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Abstract—Reconfigurable intelligent surfaces (RISs) have at-
tracted extensive attention in millimeter wave (mmWave) systems
because of the capability of configuring the wireless propagation
environment. However, due to the existence of a RIS between the
transmitter and receiver, a large number of channel coefficients
need to be estimated, resulting in more pilot overhead. In this
paper, we propose a joint sparse and low-rank based two-stage
channel estimation scheme for RIS-assisted mmWave systems.
Specifically, we first establish a low-rank approximation model
against the noisy channel, fitting in with the precondition of
the compressed sensing theory for perfect channel recovery.
To overcome the difficulty of solving the low-rank problem,
we propose a trace operator to replace the traditional nuclear
norm operator, which can better approximate the rank of a
matrix. Furthermore, by utilizing the sparse characteristics of
the mmWave channel, sparse recovery is carried out to estimate
RIS-assisted channels in the second stage. Simulation results show
that the proposed scheme achieves significant performance gain
in terms of estimation accuracy compared to the benchmark
schemes.

Index Terms—Channel estimation, reconfigurable intelligent
surface, mmWave, compressed sensing, sparse and low-rank.

I. INTRODUCTION

Millimeter wave (mmWave) is regarded as a potential tech-
nology for sixth-generation (6G) wireless communication to
deal with increasingly scarce spectrum resources [1]. However,
due to the high operating frequency in the range of 30∼300
GHz, mmWave has the hidden danger of severe path loss and
blockages [2]. Fortunately, a reconfigurable intelligent surface
(RIS), with the ability to flexibly configure the wireless trans-
mission environment, has emerged as a promising solution to
cope with blockages in mmWave systems. RIS is a planar array
composed of numerous passive reflecting elements, which can
intelligently reflect the incident signal to the desired direction
with an adjustable phase shift [3]. Nevertheless, the promising
benefits brought by RIS critically depend on the acquisition
of channel state information (CSI), which is a practical chal-
lenge due to the following two main reasons [4]. Firstly, the
reflecting elements are generally passive, and there is a lack of
signal processing capabilities, making traditional transmission
training sequence methods inapplicable. Secondly, due to the
vast number of reflecting elements deployed on a RIS, it is
necessary to estimate the large-scale channel matrices, leading
to a more complicated estimation process.

To overcome the above challenges in RIS-assisted systems,
much research has attempted to design excellent estimation
algorithms via various signal processing techniques, such as
least squares (LS), minimum mean squared error (MMSE),
deep learning, and matrix decomposition [5]. Especially, for
the RIS-assisted systems operating at the mmWave frequency
band, severe path loss and blockages result in a limited
number of paths, making the channel exhibit sparse charac-
teristics. Compressed sensing, with the ability to sense the
sparsity of channels, has emerged as a potent tool for RIS
channel estimation. By finding the sparse representation of
cascaded channels, the channel estimation problem can be
transformed into a sparse signal recovery problem and solved
effectively by compressed sensing methods [6]. Inspired by
this, our previous work has developed a hybrid multi-objective
evolutionary paradigm and achieved high-resolution channel
estimation effectively [3]. However, several urban environment
measurement results reveal that the mmWave channel not only
has sparse scattering characteristics but also shows angular
spreads of path clusters over the angle-of-departure (AoD) and
the angle-of-arrival (AoA) domains [7]. Further, the mmWave
channel was proved to exhibit joint sparse and low-rank
characteristics in the presence of angular spreads, which can
be exploited to improve estimation performance [8].

In this paper, we propose a RIS-assisted mmWave massive
multiple-input multiple-output (MIMO) framework that com-
bines sparsity and low-rank minimization for channel estima-
tion by leveraging the spatial sparse structure. Specifically,
we first set up a low-rank approximation model to reconstruct
the noisy observed signal so as to satisfy the precondition
of compressed sensing theory [8]. Different from the existing
low-rank optimization schemes, we propose a trace operator
as the cost function to replace the traditional nuclear norm
operator, which can better approximate the rank of a matrix.
Due to the powerful recognition of the trace norm and robust
sparse representation abilities of the L1 norm, a joint trace
and L1 norm minimization channel estimation scheme is
formulated to achieve a performance improvement. Simulation
results are performed to verify the efficiency and robustness of
the proposed schemes. Specifically, the proposed joint channel
estimator outperforms the conventional schemes in terms of
the mean square error (MSE) and success ratio.



