly and moder-
ately differentiated samples (p= 5.87 × 10−1).

As labeled in Fig. 5d, we identified a cytoplasm structure in
cluster 3 that is present in moderately differentiated samples, but
not in highly differentiated samples. Using the labeled region as
polarization marker, an AUC of 88.59% is achieved for
distinguishing well differentiated from moderately differentiated
samples, as shown in Fig. 5e. This observation is quite
unconventional and requires validation in future works.

We now study the differences in tissue microstructural
composition between HCC and ICC pathological samples, in an
attempt to distinguish them. Likewise, we can first visualize the
variation of tissue microstructural composition by observing the
animated heatmap (provided in Supplementary Video 2) that
samples gradually from HCC to ICC tissues, which provides clear
visualization of the subtle difference in local density. The
microstructures characterized by cluster 5, i.e., collagen fiber, is
abundant in ICC samples, but not in HCC samples, as seen in
Fig. 6a. In contrast, cluster 3, a subtype of cytoplasm, is abundant
in HCC sample while not in ICC samples. Cluster 5 is the main
focus as the polarization marker for HCC and ICC distinction.
For comparison, Fig. 6b shows the box-whisker plot of the cluster
5 area proportion for both HCC and ICC samples. It is observed
that most of HCC samples’ cluster 5 proportion ratio is less than
10%, while that of the majority of ICC samples are above 10%.
For discriminating ICC from HCC samples, the area proportion
of cluster 5 yields an AUC of 84.94%. We also experimented with
cluster 3, using it as the polarization marker yields an AUC of
71.69%, as seen in Fig. 6c. This implies that to a certain degree,
the cytoplasm composition in HCC and ICC are different, and
such difference can be reflected in the proportion of cluster 3, a
polarization subtype of cytoplasm. It is noted that in this work
identifications between the six polarization pixel clusters and their
corresponding pathological composition were made by experi-
enced pathologists based on color images of the H&E-stained
slides, which show the boundaries of cells. Supplementary
Figure 1 contains additional projection results onto high-
definition H&E images, where the labeled region of cluster 3 is
highlighted with brown color, similar to the color scheme of IHC.

Fig. 4 Dendrogram generated from hierarchical clustering process. X-axis
shows the distance between clusters, and the y-axis labels the different
clusters and their corresponding pathological structures.
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Supplementary Fig. 2 shows the projection results under even
higher magnification (40×). Such identification between polariza-
tion and microstructural features will be further improved using
other molecular specific staining methods or super-resolution
techniques. While the current results are based on a relatively
limited samples size, we aim to establish a correspondence
between polarization features and microstructural variations in
cytoplasm in future works.

Discussion
Here, we have introduced a tissue microstructural composition
analysis framework using Mueller microscopy and unsupervised
learning methods. It is demonstrated that the resulting pixel
clusters of Mueller images correspond to compositions of char-
acteristic microstructure which contain pathologically useful
information. We analyzed the cancerous tissues and the normal
tissues around lesions in liver pathological samples, and split the

Fig. 5 Identification of polarization markers that correlates with HCC differentiation degree. The logarithm scale density heat maps of normal and
malignant hepatocellular carcinoma (HCC) samples are compared in (a), and the two potential polarization markers are enlarged for better view.
Proportion of pixels belongs to cluster 2 and 6 in each region of interest (ROI) are calculated, and the box whisker plots are shown in (b) and (c) for each
differentiation degree. The box and the whiskers mark the 10, 25, 50, 75, and 90 percentiles respectively. d displays the heat map for each differentiation
degree, and the dashed line indicates the selected polarization marker in the cytoplasm cluster to differentiate well and moderately differentiated samples.
e This shows the box-whisker plot of the selected polarization marker in (d).

Fig. 6 Identification of polarization marker for distinguishing HCC and ICC. a It shows the logarithm scale density heat map for hepatocellular carcinoma
(HCC) and intrahepatic cholangiocarcinoma (ICC) samples, and two clusters are labeled, one with solid line (cluster 5) and one with dashed line (cluster
3). The box whisker plots for the two polarization markers are shown in (b) and (c), the box and the whiskers mark the 10, 25, 50, 75, and 90 percentiles,
respectively.
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tissue structures into six components, each with its own dis-
tinctive polarimetric and microstructural feature. The clustered
pixels in polarization feature space are correlated spatially, and by
projecting the cluster labels onto histological images, we find that
they segment various pathological structures. Based on the
morphology on corresponding H&E images, pathologists identify
that the six clusters can be respectively associated with the normal
nucleus, cancerous nucleus, HCC and ICC cytoplasm, collagen
fiber, and fibrocytes. While in this study the results are mainly
compared against H&E staining, one can also conduct other types
of staining that are specific to the tissue structure of interest for
analysis. The difference in polarization characteristics implies a
difference in microstructural characteristics. It is inferred that
there are certain underlining microstructural differences between
the identified clusters, causing their differences in polarization
signature.

