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Abstract—Knowledge Distillation (KD), which aims at trans-

ferring the knowledge from a complex network (a teacher)

to a simpler and smaller network (a student), has received

considerable attention in recent years. Typically, most existing

KD methods work on well-labeled data. Unfortunately, real-

world data often inevitably involve noisy labels, thus leading

to performance deterioration of these methods. In this paper,

we study a little-explored but important issue, i.e., KD with
noisy labels. To this end, we propose a novel KD method, called

Ambiguity-guided Mutual Label refinery KD (AML-KD), to train

the student model in the presence of noisy labels. Specifically,

based on the pretrained teacher model, a two-stage label refinery

framework is innovatively introduced to refine labels gradually.

In the first stage, we perform label propagation with small-loss

selection guided by the teacher model, improving the learning

capability of the student model. In the second stage, we perform

mutual label propagation between the teacher and student models

in a mutual-benefit way. During the label refinery, an Ambiguity-

aware Weight Estimation (AWE) module is developed to address

the problem of ambiguous samples, avoiding overfitting these

samples. One distinct advantage of AML-KD is that it is capable

of learning a high-accuracy and low-cost student model with label

noise. Experimental results on synthetic and real-world noisy

datasets show the effectiveness of our AML-KD against state-of-

the-art KD methods and label noise learning methods. Code is

available at https://github.com/Runqing-forMost/AML-KD.

Index Terms—Knowledge distillation, Label noise learning,

Label refinery, Label propagation

I. INTRODUCTION

O
VER the past few years, a large number of deep model
compression methods [1] have been developed to re-

duce the size of deep Convolutional Neural Networks (CNN)
without greatly affecting the accuracy. Among these methods,
one line of research works on Knowledge Distillation (KD),
whose goal is to transfer the knowledge from a larger teacher
model to a smaller student model with similar accuracy. Recent
efforts on KD mainly target at exploiting more dedicated
knowledge, such as minimizing the discrepancy of interme-
diate representations between the teacher and student models
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Cat
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Fig. 1: Images from the Animal-10N dataset [7] with the label
“cat” and the label “Jaguar”. Images in green boxes, red boxes,
and blue boxes represent the clean samples, noisy labeled
samples, and ambiguous samples, respectively.

[4], distilling relationships between samples [5], and adopting
auxiliary tasks as extra knowledge [6].

Most KD methods require well-labeled data during the
distillation procedure. However, collecting large-scale data
with fully accurate annotations is labor-intensive and time-
consuming, which inevitably introduces noisy labels. As
shown in Fig. 1, large-scale real-world image datasets are
usually contaminated with noisy labels. In particular, there
exists a considerable portion of ambiguous samples in these
datasets. As a consequence, when trained on noisy datasets,
KD methods are prone to overfit these samples, leading to
significant performance deterioration. Therefore, it is still an
open question how to learn an effective and compact student

model in the presence of noisy labels.
Recently, Label Noise Learning (LNL) methods [8]–[10],

[12], [13], which learn robust deep CNN models from noisy
data, have made remarkable progress. Some methods design
robust loss functions (such as SCE [8]) to alleviate the
overfitting problem, while other methods (such as DivideMix
[9] and JoCoR [10]) explicitly select potentially clean samples
from all the samples to achieve the robustness. Unfortunately,
when small CNN models are individually served as backbones,
the performance of these methods on large-scale datasets is
seriously degraded. This is mainly because of the difficulty of
identifying and refining noisy labels by small CNN models
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whose learning capability is inferior.
To address the above problems, we leverage a stronger-

performing pretrained teacher model to guide the label re-
finery process of a smaller student model. Specifically, we
propose a novel KD method, called Ambiguity-guided Mutual
Label refinery KD (AML-KD), for learning with noisy labels.
Based on the pretrained teacher model, AML-KD involves
a two-stage label refinery framework (i.e., label propagation
with small-loss selection in the first stage and mutual label
propagation in the second stage) to progressively improve the
label quality for training the student model. During the label
refinery, we elaborately design an Ambiguity-aware Weight
Estimation (AWE) module to alleviate the negative influence
of ambiguous samples. Based on the above elaborate designs,
our method is able to learn a high-performance and low-cost
student model with noisy labels.

In summary, the main contributions of this paper are:
• We propose a novel AML-KD to successfully transfer

the knowledge from a teacher model to a student model
under label noise. In AML-KD, we develop a two-
stage label refinery framework, which takes advantage of
feature representations from both the teacher and student
models to refine noisy labels gradually. Therefore, a high-
accuracy student model with small memory consumption
can be learned from noisy data.

• We design an AWE module to alleviate the problem of
ambiguous samples by exploiting the feature distribution
scores and the refined annotations, largely preventing
the model from overfitting these samples and effectively
improving the label accuracy.

• Extensive experiments on synthetic and real-world noisy
datasets validate the superiority of our AML-KD method
against several state-of-the-art KD methods and label
noise learning methods.

The remainder of this paper is organized as follows. First,
we briefly introduce the related work in Section II. Then,
we present the details of our proposed AML-KD method in
Section III. Next, we compare our AML-KD with several
state-of-the-art methods in Section IV. Finally, we draw the
conclusion in Section V.

II. RELATED WORK

In this section, we mainly review some related work, includ-
ing Knowledge Distillation (KD) and Label Noise Learning
(LNL).

A. Knowledge Distillation (KD)

In KD, a student model is often trained by using the
supervision signals from both the ground-truth and a teacher
model. Hinton et al. [17] propose to leverage the Kullback-
Leibler (KL) divergence to minimize the probability distri-
butions between the teacher and student models. Early KD
methods obtain the student model based on the final outputs
of the teacher model, while recent works attempt to exploit the
rich information from different layers of the teacher model.
For instance, FitNet [4] suggests that the performance of a
student model can be improved by imitating the intermediate

feature representations of a teacher model via a Mean Square
Error (MSE) loss. Later, Sun et al. [18] generalize FitNet by
reducing the MSE loss between each individual layer of the
student and teacher models. Zagoruyko et al. [19] propose
Attention Transfer (AT) to transfer spatial attention from the
teacher model to the student model. Liu et al. [14] propose to
distill the knowledge hidden in the inter-channel correlations
of the teacher model. Such a way is helpful for aligning
features between the teacher and student models. Lin et al. [15]
introduce a one-to-all spatial matching knowledge distillation
method to combat the semantic information inconsistency
caused by architecture differences. Li et al. [16] distill the
neural architecture knowledge from the teacher model to
facilitate the neural architecture search of the student model.

The above methods distill the knowledge according to
feature representations extracted from the teacher model.
However, they might ignore the underlying relations between
samples. To overcome this problem, similarity-preserving KD
[20] is developed to transfer the knowledge modeled by pair-
wise similarity. Some work [6] combines KD with Self-
Supervised Learning (SSL) due to the powerful representa-
tion capability of SSL. Contrastive Representation Distillation
(CRD) [21] introduces contrastive learning into KD, and it
maximizes the mutual information between the teacher and
student representations.

To date, very few KD methods are developed to address the
label noise problem. The work most relevant to ours is FNKD
[22], where a sample adaptive feature normalization method
is proposed to specifically alleviate the negative impact of
label encoding noise. Unfortunately, FNKD cannot deal with
other types of label noise. In this paper, we develop a robust
KD method, which achieves good accuracy even at a high
noise rate and effectively handles different types of label noise,
including real-world label noise.

