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Abstract. We give conditions under which near-critical stochastic processes on the half-line have
infinitely many or finitely many cutpoints, generalizing existing results on nearest-neighbour random
walks to adapted processes with bounded increments satisfying appropriate conditional increment
moments conditions. We apply one of these results to deduce that a class of transient zero-drift
Markov chains in Rd, d ≥ 2, possess infinitely many separating annuli, generalizing previous results
on spatially homogeneous random walks.

1. Introduction and main results

In this paper we study separation properties of trajectories of transient, near-critical, discrete-
time stochastic processes in R+ and Rd satisfying certain increment moment conditions. A point x
of R+ is a cutpoint for a given trajectory of a stochastic process if, roughly speaking, the process
visits x and never returns to [0, x) after its first entry into (x,∞). A similar notion is applicable in
higher dimensions. Under mild conditions, cutpoints may appear only in the transient case, when
trajectories escape to infinity. The more cutpoints that a process has, the ‘more transient’ it is, in a
certain sense. A fundamental question is: does a transient process have infinitely many cutpoints,
or not?

For simple symmetric random walk (SSRW) on Zd, d ≥ 3, this question goes back to Erdős and
Taylor (1960), who proved that cutpoints have a positive density in the trajectory if d ≥ 5. Much
later, it was shown that transient SSRW has infinitely many cutpoints in any dimension d ≥ 3,
by Lawler (1991) (for d ≥ 4) and James and Peres (1996). Recently, examples of transient Markov
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chains on Z+ with finitely many cutpoints were produced (James et al., 2008; Csáki et al., 2010):
these processes are nearest-neighbour birth-and-death chains that are ‘less transient’ than SSRW on
Z3, in the ‘critical window’ identified by Menshikov et al. (1995). A recent extension to processes
whose jumps are size 1 to the left and size 2 to the right was given by Wang (2019).

We examine the phase transition in the quantity of cutpoints from the point of view of relatively
general processes on R+ in the manner of Lamperti (1960, 1963), and from the point of view of
many-dimensional Markov chains (cf. Georgiou et al., 2016). We (i) extend, in part, some one-
dimensional results that were restricted to nearest-neighbour Markov chains on Z+ (Csáki et al.,
2010) to somewhat more general (not always Markov) processes on R+ with bounded jumps satis-
fying Lamperti-type conditions, and (ii) extend some many-dimensional results that were restricted
to homogeneous random walks in Rd, d ≥ 3 (James and Peres, 1996) to some transient zero-drift
non-homogeneous random walks on Rd, d ≥ 2. Indeed, it is the fact that we can undertake relevant
parts of (i) without assuming the Markov property that enables us to apply our results to higher
dimensions in (ii).

Suppose that X = (Xn;n ∈ Z+) is a discrete-time stochastic process adapted to a filtration
(Fn;n ∈ Z+) and taking values in a measurable X ⊂ R+ with inf X = 0 and supX = ∞. We
permit F0 to be rich enough that X0 is random. For a measurable subset B of R+, let |B| denote
the Lebesgue measure of B. For a set A, let #A denote the number of elements of A.

Definition 1.1. (i): The point x ∈ R+ is a cutpoint for X if there exists n0 ∈ Z+ such that Xn ≤ x
for all n ≤ n0, Xn0 = x, and Xn > x for all n > n0.
(ii): The point x ∈ R+ is a strong cutpoint for X if there exists n0 ∈ Z+ such that Xn < x for all
n < n0, Xn0 = x, and Xn > x for all n > n0.
(iii): For h > 0 and k ∈ Z+, an interval I ⊂ R+ is an (h, k) cut interval if |I| ≥ h, if there are at
least k points of X0, X1, . . . in the interior of I, and every point of X0, X1, . . . in the interior of I is
a strong cutpoint for X.

The terminology in (i) and (ii) follows Csáki et al. (2010), although similar definitions appeared
earlier. We discuss some other related notions in Section 3 below. Let C denote the set of cutpoints,
and let Cs denote the set of strong cutpoints; the random sets C and Cs are at most countable, with
Cs ⊆ C.

In this paper we give conditions under which either (i) #Cs =∞, or (ii) #C <∞. The example
of a trajectory on Z+ which follows the sequence (0, 0, 1, 1, 2, 2, . . .) shows that it is, in principle,
possible to have #C = ∞ and #Cs < ∞, but our results show that such behaviour is excluded
for the models that we consider (with probability 1); see also Conjecture 1.1 of Csáki et al. (2010,
p. 628).

We will assume the following.
(B): Suppose that there exists a constant B <∞ such that, for all n ∈ Z+,

P(|Xn+1 −Xn| ≤ B) = 1.

(N): Suppose that lim supn→∞Xn = +∞, a.s.
Assumption (B) is bounded increments. The non-confinement condition (N) is implied by suitable

notions of irreducibility or ellipticity (see e.g. Menshikov et al., 2017, §§3.3, 3.6); in particular,
condition (N) holds whenever X is an irreducible, time-homogeneous Markov chain on a locally
finite state space X ⊆ R+. (A set X ⊆ R+ is locally finite if #(X ∩ B) < ∞ for every bounded
B ⊆ R+.)

For n ∈ Z+ set ∆n := Xn+1 − Xn, the increment of the process. We will impose conditions
on the conditional increment moments E(∆k

n | Fn), k = 1, 2, that are required to hold uniformly
(in n and a.s.) on {Xn > x} for large enough x. Note that the existence of E(∆k

n | Fn) for
all n ∈ Z+ is guaranteed by (B). These conditions will be formulated in terms of (measurable)
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functions µk, µ̄k : X → R such that

µk(Xn) ≤ E(∆k
n | Fn) ≤ µ̄k(Xn), a.s. (1.1)

for all n ∈ Z+. Of course, condition (B) ensures that such µk, µ̄k exist; our results are stronger
the tighter one makes the bounds in (1.1), and are more complete if µk(x) and µ̄k(x) do not
differ by much for large x. One near-optimal way of defining µk, µ̄k satisfying (1.1) is described
by Menshikov et al. (2017, §3.3). Note that if X is a time-homogeneous Markov chain on X ,
then E(∆k

n | Fn) = µk(Xn) a.s. for some measurable µk : X → R with µk(x) = E(∆k
n | Xn = x),

and so in (1.1) we may take µk ≡ µ̄k ≡ µk. Thus in the Markovian case one may replace µk and µ̄k
by µk in the statements that follow.

A mild additional assumption that we will often need is the following.
(V): Suppose that lim infx→∞ µ2(x) > 0.

Our first result gives a sufficient condition to have #Cs = ∞, and gives a lower bound on the
density of cutpoints. That the hypotheses of Theorem 1.2 imply Xn →∞ a.s. is a result of Lamperti
(1960).

Theorem 1.2. Suppose that (B), (N), and (V) hold. Suppose also that

lim inf
x→∞

(
2xµ1(x)− µ̄2(x)

)
> 0, (1.2)

lim sup
x→∞

(
xµ̄1(x)

)
<∞. (1.3)

Then for any h ∈ (0,∞) and k ∈ Z+, a.s. there exist infinitely many disjoint (h, k) cut intervals.
In particular P(#Cs = ∞) = 1. Moreover, if EX0 < ∞ then there is a constant c > 0 such that
E#(Cs ∩ [0, x]) ≥ c log x for all x sufficiently large.