Fig. 1. The RIS-assisted uplink mmWave MIMO system.

II. SYSTEM MODEL

Consider a RIS-assisted uplink mmWave MIMO system,
as indicated in Fig. 1, which consists of one multi-antenna
user, one multi-antenna base station (BS), and one RIS.
Suppose there are NBS and NUS antennas at the BS and
user, respectively, and the RIS is equipped with M × M
reflecting elements. At a certain moment t, the transmitter
sends a symbol s(t) with a beamforming vector f(t) ∈ CNUS ,
which reaches the receiver end through the direct channel of
user-BS and the cascaded channel of user-RIS-BS. Employing
a receive combining vector z(t) ∈ CNBS , the signals from all
antennas are combined, and the final signal y(t) can be written
as
y(t)=zH(t)(Hd+GΘHr)f(t)s(t)+ω(t),∀t = 1,. . ., T ,

(1)
where Hd ∈ CNBS×NUS , Hr ∈ CM×NUS , and G ∈
CNBS×M represent user-BS, user-RIS, and RIS-BS channels,
respectively. Θ = diag(β1e

jθ1 , · · · ,βNejθN ) is the reflection
coefficient matrix of the RIS, and ω(t) ∼ CN

(
0, σ2

n

)
denotes

the additive white Gaussian noise. In the training stage, the
symbol s(t) is generally set as 1.

In a conventional RIS-free mmWave system, since the
receiver does not have access to a clean version of the channel
matrix H , we can only get the noisy version with zHHf .
This issue, known as channel subspace sampling restriction,
complicates channel estimation [9]. In addition, the introduc-
tion of RIS results in more complex channels and larger-
scale channel matrices, making channel estimation even more
complicated. However, the emergence of compressed sensing
technology provides us with an effective solution. By utilizing
the sparsity of mmWave channels, the channel estimation
problem can be expressed as a sparse recovery problem, which
can be solved easily. Furthermore, the mmWave channel also
takes the form of angular spread in the AoA and AoD domains.

The angular spread is caused by scattering clusters, presenting
a structured sparsity pattern with each cluster possibly con-
tributing multiple paths. Therefore, we will derive the channel
model with angular spreads and discuss the joint sparse and
low-rank characteristics.

Supposing the angular spreads in the AoA domain only
come from one common AoD, we start with this straightfor-
ward scenario to illustrate the low-rank characteristics, and the
channel model from user to BS can express as

Hd =

(
I∑
i=1

αiadA(θ − νi)

)
aHdD(φ), (2)

where I is the number of paths, αi denotes the gain of the
i-th path, νi denotes the offset of the i-th path compared to
the mean AoA θ, and φ is the AoD. In addition, adA ∈ CNA
and adD ∈ CND are array response vectors of the receiver
and the transmitter, which can be expressed as

adA(θ)=
1√
NA

[1,ej
2π
λ d sin(θ),· · ·, ej(NA−1) 2π

λ d sin(θ)]T, (3)

adD(φ)=
1√
ND

[1,ej
2π
λ d sin(φ),· · ·, ej(ND−1) 2π

λ d sin(φ)]T, (4)

where λ denotes the wavelength of the signal, and d denotes
the antenna spacing equal to half the wavelength. NA and ND
are the number of antennas corresponding to AoA and AoD,
respectively. Obviously, under this circumstance, the rank of
matrix Hd is only one.

Extending from this simple case, we further analyze the
channel model when two closely spaced AoDs generate angu-
lar spreads in the AoA domain,

Hd =

(
I∑
i=1

αiadA(θ − νi)
)
aHdD(φ− ϕ1)

+

(
I∑
i=1

α′iadA(θ − νi)
)
aHdD(φ− ϕ2).