B. Label Noise Learning (LNL)

Recently, LNL has attracted considerable attention since
labels are often noisy and imperfect in real-world scenarios. In
this subsection, we review representative LNL methods, which
are mostly related to our work.

1) Sample Weighting: Sample weighting-based methods
aim to assign small and large weights to the samples with noisy
and clean labels, respectively. For example, Guo et al. [23]
introduce a curriculum learning-based method, which assigns
a weight to each sample according to the unsupervised esti-
mation of data complexity. Harutyunyan et al. [24] compute
the weights based on the gradients of final layers without
relying on the label information. Ma et al. [25] develop a
self-reweighting strategy by assigning sample weights based
on the similarities between the samples and the learned class
centroids.

2) Sample Selection: Sample selection-based methods se-
lect potentially clean samples from noisy datasets. Arpit et

al. [26] reveal the memorization effect. Based on this, the
small-loss criterion is proposed to select samples with small
cross-entropy losses as clean ones. Han et al. [27] develop the
Co-teaching method, which trains two models simultaneously.
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Fig. 2: Overview of our proposed two-stage label refinery framework. We take a two-class classification (cat and dog) task
as an example, where the circle or triangle enclosed in red indicates a noisy labeled sample. The upper panel denotes the LP
with small-loss selection stage while the lower panel shows the mutual LP stage.

Different from Co-teaching, FINE [28] introduces eigenvectors
to select clean samples from the noisy dataset. Jiang et al. [29]
propose a Two-Stream Sample Selection Network (TS3-Net) to
effectively train a sparse neural network on the noisy dataset.
Note that TS3-Net works on unstructured pruning, which
removes unimportant weights. Hence, it is difficult to achieve
actual acceleration in real-world implementations. Wei et

al. [10] propose a robust learning paradigm called JoCoR to
minimize the diversity of two models during training. Karim et

al. [11] introduce a Jensen-Shannon divergence based uniform
selection mechanism and contrastive learning to address high
label noise.

3) Graph-Based Methods: Recently, graph-based methods
have shown the effectiveness of combating label noise. Zhang
et al. [30] propose DualGraph to capture structural relations
between labels by using instance-level and distribution-level
relations. Wu et al. [31] develop the Noise Graph Correction
(NGC) method, where Label Propagation (LP) [32] is used
to generate pseudo-labels by propagating labels along high-
density areas.

The above LNL methods often work on complicated CNN
models for their superior learning capability. Generally, the
performance of these methods significantly drops on large-
scale noisy datasets, when they are trained with small CNN
models as backbones. Unlike these methods, we design a
robust KD method that aims to learn a high-accuracy small
model from the large-scale noisy dataset.

Recently, Li et al. [12] also propose to learn from noisy
labels with distillation. However, we emphasize that the mo-
tivation, problem setting, and methodology of our method are
intrinsically different from those of Li et al.’s method [12]. On
the one hand, Li et al.’s method leverages the knowledge graph
to obtain a deep model (rather than a small model) from the
noisy dataset, while our developed method introduces a two-
stage label refinery framework to obtain a compact model in

the presence of noisy labels. On the other hand, Li et al.’s
method requires extra clean samples and side information. In
contrast, our method can directly work on the noisy dataset
without the need of collecting clean samples.

III. METHODOLOGY

In this section, we first give the problem formulation in
Section III-A. Then, we present an overview of the proposed
method in Section III-B. Next, we describe the key compo-
nents of our method in Sections III-C and III-D. Finally, we
show the overall training loss in Section III-E.

A. Problem Formulation

Notations Given that we have a training set D for the
teacher model (denoted as M ) and a training set D =

{(xi,y
(0)
i )}

N

i=1 with noisy labels for the student model (de-
noted as M ). Here, xi and y

(0)
i 2 RC denote the i-th training

sample and its corresponding initial label annotation, respec-
tively. N and C are the number of training samples and the
number of classes, respectively. Let Y (0) = [y(0)

1 , · · · ,y(0)
N ] 2

RC⇥N denote the initial noise-corrupted label matrix. Given
an input xj , we denote the feature representations extracted by
M and M as � (xj) and � (xj), respectively. For clarity,
all the vectors are normalized.

We follow the conventional learning scheme of offline
distillation [17], which first pretrains a teacher model and
then trains a student model under the guidance of the teacher
model. Moreover, we assume that the teacher model can be
pretrained with a dedicated LNL method or clean samples.
Hence, we target at obtaining a high-accuracy and low-cost

student model with noisy labeled samples. Such a problem
setting is a practical setup, which investigates the ability to
learn a compact model supervised by a pretrained teacher
model in the case of label noise.
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B. Overview

A straightforward way to address KD with label noise is
to leverage a trained teacher model (via an LNL method) to
relabel the annotations, based on which we can apply KD to
learn a student model. However, such a way relies heavily
on relabeled annotations (still containing noisy labels) by the
teacher model and does not fully exploit the student model for
relabeling. A more desirable way is to make use of both the
teacher and student models to refine the labels. Note that the
learning capability of the student model is weak at the early
training stage, especially in the case of noisy labels. Therefore,
we develop an innovative method to gradually perform label
refinery by first enhancing the learning capability of the
student model and then taking advantage of the teacher and
student models in two distinguished views, alleviating error
accumulations and improving the label accuracy.

Specifically, we propose an AML-KD method, which distills
the knowledge from the teacher model into the student model
under noisy labels. The training process of AML-KD involves
two periods. In the first period, a teacher model is pretrained
with D (a dedicated LNL method can be used when the
annotations of D are noisy). In the second period, based
on the pretrained teacher model, a student model is trained
with D . In this period, we develop a two-stage label refinery
framework to progressively purify noisy labels, as illustrated
in Fig. 2.

1) Label propagation (LP) with small-loss selection: For
the first stage, a k-NN graph is constructed, where each vertex
denotes a sample (corresponding to the feature extracted by
M ) in D and each edge represents the similarity between
two vertices. Meanwhile, we relabel the initial annotations
according to the small-loss criterion. Based on the k-NN graph
and relabeled annotations, we perform LP to refine the labels.
After the first stage, both the label quality of D and the
learning capability of M are greatly improved. Thus, we can
employ M and M to perform LP alternately in the next
stage.

2) Mutual label propagation: For the second stage, we
perform label refinery in two steps: (i) performing LP with
the k-NN graph constructed by M and the refined labels
(obtained at epoch t� 1) at epoch t; (ii) performing LP with
the k-NN graph constructed by M and the refined labels
(obtained at epoch t) at epoch t + 1. The above two steps
are optimized in an alternate way. In this way, the labels are
gradually refined with the guidance of both the teacher and
student models.

During the label refinery, to alleviate the influence of
ambiguous samples (i.e., incorrectly relabeled samples after
LP), an AWE module is introduced to estimate an ambiguity
weight for each sample, thereby leading to refined label quality
and boosting the model training capacity.

C. Two-Stage Label Refinery Framework

High-quality labels are of great importance to ensure the
performance of CNN models. To obtain high-quality labels,
we perform two-stage label refinery.

Stage 1. First, an undirected graph G = hV,Ei is introduced
to model the relationships between samples. Here, V and E
represent the sets of graph vertices and edges, respectively.
In graph G, the affinity between vertices is modeled by a
similarity matrix A 2 RN⇥N , which is

A [i, j] =

⇢
� (xi)T� (xj), if i 6= j & xj 2 NNk(xi)
0 otherwise,

(1)
where NNk(·) represents the k nearest neighbors. Initially, the
teacher model M has stronger learning capability than the
student model M . Hence, the similarity matrix is constructed
based on the features extracted by M .