For the case of a nearest-neighbour Markov chain on Z+, Theorem 1.2 is contained in a result
of Csáki et al. (2010). For the model of Wang (2019), which lives on Z+ and from x > 0 jumps either
1 unit to the left or 2 units to the right, existence of infinitely many disjoint (3, 2) cut intervals (say)
implies there are infinitely many points of Z+ that are never visited by the walk (called ‘skipped
points’ by Wang, 2019).

To appreciate the context of Theorem 1.2, recall Lamperti’s result that, under the other con-
ditions of the theorem, condition (1.2) is sufficient for transience, while sufficient for recurrence is
lim supx→∞

(
2xµ̄1(x)−µ2(x)

)
< 0: see Lamperti (1960) or Chapter 3 of Menshikov et al. (2017). It

is helpful to bear in mind the following example. Suppose that S0, S1, S2, . . . is SSRW on Zd. Then
if Xn = ‖Sn‖, the process X satisfies our (B) and (N), and a calculation (see e.g. Menshikov et al.,
2017, §1.3) shows that

lim
x→∞

(
2xµ1(x)

)
=
d− 1

d
= lim

x→∞

(
2xµ̄1(x)

)
,

and

lim
x→∞

µ2(x) =
1

d
= lim

x→∞
µ̄2(x).

Thus (1.3) and (V) also hold, and condition (1.2) is equivalent to d− 2 > 0, i.e. d ≥ 3. We explore
the implications of Theorem 1.2 for many-dimensional random walks in more detail in Section 2.

To find examples of transient processes with #C <∞, we require processes that are ‘less transient’
than SSRW in Z3. At this point it is most convenient to assume that X is Markov. Then a more
refined recurrence classification (see Menshikov et al., 1995) says that a sufficient condition for
transience is, for some θ > 0 and all x sufficiently large,

2xµ1(x) ≥
(

1 +
1 + θ

log x

)
µ2(x),
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and a sufficient condition for recurrence is the reverse inequality with θ < 0. E.g., if

lim
x→∞

µ2(x) = b ∈ (0,∞), and µ1(x) =
a

2x
+
c+ o(1)

2x log x
, (1.4)

then a > b implies Theorem 1.2 holds, and case a < b is recurrent (regardless of c). The critical
case has a = b, and then c < b implies recurrence and c > b implies transience. This latter regime
provides examples of processes with few cutpoints, as we show in Theorem 1.3.

We need for this result some stronger regularity assumptions on the process, as follows. A set
S ⊆ R+ is uniformly locally finite if

sup
x∈R+

#(S ∩ [x, x+ 1]) <∞. (1.5)

(M): Suppose that X is an irreducible, time-homogeneous Markov chain on an unbounded, uni-
formly locally finite state space X ⊆ R+. List the elements of X in increasing order as
0 = s0 < s1 < s2 < · · · . Suppose that there exist k0,m0 ∈ N and δ0 > 0 such that for all
k ≥ k0 there is m = m(k) with 1 ≤ m ≤ m0 for which

P
(
Xm = sk+1, max

0≤`≤m−1
X` ≤ sk

∣∣∣ X0 = sk

)
> δ0. (1.6)

Note that (M) implies (N) (see e.g. Corollary 2.1.10 of Menshikov et al., 2017). Condition (1.6)
holds with m0 = 1 if P(Xn+1 = sk+1 | Xn = sk) > δ0 > 0, as in the nearest-neighbour model
of Csáki et al. (2010), but also holds for example in the setting of Wang (2019) (with m0 = 2).

Theorem 1.3. Suppose that (M), (B), and (V) hold. Suppose also that there exist constants
x0 ∈ R+ and D <∞ such that

µ1(x) ≥ 0 and 2xµ1(x)− µ2(x) ≤ D

log x
, for all x ≥ x0. (1.7)

Then P(#C <∞) = 1.

The next result gives a result in the other direction. In particular, Proposition 1.4 gives a mild
condition, not requiring (M), under which E#Cs = ∞. Note that (1.8) is weaker than (1.2) from
Theorem 1.2. Theorem 1.3 and Proposition 1.4 together show that if (M) and (1.4) hold with
c > a = b, then #C and #Cs are a.s. finite (so, in particular, Theorem 1.2 does not apply), but both
have infinite expectation.

Proposition 1.4. Suppose that (B), (N), and (V) hold. Suppose also that for some θ > 0 and all
x sufficiently large,

2xµ1(x) ≥
(

1 +
1 + θ

log x

)
µ̄2(x). (1.8)

If also EX0 <∞, then there exists a constant c > 0 such that E(#Cs ∩ [0, x]) ≥ c log log x for all x
sufficiently large; in particular, E#Cs =∞.

Proposition 1.4 is reminiscent of Theorem 2 of Benjamini et al. (2011), which states that for any
transient Markov chain X on a countable state space, the expected number of f -cutpoints is infinite,
where an f -cutpoint is a cutpoint for the process f(X0), f(X1), . . ., and f is a particular function
determined by the law of the Markov chain (see Benjamini et al., 2011). However, f -cutpoints are
not necessarily cutpoints in our sense, since the function f is not necessarily monotone.

Conjecture 1.5. Under the conditions of Theorem 1.3, E[(#C)α] <∞ for all α < 1.

We believe that the condition (1.7) in Theorem 1.3 can be relaxed. Indeed, in the case of a
nearest-neighbour random walk on Z+, it is shown in Theorem 5.1 of Csáki et al. (2010) that if, for
γ > 0,

2xµ1(x) = 1 +
1

(log log x)γ
, and µ2(x) = 1, for all x ≥ 1,
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then #C <∞ a.s. whenever γ > 1, while #Cs =∞ a.s. if γ ≤ 1.

Problem 1.6. Obtain a sharp phase transition analogous to that of Csáki et al. (2010) in the gener-
ality considered in the present paper.

2. Application to higher dimensions

Suppose that d ∈ N, and let Σ be an unbounded, measurable subset of Rd with 0 ∈ Σ. Let
Ξ := (ξ0, ξ1, ξ2, . . .) be a time-homogeneous Markov process with P(ξn ∈ Σ) = 1 for all n, with
a family of laws Px( · ) = P( · | ξ0 = x) for initial state x ∈ Σ. In other words, for measurable
A ⊆ Σ and x ∈ Σ, P(ξn+1 ∈ A | ξn = x) = Px(ξ1 ∈ A) = P (x,A) for a transition kernel P . Define
θn := ξn+1 − ξn for n ∈ Z+, and write simply θ for θ0. Throughout this section we view vectors in
Rd as column vectors. Write Sd−1 := {u ∈ Rd : ‖u‖ = 1}, and for x ∈ Rd \ {0}, set x̂ := x/‖x‖.