It is known that clustering results are sensitive to many dif-
ferent factors, including the experimented data, the used algo-
rithm, and the parameters and hyperparameters. Figure 2 of this
work also shows that a substantial data volume is needed to
obtain a stable clustering. However, we are optimistic that the
observed microstructural decomposition phenomenon using
unsupervised learning method can be generalizable with further
improvements in the algorithms and more priory information on

the polarization and microstructural features of the samples. We
find similar phenomenon in many other types of normal and
cancerous tissues, such as the breast cancer and cervical intrae-
pithelial neoplasia specimen shown in Supplementary Figs. 3 and
4. Due to the small sample size, we used the basic KMeans
algorithm to cluster the polarization pixels into six clusters, and
find a correspondence between the clusters and pathological
structures, such as cell nuclei, cytoplasm, and collagen fiber.

We demonstrate how polarization markers can be extracted
and potentially utilized for pathological applications. Tissue
microstructural composition analysis enables visualization of
tissue structure transition in polarization space during patholo-
gical variation. It is shown that cluster 2 correlates strongly with
tumor. Evidence shows that cluster 2 can serve as a polarization
marker to quantitatively characterize HCC samples with different
differentiation degrees and separate HCC from normal liver tis-
sues with an AUC of 95%. Differentiation of ICC from HCC is a
known challenging pathological task. In this study, we identify a
polarization marker to distinguish ICC from HCC on the H&E-
stained slides, achieving an AUC of 84.94%. Through the trans-
formation from polarization feature space to pathological feature
space, it informs pathologists that cytoplasm and collagen con-
tribute the most toward classification, which is consistent with the
findings of medicine47. In particular, we observe that cluster 3 is a

Fig. 7 Clustering result of the cell nuclei clusters with finer super-pixels. The pixels nucleus clusters, cluster 1 and 2, are collected and remapped using
smaller sized super-pixels, as seen in (a). Detailed nucleus structures are revealed, two of which correlates with lesion malignant, as shown by the
logarithm scale density plots in (b) of normal and malignant hepatocellular carcinoma (HCC) tissues.
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polarization subtype of cytoplasm that is potentially meaningful
for differentiating HCC and ICC, and the correspondence
between polarization features and microstructural variations in
cytoplasm may be further studied using molecular staining or
super-resolution imaging methods. Therefore, this method may
supplement the immunostaining analysis, providing interpretable
and quantitative polarization markers for pathological diagnosis
and prognosis prediction, and even reveal “invisible” super-
resolution features to pathologists in an intuitive and visualized
manner.

By adjusting the size of super-pixels and selecting interested
microstructural clusters, it is possible to split an identified
structure into even finer clusters, revealing detailed subcellular
microstructures. To demonstrate, pixels from cluster 1 and 2 are
collected and analyzed using the proposed method, only at a
much smaller super-pixel size. As shown in Fig. 7a, the two
clusters in the original UMAP are now transformed into four or
more clusters. Figure 7b compares the heatmap between benign
and malignant nuclei on the newly generated UMAP projection,
it is clear that two distinct clusters correlate strongly with
malignancy. Such a detailed pattern is only revealed after focusing
on the nucleus structure and increasing the spatial resolution of
polarimetric images.

In conclusion, by clustering the pixels of Mueller matrix ima-
ges, we develop a tissue microstructural composition analysis
framework to separate the intricate tissue structures into detailed
microstructural components with distinctive polarization char-
acteristics. Evidences show that the microstructure clusters are
pathologically meaningful and their overall layout remain stable
in polarization space with respect to samples from different
individuals. The framework is applied to analyze the two most
common primary liver cancers, HCC and ICC. The detailed map
of biological microstructure in polarization space allowed the
visualization of microstructure composition variation during
HCC occurrence and progression, and the difference in micro-
structure between HCC and ICC. We also derived sets of polar-
ization markers to tackle them quantitatively, yielding
comparable performance with other state-of-the-art methods.
Most importantly, even the “invisible” microstructure in pathol-
ogy, the detailed structures of cytoplasm, could be presented in a
“visible” manner and used for pathological diagnosis. Our results
highlight the potential of polarization-based tissue compositional
analysis framework as a tool to assist routine pathological tasks
and explore the unknown pathological mechanism for patholo-
gists and researchers.

Data availability
The experimental data that support the findings of this study are available in Figshare
with https://doi.org/10.6084/m9.figshare.23723490.

Code availability
The code that supports the findings of this study is available from the corresponding
author upon reasonable request.
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