Similar to [32], we obtain an N⇥N symmetric nonnegative
adjacency matrix with zero diagonal W = A + A

T.
Then, W is normalized to obtain an N ⇥ N matrix W̃ =
D

� 1
2W D

� 1
2 . Here, the matrix D 2 RN⇥N is the degree

matrix defined as D = diag(W 1N ), where 1N 2 RN is an
all-ones vector and diag(.) denotes a diagonal matrix whose
diagonal is the input vector.

Meanwhile, based on the small-loss criterion (i.e., samples
with small training losses are likely to be clean samples
according to the memorization effect) [26], the labels of
clean samples remain unchanged while those of noisy labeled
samples are relabeled according to the outputs of M . Math-
ematically, we relabel the sample xi at epoch t by

z
(t)
i [c] =

(
y
(0)
i [c], if xi 2 S(t)

clean

{c = argmax
j

(p(t�1)(xi)[j])} otherwise,

(2)
where z

(t)
i [c] denotes the c-th element of z(t)

i 2 RC , which is
the refined label corresponding to xi at epoch t. S(t)

clean =
argminS0:|S0|�(1�r)|D | Lce(M ,S 0) denotes the clean set
selected by M with the Cross-Entropy (CE) loss at epoch
t. |S 0| and |D | denote the sizes of S 0 and D , respectively.
r is the noise rate. p(t�1)(xi)[j] represents the j-th element
of the predicted probability p

(t�1)(xi) given by M at epoch
t � 1. The indicator function takes on the value 1 if its
argument is true, and 0 otherwise.

The above relabeling process only relies on the prediction
of the student model M , which may limit the relabeling
accuracy. To deal with this problem, we further exploit the
intrinsic neighborhood structure of training samples from the
perspective of the teacher model M . To this end, motivated
by the manifold assumption that similar samples should give
the same predictions [34], we propose to leverage LP to refine
the label matrix on graph G. Specifically, LP can be formulated
as

Y
(t) = LP(Z(t), W̃ ,Q(t�1)), (3)

where Y
(t) = [y(t)

1 , · · · ,y(t)
N ] 2 RC⇥N and Z

(t) =

[z(t)
1 , · · · , z(t)

N ] 2 RC⇥N represent the refined label matrices
given by LP and small-loss selection at epoch t, respectively.
LP(A,B,C) = argminK �/2

PN
i,j=1 Bij ||ki/

p
dii �

kj/
p

djj ||2 + (1 � �)||A � C � K||F , where K =
[k1, . . . ,kN ] 2 RC⇥N is the refined soft labels. Note that,
after obtaining the refined soft labels from LP, we transform
them into hard labels, as done in previous methods [31], [32].
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Q
(t�1) denotes the weight matrix (see Section 3.4) at epoch

t�1. dii is the i-th diagonal diagonal element of D mentioned
previously. ||.||F is the Frobenius norm and � represents the
element-wise product between two matrices. � is a regularized
parameter.
Stage 2. After the first stage, the learning capability of M
is greatly improved. To fully exploit the feature information
from both M and M , we further take advantage of mutual
learning to refine labels. During this stage, the student model
and the teacher model perform mutual LP. Technically, based
on the k-NN graph constructed by M and the refined labels
(obtained at epoch t�1), we perform LP to improve the label
quality at epoch t. Then, we construct the k-NN graph by M
and the refined labels (obtained at epoch t) to perform LP at
epoch t+ 1. The above procedure is formulated as

Y
(t) = LP(Y (t�1), W̃ ,Q(t�1)), (4)

Y
(t+1) = LP(Y (t), W̃ ,Q(t)), (5)

where Y
(t) represents the refined label matrix by LP at epoch

t. W̃ and W̃ denote the normalized matrices based on M
and M , respectively.

Mutual LP shares some similarities to Co-teaching [27],
Co-teaching+ [35], and JoCoR [10]. For Co-teaching and
Co-teaching+, two networks iteratively teach each other to
improve performance. For JoCoR, two networks are collab-
oratively trained. However, there are some differences be-
tween mutual LP and these methods. First, Co-teaching, Co-
teaching+, and JoCoR focus on noisy label learning without
considering model complexity while mutual LP works on
the task of KD with noisy labels. Second, Co-teaching, Co-
teaching+, and JoCoR usually jointly optimize the two network
parameters at a batch level. On the contrary, our mutual
LP improves the performance of the teacher and student
models at an epoch level, mitigating the conformation bias
to some extent. Third, Co-teaching, Co-teaching+, and JoCoR
identify noisy labeled samples via the logit information of the
output. In contrast, mutual LP leverages the feature distribution
information to identify and correct noisy labeled samples.

It is worth pointing out that both our method and NGC [31]
leverage LP to refine noisy labels. However, the differences be-
tween our method and NGC are significant. First, we perform
mutual LP from the perspective of the teacher and student
models, while NGC performs LP by using a single model.
Second, NGC treats all the samples equally, and thus it ignores
the negative effect of ambiguous samples. In contrast, we
introduce the AWE module into LP to mitigate the influence of
ambiguous samples during the label refinery, leading to better
label accuracy. Third, NGC does not consider the model size,
while our method focuses on learning a compact model under
the label noise condition.

D. Ambiguity-Aware Weight Estimation (AWE)

During LP in label refinery, it is difficult to assign accurate
labels to ambiguous samples (see Fig. 1). Learning from
these samples inevitably leads to the overfitting of CNN
models, degrading the performance. Hence, we develop an
AWE module to mitigate the negative impact of ambiguous

k-NN (k = 3) Decision
boundary

Ambiguous 
samples

Distance

Prototype a

Prototype b

a d1

d3

bd2
d4

Fig. 3: Illustration of ambiguous samples (the black triangle
and the black circle). These ambiguous samples correspond to
incorrectly relabeled samples after LP.

samples. Note that the feature representations obtained by
M are fixed during the distillation process. To improve the
performance of label refinery, we propose to estimate the
ambiguity weight for each sample by considering both the
feature distribution score and the refined annotations from the
perspective of M . In detail, we first calculate the prototypes
according to feature representations extracted by M as

u
(t)
c =

1

Nc

NX

i=1

�(t)(xi)
n
y
(t)
i [c] = 1

o
, (6)

where u
(t)
c 2 Rm is the prototype of class c at epoch t and

Nc is the number of samples in class c. �(t)(xi) 2 Rm is the
feature extracted by M at epoch t.