Assume that the increments of Ξ are bounded, i.e., for some constant B <∞,

Px (‖θ‖ ≤ B) = 1, for all x ∈ Σ. (2.1)

Under assumption (2.1) the mean drift function µ(x) := Ex θ (a vector in Rd) and increment
covariance function M(x) := Ex(θθ>) (a d × d symmetric matrix) are well-defined. Here Ex is
expectation with respect to Px. We assume that the walk has zero drift, i.e.,

µ(x) = 0, for all x ∈ Σ, (2.2)

and is uniformly non-degenerate in the sense that there exists ε0 > 0 such that

trM(x) ≥ ε0, for all x ∈ Σ. (2.3)

A natural class of models consists of the elliptic random walks introduced by Georgiou et al. (2016)
(see also Menshikov et al., 2017, §4.2), which are described by an asymptotic covariance structure,
as follows. Suppose that there exist constants U and V with 0 < U ≤ V <∞ for which

lim
r→∞

sup
x∈Σ:‖x‖≥r

∣∣x̂>M(x)x̂− U
∣∣ = 0, (2.4)

lim
r→∞

sup
x∈Σ:‖x‖≥r

∣∣trM(x)− V
∣∣ = 0. (2.5)

Note that if d = 1, then M(x) = Ex(θ2) is a scalar, necessarily U = V , and the process is recurrent
(see e.g. Theorem 2.5.7 of Menshikov et al., 2017). Thus we must take d ≥ 2 to see transience, and
it turns out that we must take 2U < V (cf. Georgiou et al., 2016 and Menshikov et al., 2017, §4.2).
The case 2U > V is recurrent. The boundary case 2U = V may be recurrent or transient, and, if
transient, may fall into the regime corresponding to Theorem 1.3, so we must exclude that case.
(E): Suppose that (2.1)–(2.5) hold with d ≥ 2 and 2U < V .

We will obtain results for Ξ by looking at the process X defined by Xn = ‖ξn‖ for n ∈ Z+, and
applying our one-dimensional results from Section 1.

For the process ‖Ξ‖, an (h, k) cut interval corresponds to an (h, k) cut annulus for Ξ, that is,
an annulus of width at least h for which there exist m and ` ≥ k − 1 with X0, . . . , Xm−1 in the
bounded complement of the annulus, Xm+`+1, Xm+`+2, . . . in the unbounded complement of the
annulus, and Xm, Xm+1, . . . , Xm+` inside the annulus with ‖Xm‖ < ‖Xm+1‖ < · · · < ‖Xm+`‖.

Theorem 2.1. Suppose that Ξ is a time-homogeneous Markov process on Σ ⊆ Rd for which (E)
holds. Then a.s., for any h ∈ (0,∞) and k ∈ N, there are infinitely many (h, k) cut annuli.

The next result on homogeneous random walk, which is essentially due to James and Peres (1996,
§4), now follows as a special case of Theorem 2.1.
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Corollary 2.2. Suppose that ζ, ζ1, ζ2, . . . ∈ Rd are i.i.d. with P(‖ζ‖ ≤ B) = 1, E ζ = 0, and
E(ζζ>) = σ2I, where B < ∞ and σ2 ∈ (0,∞) are constants, and I is the d by d identity matrix.
Then for d ≥ 3, the random walk Ξ generated by ξn =

∑n
i=1 ζi is transient and, a.s., for any

h ∈ (0,∞) and k ∈ N, has infinitely many (h, k) cut annuli.

Suppose that ζ, ζ1, ζ2, . . . ∈ Rd are i.i.d. with P(‖ζ‖ ≤ B) = 1, E ζ = 0, and E(ζζ>) = M for
some positive-definiteM . Then there exists a positive-definite matrixM−1/2, which defines a linear
transformation of Rd, such that M−1/2Ξ has increment distribution ζ̃ := M−1/2ζ for which E ζ̃ = 0
and E(ζ̃ ζ̃>) = M−1/2 E(ζζ>)M−1/2 = I. Thus Corollary 2.2 applies, showing that, if d ≥ 3,M−1/2Ξ

has infinitely many (h, k) cut annuli. For Ξ, this translates to linear transformations (by M1/2) of
cut annuli, which are elliptical annuli rather than spherical annuli. This raises a natural question.

Problem 2.3. For general positive-definite M , is it the case that there are infinitely many (h, k)
spherical cut annuli for the random walk in Rd, d ≥ 3, whose increments have mean zero and
covariance M?

In looking for transient multidimensional processes with finitely-many cut annuli, it is natural
to take processes with a radial drift chosen so that ‖Ξ‖ has a drift in the window identified by
Theorem 1.3. However, Theorem 1.3 requires the Markov property, and so cannot be applied to
‖Ξ‖, unless we impose some additional isotropy condition.

In the rest of this section we give the proofs of Theorem 2.1 and Corollary 2.2.

Proof of Theorem 2.1. Let Xn = ‖ξn‖. Lemma 4.1.1 of Menshikov et al. (2017) shows that (2.1),
(2.2), and (2.3) imply that lim supn→∞ ‖ξn‖ =∞, a.s. Moreover, Lemma 4.1.5 of Menshikov et al.
(2017) shows that under conditions (2.1) and (2.2), we have that, for some δ > 0,

E(∆n | ξn = x) =
trM(x)− x̂>M(x)x̂

2‖x‖
+O(‖x‖−1−δ),

E(∆2
n | ξn = x) = x̂>M(x)x̂+O(‖x‖−δ),

as ‖x‖ → ∞. With (2.4) and (2.5), we get

E(∆n | ξn = x) =
V − U
2‖x‖

+ o(‖x‖−1), and E(∆2
n | ξn = x) = U + o(1),

and so (1.1) is satisfied with

µ1(x) =
V − U

2x
+ o(x−1), µ̄1(x) =

V − U
2x

+ o(x−1),

and µ2(x) = U + o(1) = µ̄2(x). Since U > 0, we have that (V) holds, while

lim inf
x→∞

(
2xµ1(x)− µ̄2(x)

)
= V − 2U.

Thus if V > 2U we have that (1.2) holds. Then Theorem 1.2 gives the result. �

Proof of Corollary 2.2. The conditions of Theorem 2.1 are satisfied with M(x) = σ2I, U = σ2, and
V = σ2d, so V > 2U if and only if d > 2. �

3. Cut times and separating points

A few variations on, and relatives of, the concept of cutpoint have appeared in the literature (see
e.g. Dvoretzky et al., 1950; Csáki et al., 2010; James et al., 2008; James and Peres, 1996; Lawler,
1996, 2002). Here we briefly comment on a definition of cut time, and also introduce the notion of
a separating point, which will be useful for our proofs.

Definition 3.1. (i): The point x ∈ R+ is a separating point for X if there exists n0 ∈ Z+ such that
Xn ≤ x for all n ≤ n0 and Xn > x for all n > n0.
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(ii): We say that n ∈ Z+ is a cut time for X if Xn = max0≤`≤nX` < Xm for all m > n.

Note that, in contrast to a cutpoint, a separating point need not be visited by X. It follows
from (ii) that if n is a cut time, then {X0, . . . , Xn} ∩ {Xn+1, Xn+2, . . .} = ∅, an attribute that has
received some attention in discrete spaces (Lawler, 1996; Benjamini et al., 2011), but which does
not ensure the spatial separation properties that interest us here.

Let T ⊆ Z+ be the set of cut times for X, and let S ⊆ R+ be the set of separating points. Note
that C ⊆ S, and if I is any open (h, k) cut interval, then I ⊆ S. In particular, if for some h > 0
there are infinitely many disjoint (h, k) cut intervals, then |S| = ∞. The next result gives some
simple relations involving C, T , and S.

Lemma 3.2. We have (i) #C = #T , and (ii) if lim supn→∞Xn = ∞, then #C = ∞ implies
supS =∞.

Proof : If n is a cut time, then Xn is a cutpoint. If n1 < n2 are different cut times, then Xn2 =
max0≤`≤n2 X` ≥ Xn1+1 > Xn1 . Hence #C ≥ #T . On the other hand, if x is a cutpoint, then there
is n0 for which max0≤n≤n0 Xn = Xn0 = x and Xn > Xn0 for all n > n0, so n0 is a cut time; hence
#T ≥ #C. Thus (i) holds.