(5)

Due to the assumption that the two AoDs are close to each
other, the corresponding AoA has a similar power angle mode,

namely,
I∑
i=1

αiadA(θ − νi)=
I∑
i=1

α′iadA(θ − νi). Then, it can

be further simplified and expressed as

Hd =

(
I∑
i=1

αiadA(θ − νi)

) 2∑
j=1

aHdD(φ− ϕj)

 . (6)

Hence, we can continue to expand the number of AoDs and
clusters to characterize the universally applicable geometric
channel model as

Hd=

L∑
l=1

(
I∑
i=1

αl,iadA(θl − νl,i)

) J∑
j=1

βl,ja
H
dD(φl − ϕl,j)

,
(7)

where L is the number of clusters, I is the number of paths,
and J can be regarded as the number of AoDs in the clusters.
In the l-th cluster, αl,i and βl,j are the path gains, θl and φl are
the average AoA/AoD, and νl,i and ϕl,j are the corresponding
offsets.



To express the channel estimation as a form of sparse
recovery, the geometric channel model needs to be transformed
into a more compact beamspace MIMO form,

Hd =
L∑
l=1

AdAαlβ
T
l A

H
dD

= AdA(
L∑
l=1

αlβ
T
l )AH

dD

= AdAHdvA
H
dD,

(8)

where αl and βl are virtual representations over the AoA
and AoD domains, AdA

∆
= [adA(θ1),· · ·,adA(θN1

)] with
(N1 ≥ NA) and AdD

∆
= [adD(φ1),· · ·,adD(φN2

)] with
(N2 ≥ ND) are overcomplete matrices corresponding to the
steering vectors of pre-discretized AoA and AoD, respectively,
and Hdv is defined as the virtual beamspace channel of Hd.

Since only a tiny piece of the whole angular domain is
occupied by the angular spread, both αl and βl are sparse
vectors with only a few non-zero elements centered on the
average AoA and AoD. Thus, the virtual beamspace channel
Hdv is composed of L sparse matrices. If we assume that αl
and βl contain at most Q non-zero elements, the maximum
numbers of non-zero columns and non-zero rows in Hdv are
both QL, and we have QL � min{N1, N2}. That is, Hdv

has sparse characteristics, and since rank(Hdv) = L, it is
clear that Hdv has low-rank characteristics. Therefore, the
virtual beamspace channel takes on joint sparse and low-rank
characteristics. Similarly, the BS-RIS and RIS-user channels
also have low-rank virtual beamspace channels. Moreover, in
RIS-assisted massive MIMO systems, the number of antennas
at the BS and the number of reflecting elements at the RIS
are typically larger than the number of antennas at the user.
As a result, GΘHr is a low-rank matrix, which has been
extensively investigated in mmWave systems.

III. TWO-STAGE CHANNEL ESTIMATION SCHEME

This section will employ the joint sparse and low-rank
characteristics for channel estimation in RIS-assisted mmWave
systems. Especially, in addition to the sparse signal recovery,
which has been extensively studied, we have previously set
up a trace-based low-rank matrix approximation against the
noisy channel. This can better meet the precondition of the
compressed sensing theory and further improve the channel
estimation accuracy.

A. Stage 1: Low-Rank Matrix Approximation

To reconstruct the noisy observed value, we first carry out
the process of low-rank matrix approximation. Aiming at the
deviation caused by the traditional nuclear norm minimization
method, we propose a trace operator that can approximate the
rank of a matrix well.