Then, we calculate the feature distribution score S
(t)
i 2 RC

at epoch t for the sample xi as

S
(t)
i = [u(t)T

1 �(t)(xi), · · · ,u(t)T
C �(t)(xi)]

T. (7)

Here, each element of S
(t)
i denotes the similarity score be-

tween the sample xi and a prototype at epoch t.
After that, S

(t)
i is concatenated with y

(t)
i to form the

ambiguity feature T
(t)
i 2 R2C , which reveals the ambiguity in

both feature distribution and annotation aspects:

T
(t)
i = concat(S(t)

i ,y(t)
i ), (8)

where concat(·) denotes the concatenation operation.
T

(t)
i contains feature distribution information and annota-

tion information, which can be understood in the following
two ways (see Fig. 3 for an illustration): (1) For a noisy
labeled sample (xi,y

(t)
i ) with the noisy label y

(t)
i [a] = 1

while the ground-truth label y
(t)
i [b] = 1 (see the black

triangle in Fig. 3), LP fails to assign the correct label to this
sample. However, the feature similarity between xi and the
b-th prototype is high, although the annotation in y

(t)
i given

by LP indicates that xi belongs to the a-th class. (2) For a
clean but ambiguous sample that is near the decision boundary
(see the black circle in Fig. 3), LP assigns an incorrect label
to this sample. However, its distances to the two prototypes
might be close. Therefore, it is difficult to indicate the label
of this sample. Both two cases reveal the ambiguity of these
samples. Notice that ambiguous samples and hard training
samples with correct labels are intrinsically different since the
labels of ambiguous samples are still noisy after LP.
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The AWE module takes T
(t)
i as the input and outputs a

weight qi 2 (0, 1) for xi. Specifically, the AWE module
consists of two Fully-Connected (FC) layers with a PReLU
non-linear function and a sigmoid function (see Fig. 2),

q(t),i = Sigmoid(HT
2 �(H

T
1 (T

(t)
i ))), (9)

where q(t),i denotes the weight with respect to xi. Gener-
ally, the more ambiguous a sample is, the lower the cor-
responding weight is. H1 2 R2C⇥C and H2 2 RC⇥1

are two FC layers. �(·) and Sigmoid(·) denote the PReLU
non-linear function and the Sigmoid function, respectively.
Q

(t) = [q(t)(1), · · · , q(t)(N)] denotes the weight matrix,
where q

(t)(i) = q(t),i1C and 1C 2 RC is an all-ones vector.

E. Overall Training Loss

We use the weighted CE loss as the classification loss:

Lcls = �
1

N

NX

i=1

q(t),i(y
(t)
i )Tlog(p(t)(xi)). (10)

In this paper, we use Mixup [36] to generate virtual samples
by applying convex combinations of pairs of samples and their
corresponding labels:

x
v
m = �xi + (1� �)xj ,

y
v(t)
m = �y(t)

i + (1� �)y(t)
j ,

(11)

where � is sampled from the Beta distribution Beta(↵,↵).
x
v
m and y

v(t)
m denote the virtual sample and its corresponding

label, respectively.
Based on the virtual samples, the knowledge distillation loss

measured by the KL-divergence can be formulated as

Lkd = �⌧2 1

N

NX

m=1

p̃
(t)(xv

m; ⌧)Tlog(p̃(t)(xv
m; ⌧)), (12)

where p̃
(t)(xv

m; ⌧) = Softmax(p(t)(xv
m); ⌧) and p̃

(t)

(xv
m; ⌧) = Softmax(p(t)(xv

m); ⌧). Softmax(·) is the softmax
function. ⌧ is the temperature (we fix it to 4 as in [6]).

Moreover, we calculate the CE loss for virtual samples:

Lcls-mix = � 1

N

NX

m=1

(yv(t)
m )Tlog(p(t)(xv

m)). (13)

To achieve better feature representation capability, we also
enforce M to mimic M in terms of pairwise similarities.
The similarity loss is given as

Lsl =
2

N(N � 1)

NX

i=1

NX

j=1,i 6=j

|Sim(�(t)(xi),�
(t)(xj))�

Sim(� (xi),� (xj))|2,
(14)

where Sim(a, b) is the cosine similarity between a and b.
Therefore, the overall training loss is

Lall = Lcls + �1Lkd + �2Lcls-mix + �3Lsl, (15)

where �1, �2, and �3 are the balanced parameters.
The detailed training process of the two-stage label refinery

framework is given in Algorithm 1. Our framework is easy-to-
implement and effective to generate high-quality labels during
the distillation procedure.

Algorithm 1: Two-Stage Label Refinery Framework
Input: A pretrained teacher model M ; an initial

student model M ; the AWE module  ; the
total training epochs E; the training epochs for
the first stage E1.

for t 1 to E do

// Stage 1: LP with small-loss selection
if t  E1 then

Construct a k-NN graph with the features
extracted by M via Eq. (1) and get W̃ ;

Relabel samples with predictions given by M
via Eq. (2) and obtain Z

(t);
Calculate the weight matrix Q

(t�1) obtained
by  via Eq. (9);

Get the refined label matrix Y
(t) via Eq. (3);

end

// Stage 2: Mutual LP
else if (t� E1)%2! = 0 then

Construct a k-NN graph with the features
extracted by M via Eq. (1) and get W̃ ;

Calculate the weight matrix Q
(t�1) obtained

by  via Eq. (9);
Get the refined label matrix Y

(t) via Eq. (4);
end

else

Construct a k-NN graph with the features
extracted by M via Eq. (1) and get W̃ ;

Calculate the weight matrix Q
(t�1) obtained

by  via Eq. (9);
Get the refined label matrix Y

(t) via Eq. (5);
end

Calculate the overall training loss Lall with Y
(t)

via Eq. (15);
Update M and  ;

end

Output: A well-trained student model M .

IV. EXPERIMENTS

In this section, we evaluate our AML-KD method on
synthetic and real-world noisy datasets. First, we introduce
datasets and implementation details in Section IV-A. Then,
we give ablation studies in Section IV-B. Finally, we compare
our proposed method with several state-of-the-art methods in
Section IV-C.

A. Datasets and Implementation Details

1) Datasets: In this paper, we adopt CIFAR-100 [37],
Animal-10N [7], Clothing1M [38], and WebVision [39] for
performance evaluation in our experiments.

CIFAR-100 contains 100 object categories with 60,000
images (50,000 images for training and 10,000 images for
testing). Following previous works [10], [27], we corrupt the
training set of CIFAR-100 with two types of label noise:
symmetric noise and asymmetric noise. Animal-10N is a real-
world noisy dataset containing ten confusing animals with
55,000 images (50,000 images for training and 5,000 images
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TABLE I: Test accuracy (%) obtained by different variants of
our method for three teacher-student pairs on CIFAR-100.

S1 S2 AWE WRN_40_2
WRN_16_2

WRN_40_2
WRN_40_1

ResNet56
ResNet20

⇥ ⇥ ⇥ 65.21 64.37 63.01
X ⇥ ⇥ 69.84 68.36 64.08
⇥ X ⇥ 69.22 67.88 63.71
⇥ ⇥ X 66.09 64.38 63.22
X ⇥ X 70.01 68.54 64.98
⇥ X X 68.78 68.09 64.27
X X ⇥ 70.08 68.88 65.01
X X X 70.54 69.48 65.33

for testing). Clothing1M and WebVision are two large-scale
real-world noisy datasets. Clothing1M contains about one
million images that are collected from online shopping web-
sites. WebVision includes around 2.4 million training images
obtained from the web using 1,000 concepts in ImageNet
ILSVRC12. Following [9], we adopt the first 50 classes of
the Google image subset for training and testing in WebVision
(termed WebVision (mini)).

2) Implementation Details: For all the experiments, the
SGD optimizer is used, where the weight decay and momen-
tum are set to 0.0001 and 0.90, respectively. For KD methods
(including KD [17], KD (logit only), RKD [40], SSKD [6],
CRD [21], ICKD-C [14], TaT [15], and AML-KD), we use a
representative LNL method (i.e., DivideMix [9]) to train the
teacher model unless explicitly mentioned otherwise. We train
the student model with the original annotations in the first 10
epochs for warm-up before the two-stage label refinery. The
teacher and student models are trained with the same noisy
training set.

