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Abstract

In the past decade, finger vein authentication garners significant interest. However, most existing

databases and algorithms predominantly focused on single-view finger vein recognition. The

current projection of vein patterns actually maps a 3D network topology into a 2D plane, which

inevitably leads to 3D feature loss and topological ambiguity in 2D images. Additionally, single-

view based methods are sensitive to finger rotation and translation in practical applications. So

far, there are currently few dedicated studies and public databases on multi-view finger vein

recognition. To address these issues, we first establish a benchmark for future research by con-

structing the multi-view finger vein database, named Tsinghua Multi-View Finger Vein-3 Views

(THUMVFV-3V) Database , which is collected over two sessions. THUMVFV-3V provides

three types of Regions of Interest (ROIs) and includes unified preprocessing operations, cater-

ing to the majority of existing methods. Furthermore, we propose a novel Transformer-based

model named Vein Pattern Constrained Transformer (VPCFormer) for multi-view finger vein

recognition, primarily composed of multiple Vein Pattern Constrained Encoders (VPC-Encoders)

and Neighborhood-Perspective Modules (NPMs). Specifically, the VPC-Encoder incorporates a

novel Vein Pattern Attention Module (VPAM) and an Integrative Feed-Forward Network (IFFN).

Motivated by the fact that the strong correlations veins exhibit across di↵erent views, we devise

the VPAM. Assisted by a vein mask, VPAM is meticulously designed to exclusively extract intra-

and inter-view dependencies between vein patterns. Further, we propose IFFN to e�ciently

aggregate the preceding attention and contextual information of VPAM. In addition, the NPM

is utilized to capture the correlations within a single view, enhancing the final multi-view fin-

ger vein representation. Extensive experiments demonstrate the superiority of our VPCFormer.
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The THUMVFV-3V database is available at https://github.com/Pengyang233/THUMVFV-3V-

Database.
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1. Introduction

Biometric authentication has been extensively applied in many scenarios with the aim for

enhancing security and convenience in people’s daily life. Face and fingerprint are the most

prevalent traits in practical applications, thanks to low-cost devices and user-friendly character-

istics. However, these extrinsic traits are susceptible to damage and forgery, rendering them less

than ideal for reliable recognition. In this situation, finger vein has garnered considerable inter-

est in the realm of biometric authentication [1]. This trait refers to the vessels beneath the finger

skin, which are inherently resistant to abrasion and variations in skin condition. Furthermore, as

they are only detectable by using Near-Infrared (NIR) cameras, finger veins remain invisible to

standard RGB cameras.

In recent years, significant advancements have been made in the field of finger vein recog-

nition [2, 3, 4]. Predominantly, these algorithms utilized single-view images for recognition,

which has been plagued by persistent challenges. For instance, the captured images often fail to

encompass an extensive field of finger veins, resulting in limited identity information. Crucially,

since real finger veins located within a finger resemble a 3D network structure, the 3D infor-

mation is lost when veins are captured from a single view. Furthermore, the content of finger

vein images captured from one view is heavily influenced by the rotations and translations of the

finger, thereby leading to performance degradation.

Various studies have proposed solutions to the aforementioned issues separately. To counter-

act spoofing attacks using printed finger veins, Qiu et al. [5] di↵erentiated between genuine finger

vein images and spoofed attacks by analyzing the blurriness and noise distribution. Considering

the unique characteristics of finger vein images, Yang et al. [2] extracted the anatomy structure

of veins, encompassing the vein network and backbone. To address deformations caused by

finger rotations and misalignments, an elliptical model was introduced in [6] to predict rotated
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vein patterns during the matching process. Furthermore, Meng et al. [7] employed vein minutiae

extraction and matching to circumvent deformation interference. However, attempting to resolve

these issues with auxiliary algorithms in a finger vein recognition system can potentially deceler-

ate the system and render it more complicated and vulnerable. Therefore, a simpler yet e↵ective

approach is required. Encouragingly, multi-view finger vein recognition can accomplish this task

elegantly.

Unlike single-view finger vein recognition, multi-view finger vein recognition utilizes finger

vein images from multiple views for authentication. Typically, the captured views are evenly

distributed around the longitudinal axis of the finger. The reasons why multi-view finger vein

recognition can address the aforementioned issues can be summarized as follows: 1) For multi-

view finger vein images, the visual correlations between adjacent views can substantially elevate

the di�culty of stealing vein patterns and diminish the likelihood of attacks utilizing printed vein

patterns; 2) Multi-view images contain richer content than single-view images. In cases of pose

variations, multiple views can reference each other, thereby compensating for the limitation of

vein information in a single view; 3) Multi-view images encapsulate vein structure information

in 3D space. Algorithms could potentially extrapolate spatial features of finger veins from these

multi-view inputs, thereby enhancing the discriminability and robustness of the features.

As an emerging area in finger vein recognition research, multi-view recognition has only

a limited number of dedicated studies and publicly available databases. Therefore, to foster

progress in this field and establish a benchmark for future research, we contribute the following

in this work:

1. We propose the THUMVFV-3V database1, a multi-view finger vein database collected

over two sessions, providing multiple types of ROIs and finger masks to cater to the ma-

jority of existing finger vein algorithms. Extensive experiments are conducted to verify the

reliability and e↵ectiveness of the THUMVFV-3V database.

2. A Transformer-based network, VPCFormer, is proposed for multi-view finger vein recog-

nition. The VPCFormer consists of several Vein Pattern Constrained Encoders (VPC-

Encoder) and Neighborhood-Perspective Modules (NPM). Equipped with a novel Vein

Pattern Attention Module (VPAM) and an Integrative Feed-Forward Network (IFFN),

1
https://github.com/Pengyang233/THUMVFV-3V-Database

3



VPC-Encoder e↵ectively captures global intra- and inter-view correlations with the con-

straint of vein patterns. Additionally, NPM aims to extract local correlations within a

single view.

3. Compared with a variety of methods, VPCFormer achieves the best performance on the

multi-view finger vein recognition. Additionally, ablation studies clearly demonstrate the

e↵ectiveness of the proposed modules.

The remainder of this paper is organized as follows: Section 2 reviews several related topics.

The detailed information about our multi-view finger vein imaging device and the THUMVFV-

3V database are presented in Section 3 and Section 4, respectively. Section 5 provides a compre-

hensive description of our VPCFormer. Extensive experiments and discussion are conducted in

Section 6. Finally, Section 7 summarizes the paper.