To begin, we go back to our received signal model (1) and
recast it by the low-rank sampling process. Suppose F and Z
are preprepared randomly for beamforming/receiving vectors
f(t) and z(t), where the cardinalities of the two sets are |Z| =
NZ and |F| = NF . Assume that all the vectors in Z form a
matrix Z ∈ CNBS×NZ and that all the vectors in F form a

matrix F ∈ CNMS×NF . The low-rank matrix sampling model
of the received signal can therefore be written as [8]

Y ij=(ZH(Hd+GΘHr)F+Ω)ij
= (ZHHdF )ij+(ZHGΘHrF )ij+Ωij,(i, j)∈Υ,

(9)

where Y ∆
= ZH(Hd+GΘHr)F is a low-rank matrix with

the rank of L, Y ij represents the ij-th element of Y . Ω is the
noise. Υ represents the observed set, and we have |Υ| =T .

Then, based on the low-rank matrix sampling model above,
the received signal Ŷ can be recovered from the noisy
observed value Y . Assume that Z and F are square matrices
with full rank, i.e. NZ = NBS and NF = NUS . We can find
a low-rank matrix to approximate the original signal from the
following model,

min
Ŷ

rank(Ŷ )

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1,

(10)

where rank(·) is the operator to calculate the rank of a
matrix, ‖·‖F represents the Frobenius norm, and ε1 is the
precise threshold. Since the above original problem is not easy
to solve directly, many schemes focus on the nuclear norm
minimization to obtain the approximation solution.

However, the solution obtained by minimizing the nuclear
norm is usually biased and thus affects channel estimation
accuracy. In order to overcome the deviation, we propose an
improved rank operator tr(Pµ(Λ)) based on the projection
matrix as

Pµ(Λ)=Λ(ΛHΛ + µI)
−1

ΛH , µ ≥ 0, (11)

when the rank of Λ is full, we have µ = 0; and when the
rank is not full, tr(Pµ(Λ)) can well approximate rank(Λ), as
depicted in the following theorem.

Theorem 1: For a matrix Λ ∈ RM×N , when the parameter
satisfies µ > 0, there exists

lim
µ→0

tr(Pµ(Λ)) = rank(Λ), (12)

where tr(·) denotes the trace operator.
Proof : Please refer to the appendix for specific proof.
Based on Theorem 1, the original problem could be approx-

imated by the improved rank operator,
min
Ŷ

tr(Pµ(Ŷ ))

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1.

(13)

The theorem indicates that when the coefficient µ approaches
0, the improved rank operator tr(Pµ(Ŷ )) can approach
rank(Ŷ ). Therefore, we set the process of loop iteration to
realize the requirement that the coefficient approaches 0.

To be specific, to approach the rank operator as smoothly
as possible, we establish an iterative approximation using the
trace-based operator tr(Pµ(Ŷ )) as the cost of minimizing each
iteration. The minimum value of each iteration is

min
Ŷ

{
1

2

∥∥∥Y − Ŷ ∥∥∥2

F
+ ηtr

(
Pµ
(
Ŷ
))}

. (14)

Based on the SVD of Y , we have Y = UΣY V
H and

define Φ = UH Ŷ V . For unitary matrices V and U , there



exists tr(Pµ(Ŷ )) = tr (Pµ (Φ)). Due to the Frobenius norm’s
unitary invariance, we can derive

g
(
Ŷ
)

= 1
2

∥∥∥Y − Ŷ ∥∥∥2

F
+ηtr

(
Pµ
(
Ŷ
))

= 1
2

∥∥U (ΣY −Φ)V H
∥∥2

F
+ηtr

(
Pµ
(
Ŷ
))

= 1
2 ‖ΣY −Φ‖2F +ηtr (Pµ (Φ)).

(15)

Substituting (15), the problem (14) may be recast as

min
Φ

{
1

2
‖ΣY −Φ‖2F + ηtr (Pµ (Φ))

}
. (16)

For the first portion of the problem (16), the following exists

‖ΣY −Φ‖2F = ‖ΣY ‖2F + ‖Φ‖2F−2tr
(
ΣY ΦH)

(a)

≥ ‖ΣY ‖2F + ‖ΣΦ‖2F−2tr
(
ΣY ΣΦ

H
)

= ‖ΣY −ΣΦ‖2F ,

(17)

where operation (a) is based on the von Neumann trace in-
equality [10], and ΣΦ denotes the diagonal matrix of singular
values derived by SVD of Φ.