For part (ii), suppose that lim supn→∞Xn =∞, and there are x1 < x2 < · · · ∈ C with Xnk = xk
for times n1 < n2 < · · · . Since Xnk+1

> max0≤m≤nk Xm, we have limk→∞Xnk ≥ lim supn→∞Xn =
∞, so C ⊆ S is unbounded. �

4. Hitting probability estimates

By (B) and (N), for any x > X0 the process X on R+ will visit [x, x + B]; consider the first
time it does so, at some y ∈ [x, x + B], say. We will show (in Lemma 4.1 below) that, provided x
is large enough, there is uniformly positive probability that on its next few steps the process makes
a sequence of uniformly positive increments, to reach [y + 2h,∞), say. If then X never returns
to [0, y + h], the process will only visit [y, y + h] at (strong) cutpoints. By adjusting constants,
we can thus produce an (h, k) cut interval. The key estimate thus required is the probability that,
started close to, but greater than, y, the process never returns to [0, y]. We use a Lyapunov function
approach to estimate this probability. Related estimates are required for proving that cutpoints do
not occur. Similar hitting probability estimates play a key role in the work of James and Peres
(1996); James et al. (2008); Csáki et al. (2010); Wang (2019), which focused on the Markovian case.
We emphasise that the Markov property is not necessary for much of the argument.

We start with the following elementary lemma, which gives a one-sided ‘ellipticity’ result. Note
that since our increment moment conditions are asymptotic, we get (4.1) only for y0 sufficiently
large; if we had stronger conditions so that we could take y0 = 0 in (4.1), then assumption (N)
would follow automatically (see e.g. Proposition 3.3.4 of Menshikov et al., 2017).

Lemma 4.1. Suppose that (B) and (V) hold. Suppose also that lim infx→∞ µ1(x) ≥ 0. Then there
exist y0 ∈ R+ and ε > 0 such that, for all n ∈ Z+,

P(Xn+1 −Xn ≥ ε | Fn) ≥ ε, on {Xn ≥ y0}. (4.1)

Proof : Let B <∞ be the constant appearing in (B). Write ∆n = Xn+1 −Xn, and for z ∈ R write
z+ = z1{z > 0} and z− = −z1{z < 0}, so z = z+ − z− and |z| = z+ + z−. By (V) and (1.1), there
exist constants δ > 0 and y1 ∈ R+ such that, for all n ∈ Z+,

E(∆2
n | Fn) ≥ δ, on {Xn ≥ y1}. (4.2)

By assumption (B), we have ∆2
n ≤ B|∆n|, a.s., so, by (4.2),

E(∆+
n | Fn) + E(∆−n | Fn) = E(|∆n| | Fn) ≥ δ

B
, on {Xn ≥ y1}. (4.3)
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Moreover, lim infx→∞ µ1(x) ≥ 0 implies that there exists y2 ≥ y1 such that

E(∆+
n | Fn)− E(∆−n | Fn) = E(∆n | Fn) ≥ − δ

2B
, on {Xn ≥ y2}. (4.4)

Then we combine (4.3) and (4.4) to get, for all n ∈ Z+,

E(∆+
n | Fn) ≥ δ

4B
, on {Xn ≥ y2}. (4.5)

Now (B) shows that for ε0 > 0, ∆+
n ≤ ε0 +B1{∆+

n ≥ ε0}. Thus from (4.5) we get

P(∆+
n ≥ ε0 | Fn) ≥ 1

B

(
δ

4B
− ε0

)
, on {Xn ≥ y2}.

Choose ε0 = δ/(8B). Then we get

P
(

∆+
n ≥

δ

8B

∣∣∣ Fn) ≥ δ

8B2
, on {Xn ≥ y2}.

This verifies (4.1). �

For the rest of the paper we write logp x := (log x)p. Consider Lyapunov functions fγ : X →
(0,∞) and gν : X → (0,∞) defined for γ > 0 and ν > 0 by

fγ(x) :=

{
x−γ if x ≥ 1,

1 if x < 1.

and

gν(x) :=

{
log−ν x if x ≥ e,

1 if x < e.

Given a σ-algebra F and F-measurable random variables X and Y , we write oFX(Y ) to represent an
F-measurable random variable such that for any ε > 0, there exists a finite deterministic constant
xε for which |oFX(Y )| ≤ εY on the event {X ≥ xε}.

The next result, which is central to what follows, provides increment moment estimates for our
Lyapunov functions, and is contained in Lemma 3.4.1 of Menshikov et al. (2017), incorporating a
minor correction to restore the factor of 1/2 to the ν(ν + 1) term in (4.7); the 1/2 factor arises
from the second-order Taylor term in the last display on p. 104 of Menshikov et al. (2017), but goes
missing by equations (3.17) and (3.23) in that reference.

Lemma 4.2. Suppose that (B) holds. Then, for γ > 0,

E (fγ(Xn+1)− fγ(Xn) | Fn)

= −γ
2

[
2Xn E(∆n | Fn)− (1 + γ)E(∆2

n | Fn) + oFnXn(1)
]
X−γ−2
n , (4.6)

and, for ν > 0,

E (gν(Xn+1)− gν(Xn) | Fn)

= −ν
2

[
2Xn E(∆n | Fn)− E(∆2

n | Fn)
]
X−2
n log−ν−1Xn

+
1

2
ν(ν + 1)E(∆2

n | Fn)X−2
n log−ν−2Xn + oFnXn(X−2

n log−ν−2Xn). (4.7)

Throughout the paper we define, for n ∈ Z+ and x ∈ R+, the stopping times

τn,x := min{m ≥ n : Xm ≤ x}, and ηn,x := min{m ≥ n : Xm > x}. (4.8)

Here and elsewhere we adopt the usual convention that min ∅ := ∞. The next two results present
our main hitting probability estimates.
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Lemma 4.3. Suppose that (B) and (V) hold. Suppose also that the conditions (1.2) and (1.3) hold.
For any δ, C with 0 < δ < C < ∞, there exist constants x1, k1, k2 ∈ (0,∞), not depending on x,
such that for all x ≥ x1 and all y > 0,

k1

x
≤ P(τn,x =∞ | Fn) ≤ k2

x
, on {x+ δ ≤ Xn ≤ x+ C}, (4.9)

P(ηn,x+y < τn,x | Fn) ≤ k2(x+ y)

xy
, on {Xn ≤ x+ C}. (4.10)

Lemma 4.4. Suppose that (B) and (V) hold.
(a) Suppose that there exists D <∞ such that

µ1(x) ≥ 0 and 2xµ̄1(x)− µ2(x) ≤ D

log x
, (4.11)

for all x sufficiently large. For any C <∞, there exists a constant k3 ∈ (0,∞), not depending
on x, such that for all x ≥ 1,

P(τn,x =∞ | Fn) ≤ k3

x log x
, on {Xn ≤ x+ C}. (4.12)

(b) Suppose that (1.8) holds. For any δ > 0 there exist constants x2, k4 ∈ (0,∞), not depending
on x, such that for all x ≥ x2,

P(τn,x =∞ | Fn) ≥ k4

x log x
, on {Xn ≥ x+ δ}. (4.13)

The rest of this section is devoted to the proofs of Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. The assumption (1.2) implies that there exist y1 ≥ 1 and ε0 > 0 such that
2xµ1(x)− µ̄2(x) ≥ ε0 for all x ≥ y1, and hence, for all m ∈ Z+, by (1.1),

2Xm E(∆m | Fm)− E(∆2
m | Fm) ≥ 2Xmµ1(Xm)− µ̄2(Xm) ≥ ε0, on {Xm ≥ y1}.