2. Related work

2.1. Finger Vein Recognition

Single-view finger vein recognition: Over a decade of development has seen significant ad-

vancements in single-view finger vein recognition technology. Drawing inspiration from the dis-

tinct visual contrast between finger vein regions and their background in images, methods such as

Local Maximum Curvature (LMC) [8], Wide Line Detector (WLD) [6], and Enhanced Maximum

Curvature (EMC) [9] were introduced. To extract more informative features, SSP-DBFL [4] was

proposed for joint learning from two types of input features. Recognizing the potential of deep

learning techniques in computer vision, several researchers adapted these methods specifically

for finger vein recognition. A case in point is FV-GAN [10], a pioneering approach that utilizes

Generative Adversarial Networks (GANs). Song et al. [11] introduced EIFNet, a model adept at

fusing both implicit and explicit features to produce more discriminative results. Furthermore,

motivated by the success of Vision Transformer (ViT) [12], Huang et al. [13] developed Finger

Vein Transformer (FVT), leveraging a pyramid structure for multilevel feature extraction.

Multi-view finger vein recognition: As an emerging research field, there exist limited meth-

ods for multi-view finger vein recognition. Kang et al. [14] were pioneers in developing a full-

view finger vein recognition algorithm, which maps finger veins to the finger surface using an
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elliptical model. Subsequently, Yang et al. [15] employed multi-view finger surface and vein im-

ages to generate finger point clouds for recognition. They further integrated the attention mecha-

nism into MVCNN [16] to e↵ectively handle multi-view inputs [17]. More recently, HCAN [18]

leveraged both global and local features to yield a robust and discriminative multi-view repre-

sentation. FV-LT [19] implemented a pre-trained Transformer and stacked an additional three

blocks, incorporating a local information matrix, to extract multi-view finger vein features.

Di↵erent from the aforementioned methods, our VPCFormer extracts intra- and inter-view

correlations with the constraint of vein patterns and captures correlations between the back-

ground and veins within a local neighborhood. This design enhances the model’s e�ciency in

extracting multi-view finger vein features.

2.2. Multi-view Finger Vein Databases

Multi-view finger vein recognition is an emerging research field with a limited number of

databases. The detailed information of four databases is provided in Table 1.

Vein-Plus [20] is the first multi-view finger vein database. This database includes 252 classes

from 63 subjects, each providing the index and middle fingers of both hands. The author adopted

one NIR camera, rotating around the finger to record a video. Video frames is served as multi-

view finger vein images. Each finger was recorded five times to obtain 358⇠360 views, resulting

in a total of 454,840 images approximately. However, Vein-Plus is only available in the European

Union (EU) region.

Kang et al. [14] proposed a publicly available multi-view finger vein database comprising

8,526 images across 203 classes. This database includes three views of each finger, each view

being captured 14 times.

The MultiView-FV database [21], a three-view finger vein database, comprises 6,480 images

from 135 volunteers, each providing the index and middle fingers of both hands. Four images

were captured for each view of each finger, resulting in 540 classes.

The most recent database, LFMB-3DFB [15], includes 41,700 finger vein images. It includes

695 classes from 174 volunteers’ index and middle fingers. Each finger was captured from six

views, and each view was captured ten times.

However, in biometric authentications, the time span plays a crucial role in a↵ecting the

recognition performance. Compared with the existing databases, our THUMVFV-3V is collected

over two separate sessions, which provides a more practical evaluation of multi-view finger vein
5



Table 1: THUMVFV-3V and other multi-view finger vein databases.

Database Year #Views #Classes Two sessions Available #Images/view #Images ROI

Vein-Plus [20] 2018 358⇠360 252 8 8a 5 ⇡454,860 8

Kang et al. [14] 2020 3 203 8 4 14 8,526 8

MultiView-FV [21] 2021 3 540 8 8b 4 6,480 8

LFMB-3DFB [15] 2021 6 695 8 8 10 41,700 8

THUMVFV-3V (ours) 2023 3 660 4 4 12 23,760 4

a Only available in the EU region.
b The download link [21] for this database is unavailable.

recognition systems by capturing temporal variations in the collected samples. In addition, three

types of ROIs are provided in THUMVFV-3V for fair comparisons.

2.3. Transformer

In 2017, Vaswani et al. [22] pioneered the Transformer model, leveraging the self-attention

mechanism for natural language processing. Relative to Long Short-Term Memory (LSTM)

networks [23], the Transformer exhibits superior parallel computing capabilities, long-range de-

pendency capturing, and robust representation learning ability [22].

The Vision Transformer (ViT) [12] underscored the substantial potential of the Transformer

for vision tasks, instigating a swift evolution of Transformers within the realm of computer vision

in subsequent years. Later works sought to address prevalent challenges associated with Trans-

former, including the need for large-scale training data [24] and computational e�ciency [25].

Furthermore, to e�ciently extract features of varying granularities in images, the Pyramid Vision

Transformer (PVT) [26] mapped image patches of di↵erent sizes into Transformer encoders at

distinct levels, employing a pyramid structure to achieve this objective. Alternatively, the Trans-

former iN Transformer (TNT) [27] combined local and global Transformers for enhanced feature

extraction and context modeling.

Encouraged by the ViT and its variants, we propose VPCFormer, a model based on the Trans-

former architecture, designed to exploit intra- and inter-view vein pattern correlations within

multi-view finger vein images.

3. Multi-view finger vein imaging device system

The multi-view finger vein imaging system [18] is employed for a reliable data collection,

with a few improvements introduced. This imaging device [18] encompasses four main compo-
6



nents: an NIR camera, an NIR light source, a finger support module, and a rotation controller, as

shown in Fig. 1.

NIR Camera

Light source &
Finger support

module
The rotation 

controller 

Shell

Figure 1: The multi-view finger vein imaging device.

The NIR camera is the AD-130GE manufactured by JAI Ltd.2, receiving the NIR light with

a wavelength in the range of 760nm to 1000nm. Based on the observations from [28] and our

experimental findings, we found that a homogenizer plate tends to make the acquisition system

more sensitive to variations in light intensity and may result in overexposed images. Conse-

quently, we revised the NIR light source of the system. Seven LEDs were systematically ar-

ranged in a line on the circuit board to ensure uniform light, managed by a current source. Each

LED possesses a 45� beam angle, emitting light at a wavelength of 850nm. Furthermore, the

finger support module was also redesigned to improve volunteer comfort and prevent inadvertent

finger bending. To mitigate the risk of overexposure, we selected black nylon as the 3D-printing

material [28]. Di↵erent from the original work [18], the acquisition device is adapted to capture

palmar veins, which have been demonstrated to be more discriminative than dorsal veins [20].

2https://www.jai.com/
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4. Database

4.1. Basic Information

To collect a substantial number of samples3, we invited 180 volunteers to participate in our

data acquisition process. The entire collection process was divided into two separate sessions

with a minimum interval of 30 days, a maximum of 106 days, and an average of 45.8 days. In

addition, a total of 171 subjects attended both sessions, while the remaining 9 were absent for the

second session. In each session, all subjects o↵ered the index and middle fingers of both hands

for imaging. For each finger, six samples were obtained in each session, resulting in 18 finger

vein images in total. Each sample consists of 3 images, each from a distinct view.