We can deduce this further and get the following

‖ΣY −Φ‖2F +ηtr (Pµ (Φ))≥‖ΣY −ΣΦ‖2F+ηtr (Pµ (Φ)) ,
(18)

where equality holds if and only if Φ = ΣΦ. Based on (18),
problem (16) is equal to the following

min
ΣΦ

{
1

2
‖ΣY −ΣΦ‖2F + ηtr (Pµ (Φ))

}
. (19)

Further, the Frobenius norm and Appendix A allow us to
write the problem (19) as follows

min
ΣΦ

1
2 ‖ΣY −ΣΦ‖2F +ηtr (Pµ (Φ))

= min
ΣΦ

1
2 ‖ΣY −ΣΦ‖2F +η

L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

= min
ΣΦ

1
2 ‖ΣY ‖2F + 1

2 ‖ΣΦ‖2F−〈ΣY ,ΣΦ〉F +η
L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

= min
σ1(Φ),··· ,σL(Φ)

1
2

L∑
i=1

(σi (ΣY )−σi (Φ))
2
+η

L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

.

(20)
This implies that we can disentangle the minimizations with

regard to σ1 (Φ) , · · · , σL (Φ) as

min
σi(Φ)

{
f (σi (Φ))=

1

2
(σi (ΣY )−σi (Φ))

2
+η

σ2
i (Φ)

σ2
i (Φ) + µ

}
.

(21)
This is a scalar minimization problem, which is easy to solve.

As a result, we can write the answer to (13) as

Ŷ = Udiag(σ1 (Φ) , · · · , σL (Φ))V H . (22)

Inspired by [11], the initial value of the first loop is set to
µ=4 min

i
|σi(Y )|. Next, we use µ(k) = cµ(k−1)(0.5 <µ< 1)

to approach 0 iteratively, where c is empirically selected to
fall between 0.5 and 1.

The improved trace operator-based low-rank approximation
algorithm is summarized in Algorithm 1.

Algorithm 1 Improved Trace Operator-Based Low-Rank Ap-
proximation Scheme.

1: Input: The observed noisy signal Y Υ.
2: Initialization: Ŷ

(0)
= Y Υ, c = 0.5, ρ, k = 1 and K;

3: While k < K do
4: Iterative regularization:YΥ

(k) = Ŷ
(k−1)

+ρ(Y Υ−Ŷ
(k−1)

);
5: if k = 1
6: µ = 4 min

i
|σi(Y Υ)|;

7: else
8: Update the µ(k) = cµ(k−1);
9: end if

10: Update the Ŷ
(k)

via (13);
11: k = k + 1;
12: end while
13: Output: The reconstructed signal Ŷ .

B. Stage 2: Sparse Signal Recovery
After completing the reconstruction of Ŷ , the second stage

estimates the channel through sparse signal recovery. Specifi-
cally, based on (8), the beamspace model of user-BS, user-RIS,
and RIS-BS channels can be written as

Hd = AdAHdvA
H
dD,

Hr = ArAHrvA
H
rD,

G = AGAHGvA
H
GD,

(23)

where Hdv , Hrv and HGv are virtual beamspace vectors,
AdA, ArA, AGA and AH

dD, AH
rD, AH

GD are composed of the
array response vectors corresponding to the AoA and AoD of
each channel respectively.

Putting the beamspace model (23) into the sampling model
(9), we have

Ŷ = ZH(AdRHdvA
H
dD)F

+ZH(AGRHGvA
H
GD)Θ(ArRHrvA

H
rD)F + Ω

= (ZHAdR)Hdv(A
H
dDF )