Also, by (B), ∆2
m ≤ B2, a.s. Thus by Lemma 4.2, we have that on {Xm ≥ y2} for y2 > y1 sufficiently

large and all m ∈ Z+,

E(fγ(Xm+1)− fγ(Xm) | Fm) ≤ −γ
2

(ε0

2
− γB2

)
Xγ−2
m .

Taking γ > 0 sufficiently small, we then have that

E(fγ(Xm+1)− fγ(Xm) | Fm) ≤ 0, on {Xm ≥ y2}. (4.14)

Set Ym = fγ(Xm), fix n ∈ Z+, and take x ≥ y2. Then (Ym∧τn,x ;m ≥ n) is a non-negative
supermartingale, by (4.14), and hence Y∞ = limm→∞ Ym∧τn,x a.s. exists in R+, and (see e.g. The-
orem 2.3.11 of Menshikov et al., 2017) E(Yτn,x | Fn) ≤ Yn, a.s. It follows that

fγ(Xn) ≥ E(Yτn,x1{τn,x <∞} | Fn) ≥ fγ(x)P(τn,x <∞ | Fn),

since fγ is non-increasing and Xτn,x ≤ x on {τn,x <∞}. In particular, on {Xn ≥ x+ δ},

P(τn,x =∞ | Fn) ≥ fγ(x)− fγ(Xn)

fγ(x)

≥ 1− fγ(x+ δ)

fγ(x)
= 1−

(
1− δ

x+ δ

)γ
,

for x ≥ y2 ≥ 1. Hence we get the lower bound in (4.9).
For the upper bounds in the lemma, we have from (B) and the assumption (1.3) that there exists

C < ∞ such that 2xµ̄1(x) ≤ C for all x ≥ 0. Also, by (V) we know that there exist y1 ≥ 1 and
δ > 0 such that µ2(x) ≥ δ for x ≥ y1. Hence by (1.1),

2Xm E(∆m | Fm)− (γ + 1)E(∆2
m | Fm) ≤ C − (γ + 1)δ, on {Xm ≥ y1}.
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Thus by Lemma 4.2, we get, for y2 > y1 sufficiently large and all x ≥ y2,

E(fγ(Xm+1)− fγ(Xm) | Fm) ≥ −γ
2

(C + 1− (γ + 1)δ)Xγ−2
m , on {Xm ≥ x}.

Taking γ > 1 sufficiently large, we thus obtain, for any x ≥ y2,

E(fγ(Xm+1)− fγ(Xm) | Fm) ≥ 0, on {Xm ≥ x}. (4.15)

Fix n ∈ Z+ and y > 0, and set Ym = fγ(Xm). The stopping times ηn,x+y are a.s. finite, by
assumption (N). Then (Ym∧τn,x∧ηn,x+y ;m ≥ n) is a uniformly bounded submartingale, by (4.15),
with limit Yτn,x∧ηn,x+y , and, by optional stopping (see e.g. Theorem 2.3.7 of Menshikov et al., 2017),
E(Yτn,x∧ηn,x+y | Fn) ≥ Yn, a.s. In particular,

fγ(x+ C) ≤ fγ(Xn) ≤ E(Yτn,x∧ηn,x+y | Fn), on {Xn ≤ x+ C}.
Hence, on {Xn ≤ x+ C},

fγ(x+ C) ≤ E
(
fγ(Xτn,x)1{τn,x < ηn,x+y}

∣∣ Fn)+ E
(
fγ(Xηn,x+y)1{ηn,x+y < τn,x}

∣∣ Fn)
≤ fγ(x−B)P(τn,x < ηn,x+y | Fn) + fγ(x+ y)P(ηn,x+y < τn,x | Fn),

where we have used the fact that fγ is non-increasing and Xτn,x ≥ x−B on {τn,x <∞}, by (B). It
follows that, on {Xn ≤ x+ C},

P(ηn,x+y < τn,x | Fn) ≤ fγ(x−B)− fγ(x+ C)

fγ(x−B)− fγ(x+ y)
. (4.16)

Here, for x > 1 +B,

fγ(x−B)− fγ(x+ C)

fγ(x−B)− fγ(x+ y)
=

(x−B)−γ − (x+ C)−γ

(x−B)−γ − (x+ y)−γ

=
1−

(
1 + B+C

x−B

)−γ
1−

(
x−B
x+y

)γ
=

(
1−

(
1 +

B + C

x−B

)−γ)( x+ y

y +B

)(
1− θ
1− θγ

)
,

where θ = x−B
x+y . Since γ > 1, we have that for all θ ∈ (0, 1), 1−θ

1−θγ < 1. Hence, by (4.16),

P(ηn,x+y < τn,x | Fn) ≤

(
1−

(
1 +

B + C

x−B

)−γ)( x+ y

y +B

)
≤ k2(x+ y)

xy
,

for all x sufficiently large and all y > 0, which gives the upper bound in (4.10). Moreover, it follows
from (B) that ηn,x+y → ∞ a.s. as y → ∞, so τn,x = ∞ if and only if τn,x > ηn,x+y for all y ∈ N.
Hence, since the events {τn,x > ηn,x+y} are decreasing in y,

P(τn,x =∞ | Fn) = P
(⋂
y∈N
{ηn,x+y < τn,x}

∣∣∣ Fn) = lim
y→∞

P(ηn,x+y < τn,x | Fn).

Together with (4.10), this yields the upper bound in (4.9). �

Proof of Lemma 4.4: For part (a), the idea is similar to the proof of the upper bound in (4.9).
By (4.11) and (V), there exist y1 ∈ R+ and δ > 0 so that, on {Xm > y1},(

2Xm E(∆m | Fm)− E(∆2
m | Fm)

)
logXm − (ν + 1)E(∆2

m | Fm)

≤
(
2Xmµ̄1(Xm)− µ2(Xm)

)
logXm − (ν + 1)µ2(Xm)

≤ D − (ν + 1)δ.
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In particular, if we take ν > 0 large enough so that D− (ν+ 1)δ < 0, then we have from Lemma 4.2
that, for all x ≥ y2 with y2 sufficiently large,

E(gν(Xm+1)− gν(Xm) | Fm) ≥ 0, on {Xm > x}.

Fix n ∈ Z+ and y > 0, and set Ym = gν(Xm). Then (Ym∧τn,x∧ηn,x+y ;m ≥ n) is a uniformly
bounded submartingale, with limit Yτn,x∧ηn,x+y , and, by optional stopping E(Yτn,x∧ηn,x+y | Fn) ≥ Yn,
a.s. In particular, on {Xn ≤ x+ C},

gν(x+ C) ≤ gν(Xn) ≤ E(Yτn,x∧ηn,x+y | Fn)

≤ gν(x−B)P(τn,x < ηn,x+y | Fn) + gν(x+ y)P(τn,x > ηn,x+y | Fn).