In constructing the THUMVFV-3V, only the subjects who participated in both sessions were

considered. After excluding images with non-compliance and overexposure, our THUMVFV-3V

comprises 660 classes with a total of 23,760 finger vein images. Furthermore, THUMVFV-3V

is a gender-balanced database, including 92 males and 79 females (1.16:1).

4.2. Acquisition Details

During each capture process, subjects are guided to place their finger into the device in a

relaxed and natural manner, with the finger palm facing upward. At this point, we control the

device to capture finger vein images from the 0� view. The subject then rotates their finger in

a clockwise direction until reaching the maximum angle indicated by the rotation controller,

and images from the +45� view are obtained. Similarly, the subject rotates their finger counter-

clockwise until reaching a predetermined stop, at which point images from the �45� view are

acquired.

Upon completion of the aforementioned capture process in each session, the subject is asked

to remove their finger from the device and rest for approximately 5 to 10 seconds. Subsequently,

the subject repositions their finger within the device and repeats the entire capture process for the

next acquisition.

Given that our device does not enforce a strict finger posture, slight displacements and mi-

nor rotational variations are occurred among di↵erent multi-view finger vein samples for each

category. This further enhances the intra-class diversity.

3A ’sample’ in this study refers to a set of images obtained from di↵erent views of a finger.
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4.3. Preprocessing Operations

Numerous finger vein databases only provide raw images without finger masks or ROIs, lead-

ing to a lack of description of preprocessing operations in many studies towards model design.

Given the variations in preprocessing steps or ROIs, methods generally require to re-tune hy-

perparameters or otherwise produce quite di↵erent performance. This situation poses significant

challenges for the reproducibility of the algorithms. To ensure a fair and reliable comparison, we

standardized the preprocessing operations for THUMVFV-3V, and provided three types of ROIs

to accommodate the majority of existing algorithms.

(a) (b) (c) (d)

Figure 2: Illustration of preprocessing operations. (a) Vein image. (b) Coarse finger mask. (c) Refined finger mask. (d)

ROI after angle alignment.

The preprocessing operations have four steps: 1) Coarse detection of finger boundary. 2) Re-

finement of finger boundary. 3) Angle alignment. 4) ROI generation. We give a brief illustration

of the preprocessing operations in Fig. 2.

In our THUMVFV-3V, three types of ROIs are provided, denoted as ROI1, ROI2 and ROI3,

respectively.

• ROI1: This type of ROI includes all content and only undergoes angle alignment.

• ROI2: This type of ROI only contains finger regions. All non-finger areas are masked by

the finger mask.

• ROI3: Based on ROI2, the finger region is linearly interpolated along the column direction

to expand the vein area, covering the entire image. Subsequently, ROI3 is resized into

100 ⇥ 200.

Some examples of ROI1, ROI2, ROI3 and finger mask are shown in Fig. 3.
9



(a) ROI1 (b) Finger mask (c) ROI2 (d) ROI3

Figure 3: Examples of THUMVFV-3V images with three types of ROIs and finger masks.

5. Methodology

5.1. Overall architecture

Vein patterns are recognized as the most distinctive features in finger vein images. The back-

ground variations in finger vein images are influenced by the changes in subcutaneous tissue

thickness and fat content along the NIR light path [4]. The involvement of multiple views intro-

duces complexity and unpredictability in the correlations among di↵erent view background. On

the other hand, vein patterns in adjacent views, situated within the same spatial region, should ex-

hibit strong correlations between views, despite visual di↵erences in vein patterns across the two

view images. Therefore, it is more reasonable and simpler to consider the correlations between

vein patterns across di↵erent views than those between background.

In finger vein images, both the veins and the surrounding background jointly contribute to the

final imaging outcomes [4]. Hence, it is essential to consider not only the relationships between

di↵erent vein patterns, but also the local correlations between veins and background.

Based on these observations, we propose a Transformer-based model, named Vein Pattern

Constrained Transformer (VPCFormer) for multi-view finger vein feature extraction. The VPC-
10
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Figure 4: Overview of VPCFormer.

Former is mainly stacked by several VPC-Encoders and NPMs. In detail, a VPC-Encoder con-

sists of a VPAM and an IFFN. With an introduction of vein mask, VPAM aims to facilitate

interactions between vein information through the intra-view and inter-view attention. The IFFN

is utilized to e↵ectively aggregate preceding attention and contextual information. Furthermore,

NPM is designed to capture pixel correlations within a local region. The overall architecture of

VPCFormer is shown in Fig. 4.

Given the input multi-view finger images
n
I

i
oU

i=1
, where U denotes the number of views.

Each view I
i is transformed into a data token sequence X

i
0 2 R

HW
p2 ⇥d by the patch embedding

layer. Here, p signifies the patch size, H and W represent the height and width of the input image

respectively, and d denotes the token dimension. For the l-th VPC-Encoder, its output of the i-th

view is represented as X
i
l. In the end, VPCFormer extracts the multi-view finger vein feature f

for recognition.

5.2. Vein Mask Generation

To constrain the model’s attention to vein patterns in the self-attention module, it is necessary

to acquire the corresponding vein mask for each view.

Initially, we need to obtain vein template to indicate the positions of the vein pixels. To date,

none of the existing finger-vein databases contain ground-truth for vein segmentation, with the

exception of the THU-FVS [11] database. Additionally, manually segmenting and annotating all

samples in a database is not only time-consuming and labor-intensive but also detrimental to the

generalization of algorithms. Drawing inspiration from the previous work [10], the outputs of
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some existing algorithms are employed as vein templates, to mitigate the influence of a single

method. Four reliable methods are adopted, including LMC [8], Kumar et al. [28], EMC [9],

and EIFNet [11], with the latter being the only one trained on the THU-FVS [11] database. In

the fusion process, a majority voting approach is employed: a pixel is designated as a vein point

in the fused vein template if it is identified as such by three or more algorithms; otherwise, it

is labeled as a background point. When generating the fused vein template T, the value at the

position identified as a vein point is set to 1, and 0 otherwise. Fig. 5 depicts this process.

LMC Kumar et al.

EMC EIFNet

M
ajority Voting

Input Output

Figure 5: Vein template generation process.

Subsequently, a vein mask consisting of HW
p2 elements is derived from a vein template. Specif-

ically, a square kernel of size p ⇥ p with all element values set to 1 is employed. The kernel is

convolved with the vein template using a stride of p. The convolution result is denoted as M̂, and

the aforementioned operation can be expressed as

M̂(i, j) =
p�1X

m=0

p�1X

n=0

T (p · i + m, p · j + n) , (1)

where T(i, j) represents the value of position (i, j). Thus, the vein mask M can be computed as

M(i, j) =

8>>>>><
>>>>>:

1 if M̂(i, j) � ⇣,

0 otherwise,
(2)

where ⇣ is a predefined threshold to avoid errors caused by a small number of vein pixels.