+ (ZHAGR)(HGvA
H
GDΘArRHrv)(A

H
rDF ) + Ω

= CdHdvDd

+Cc(HGvA
H
GDΘArRHrv)Dc + Ω,

(24)

vec(Ŷ ) = vec(CdHdvDd) + vec(Cc(HGvA
H
GDΘArAHrv)Dc) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + (DT

c ⊗Cc)vec(HGvA
H
GDΘArAHrv) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + (DT

c ⊗Cc)(H
T
rv ⊗HGv)vec(AH

GDΘArA) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + ((vec(AH

GDΘArA))
T ⊗ (DT

c ⊗Cc))vec(HT
rv ⊗HGv) + vec(Ω)

=
[

(DT
d ⊗Cd) (vec(AH

GDΘArA))
T ⊗ (DT

c ⊗Cc)

] [ vec(Hdv)

vec(HT
rv ⊗HGv)

]
+ vec(Ω)

= ψh+ vec(Ω),

(26)



with
Cd = ZHAdR,Dd = AH

dDF ,

Cc = ZHAGR,Dc = AH
rDF .

(25)

Then, employing the Kronecker product operation and ma-
trix vectorization operator to further reduce the complexity,
we obtain (26) shown at the bottom of the last page, with

ψ=
[
(DT

d ⊗Cd) (vec(AH
GDΘArA))T⊗(DT

c ⊗Cc)
]
, (27)

h =

[
vec(Hdv)

vec(HT
rv ⊗HGv)

]
, (28)

where ⊗ is the Kronecker product operation, and I is the
identity matrix. Here, the channel estimation is converted into
a sparse signal recovery problem,

min
h
‖h‖1

s.t.
∥∥∥vec(Ŷ )−ψh

∥∥∥
2
≤ ε2,

(29)

where ε2 is the precise threshold.
The conventional compressed sensing-based schemes em-

ploy the observed noisy signal Y to estimate channels, which
affects the estimation accuracy. However, the proposed scheme
reconstructs Ŷ before the sparse recovery to overcome this
problem. The summarized two-stage scheme is shown in
Algorithm 2.

Algorithm 2 Compressed Sensing-Based Two-Stage Channel
Estimation Scheme.
Require: The observed noisy signal Y Υ and the coefficient

matrices ψ.
1: Recover Ŷ based on the Algorithm 1 by solving

min
Ŷ

rank(Ŷ )

s.t.
∥∥∥Y Υ − Ŷ

∥∥∥2

F
≤ ε1,

2: Estimate ĥ via

min
h
‖h‖1

s.t.
∥∥∥vec(Ŷ )−ψh

∥∥∥
2
≤ ε2.

IV. SIMULATION RESULT

In this section, we perform simulations to evaluate the
proposed two-stage channel estimation scheme. Considering
a RIS-assisted uplink mmWave MIMO system (see Fig. 1),
both the user and BS employ uniform linear array (ULA)
antennas where the distance of adjacent units is half the signal
wavelength. RIS is a square panel consisting of M × M
uniform rectangular arrays. We set M = 16, NBS = 32 and
NUS = 16 in the general case. The mmWave channels are
generated by the geometric channel in (7). Taking the sparse
scattering of mmWave into account, the number of clusters in
each transmission link is set to L = 2 [8]. For these clusters,
we assume the average AoAs and AoDs are 0, and the relative
AoA shifts and AoD shifts are randomly generated via an
inverse transform sampling-based random variable generator.
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The beamforming/combining matrices F and Z are randomly
selected in the experiment. In addition, the classical LS and
orthogonal matching pursuit (OMP) methods are chosen as
comparisons, and the sparsity K is set to 10. Numerical results
derived from the average of 10,000 Monte Carlo experiments.

We select MSE as the metric to assess the accuracy of the
channel estimation methods. The formula is shown as

MSE =
1

n

n∑
i=1

(
hi − ĥi

)2

, (30)

where hi and ĥi are the actual and estimated channels,
respectively. Under the same conditions, the smaller the MSE,
the better the performance of the estimation method.