It follows that, on {Xn ≤ x+ C},

P(ηn,x+y < τn,x | Fn) ≤ gν(x−B)− gν(x+ C)

gν(x−B)− gν(x+ y)
. (4.17)

Since ηn,x+y →∞ as y →∞, we get, on {Xn ≤ x+ C},

P(τn,x =∞ | Fn) = lim
y→∞

P(ηn,x+y < τn,x | Fn)

≤ gν(x−B)− gν(x+ C)

gν(x−B)
,

by (4.17). It follows that, on {Xn ≤ x+ C},

P(τn,x =∞ | Fn) ≤ 1− log−ν(x+ C)

log−ν(x−B)
≤ k3

x log x
,

for all x ≥ y2 and some positive constant k3. This proves part (a).
The proof of part (b) is similar to the proof of the lower bound in (4.9), using the function gν

rather than fγ , and we omit the details. �

5. Proof of Theorem 1.2: Infinitely many cutpoints

Throughout this section we suppose that the hypotheses of Theorem 1.2 are satisfied. Note
that (1.2) and the fact that µ̄2(x) ≥ 0 implies that lim infx→∞ µ1(x) ≥ 0, so that Lemma 4.1
applies.

Lemma 4.3 shows that the probability of having a cutpoint located around x is about 1/x. If
the (harder half of the) Borel–Cantelli lemma were applicable, this would suggest that there are
infinitely many cutpoints. However, these events are not independent across different values of x.
To use an appropriate version of the Borel–Cantelli lemma, we will bound the probability that
(roughly speaking) both x and y are cutpoints using (4.10). This yields a positive probability that
there are infinitely many cutpoints, and then an appeal to a zero–one law gives the result. This
is essentially the same approach as is taken by James and Peres (1996, §2) and Csáki et al. (2010,
§4); our approach makes it clear that the Markov property is not essential. We set this up more
precisely.

Let B <∞ and ε > 0 be the constants appearing in (B) and Lemma 4.1, respectively. Fix h > 0
and k ∈ N. Choose ` ∈ N such that

`ε > max(h,Bk). (5.1)
Let n ∈ Z+. Recall the definitions of τn,x and ηn,x from (4.8). For x ∈ R+ and i ∈ N, define the
events En,i,x := {Xηn,x+i −Xηn,x+i−1 > ε}, and set

An,x :=

(
2⋂̀
i=1

En,i,x

)
∩ {τηn,x+2`,x+`ε =∞}.
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In words, An,x occurs if, on its first passage after time n into [x,∞) the process takes in succession
2` positive steps of size at least ε and subsequently never returns to [0, x+ `ε]. If the process never
visits [x,∞) before time n and then Ax occurs, all visits to the interval Ix := [x, x+ `ε] are strong
cutpoints. More precisely, we have the following.

Lemma 5.1. Suppose that (B) holds. Then for all x ≥ X0 +Bn, An,x implies that Ix is an (h, k)
cut interval.

Proof : On the event An,x, we have that Xm < x for all m with n ≤ m < ηn,x, x ≤ Xηn,x <
Xηn,x+1 < · · · < Xηn,x+2`, Xηn,x+2` > x + 2`ε, and, for all m ≥ ηn,x + 2`, Xm > x + `ε. Thus
An,x ∩ {max0≤m≤nXm < x} implies that every point of X in the interval Ix is a strong cutpoint.
In particular, by (B), for fixed n ∈ Z+ and all x > X0 + Bn, An,x implies every point of X in the
interval Ix is a strong cutpoint.

Moreover, if x ≥ X0 + Bn, on An,x we have from (B) that, for 0 ≤ m ≤ k − 1, x < Xηn,x+m <
x+B(m+ 1) < x+Bk < x+ `ε, by (5.1). Thus the event An,x implies that the interval Ix contains
at least k values of X, and the interval length is `ε > h, by (5.1). This gives the result. �

Set q := max(1, 2`ε). Then for x, y ∈ Z+ with x < y, intervals Iqx and Iqy are disjoint. Thus
to show that there exist infinitely many (h, k) cut intervals, it suffices to show that An,qx occurs
for infinitely many x ∈ Z+ (we write this event as ‘An,qx i.o.’). First we show that this event has
strictly positive probability, uniformly over Fn for any n.

Lemma 5.2. Under the hypotheses of Theorem 1.2, for any ` ∈ N satisfying (5.1) and any q > 0,
there is a constant δ > 0 such that, for all n ∈ Z+, P(An,qx i.o. | Fn) ≥ δ, a.s.

To prove Lemma 5.2, we will apply the following conditional version of the Kochen–Stone
lemma (Kochen and Stone, 1964).

Lemma 5.3. On a probability space (Ω,F ,P), let A1, A2, . . . be events and G ⊆ F a σ-algebra. Let
a ∈ N be G-measurable. Suppose that

∑∞
m=1 P(Am | G) =∞, a.s. Then,

P(Am i.o. | G) ≥ lim sup
m→∞

∑m
i=a

∑m−i
j=1 P(Ai | G)P(Ai+j | G)∑m

i=a

∑m−i
j=1 P(Ai ∩Ai+j | G)

, a.s. (5.2)

Several of the standard proofs of the Kochen–Stone lemma (Yan, 2006; Chandra, 2012) admit
trivial modifications to yield the conditional result. One route, following Yan (2006) in the un-
conditional case, proceeds via a conditional version of the Paley–Zygmund inequality and then a
conditional version of the Chung–Erdős lemma. We omit the details.

Proof of Lemma 5.2. To apply Lemma 5.3, we will obtain a lower bound for P(An,x | Fn) and an
upper bound for P(An,x ∩ An,x+y | Fn). Fix n ∈ Z+. Suppose that x ≥ an := max(x1, X0 + 2Bn),
where x1 is the constant in Lemma 4.3. Define events

Dx = {τηn,x+2`,x+`ε =∞}, Ex =
2⋂̀
i=1

En,i,x, and Fx,y = {ηηn,x+2`,x+y < τηn,x+2`,x+`ε};

here we omit the n-dependence from the notation to make it less cumbersome, and since we keep n
fixed throughout the argument. Note that An,x = Dx∩Ex. Then, since ηn,x ≥ n and Ex ∈ Fηn,x+2`,

P(An,x | Fn) = E
[
1ExP(Dx | Fηn,x+2`)

∣∣ Fn].
Provided x > X0 + Bn, we have by (B) that max0≤m≤nXm < x and hence x ≤ Xηn,x ≤ x + B.
Thus on the event Ex we have that x + 2`ε ≤ Xηn,x+2` ≤ x + (2` + 1)B, so we can apply (4.9) in
Lemma 4.3 to obtain k1/x ≤ P(Dx | Fηn,x+2`) ≤ k2/x on Ex, where k1, k2 ∈ (0,∞) do not depend
on x > X0 +Bn or on n. Thus, for all x ≥ an,

k1

x
P(Ex | Fn) ≤ P(An,x | Fn) ≤ k2

x
.
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Here Lemma 4.1 and repeated conditioning shows that P(Ex | Fn) ≥ ε2`, on {Xn ≥ y0}. We
conclude that, for some constants c1, c2 ∈ (0,∞), all n ∈ Z+, and all x ≥ an,

c1

x
≤ P(An,x | Fn) ≤ c2

x
, on {Xn ≥ y0}. (5.3)

On the other hand, by (N), ηηn,x+2`,x+y <∞, a.s., so that, for x, y ∈ R+ and n ∈ Z+,

An,x ∩An,x+y = Ex ∩Dx ∩ Ex+y ∩Dx+y = Ex ∩ Fx,y ∩ Ex+y ∩Dx+y,

up to sets of probability zero. Suppose that x ≥ an and y ≥ b := d(2` + 1)Be. Then (B) implies
that ηn,x+y ≥ ηn,x + 2`, and so also ηηn,x+2`,x+y = ηn,x+y, since the walk cannot reach [x + y,∞)
until after time ηn,x + 2` > n. In particular, Fx,y ∈ Fηn,x+y , and so