5.3. VPC-Encoder

This section details VPCFormer, which consists of two primary components: a VPAM and

an IFFN.
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5.3.1. VPAM

The self-attention module excels in capturing global information and long-range dependen-

cies. However, applying this module directly to multi-view inputs essentially allows the model

to learn all conceivable long-range dependencies autonomously. As aforementioned, due to the

limited training samples and weak long-range correlations between background across di↵erent

views, we design VPAM based on the Multi-Head Self-Attention (MHSA), to extract the corre-

lations within and between views of vein patterns. The overall structure of the VPAM is depicted

in Fig. 6.

!! "! #! "" !"

⊗ ⊗

⊗ ⊗
⨁

Intra-view 
attn. scores  !!!

!"!!

⨁ Add
Fusion

&!

Vein mask #!

Intra-view attention Inter-view attention
⊗ Matrix multiplication

Inter-view 
attn. scores  !!"

Vein mask #"

so
ftm

ax
softm

ax

!"!"

!!"#$% !!"#&$

!

&"

Figure 6: The overall structure of VPAM. For clarity and ease of illustration, this figure depicts operations within a single

attention head. Operations within other attention heads are identical to those shown.

Extraction of intra-view correlations: For the data token X
i of the i-th view, the corre-

sponding query Q
i, key K

i, and value V
i are calculated as

Q
i = X

i
Wq,

K
i = X

i
Wk,

V
i = X

i
Wv,

(3)
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where Wq, Wk and Wv are the learnable weight matrices with the dimensions of d ⇥ dhead.

Based on these three vectors, the attention score matrix Sii of the i-th view can be computed as

Sii = Q
i · Ki>. In order to constrain the model’s attention to vein patterns, we utilize the vein

mask M
i generated in Section 5.2 to set the correlation scores in Sii related to the background

tokens to negative infinity4, i.e.,

S̃ii = �"(1 �M
i) + Sii, (4)

where " denotes a very large positive number. In this paper, " = 232 � 1. Next, we use the

so f tmax function to convert S̃ii into a probability distribution P̃ii:

P̃ii = so f tmax
 

S̃iip
dk

!
, (5)

where dk is the dimension of K
i. At this point, P̃ii only retains the correlations between dif-

ferent positions and the vein patterns within i-th view, while ignoring their connections with

background areas. Finally, based on the probability distribution P̃ii, the output of the intra-view

self-attention O
i
intra is calculated as

O
i
intra = Attention(Qi,Ki,Vi) = P̃ii · Vi. (6)

Extraction of inter-view vein correlations: The process of extracting correlations between

di↵erent views is similar to that within the single view. For the given data tokens X
i and X

j

from two views, we need to multiply the query Q
i from view i with the key K

j from view j

to calculate the attention scores between di↵erent positions in view i and view j, denoted as

Si j = Q
i · K j>. For the c-th row (denoted as Sc⇤) in Si j, it essentially represents the attention

scores of the c-th token in X
i with all tokens in X

j. Similarly, we need to limit the attention areas

in view j. Therefore, by using the vein mask M
j from view j to block out the model’s attention

to the non-vein areas, similarly to Eq. (4), we have

S̃i j = �"(1 �M
j) + Si j. (7)

At this point, the values within S̃c⇤ denote the attention scores of the c-th token in X
i when corre-

lated with all tokens in X
j that signify vein patterns. As previously highlighted, the key objective

4Setting it to negative infinity has the advantage of directly outputting a probability of zero for positions where

correlation is not desired when using the so f tmax function later.
14



of inter-view attention operations is to capture correlations exclusive to the tokens contained vein

patterns across di↵erent views. Evidently, if the c-th token in X
i signifies a background area, S̃c⇤

would represent the correlation between a background token in X
i and all vein tokens in X

j.

Consequently, it becomes imperative to block the attention scores in S̃i j corresponding to the

background tokens in X
i. However, direct manipulation of S̃i j would necessitate supplementary

operations on the so f tmax output. Therefore, we manage the probability distribution output from

so f tmax directly as

P̃i j =
⇣
M

i · 1>
⌘
� so f tmax

 
S̃i jp
dk j

!
, (8)

where � is Hadamard product; 1 2 R
HW
p2 ⇥1 represents a column vector with all elements set to

1; M
i 2 R

HW
p2 ⇥1 denotes the vein mask for view i, as procured in Section 5.2. At this stage, P̃i j

exclusively preserves the connections between the vein tokens in views i and j. Ultimately, we

compute the output of the inter-view attention operation, O
i j
inter, as

O
i j
inter = P̃i j · V j. (9)

Output fusion: Once we have obtained the two types of attention outputs O
i
intra and O

i j
inter,

we integrate them by directly adding them together to derive the ultimate output of VPAM, i.e.,

O
i = O

i
intra +O

i j
inter. (10)

5.3.2. IFFN

In ViT [12], tokens encapsulating raw attention information undergo two layers of MLP to

facilitate feature learning. Despite this, our observations suggest that the conventional Feed-

Forward Network (FFN) falls short in the task of vein feature extraction, thereby causing a sig-

nificant performance decrement (as discussed in Section 6.5.2). In response to this, we put forth

an IFFN aimed at enhancing the model’s performance.

Specifically, in order to adapt to image data and more e↵ectively aggregate preceding at-

tention, we incorporate pointwise convolution based on a 1 ⇥ 1 kernel, as well as depthwise

convolution utilizing a 3 ⇥ 3 kernel. The detailed structure of IFFN is visually represented in

Fig. 7.

In IFFN, we first spatially rearrange the token O
i0 2 R

HW
p2 ⇥d5 that contains intra-view and

inter-view attention information to obtain the view feature map F
i 2 Rd⇥ H

p ⇥W
p . Next, a pointwise

5It is worth noting that O
i0 is the result of O

i after the residual connection layer, i.e., O
i0 = O

i + X
i.
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Figure 7: The structure of IFFN.

convolution is utilized to augment the channel of F
i from d to 4d. This technique enhances its

representation capability in the high-dimensional space. Following this, we implement depth-

wise convolution on its output, which facilitates the aggregation of attention and contextual in-

formation without a substantial increase in the number of parameters. Ultimately, a pointwise

convolution is employed once more to revert the channels back to d, serving as the output of the

IFFN after spatial rearrangement.

5.4. Neighborhood-Perspective Module (NPM)

In VPCFormer, a VPC-Encoder based on MHSA is designed to capture the interconnections

of vein patterns both within and across views, which can be perceived as global features. To

compensate for the model’s deficiency in capturing local neighborhood correlations, the NPM is

designed to fulfill this objective.