For CIFAR-100 and Animal-10N, the batch size is set to
64. We run 240 epochs in total. The initial learning rate is
set to 0.05 and is decayed by a factor of 10 at 150, 180,
and 210 epochs. Moreover, we perform LP with small-loss
selection for 140 epochs and mutual LP for 90 epochs. For
Clothing1M, the batch size is set to 32. We run 100 epochs in
total, and the initial learning rate is set to 0.05 and is decayed
by a factor of 10 at 60 and 80 epochs. We perform LP with
small-loss selection at the first 60 epochs and mutual LP at
the rest epochs. For WebVision, we set the batch size to 32
and totally run 80 epochs. The initial learning rate is set to
0.02 and decayed to 0.002 after 60 epochs. We perform LP
with small-loss selection at the first 60 epochs and mutual
LP in the rest epochs. In all our experiments, we empirically
set k = 30 in Eq. (1) and � = 0.80 in Eq. (3). Besides, we
set �1 = �2 = 1.00 and �3 = 0.50 in Eq. (15). Following
Co-teaching [27], we assume that the noise rate r is given
before model training. For ANIMAL-10N, Clothing1M, and
WebVision, we set the noise rate to 8.0%, 38.5%, and 20.0%,
respectively, as suggested by [41].

For CIFAR-100, we evaluate two types of label noise (i.e.,
symmetric noise and asymmetric noise) with two noise rates
(i.e., 20% and 50%). Moreover, we evaluate the setting that
the whole training dataset is divided into two subsets (a clean
subset and a noisy subset) with the same numbers of samples,
where the teacher model is pretrained by the clean subset while

the student model is trained by the noisy subset. We denote
this setting as C-N.

For Sym-20% (C-N) and Sym-50% (C-N), the teacher
models used in the KD methods (including KD, SSKD, RKD,
CRD, and our AML-KD) are trained by using the standard
CE loss. For other settings, the teacher models are trained by
DivideMix. The Student (CE) method refers to the method that
the student model is trained by the standard CE loss. For the
LNL methods (including Co-teaching and DivideMix), only
the student models are used for training.

B. Ablation Studies

In this subsection, three representative teacher-student pairs
(including WRN_40_2-WRN_16_2, WRN_40_2-WRN_40_1,
and ResNet56-ResNet20) [42], [43] are selected to investigate
the generalization ability of the method.

1) Influence of Key Components in AML-KD: To validate
the superiority of key components in our method, we conduct
ablation studies under the Sym-50% (C-N) label noise on
CIFAR-100. In our AML-KD, a two-stage label refinery
framework (consisting of the LP with small-loss selection
stage and the mutual LP stage) and an AWE module are de-
veloped to address noisy labels. We abbreviate the two stages
as S1 and S2, respectively. Experimental results obtained by
different variants of our method are shown in Table I. Note
that when AWE is not used, the weight matrix is set to an all-
ones matrix. For AML-KD only with AWE, the weight matrix
is used to compute the weighted CE loss defined in Eq. (10).

Among all the variants, AML-KD achieves the worst perfor-
mance in three teacher-student pairs when S1, S2, and AWE
are not used (i.e., AML-KD is trained by the overall loss de-
fined in Eq. (15) and the original annotations). AML-KD with
only AWE gives the second-worst classification accuracy. This
is mainly due to the negative influence of noisy labels, leading
to overfitting. AML-KD with S1 performs better than that
with S2. Note that the initial feature learning capability of the
student model is poor when S1 is not used. Thus, the student
model cannot effectively capture the neighboring relationships
between samples, thereby limiting the label refinery accuracy
in S2. By incorporating AWE into S1 or S2, the performance
is improved. When S1, S2, and AWE are all used, AML-KD
gives the best performance in all three teacher-student pairs.
The above results show the necessity of each component in
AML-KD.

2) Influence of the Balanced Parameters �1, �2, and �3:

We evaluate the performance of AML-KD with the different
values of �1, �2, and �3 in Eq. (15) under the Sym-50% (C-
N) label noise on CIFAR-100. The results are given in Tables
II(a)-II(c).

Specifically, we first fix �2 = 1.00 and �3 = 0.50, and set
the value of �1 from 0.00 to 2.00. The results are listed in
Table II(a). From Table II(a), we can observe that our method
achieves the best performance when the value of �1 is set to
1.00. When �1 is set to 0.00, which indicates that AML-KD
is trained without the knowledge distillation loss, leading to
the worst performance. Next, we fix �1 = 1.00 and �3 = 0.50
to investigate the influence of �2 (see Table II(b)). Obviously,
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TABLE II: Test accuracy (%) for the different values of �1, �2, �3, k, and � for the three teacher-student pairs on CIFAR-100.
(a)-(c) Influence of �1, �2, and �3. (d)-(f) Influence of k. (g)-(i) Influence of �.

(a) Influence of �1.

�1 p1 p2 p3

0.00 65.54 63.81 61.08
0.50 67.29 68.41 65.13
1.00 70.54 69.48 65.33

1.50 69.86 69.22 64.88
2.00 69.54 69.10 64.86

(b) Influence of �2.

�2 p1 p2 p3

0.00 69.55 68.60 64.67
0.50 70.10 69.37 65.06
1.00 70.54 69.48 65.33

1.50 70.12 69.41 65.21
2.00 69.82 69.31 65.00

(c) Influence of �3.

�3 p1 p2 p3

0.00 70.00 69.32 64.77
0.50 70.54 69.48 65.33

1.00 69.44 69.31 64.72
1.50 69.98 69.06 65.01
2.00 69.69 69.19 65.20

(d) Results of p1.

k Sym-20% Sym-50%

20 71.17 69.98
30 71.71 70.54

50 71.50 69.61
100 69.55 69.44

(e) Results of p2.

k Sym-20% Sym-50%

20 69.88 68.97
30 70.02 69.48

50 70.50 68.93
100 69.55 68.81

(f) Results of p3.

k Sym-20% Sym-50%

20 66.12 64.91
30 66.49 65.33

50 65.50 64.99
100 65.18 64.01

(g) Results of p1.

� Sym-20% Sym-50%

0.70 71.16 70.08
0.80 71.71 70.54

0.90 71.46 70.28
0.99 71.71 70.11

(h) Results of p2.

� Sym-20% Sym-50%

0.70 69.77 69.18
0.80 70.02 69.48

0.90 70.22 69.31
0.99 69.91 69.09

(i) Results of p3.

� Sym-20% Sym-50%

0.70 66.23 65.12
0.80 66.49 65.33

0.90 66.41 65.11
0.99 66.29 64.90

“p1”, “p2”, “p3” denote WRN_40_2-WRN_16_2, WRN_40_2-WRN_40_1, and ResNet56-ResNet20, respectively.

our method obtains the top accuracy when �2 = 1.00. Finally,
we fix �1 = 1.00 and �2 = 1.00 to demonstrate the influence
of �3. As shown in Table II(c), AML-KD achieves the best
performance in all three teacher-student pairs when �3 = 0.50.
In all our experiments, we fix the values of �1, �2, and �3 to
1.00, 1.00, and 0.50, respectively.