P(An,x ∩An,x+y | Fn)

= E
[
E
[
1Ex E

[
1Fx,y E

[
1Ex+yP(Dx+y | Fηn,x+y+2`)

∣∣ Fηn,x+y] ∣∣ Fηn,x+2`

] ∣∣ Fηn,x] ∣∣∣ Fn].
It follows from Lemma 4.3 that, on the event Ex+y, P(Dx+y | Fηn,x+y+2`) ≤ k2

x+y . Thus

P(An,x ∩An,x+y | Fn) ≤ k2

x+ y
E
[
E
[
1ExP(Fx,y | Fηn,x+2`)

∣∣ Fηn,x] ∣∣∣ Fn].
Similarly, on the event Ex we have from Lemma 4.3 that P(Fx,y | Fηn,x+2`) ≤ k2(x+y)

xy , so

P(An,x ∩An,x+y | Fn) ≤ c3

xy
, (5.4)

for some c3 <∞, all n ∈ Z+, and all x, y with x ≥ an and y ≥ b.
Consider the numerator in Lemma 5.3. From the lower bound in (5.3) we have that for all n ∈ Z+,

all x ≥ an, and all y ≥ 1,

P(An,qx | Fn)P(An,q(x+y) | Fn) ≥ c4

x(x+ y)
, on {Xn ≥ y0},

where c4 > 0 depends on q. It follows that, on {Xn ≥ y0},

m∑
x=an

m−x∑
y=1

P(An,qx | Fn)P(An,q(x+y) | Fn) ≥ c4

m∑
x=an

m−x∑
y=1

1

x(x+ y)

= c4

m∑
w=an+1

w−1∑
x=an

1

xw

≥ c4

m∑
w=an+1

logw

w
− Cn

m∑
w=1

1

w
,

for some F0-measurable Cn <∞ depending on an but not on m. Thus we get

m∑
x=an

m−x∑
y=1

P(An,qx | Fn)P(An,q(x+y) | Fn) ≥ c5 log2m− Cn logm, (5.5)

for all m sufficiently large, where c5 > 0 depends neither on n nor m, and Cn does not depend on
m. We turn to the denominator in Lemma 5.3. From (5.4) and the upper bound in (5.3) we have
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that, for all n ∈ Z+,

m∑
x=an

m−x∑
y=1

P(An,qx ∩An,q(x+y) | Fn) ≤
m∑

x=an

b∑
y=1

P(An,qx | Fn)

+

m∑
x=an

m−x∑
y=b

P(An,qx ∩An,q(x+y) | Fn)

≤ c6

m∑
x=1

1

x
+ c6

m∑
x=1

m∑
y=1

1

xy
,

where c6 <∞ depends on b and q. It follows that, for all m ≥ 2, say,

m∑
x=an

m−x∑
y=1

P(An,x ∩An,x+y | Fn) ≤ c7 log2m, (5.6)

for c7 <∞ depending neither on n nor m.
To finish the proof, we apply Lemma 5.3 with the bounds (5.5) and (5.6) to get

P(An,qx i.o. | Fn) ≥ lim sup
m→∞

c5 log2m− Cn logm

c7 log2m
=
c5

c7
, a.s.,

where c5/c7 is non-random, positive, and does not depend on n. �

Proof of Theorem 1.2. The proof is finished by an argument similar to James and Peres (1996,
p. 672). Let F∞ = σ(∪n≥0Fn). Let I∞h,k ∈ F∞ denote the event that there are infinitely many
disjoint (h, k) cut intervals. As argued earlier (see Lemma 5.1 and the subsequent paragraph), if
An,qx occurs for infinitely many x, then I∞h,k occurs. Thus by Lemma 5.2, for all n ∈ Z+,

P(I∞h,k | Fn) ≥ P(An,qx i.o. | Fn) ≥ δ, a.s.

Then, by Lévy’s zero–one law (see e.g. Theorem 5.5.8 of Durrett, 2010), we have

0 < δ ≤ lim
n→∞

P(I∞h,k | Fn) = P(I∞h,k | F∞) = 1I∞h,k
, a.s.

Hence the indicator must be equal to 1, a.s., so P(I∞h,k) = 1.
Finally, suppose that EX0 < ∞. By Lemma 5.1, the expected number of disjoint (h, k) cut

intervals in [0, x] is (taking n = 0 in the definition of An,qy) at least

E
∑

y∈N:X0<qy<x

1A0,qy ≥ E
∑

y∈N:0<qy<x

1A0,qy − EX0, (5.7)

which, by (5.3), is at least c log x for some c > 0 and all x sufficiently large. �

Proof of Proposition 1.4. Similarly to the corresponding part of the proof of Theorem 1.2, the ex-
pected number of disjoint (h, k) cut intervals in [0, x] is bounded below by (5.7), and a similar
argument to that for the lower bound in (5.3), but now using (4.13), shows

P(An,x) ≥ c1

x log x
,

for some c1 > 0 and all x sufficiently large. �
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6. Proof of Theorem 1.3: Finitely many cutpoints

To show that there are only finitely many cutpoints, one might initially seek to apply the ‘easy’
half of the Borel–Cantelli lemma. However, the probability estimates of Lemma 4.4 give an upper
bound on the probability of finding a cutpoint around x of order 1/(x log x), which is not summable.
So some additional work is needed. The basic idea that we adapt goes back to James et al. (2008,
§3), and was carried forward by Csáki et al. (2010, §3). We explain it now.

Let x ∈ N. Define intervals Ix = [x2 , 2x] and Jx = [x, 2x]. Let Ex denote the event that there is
at least one cutpoint in Jx:

Ex := {#(C ∩ Jx) ≥ 1}.
Recall the definition of the set S of separating points from Definition 3.1, and set

Mx := |S ∩ Ix|, and Fx := {S ∩ [x− 1, x] = ∅}. (6.1)

We will make use of the simple inequality

E(Mx | F0) ≥ E(Mx1Ex | F0), (6.2)

by obtaining an upper bound for the expectation of Mx and a lower bound for Mx on the event
Ex. For the latter, the idea (following James et al., 2008) is that if there is one cutpoint (at r ∈ Jx,
say) then there tend to be many more, since for y < r to be a cutpoint one needs to visit r before
returning to y after the first visit to y. However, some care is needed in this argument, and it is here
that we need to use the Markov property to ensure that the future and the past are independent.

We will need the following estimate on the probability of first entering [x + y,∞) at the point
x+ y ∈ X , before returning to [0, x], starting from not too close to x.

Lemma 6.1. Suppose that (M), (B), and (V) hold. Suppose also that there exists x0 ∈ R+ such
that µ1(x) ≥ 0 for all x ≥ x0. Let δ > 0. Then there exist c > 0 and y0 ∈ R+ such that, for all x, y
with x ∈ X , x ≥ x0, x+ y ∈ X , and y ≥ y0,

P(ηn,x+y < τn,x, Xηn,x+y = x+ y | Fn) ≥ c

y
, on {x+ δ < Xn ≤ x+ y}.