Convolutional operations inherently possess the ability to capture the correlations between

image pixels within a local neighborhood. This property can be adjusted by configuring the size

of the convolution kernel or by utilizing varying numbers of convolutional layers. To this end, we

construct the NPM using two convolutional layers with a 3 ⇥ 3 kernel size, which are designed

to capture pixel correlations within a 5 ⇥ 5 neighborhood. The rationale behind not directly

employing a 5⇥5 convolutional layer is to introduce additional nonlinearity while simultaneously

reducing parameters. A schematic diagram of the NPM is depicted in Fig. 8.

For the input of NPM, data tokens from each view are rearranged into a spatial structure that

mirrors the original image grid, allowing us to employ convolution operations e↵ectively.
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5.5. Patch Embedding Layer and Output Layer

Patch embedding layer: To process images using Transformer-based models, images are

first fed into a patch embedding layer, which converts each non-overlapping patch into a to-

ken embedding. In VPCFormer, we borrow the patch embedding layer from Visformer [29] to

achieve a balance between the number of parameters and overall performance.

Output layer: After passing through L � 1 NPMs and L VPC-Encoders, the data tokens of

all views, denoted as
n
X

i
L

oU

i=1
, are obtained. The next step is to fuse

n
X

i
L

oU

i=1
in order to derive a

multi-view finger vein feature f for recognition. Specifically, for the i-th view, the average value

is calculated for each position across X
i
L to obtain the view representation f i:

f i =
1

HW
p2

HW
p2X

j=1

x
i
j, (11)

where x
i
j denotes the jth token of X

i
L. The averaging operation helps mitigate the influence

of noise while preserving global information. To map the concatenated view representations

[ f 1; ...; f U] to the target feature space, a linear layer is utilized to learn the latent relationship be-

tween view representations and ultimately obtain the multi-view finger vein feature f for recog-

nition. This process can be expressed as

f = Linear
⇣
Concat

⇣
f 1, ..., f U

⌘⌘
. (12)

For the extracted features, we utilized the nearest neighbor (1-NN) classifier, adopting cosine

similarity as the distance metric for finger vein recognition.

6. Experiments

In this section, we conduct extensive experiments to provide a benchmark based on our

THUMVFV-3V database. Furthermore, VPCFormer is evaluated to demonstrate its superior-
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ity.

6.1. Experiment Settings

In the experiments, we evaluate three types of methods on the THUMVFV-3V database, i.e.,

traditional methods, subspace learning-based methods and deep learning-based methods.

In order to guarantee fair and reliable comparisons, we have standardized the preprocessing

operations for di↵erent types of methods6. This unification encompasses a range of factors in-

cluding image preprocessing, ROI type, input size, and data augmentation. Furthermore, any

methods with hyperparameters have been meticulously tuned to ensure the attainment of optimal

results.

Regarding the programming languages and experimental platforms utilized, all traditional

methods are executed in MATLAB, with the input ROIs sequentially undergoing median filter-

ing and Contrast Limited Adaptive Histogram Equalization (CLAHE). Likewise, all subspace

learning-based methods are implemented in MATLAB, with all ROIs resized to 64⇥144 without

additional preprocessing operations. The involved deep-learning methods are tailored for feature

extraction by removing the last classification layer and replacing the softmax loss with the circle

loss [30]. All traditional methods and subspace learning-based methods are executed on a Win-

dows workstation, equipped with Windows 10, 64GB of memory, and an Intel(R) Xeon(R) CPU

E5-2695 v2 @2.40GHz processor. In contrast, all deep learning-based methods, implemented in

Python under the PyTorch framework, are executed on four Nvidia GeForce GTX 1080Ti GPUs,

each with 11GB of memory.

For the experiments, unless otherwise specified, we employed a consistent strategy for data

partitioning: the samples of all classes collected during the first session were used exclusively

for training, and those collected in the second session were strictly used for evaluation.

6.2. Single-view Recognition

THUMVFV-3V can be naturally separated into three single-view finger vein databases. In

this section, we study the performance of di↵erent methods under di↵erent views. Three types

6This unification may yield di↵erences from the original papers, but for the selected methods, the preprocessing

is entirely separated from the method itself. Therefore, while ensuring the integrity of the algorithm, the impact of

preprocessing operations is considered uniform across all methods of the same type.
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of methods are re-implemented to conduct a comprehensive analysis of the performance, such

as traditional-based (i.e., LDC [31], Kumar et al. [28], WLD [6], LMC [8], and PWBDC [32]),

subspace learning-based (i.e., WSRC [33], ESRC [34], DDBPD [35], and LCMFC [36]), and

deep learning-based (i.e., ResNet 18/50 [37], attention models [38, 39, 40, 12], FVCAE [41],

Hong et al. [42], ArcVein [3], and MRFBCNN [43]). Note that some subspace learning-based

methods are borrowed from other biometrics. It is fair and reasonable because there is no

biometric-specific prior is incorporated into these methods. The identification performance is

reported in Table 2, which is evaluated by accuracy (ACC) [44] as

ACC (%) =
Number of correct predictions

Total number of predictions made
⇥ 100%. (13)

The results presented in Table 2 lead us to several conclusions.

Firstly, concerning the performance of methods for each view, the results demonstrate that all

methods perform optimally at the 0� view. This suggests that the finger vein images from the 0�

view encompass more informative features. This inference aligns not only with our expectations

but also consistent with conclusions of other studies [20]. This is because that images from the

0� view contain more valid vein patterns than those in the ±45� views.

Secondly, among the five traditional methods, we found that works based on directional

features (PWBDC [32], Kumar et al. [28], and LDC [31]) exhibit commendable performance

across all views. It also can be found that these three methods have a smaller performance

decline at the ±45� views compared to the 0� view. This suggests that directional features can

yield robust and distinctive information for the vein recognition task.

Thirdly, among the methods based on the subspace learning, the methods (DDBPD [35] and

LCMFC [36]) integrating additional constraints achieved better results.

Fourthly, deep learning-based methods have shown quite impressive results in this task. It

is clear to see that classic ResNets [37] still perform remarkably. Considering the outcomes de-

rived from ResNet18 [37] and ResNet50 [37], one can infer that an increase in network depth

brings a certain improvement to the results given the current data volume. For CNN-based mod-

els, it is noticeable that works incorporating attention mechanisms, such as MRFBCNN [43] and

ECANet [40], have aided in improving performance at the ±45� views. Nevertheless, such im-

provement does not consistently benefit from all attention mechanisms. Intriguingly, the latest

model based on the Transformer architecture, ViT [12], performs on par with ResNet18 [37]
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Table 2: Single-view finger vein identification performance (%) for each view on THUMVFV-3V database. The best is

in bold; the second best is underlined; the third best is in italics.