3) Influence of the Number of Neighbors k and the Regu-

larized Parameter �: To investigate the influence of k and �,
we conduct ablation studies under the Sym-20% (C-N) and
Sym-50% (C-N) label noise on CIFAR-100. The results are
given in Tables II(d)-II(f) and Tables II(g)-II(i).

We first fix � = 0.80 and set the value of k from 20 to
100. As shown in Tables II(d)-II(f), for most cases, AML-KD
achieves the best performance when k = 30 and obtains the
worst performance when k = 100 under the Sym-20% (C-N)
and Sym-50% (C-N) label noise. The performance differences
are not significant when the value of k ranges in [20, 50].
Then, we fix k = 30 and set the value of � from 0.70 to 0.99
to evaluate the influence of �. From Tables II(g)-II(i), we can
observe that AML-KD achieves the best performance when
� = 0.80 in most cases. In all our experiments, we fix the
values of k and � to 30 and 0.80, respectively.

4) Influence of the Estimated Noise Rate r: In this paper,
we assume that the noise rate r is given for each dataset.
However, the noise rate is often unknown in many real-world
applications. Therefore, we verify the performance of our
proposed AML-KD without giving an accurate noise rate.
Specifically, following the strategy used in [9], we adopt
Gaussian Mixture Models (GMMs) to the classification losses
of training samples for selecting clean samples. We set the
posterior probability of clean samples to 0.50 in our exper-
iments. We perform experiments under the Sym-20%, Sym-
50%, Sym-20% (C-N), and Sym-50% (C-N) label noise on

68.5%

69.0%

69.5%

70.0%

70.5%

71.0%

71.5%

72.0%

72.5%

Sym-20% Sym-50% Sym-20% (C-N) Sym-50% (C-N)

AML-KD AML-KD (GMMs)

Fig. 4: Test accuracy under the Sym-20%, Sym-50%, Sym-
20% (C-N) and Sym-50% (C-N) label noise on CIFAR-100.
WRN_40_2-WRN_16_2 is used as the teacher-student pair.

CIFAR-100. The results are given in Fig. 4.
As shown in Fig. 4, AML-KD with the estimated noise rate

obtains only slight performance degeneration compared with
AML-KD with the accurate noise rate. This demonstrates that
AML-KD works well when r is estimated with GMM.

5) Effectiveness of the Two-Stage Label Refinery Frame-

work (TSLRF): Our two-stage label refinery framework can
be easily applied to other KD-based methods when the datasets
involve class-dependent label noise. Thus, we explore the
effectiveness of our TSLRF on several KD-based methods
(including KD, SSKD, and RKD) under the Sym-50% (C-
N) label noise on CIFAR-100. Specifically, we replace the
training loss Lall defined in Eq. (15) with the corresponding
losses used in KD, SSKD, and RKD. In this way, TSLRF
can be used to gradually refine noisy labels. The comparison
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TABLE III: Accuracy (%) obtained by different methods for the four teacher-student pairs with different types of label noise
on CIFAR-100. All the competing methods are re-implemented by using author-provided codes.

Teacher Noise Type
Student Methods Sym-20% Sym-50% Asym-50% Sym-20% (C-N) Sym-50% (C-N)

WRN_40_2
WRN_16_2

Teacher 73.99 71.29 71.07 69.99 69.99
Student (CE) 55.71 37.97 40.18 54.70 33.38
KD [17] 68.81 67.82 68.28 65.85 63.47
KD (logit only) 64.31 63.39 63.19 62.87 62.87
RKD [40] 70.43 66.71 62.15 66.13 61.10
CRD [21] 70.80 68.46 69.31 69.12 67.88
SSKD [6] 69.01 67.56 68.06 68.78 68.97
ICKD-C [14] 71.63 70.29 69.98 71.68 69.84
TaT [15] 71.69 70.18 69.65 71.27 69.63
UNICON [11] 70.26 67.58 67.01 69.00 67.37
DivideMix [9] 69.99 66.86 65.55 68.74 65.32
Co-teaching [27] 56.18 46.37 42.87 54.13 47.76
SELC [44] 69.01 66.48 66.03 66.74 65.99
AML-KD 71.94 71.70 70.28 71.71 70.54

WRN_40_2
WRN_40_1

Teacher 73.99 71.29 71.07 69.99 69.99
Student (CE) 53.89 36.43 37.64 53.01 34.90
KD [17] 70.20 67.84 67.86 67.73 60.72
KD (logit only) 67.71 66.03 65.29 64.35 64.35
RKD [40] 70.01 66.04 62.51 66.31 61.18
CRD [21] 69.38 68.10 67.90 68.34 66.68
SSKD [6] 67.46 67.07 67.77 67.51 66.88
ICKD-C [14] 71.01 70.03 69.58 69.99 69.00
TaT [15] 70.59 69.46 69.46 69.88 68.93
UNICON [11] 69.46 69.01 68.64 68.33 67.54
DivideMix [9] 69.01 66.71 65.33 67.91 66.04
Co-teaching [27] 58.97 49.91 52.68 56.54 47.11
SELC [44] 68.65 64.26 64.11 65.21 64.18
AML-KD 71.49 71.05 70.00 70.02 69.48

ResNet56
ResNet20

Teacher 69.71 66.09 65.65 66.89 66.89
Student (CE) 53.31 34.76 35.88 53.06 35.70
KD [17] 67.70 65.67 66.57 64.63 62.53
KD (logit only) 63.28 62.21 62.37 61.11 61.11
RKD [40] 67.02 65.41 65.89 64.64 64.56
CRD [21] 67.50 66.41 65.64 65.55 64.50
SSKD [6] 64.16 63.87 63.52 64.99 63.42
ICKD-C [14] 67.82 66.16 66.09 66.41 65.03
TaT [15] 67.28 67.04 66.72 66.38 64.43
UNICON [11] 66.28 65.03 64.87 66.26 64.53
DivideMix [9] 63.99 61.75 61.64 63.38 61.07
Co-teaching [27] 57.96 48.46 49.71 57.23 48.19
SELC [44] 67.77 65.53 65.09 65.28 64.21
AML-KD 67.91 67.40 66.82 66.49 65.33

WRN_40_2
ShuffleNetV1

Teacher 73.99 71.29 71.07 69.99 69.99
Student (CE) 55.81 31.99 37.87 55.29 38.86
KD [17] 68.78 66.67 66.05 65.73 65.27
KD (logit only) 63.29 62.18 62.51 62.11 62.11
RKD [40] 67.99 66.13 65.79 66.78 65.47
CRD [21] 69.80 68.01 67.27 69.18 67.29
SSKD [6] 68.25 67.00 66.04 66.52 64.39
ICKD-C [14] 70.28 69.18 69.01 70.37 68.99
TaT [15] 69.98 68.57 68.03 69.82 69.08
UNICON [11] 69.18 66.79 66.31 67.99 67.38
DivideMix [9] 69.48 66.79 66.41 67.52 66.01
Co-teaching [27] 59.88 55.26 54.21 58.39 53.46
SELC [44] 67.98 65.44 65.10 65.38 64.19
AML-KD 70.91 70.45 70.26 71.19 70.66

results are given in Fig. 5.
From Fig. 5, we see that when applying our TSLRF to

these KD-based methods, the performance can be effectively
boosted. This shows that our label refinery framework can be
successfully combined with the existing KD-based methods
to improve their performance, even when the dataset contains
massive noisy labeled samples.