Proof : Take x ≥ x0, fix n ∈ Z+, and let z = y −B, so z > 0 whenever y ≥ y0 > B. Set

Ym = Xm∧τn,x∧ηn,x+z1{x ≤ Xn ≤ x+ y}, for m ≥ n.
Then, since µ1(u) ≥ 0 for all u ≥ x, (Ym;m ≥ n) is a non-negative submartingale, which, by (B),
is bounded above by x + z + B, with limm→∞ Ym = Xτn,x∧ηn,x+z on {x ≤ Xn ≤ x + y}. So, by
optional stopping, on {x ≤ Xn ≤ x+ y},

Xn ≤ E(Xτn,x∧ηn,x+z | Fn) ≤ xP(ηn,x+z > τn,x | Fn) + (x+ z +B)P(ηn,x+z < τn,x | Fn).

Thus
P(ηn,x+z < τn,x | Fn) ≥ δ

z +B
, on {x+ δ < Xn ≤ x+ y}.

By assumption (1.5), #(X ∩ [a, a+B]) ≤ K <∞ for all a ∈ R+ and some constant K. Thus there
exists an Fn-measurable w ∈ X with x+ z ≤ w ≤ x+ z +B for which

P(ηn,x+z < τn,x, Xηn,x+z = w | Fn) ≥ δ

K(z +B)
, on {x+ δ < Xn ≤ x+ y}. (6.3)

There are at most K points of X in the interval [w, x+ y], including w and x+ y; list them in order
as w = x0 < x1 < · · · < xk = x+ y, where k ≤ K − 1. Define uj =

∑j−1
i=0 m(xi) where m(w) ≤ m0

is as in (M). Then define the event

Fn,x,y =

 k⋂
j=1

{
Xηn,x+z+uj = xj

} ∩{ max
0≤`<uk

Xηn,x+z+` < x+ y

}
.
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By application of (1.6), we see that, on {Xηn,x+z = w},

P(Fn,x,y | Fηn,x+z) ≥ δK0 , (6.4)

uniformly in w, for y ≥ y0 sufficiently large. If Fn,x,y occurs, then after time ηn,x+z, the process (i)
visits x + y without entry into (x + y,∞), and (ii) by (B), does not return to [0, x + z − BKm0]
before it reaches x+ y. In particular, taking z ≥ BKm0 and combining (6.3) and (6.4), we get

P(ηn,x+y < τn,x, Xηn,x+y = x+ y | Fn) ≥ δK0
δ

Ky
, on {x+ δ < Xn ≤ x+ y},

which completes the proof. �

Proof of Theorem 1.3. We first get an upper bound for the left-hand side of (6.2). Recall that Fx
as defined at (6.1) is the event that [x−1, x]∩S = ∅. For x ∈ R+, let ηx := min{n ∈ Z+ : Xn ≥ x}.
If τηx,x−1 <∞, then X returns to [0, x− 1] after entering [x,∞), which implies Fx. Since, by (B),
x ≤ Xηx ≤ x+B for all x > X0, we may apply Lemma 4.4(a) at the stopping time ηn,x to obtain

P
(
F c
x

∣∣ Fηn,x) ≤ P
(
τηn,x,x−1 =∞

∣∣ Fηn,x) ≤ C

x log x
,

for some constant C <∞ and all x > X0. Thus there exists a constant C <∞ for which

E(Mx | F0) ≤
∑

y∈N:[y−1,y]∩Ix 6=∅

P(F c
y | F0) ≤ C

log x
, (6.5)

for all x > 2X0.
Next we establish a lower bound for the right-hand side of (6.2). If Ex occurs, set Rx :=

sup(C ∩ Jx). Since C ⊆ X is locally finite, the set C ∩ Jx is finite and so Rx ∈ C is the rightmost
cutpoint in Jx. If Ex does not occur, set Rx =∞. Then we can write

E(Mx1Ex) =
∑

r∈X∩Jx

E(Mx1{Rx = r}).

If Xηr > r and Rx = r, then r ∈ C and so Xn = r for some n > ηr. But this contradicts the fact
that r ∈ C. Thus we have established that

{Rx = r} ⊆ {Xηr = r}, (6.6)

up to events of probability zero.
Let ε > 0 be the constant in Lemma 4.1, and choose ` ∈ N with `ε > 1. For r ∈ X and y > 0

with y + 2`B < r, let Fy,r denote the event

Fy,r =

 ηy+`⋂
m=ηy

{∆m > ε}

 ∩ {ηηy+`+1,r < τηy+`+1,y+1

}
.

If Fy,r occurs, then on the first visit to [y,∞), the process proceeds via positive steps to [y + 1,∞)
and then visits [r,∞) before returning to [0, y + 1]. In particular, Fy,r ∩ {Rx = r} implies that
(y, y + 1) ⊆ S. Let Yx,r = {y1, . . . , yk} be a subset of X contained in Ix ∩ [0, r − 2`B] such that
y1 < · · · < yk satisfy y1 <

x
2 + B, yk > r − 2`B − B, and 1 < yi − yi−1 ≤ 2 + B for all 2 ≤ i ≤ k.

Existence of suitable yi is assured by (B) and (M): y1 can be the first point of X to the right of
x/2, and given yi, i ≥ 1, we can take for yi+1 the first point of X to the right of yi at distance
greater that 1. Note that k is bounded below by a constant times x for all x sufficiently large. Then
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intervals [y, y + 1] are disjoint for different y ∈ Yx,r, and so

E(Mx1{Rx = r} | F0) ≥ E
[ ∑
y∈Yx,r, y>X0

E(1Fy,r1{Rx = r} | Fηr)
∣∣∣∣ F0

]

≥ E
[ ∑
y∈Yx,r, y>X0

1Fy,rP(Rx = r | Fηr)
∣∣∣∣ F0

]
, (6.7)

since (B) means that, provided y > X0 and y+2`B < r, Xηy ≤ y+B and ηr = ηηy+`+1,r ≥ ηy+`+1,
so that Fy,r ∈ Fηr . Now the strong Markov property implies that P(Rx = r | Fηr) = h(Xηr), a.s.,
for some measurable function h with P(Rx = r | Xηr = z) = h(z). But (6.6) shows that h(z) = 0
unless z = r, so P(Rx = r | Fηr) = h(r)1{Xηr = r}. Thus from (6.7) we get

E(Mx1{Rx = r} | F0) ≥ h(r)
∑

y∈Yx,r, y>X0

P(Fy,r ∩ {Xηr = r} | F0)

≥ ch(r)
∑

y∈Yx,r, y>X0

1

r − y
,

by Lemmas 4.1 and 6.1, where c > 0 is a constant, and x ≥ x0. If x > 2X0, then set Yx,r, taken
in reverse order, consists of order x points all of comparable spacing started a constant distance
from r, so we get E(Mx1{Rx = r} | F0) ≥ ch(r) log x for all x > max(x0, 2X0), where c > 0 is again
a positive constant. It follows that

E(Mx1Ex | F0) ≥ c
∑

r∈X∩Jx

h(r) log x, for all x > max(x0, 2X0).

On the other hand, by a similar argument,

P(Ex | F0) =
∑

r∈X∩Jx

P(Rx = r | F0) ≤
∑

r∈X∩Jx

h(r),

so that
E(Mx1Ex | F0) ≥ cP(Ex | F0) log x, for all x > max(x0, 2X0). (6.8)

Combining (6.5) and (6.8), we obtain from (6.2) that

P(Ex | F0) ≤ C

log2 x
,

for some C < ∞ and all x > max(x0, 2X0). Applied along the sequence x = 2k, k ∈ N, the
(conditional) Borel–Cantelli lemma then shows that E2k occurs for only finitely many k, a.s. The
sets J2k , k ∈ N, cover [1,∞) and thus #C <∞, a.s. �
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