Type Methods Year �45� 0� +45�

Traditional

LMC [8] 2007 69.22 82.45 67.02

WLD [6] 2010 77.90 86.09 70.30

LDC [31] 2012 84.39 91.11 84.44

Kumar et al. [28] 2012 83.74 89.14 84.72

PWBDC [32] 2019 85.08 87.15 80.98

Subspace

Learning

ESRC [34] 2012 34.92 42.25 32.60

WSRC [33] 2019 33.94 41.92 31.72

DDBPD [35] 2018 78.26 89.24 76.29

LCMFC [36] 2020 85.15 92.85 82.78

Deep

Learning

ResNet 18 [37] 2016 86.79 96.87 87.90

ResNet 50 [37] 2016 90.24 97.40 90.40

Hong et al. [42] 2017 78.44 89.55 79.55

SENet [38] 2018 85.83 96.16 86.99

SKNet [39] 2019 78.19 88.26 74.80

FVCAE [41] 2019 81.44 89.97 76.31

ECANet [40] 2020 87.70 95.54 86.48

ArcVein [3] 2021 82.42 94.32 76.65

MRFBCNN [43] 2021 91.08 97.28 90.24

ViT [12] 2021 87.37 96.86 86.77

across all views. This suggests that Transformer-based architectures hold considerable potential

for the current task, indicating a promising direction for future research.

6.3. Multi-view Recognition

Close-set protocol: In this section, we study the performance of multi-view finger vein

recognition. Multi-view finger vein recognition refers to complete identity authentication by

using several finger vein images from di↵erent views simultaneously.

In fact, most single-view based methods can be extended to multi-view scenario by adopting

di↵erent fusion strategy [44]. In order to balance robustness and fairness, we adopt a score fusion

strategy to extend some single-view methods to adapt multi-view recognition task. Due to lim-
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ited multi-view finger vein recognition methods [18, 14], we borrowed some multi-view learning

methods from other research field for comparison. These methods include MVCNN [16], Ro-

tationNet [45], CVR [46], view-GCN [47] and OVPT [48]. Table 3 reports the identification

accuracy of di↵erent methods on the THUMVFV-3V database, and Fig. 9 plots the DET curves.

Table 3: Multi-view finger vein identification performance.

Type Methods Year ACC (%)

Extensions of

Single-view methods

PWBDC [32] 2019 91.26

Kumar et al. [28] 2012 90.88

WLD [6] 2010 95.45

LMC [8] 2007 88.46

LDC [31] 2012 92.73

ResNet 50 [37] 2016 99.02

ECANet [40] 2020 98.91

Hong et al. [42] 2017 91.97

MRFBCNN [43] 2021 98.94

ArcVein [3] 2021 96.97

ViT [12] 2021 98.41

Multi-view methods

MVCNN [16] 2015 98.81

RotationNet [45] 2018 99.62

view-GCN [47] 2020 99.65

CVR [46] 2021 98.99

HCAN [18] 2022 99.44

OVPT [48] 2023 99.02

VPCFormer 2023 99.79

The experimental results delineated in Table 3 and Fig. 9 not only corroborate some of the

conclusions derived in Section 6.2, but also o↵er several new findings.

Firstly, for methods based on single view fusion, the average ACC of traditional methods is

91.75%, while deep learning methods average at 97.37%. This result validates that contempo-

rary deep learning-based models typically outperform traditional methods reliant on handcrafted

features. This superiority might be attributed to the fact that deep models can autonomously

learn distinctive features from training data and its impressive generalization capabilities. Mean-
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Figure 9: DET curves of di↵erent extensions of single-view methods and multi-view methods on the THUMVFV-3V

database.

while, it can be found that the average ACC of the four methods based on multi-view input is

99.38%. This suggests that, compared to the amalgamation of multiple single-view results, the

correlations between di↵erent views can serve as additional features to significantly enhance the

performance.

Secondly, compared with the result at the 0� view, the multi-view recognition performance

achieved through score fusion exhibits an overall improvement. This can be attributed to the

enriched discriminative features provided by multiple views. Interestingly, the methods based

on directional information, such as PWBDC [32], LDC [31] and Kumar et al. [28], do not gain

much performance benefit from score fusion. Potential explanations include the paucity of addi-

tional directional information due to the absence of veins in the ±45� views, and the diminished

marginal benefits caused by the strong performance at the 0� view.

Thirdly, among all the methods evaluated, our VPCFormer consistently delivers the best

performance in terms of both identification task and verification task. Compared to the other

methods, the DET curve of VPCFormer is markedly closer to the lower-left corner. This indi-

cates that VPCFormer maintains a lower False Accept Rate (FAR) while ensuring a low False

Reject Rate (FRR), achieving a good trade-o↵ between these two types of errors. This superior
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performance can be attributed to VPCFormer’s ability to e↵ectively capture the global vein pat-

tern correlations across di↵erent views and the local relationship between veins and backgrounds

within a single view, achieved through the incorporation of VPAM and NPM, respectively.

Open-set protocol: In this part, we assessed multi-view deep learning-based models within

an open-set scenario, critical for authentic biometric recognition systems. We partitioned the

THUMVFV-3V database, allocating 80% of the classes (528) for training and the remaining 20%

(132) for evaluation. What is more, the evaluation involved 132 unseen classes with enrollment

samples from the first session and probe samples from the second session.

The comparative results are presented in Table 4.

Table 4: Multi-view finger vein recognition performance under open-set protocol

Methods Year ACC (%) EER (%)

MVCNN [16] 2015 95.91 2.65

RotationNet [45] 2018 96.54 2.25

view-GCN [47] 2020 97.27 1.75

CVR [46] 2021 97.73 1.93

HCAN [18] 2022 99.39 0.80

OVPT [48] 2023 98.48 1.45

VPCFormer 2023 99.65 0.48

By comparing with the performance (in Table 3) of methods under the closed-set protocol,

Table 4 reveals a diminished performance for multi-view methods in the open-set scenario. No-

tably, VPCFormer surpasses competing models.

6.4. Cross-view Recognition

In this section, we investigate cross-view finger vein recognition, where the probe image and

the gallery image originate from di↵erent views. This experiment serves to study the perfor-

mance degradation when finger rotation occurs during testing.

Deep learning-based methods are tested in this section. The decision to exclude other types

of methods stems from their reliance on handcrafted features. Such features are not only non-

robust to rotation but also potentially time-consuming during the matching process. Specifically,

the algorithms initially train on the 0� view, as detailed in Section 6.2, followed by separate
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testing on the ±45� views. The division of training and test sets remains consistent with the

approach previously outlined. The results are organized in Fig. 10.
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Figure 10: Identification results of cross-view recognition.

As can be seen from Fig. 10, compared to single-view recognition, the performances of cross-

view recognition have significantly declined. The primary reason is the stark di↵erence between

the test and training images of the same class. Despite the overlap between two adjacent views

in this experiment, the positions and shapes of the relevant veins do not correlate through simple

translation. Rather, they are 2D projections of an elliptical surface [6].