In the first stage of TSLRF, we directly relabel the noisy

labeled samples according to the prediction of the student
model (see Eq. (2)). Note that many existing label-noise
learning methods (such as [29]) rely on a manually-selected
threshold for label correction. Hence, we also compare the
threshold-based label correction (the values of the threshold
(t) are set to 0.2 and 0.5, respectively) and our adopted label
correction mechanism. The results are given in Fig. 6.

Experimental results show that our method with threshold-

Page 20 of 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

55.0%

57.0%

59.0%

61.0%

63.0%

65.0%

67.0%

69.0%

71.0%

KD SSKD RKD

KD based methods KD based methods with TSLRF

Fig. 5: Test accuracy under the Sym-50% (C-N) label noise on
CIFAR-100. WRN_40_2-WRN_16_2 is used as the teacher-
student pair.
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Fig. 6: Label accuracy obtained by the threshold-based label
correction and our adopted mechanism under Sym-50% (C-N)
label noise on CIFAR-100.

based label correction achieves similar performance in terms
of label accuracy in comparison with our method with the
adopted mechanism. However, threshold-based label correc-
tion requires manually choosing a threshold for each dataset,
hindering its practical applications. On the contrary, our
adopted label correction mechanism performs label correction
without using the threshold. Moreover, the label correction in
Eq. (2) is only used in the first stage. Even if some samples
are not correctly relabeled in this stage, the labels of these
samples can still be corrected in the second stage.

6) Influence of Different Teacher Models: We show the
influence of different teacher models on the final performance.
The results are shown in Table IV.

Experimental results show that AML-KD using UNICON
as the teacher model can achieve better performance than that
using DivideMix (the default teacher model in this paper) as
the teacher model under the Sym-50% and Asym-50% label

TABLE IV: Comparison of AML-KD with different teacher
models trained via different label noise learning methods on
CIFAR-100. ResNet56-ResNet20 is selected as the teacher-
student pair. Teacher (DivideMix) and Teacher (UNICON)
represent the teacher models trained with DivideMix and
UNICON, respectively. AML-KD (DivideMix) and AML-KD
(UNICON) denote the AML-KD methods guided by Teacher
(DivideMix) and Teacher (UNICON), respectively.

Methods Sym-50% Asym-50%

Teacher (DivideMix) 66.09 65.65
Teacher (UNICON) 66.78 66.71

AML-KD (DivideMix) 67.40 66.82
AML-KD (UNICON) 67.68 67.01

（a） Epoch 10 （b） Epoch 50 （c） Epoch 200

Fig. 7: t-SNE visualization of low-dimensional embeddings
(color represents the ground-truth label) at (a) epoch 10, (b)
epoch 50, and (c) epoch 200 under the Sym-50% label noise
on CIFAR-100.

noise. This clearly validates that the performance of AML-
KD can be further improved when a superior teacher model
is used.

C. Comparison with State-of-the-Art Methods

1) Results on CIFAR-100: We compare AML-KD with
representative LNL methods (including Co-teaching [27], Di-
videMix [9], SELC [44], and UNICON [11]) and KD methods
(including KD [17], KD (logit only), SSKD [6], RKD [40],
CRD [21], ICKD-C [14], and TaT [15]) in Table III. For a
fair comparison, we report the results of all the competing
methods without model ensemble.

From Table III, our proposed AML-KD consistently out-
performs all the competing methods, including state-of-the-art
KD and LNL methods. The Student (CE) method obtains the
worst performance when the noise rate is high (i.e., 50%).
This is because of the memorization of noisy labeled samples.
Note that CRD achieves much worse performance than our
method under Sym-50% (C-N) since it does not consider the
influence of noisy labeled samples. Besides, ICKD-C shows
better performance than KD, since ICKD-C uses inter-channel
correlations as the knowledge to guide the training of the
student model. TaT outperforms SSKD by a large margin. This
is mainly due to that TaT uses a one-to-all spatial matching
knowledge distillation strategy, which can learn fine-grained
knowledge hidden in the teacher model. In general, the above
results validate the superiority of our method. This can be
ascribed to the effectiveness of the proposed two-stage label
refinery framework and the AWE module.
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TABLE V: Comparison of training time (hours) under the
Sym-50% label noise on CIFAR-100 (a single NIVDIA
RTX 2080Ti GPU is used). For DivideMix and Co-teaching,
WRN_16_2 is used as the backbone. For AML-KD and SSKD,
WRN_40_2-WRN_16_2 is used as the teacher-student pair.

Co-teaching DivideMix SSKD AML-KD

5.1 6.9 6.4 6.0

Fig. 8: (a) Training and test accuracy under the Sym-50%
(C-N) label noise on CIFAR-100. (b) Label accuracy under
the Sym-50% (C-N) label noise on CIFAR-100. WRN_40_2-
WRN_16_2 is used as the teacher-student pair.

Moreover, we adopt t-SNE [48] to visualize low-
dimensional embeddings given by the student model for all
training samples of CIFAR-100, as shown in Fig. 7. As training
proceeds, our method learns the features with enhanced intra-
class compactness and inter-class separation. Besides, we also
compare the training time obtained by several representative
methods under the Sym-50% (C-N) label noise on CIFAR-100
in Table V. Our method outperforms the competing methods
with fewer or comparable training time. This demonstrates the
training efficiency of our AML-KD.

Finally, we visualize the training and test accuracy vs.
training epochs in Fig. 8(a). The training accuracy of our
method is lower than 50%. This reveals that AML-KD is able
to reduce overfitting (since the noise rate is 50%). In addition,
we also visualize the label accuracy vs. training epochs in
Fig. 8(b). The noisy labels of most samples are gradually
refined after two stages. Compared with AML-KD without
AWE, AML-KD achieves consistently higher label accuracy,
showing the importance of AWE.

2) Results on Animal-10N: We use WRN_40_2-
WRN_16_2 as the teacher-student pair on Animal-10N.
The results are listed in Table VI. AML-KD gives the top
accuracy (82.84%) while Co-learning obtains slightly worse
accuracy (82.18%) at the last epoch. But Co-learning requires
much more network parameters (⇠30 times larger) than
AML-KD. SSKD outperforms KD by using self-supervised
tasks. In addition, the GFLOPs obtained by AML-KD are
comparable to most of the competing methods. These results
show the superiority of AML-KD in terms of accuracy and
model size.

TABLE VI: Classification accuracy (%), the number of pa-
rameters (Params), and the giga-floating point operations
(GFLOPs) on the Animal-10N dataset.

Methods Best Last Backbone Params (M) GFLOPs

Teacher 79.90 78.61 WRN_40_2 ⇡ 2.2 ⇡ 1.3
Noisy Teacher 78.61 76.18 WRN_40_2 ⇡ 2.2 ⇡ 1.3
Student (CE) 78.28 77.36 WRN_16_2 ⇡ 0.7 ⇡ 0.4
KD [17] 80.70 78.91 WRN_16_2 ⇡ 0.7 ⇡ 0.4
SSKD [6] 81.91 79.12 WRN_16_2 ⇡ 0.7 ⇡ 0.4
CRD [21] 82.17 79.29 WRN_16_2 ⇡ 0.7 ⇡ 0.4
Co-learning [45] 82.95 82.18 ResNet34 ⇡ 21.3 ⇡ 4.7
Co-teaching [27] 81.34 80.56 WRN_16_2 ⇡ 0.7 ⇡ 0.4
TS3-Net [29] - 81.36 VGG-19 ⇡ 18.0 ⇡ 0.2
AML-KD (NT) 82.04 81.87 WRN_16_2 ⇡ 0.7 ⇡ 0.4
AML-KD 82.98 82.84 WRN_16_2 ⇡ 0.7 ⇡ 0.4

TABLE VII: Top-1 test accuracy (%), the number of parame-
ters (Params), and the giga-floating point operations (GFLOPs)
on the Clothing1M dataset.