We first examine the estimation accuracy varying with
signal-to-noise ratio (SNR), as illustrated in Fig. 2. We can ob-



serve that the MSEs of all schemes improve as SNR increases,
and the proposed scheme consistently outperforms the others.
To be specific, the LS method completely ignores the impact
of noise and has poor performance. As a classical compression
sensing algorithm, the omp method makes full use of the
sparse characteristics of the channel and can better cope with
the noisy environment. The proposed scheme reconstructs the
noisy received signal by low-rank matrix approximation, fitting
in with the precondition of the compressed sensing theory, thus
bringing more obvious performance improvement.

The increase of reflecting elements brings a growing coeffi-
cient matrix, making the channel estimation more complicated.
With M representing the number of elements on either side,
the experimental results with the SNR of 5dB are plotted
against M . As the number of elements grows, Fig. 3 indicates
that the MSEs of the three schemes stay almost constant.
However, the proposed two-stage scheme consistently main-
tains the best estimation accuracy. The results demonstrate
that the proposed scheme is robust and can perform accurate
channel estimation under large-scale channel matrices, even if
the reflecting element is significantly increased.

Given the severe path loss in mmWave channels, the value
of SNR before beam alignment is typically low, sometimes
below 0dB. To track the success ratio under the low SNR
region, we set SNR to 5dB and -5dB. Specifically, when
MSE is less than 10−2, the trial is marked as a success. The
success ratio is defined as the ratio of the number of successful
trials Nsucc to the total number of all trials Ntotal, that is,
Nsucc/Ntotal. The numerical results in Fig. 4 demonstrate that
the accuracy is improved as the number of antennas increases,
and the success ratios exhibit upward trends. The proposed
scheme consistently maintains a high accuracy of almost 100%
when SNR is set to 5dB. Even with SNR=-5dB, the success
ratio is greater than 90% with 30 antennas and 99.49% with 80
antennas. The consistently high success ratio indicates that the
proposed method can effectively deal with channel estimation
under different communication conditions, even in the severe
environment of low SNR and numerous antennas.

V. CONCLUSION

In this paper, we developed a two-stage channel estimation
scheme for RIS-assisted mmWave MIMO systems. Firstly, the
RIS-assisted mmWave channel model with angular spread was
established, which consisted of sparse and low-rank charac-
teristics. In the first stage, we utilized low-rank characteristics
to reconstruct the noisy observed signal. Specifically, to solve
the low-rank matrix approximation problem, the trace operator
was proposed as a replacement since it could approximate the
rank operator well. In the second stage, based on the properties
of Kronecker products, the channel estimation model was
transformed into a sparse signal recovery problem. Simulation
results indicated that the proposed two-stage scheme could
effectively perform accurate channel estimation and was robust
for different channel environments.

APPENDIX A
PROOF OF THE THEOREM 1

Assume rank(Λ) = r, and Λ is recast by singular
value decomposition as the form of Λ = UΣΛV

H =

U

(
Σr 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

)
V H , where U and V are

orthogonal matrices, 0M×N is M × N zero matrix and
Σr = diag {σ1(Λ), σ2(Λ), . . . , σr(Λ)} denotes diagonal ma-
trix. Based on the above, we can derive

ΛHΛ + µI = V
(
ΣH
r Σr + µI

)
V H

= V

(
ΣH
r Σr + µIr×r 0r×(N−r)
0(N−r)×r µI(N−r)×(N−r)

)
V H .

Therefore, we can write the matrix Pµ(Λ) as

tr (Pµ(Λ))=tr

(
Λ
(
ΛHΛ + µI

)−1

ΛH

)
=tr

(
UΣr

(
ΣH
r Σr + µIr×r 0r×(N−r)
0(N−r)×r µI(N−r)×(N−r)

)−1

ΣH
r U

H

)

=tr

((
ΣH
r Σr+µIr×r 0r×(N−r)

0(N−r)×r µI(N−r)×(N−r)

)−1(
ΣH
r Σr 0r×(N−r)

0(N−r)×r 0(N−r)×(N−r)

))

=

r∑
i=1

σ2
i (Λ)

σ2
i (Λ) + µ

.

As a result, the preceding calculation led to lim
µ→0

tr(Pµ(Λ))=

rank(Λ), and the proof is completed. �
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