In addition, except for the method of Hong et al. [42], all methods managed to correctly

identify a portion of cross-view samples, with ACC ranging from 5% to 43%. This indicates

that even when di↵erent views with overlap regions are employed for training and testing, some

deep learning-based methods can achieve acceptable performance. This e�cacy stems from

the strong inference capability and generalization intrinsic to deep learning methods. We posit

that with further data expansion, the performance of deep learning-based methods in cross-view

recognition could see continued improvement.

6.5. Further Experiments and Discussion

6.5.1. The Influence of the Number of Views on Multi-view Recognition Results

In multi-view finger vein recognition, the number of views utilized for training or fusion

substantially influences the outcomes. In this section, we investigate this impact by varying the
24



number of fused views. The corresponding experimental results are presented in Table 5.

Table 5: The identification performance of di↵erent methods with di↵erent views combination (%). The best is in bold;

the second best is underlined; the third best is in italics.

Methods
Input views

0� 0�&-45� 0�&+45� -45�&+45� All views

LMC [8] 82.45 85.91 84.92 80.10 88.46

WLD [6] 86.09 91.19 93.11 90.10 95.45

LDC [31] 91.11 92.20 92.13 89.49 92.73

Kumar et al. [28] 89.14 90.05 90.10 87.55 90.88

PWBDC [32] 87.15 88.79 90.43 89.02 91.26

ResNet18 [37] 96.87 98.03 97.93 94.24 98.31

ResNet50 [37] 97.40 98.64 97.90 96.74 99.02

Hong et al. [42] 89.55 91.41 90.91 86.52 91.97

SENet [38] 96.16 98.23 98.26 96.24 98.94

SKNet [39] 88.26 94.52 93.84 91.74 96.39

FVCAE [41] 89.97 96.34 95.05 93.84 96.87

ECANet [40] 95.54 98.48 98.66 96.57 98.91

MRFBCNN [43] 97.28 98.43 98.51 97.05 98.94

ArcVein [3] 94.32 95.96 96.52 91.41 96.97

ViT [12] 96.86 98.33 98.03 93.79 98.41

HCAN [18] - 98.90 99.07 97.61 99.44

OVPT [48] - 98.63 98.81 97.62 99.02

VPCFormer - 99.12 99.56 97.83 99.79

Table 5 reveals that all methods yield the optimal identification results when incorporating

three views. This observation suggests that the inclusion of more informative views can indeed

enhance the distinctiveness of the features. Considering the view positions, the results for the

combination of the ±45� views, in most cases, are lower than those for the combination of the

0� and ±45� views, even underperforming the 0� view input solely. This phenomenon may be

attributed to the fact that the side views contain less robust and informative features.

Additionally, it can be seen that the improvement in ACC with three views is not significant

on some algorithms. Given that identification performance is merely one metric in recognition

tasks, to depict the influence of the number of views more holistically and reliably, we selected
25
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Figure 11: DET of several methods with di↵erent number of views as input.

some algorithms exhibiting relatively minor improvements in ACC and illustrated their DET

curves for the vein verification task in Fig. 11. It can be seen that the DET curves of these meth-

ods show a noticeable shift towards the lower-left corner with the inclusion of more views. This

suggests that more views indeed bring benefits to finger vein recognition, achieving lower error

rates at a given threshold. Furthermore, it is noteworthy that the marginal gain notably dimin-

ishes when utilizing three views. Consequently, it is necessary to judiciously select the number

of input views to strike an optimal balance between model performance and model complexity.

6.5.2. Ablation Studies of VPCFormer

To further verify the e↵ectiveness of the vein mask and the proposed modules in VPCFormer,

we conducted a series of ablation studies. The corresponding results are presented in Table 6.

Several conclusions can be inferred from Table 6. Firstly, when juxtaposed with the conven-

tional FFN, the IFFN proposed in this study markedly augments the model’s expressive capacity,
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Table 6: The results of ablation experiments.

NPM Inter-view attn. IFFN Vein mask EER (%) ACC (%)

7.62 80.50

4 1.82 98.11

4 4 0.50 98.93

4 4 4 0.41 99.31

4 4 4 0.39 99.38

4 4 4 4 0.27 99.79

reducing the Equal Error Rate (EER) by 1.32%. This outcome can be ascribed to the fact that the

convolutional operation, being more compatible with image data, can more e↵ectively aggregate

the contextual information of tokens.

Secondly, in comparison to constraining attention independently within each view, imple-

menting an inter-view attention mechanism can substantially enhance the model’s performance.

Even though the entire view image is directly considered when capturing inter-view correlations,

the model is permitted to independently infer the interrelation between di↵erent views.

Thirdly, upon further incorporation of the vein mask, the inter-view attention of the VPAM is

constrained within the areas contained vein patterns, resulting in an approximate 0.14% enhance-

ment in the EER. This indicated that capturing the inter-view vein pattern correlations directly

can reduce the di�culty of feature extraction while simultaneously boosting the model’s perfor-

mance.

Finally, NPM is employed to capture local correlations within a single view, thereby com-

pensating for the limitations introduced by the vein mask. By integrating global inter-view vein

correlations and local features, VPCFormer achieves superior results.

6.5.3. Experiments about VPCFormer Hyperparameters.

Similar to other models based on ViT [12], VPCFormer requires the predefinition of several

hyperparameters, which include the image size [H,W], patch size p, the token dimension d,

the depth L of the VPC-Encoder (refer to Fig. 4), the number of attention heads h in VPAM,

and the dimension dhead of each attention head. We primarily referenced the hyperparameter

settings of ViT-Tiny [12] and ViT-Small [12] to conduct parameter experiments for VPCFormer.

Experimental results are shown in Table 7.
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Table 7: Results of VPCFormer with di↵erent hyperparameters.

No. [H,W] L d p h dhead EER (%) ACC (%)

1 [224, 224] 6 192 [16, 16] 12 32 0.86 99.22

2 [224, 224] 6 384 [16, 16] 12 32 0.34 99.75

3 [224, 224] 12 384 [16, 16] 12 32 0.27 99.79

4 [224, 224] 12 384 [16, 16] 8 32 0.41 99.57

5 [224, 224] 12 384 [16, 16] 8 64 0.39 99.70

6 [224, 224] 12 384 [16, 16] 12 64 0.27 99.79

7 [112, 112] 12 384 [16, 16] 12 32 5.54 89.14

8 [112, 112] 6 192 [8, 8] 12 32 0.87 99.19

9 [112, 112] 12 192 [8, 8] 12 32 0.66 99.29

10 [112, 112] 12 384 [8, 8] 12 32 0.63 99.52

Results from experiments 2 vs. 3 (or 8 vs. 9) suggest that increasing the depth L only can

lead to improved performance. A similar conclusion can be drawn for the parameter d based on

comparison experiments 1 vs. 2 (or 9 vs. 10). Regarding the choice of patch size p, setting it to

[16, 16] for an input size of 224 ⇥ 224, and [8, 8] for an input size of 112 ⇥ 112, yields the same

number of tokens HW
p2 . According to the outcomes of experiments 7 vs. 10, when the patch size

is relatively large for an input size, the performance of the VPCFormer noticeably declines. This

decrease in performance might stem from VPCFormer’s inadequacy in learning robust contextual

relationships from a reduced number of input tokens. This also places higher demands on the

patch embedding layer’s ability to infer patch tokens. Additionally, less tokens could result in

more vein patterns within each patch (particularly in vein-rich images), which might render the

vein mask ine↵ective (all values equating to 1). Comparison between experiments 3 vs. 4 (or 5

vs. 6) indicates that superior results are achieved when h = 12. Concurrently, setting all other

parameters optimally (experiment 3 and 6), the best outcomes are attained when parameter dhead

is designated either 32 or 64.