Method Accuracy Backbone Params (M) GFLOPs

Teacher 73.79 ResNet50 ⇡ 23.5 ⇡ 4.1
Noisy Teacher 73.79 ResNet50 ⇡ 23.5 ⇡ 4.1
Student (CE) 65.60 ResNet18 ⇡ 11.7 ⇡ 1.8
KD [17] 71.98 ResNet18 ⇡ 11.7 ⇡ 1.8
SSKD [6] 71.28 ResNet18 ⇡ 11.7 ⇡ 1.8
DivideMix [9] 72.12 ResNet18 ⇡ 11.7 ⇡ 1.8
DAT [46] 73.00 ResNet50 ⇡ 23.5 ⇡ 4.1
Co-teaching [27] 69.79 ResNet18 ⇡ 11.7 ⇡ 1.8
FINE [28] 72.91 ResNet50 ⇡ 23.5 ⇡ 4.1
TS3-Net [29] 72.09 ResNet18 ⇡ 2.5 ⇡ 0.4
BARE [47] 72.28 ResNet50 ⇡ 23.5 ⇡ 4.1
SELC [44] 74.01 ResNet50 ⇡ 23.5 ⇡ 4.1
SRCC [25] 73.99 ResNet50 ⇡ 23.5 ⇡ 4.1
UNICON [11] 73.16 ResNet18 ⇡ 11.7 ⇡ 1.8
AML-KD (NT) 73.04 ResNet18 ⇡ 11.7 ⇡ 1.8
AML-KD 74.12 ResNet18 ⇡ 11.7 ⇡ 1.8

In some scenarios, the teacher model may be difficult to be
trained with dedicated LNL methods. To evaluate the effec-
tiveness of AML-KD in such a case, we conduct additional
experiments, where the teacher model (we call it the noisy
teacher) is trained by only using the standard CE loss. The
results are given in Table VI, where our AML-KD method
that is trained based on the noisy teacher is denoted as AML-
KD (NT).

From Table VI, we can easily observe that our AML-KD
(NT) outperforms its corresponding noisy teacher model. This
can be ascribed to the effectiveness of our proposed two-stage
label refinery framework, which refines massive noisy labels
during the training process. Therefore, our AML-KD is still
effective even when the noisy teacher model is used on the
real-world dataset.

3) Results on Clothing1M: We adopt ResNet50-ResNet18
as the teacher-student pair on Clothing1M. The comparison
results are given in Table VII. AML-KD obtains much better
performance than the Student (CE) method with a large margin
(8.38% improvements). In particular, our AML-KD achieves
slightly better performance than the teacher model. This can
be ascribed to the involvement of the mutual LP stage, which
gradually improves the label accuracy supervised by the two
models. These results show the superiority of AML-KD in the
real-world noisy dataset.

We also perform experiments when the noisy teacher is used
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TABLE VIII: The top-1, top-5 accuracy (%), the number of parameters (Params), and the giga-floating point operations
(GFLOPs) obtained by different methods on WebVision (mini). The accuracy is reported on both the WebVision validation set
and the ImageNet ILSVRC12 validation set.

Test dataset WebVision ILSVRC12 - - -

Accuracy (%) top-1 top-5 top-1 top-5 Backbone Params (M) GFLOPs

Teacher 75.31 90.65 73.14 89.64 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
Noisy Teacher 69.36 88.20 67.98 87.03 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
Student (CE) 63.25 82.17 61.36 80.41 ResNet18 ⇡ 11.7 ⇡ 1.8
KD [17] 70.21 88.37 68.29 87.32 ResNet18 ⇡ 11.7 ⇡ 1.8
F-correction [49] 61.12 82.68 57.36 82.36 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
Decoupling [50] 62.54 84.74 58.26 82.26 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
D2L [51] 62.68 84.00 57.80 81.36 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
MentorNet [52] 63.00 81.40 57.80 79.92 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
Co-teaching [27] 63.58 85.20 61.48 84.70 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
Iterative-CV [53] 65.24 85.34 61.60 84.98 Inception-ResNet-v2 ⇡ 54.4 ⇡ 13.2
TS3-Net [29] 73.48 90.92 70.27 90.46 Inception-ResNet-v2 ⇡ 11.8 ⇡ 2.6
DivideMix [9] 73.58 90.27 71.64 90.09 ResNet18 ⇡ 11.7 ⇡ 1.8
UNICON [11] 73.88 91.28 71.54 90.66 ResNet18 ⇡ 11.7 ⇡ 1.8

AML-KD (NT) 73.28 90.32 71.43 90.28 ResNet18 ⇡ 11.7 ⇡ 1.8
AML-KD 74.11 90.98 72.09 90.78 ResNet18 ⇡ 11.7 ⇡ 1.8

for training. The results are given in Table VII. We can see
that, compared with the results obtained by AML-KD (the
LNL method (DivideMix) is used to train the teacher model),
the performance of AML-KD (NT) does not greatly drop.
Moreover, AML-KD (NT) outperforms most of the competing
methods. This shows the robustness of AML-KD when the
noisy teacher model is adopted as the teacher.

4) Results on WebVision: We show the evaluation results
on WebVision in Table VIII. Following the same settings
as [9], we use the Inception-ResNet-v2 (which is trained by
DivideMix) as the teacher model, and select ResNet18 as the
student model. Among all the competing methods, our AML-
KD achieves the best performance in terms of top-1 and top-5
accuracy on the ILSVRC12 test dataset with only 1.8 GFLOPs.
For the WebVision test dataset, UNICON achieves the best
top-5 accuracy (91.28%) while our method obtains comparable
accuracy (90.98%).

We also evaluate AML-KD (NT) on WebVision. As shown
in Table VIII, AML-KD (NT) significantly outperforms the
noisy teacher and achieves comparable performance with
AML-KD. This further demonstrates the scalability of our
method on the large-scale real-world noisy dataset.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel AML-KD method, which
is based on a proposed two-stage label refinery framework, to
effectively obtain a compact and high-accuracy student model
with label noise. To alleviate the overfitting of ambiguous
samples during the label refinery, an AWE module is intro-
duced to assign low weights to these samples by exploiting
both the feature distribution information and the annotation
information. Extensive experiments on synthetic and real-
world noisy datasets demonstrate that AML-KD consistently
outperforms several state-of-the-art KD methods and LNL
methods in dealing with different types of label noise.

In this paper, we study KD with noisy labels, where the
datasets involve class-dependent label noise. However, in some
real-world applications, out-of-distribution label noise may
also exist. Therefore, our method is not applicable in such

a case. To perform KD under out-of-distribution label noise,
we can exploit statistical information from the teacher model
and the student model to identify out-of-distribution noisy
labeled samples in future work. Moreover, we believe that our
method can be extended to other supervised learning tasks.
For example, AML-KD can be used to obtain a lightweight
text emotion classifier for emotion analysis when the training
set contains noisy tags.
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