In conclusion, to attain peak performance, we finally configure the relevant parameters of the

VPCFormer model outlined in experiment 3 in Table 7.
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6.5.4. Discussion about Global Tokens

In ViT [12], the input is concatenated with a class token after the patch embedding layer.

The authors argue that the class token serves as a global representation. Only the class token is

employed for feature extraction or classification. Contrastingly, some studies opt not to utilize

the class token. Instead, these investigations conduct global average pooling on the data tokens

to generate global features [29]. Additionally, in certain studies based on multi-view inputs, the

‘view token’ concept has been proposed [48]. To put it succinctly, the view token solely abstracts

information from a specific view, which can be regarded as the feature of the corresponding view.

In order to evaluate the e↵ectiveness of class tokens or view tokens in VPCFormer, we in-

stituted modifications to the model under distinct scenarios. The specific alterations and designs

are delineated below.

• Class token only: The inclusion of a class token will disrupt the spatial arrangement of

the token sequence. Consequently, the class token does not go through the depthwise

convolution layer in NPM and IFFN, nor does it participate in VPAM. To facilitate the

exchange of information between the class token and data tokens, we introduce a new

MHSA module subsequent to VPAM. This MHSA operation exclusively updates the class

token, without modifying data tokens. Ultimately, only the class token is deployed for the

representation of the output feature f .

• View tokens only: Similarly, the incorporation of view tokens disrupts the spatial rear-

rangement of data tokens within each view. As a view token should only interact with

the data tokens from its corresponding view, each view token partakes in the intra-view

self-attention of their own view in VPAM by adding an additional mask. The forward

propagation direction of view tokens is depicted in Fig. 12. By splitting view and data

tokens at appropriate positions, we can prevent any disruption to the data token flow in

the model. Ultimately, all view tokens are concatenated directly, fed into a linear layer to

obtain the final feature f .

• Both tokens: As aforementioned, the view token constitutes an abstraction of each indi-

vidual view, and the class token represents a global feature of all views. When incorpo-

rating both types of global tokens simultaneously, we preserve the flow direction of the

view token. Additionally, a new MHSA is inserted after VPAM, facilitating interaction
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Figure 12: Flow direction of view tokens in the presence of view tokens.

Table 8: The e↵ectiveness of global tokens on VPCFormer.

View Tokens Class Token EER (%) ACC (%)

8 8 0.27 99.79

4 8 3.37 88.68

8 4 1.74 97.81

4 4 49.13 0.25

exclusively between the class token and all view tokens. The final feature f is obtained

from the class token.

Based on the aforementioned modifications and designs, we conducted relevant experiments

and the corresponding results are presented in Table 8.

From Table 8, it can be seen that the inclusion of either view tokens or class tokens individ-

ually has a detrimental impact on performance, with the optimal results achieved when neither

is utilized. This could potentially be attributed to the challenges faced by the VPCFormer in

extracting distinctive global features with limited training data. Unexpectedly, the concurrent

addition of view tokens and class tokens results in the network failing to converge, with the EER

persisting around 50%. This situation could be due to the inability of the view tokens to e↵ec-

tively represent the global information of each view. Subsequently, the class token is di�cult to

capture global features from view tokens. This deficiency leads to convergence di�culties of the

model.
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6.5.5. Discussion about Positional Encoding

Many studies employing the Transformer architecture incorporate Positional Encoding (PE)

to capture the spatial information of input data. In this experiment, we investigated the e↵ect of

PE on VPCFormer.

Since the input consists of multi-view images, we devised two strategies, Strategy A and

Strategy B, to validate the e↵ectiveness of PE. These strategies are illustrated in Fig. 13.

Patch Em
bedding

Pos.
Embed.

Add

Strategy A

Patch Em
bedding

Concatenation

Split

Add

Pos.
Embed.

Strategy B

Figure 13: The two strategies for adding PE.

Strategy A: The same sinusoidal PE [12] is uniformly applied to the input tokens of each

view, ensuring identical PEs across di↵erent view images.

Strategy B: Tokens from di↵erent views are concatenated in view order to form a token

sequence. This token sequence adds the sinusoidal PE and then they are split back to their

respective views in the original sequence. In this case, the PEs for di↵erent view images are

continuous.

Experimental results, both without PE and employing Strategies A and B, are detailed in

Table 9.

Table 9: The impact of di↵erent PE strategies.

PE ACC (%) EER (%)

8 99.79 0.27

Strategy A 99.80 0.30

Strategy B 99.72 0.37

As can be seen, the experimental results indicate that incorporating PE into VPCFormer
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yields marginal improvement, and can even slightly reduce performance. This could be attributed

to the introduction of convolution, which enables the network to leverage the inherent property

of convolutional layers in modeling local spatial relationships, which potentially reducing the

e↵ectiveness of PE [49]. Given the model’s performance and the uncertainty introduced by PE,

VPCFormer was designed without PE.

7. Conclusion

To stimulate advances in multi-view finger vein recognition and establish a benchmark for

future research, we propose a multi-view finger vein database, THUMVFV-3V, which is col-

lected over two separate sessions with an average interval of 45.8 days. In addition, to en-

sure a fair comparison across related methods, we standardized the preprocessing operations in

THUMVFV-3V, and provided three types of ROIs and finger masks to accommodate the major-

ity of existing finger vein recognition algorithms. Moreover, we proposed a Transformer-based

model, VPCFormer, for multi-view finger vein feature extraction, which is mainly stacked by

several VPC-Encoders and NPMs. Equipped with a VPAM and an IFFN, the VPC-Encoder aims

to constrain the model’s attention solely on the vein patterns and aggregate contextual infor-

mation, thereby e↵ectively capturing intra- and inter-view correlations. In our experiments, we

demonstrate the superiority of VPCFormer in comparison with other single-view and multi-view

methods. If we continue to reduce the image patch size, the memory demand of VPCFormer be-

comes unacceptable. Consequently, future research could focus on the design of the Transformer

architecture, exploring ways to decrease memory consumption as the image patch size shrinks

and the number of tokens increases, while still ensuring either maintained or enhanced training

and inference e�ciency.
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