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Abstract—Fluid antenna system (FAS) is an emerging flexible
antenna technology that provides a new way for multiple access.
In fluid antenna multiple access (FAMA), each user switches its
fluid antenna to the location (i.e., port) in which the interfering
users suffer from a deep fade for interference-free communica-
tion. Previous work has attempted to understand the interference
immunity of FAMA but the results are limited to simplified spatial
correlation models. In this paper, we revisit the FAMA system
with only two users by characterizing the joint spatial correlation
amongst all the ports. Using this model, however, the number of
variables determining each channel coefficient scales with that of
ports, hence making the analysis intractable. To tackle this, we
first show that the channel model could be considerably simplified
by taking into account only a few variables, and then derive the
outage probability for the considered FAMA system by using the
approximated model. Simulation results show that the simplified
channel model can quickly approach the exact one and that the
outage probability decreases with the number of ports but has
an error floor unless the size of fluid antenna is increased.

Index Terms—FAMA, Fluid antenna, Slow fluid antenna mul-
tiple access, Outage probability, Spatial correlation.

I. INTRODUCTION

The advances in mobile communications have seen many

multiple access technologies get developed, with both massive

multiple-input multiple-output (MIMO) antenna [1] and non-

orthogonal multiple access (NOMA) [2] being the latest addi-

tions that many believe could address the massive connectivity

challenge in 5G and beyond systems [3]. The fact that the base

station (BS) needs to acquire the channel state information

(CSI) and perform complex precoding optimization, however,

greatly affects the scalability of massive MIMO. Similarly, for

NOMA, the CSI is also required at the BS for power control

as well as user clustering and worse, multiuser detection such

as successive interference cancellation (SIC) is needed at each

NOMA user to deal with the interference for high capacity.

To overcome these challenges, a new multiple access tech-

nique, referred to as fluid antenna multiple access (FAMA),

is recently proposed [4], [5]. This is motivated by the recent

advances in flexible antenna technologies, e.g., [6]–[10] that

offer unprecedented reconfigurability. Under the name ‘fluid

antenna’, recent studies in [11]–[16] investigated a single-user

system in which the receiving fluid antenna can switch its

location to the best of N fixed ports within a given space. In

so doing, the receiver can avoid channel deep fades. Multiple

access using fluid antenna was first proposed in [17]. It takes

advantage of the fact that multiuser signals fade independently

in space and the fluid antenna at a user terminal can find a port

(or location) in which the interfering users all fade to have an

interference-free channel for communication. It was reported

that fast FAMA could support hundreds of users on the same

time-frequency channel [17], [18] while slow FAMA could

handle a few users [19]. The difference between fast and slow

FAMA is that in fast FAMA, the fluid antenna switches to

the best port on a symbol-by-symbol basis whereas the slow

version updates its best port only when the channel changes.

Despite the recent interest, the analytical results available so

far appear to be based on a simplified channel model [18], [20]

which does not accurately characterize the spatial correlation

amongst the ports of the fluid antenna, and could result in an

overly optimistic performance estimate. Most recently in [21],

Khammassi et al. presented the outage performance analysis

for a single-user fluid antenna system (FAS) by using a fully

correlated channel model that could account for the correlation

of the channels between any two ports accurately. Their results

indicate that the performance of FAS is limited by the size of

the fluid antenna and increasing N has a diminishing return.

In this paper, we revisit the two-user FAMA system1 and

our aim is to analyze the outage probability performance when

the fully correlated channel model in [21] is used. As we will

show later, the channel model and correlation among different

ports are determined by a Hermitian Toeplitz matrix Σ, whose

elements can be obtained according to the Jake’s model [22].

We further illustrate that the energy of Σ is mainly focused

on a few largest eigenvalues. It is thus possible to approximate

each channel coefficient by taking only a few eigenvalues into

account. As such, it allows us to derive the outage probability

using the approximated model. Simulation results validate the

approximation and indicate that the outage probability of two-

user FAMA exhibits similar characteristics in terms of the

number of ports, N , and size of the fluid antenna.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink FAS system with a BS and two users.

The BS has two fixed antennas, where each of them serves

a user, and each user is equipped with a fluid antenna. The

location of the fluid antenna can be switched instantly to one

of the N preset ports, which are evenly distributed along a

linear dimension of length Wλ and share a common RF chain.

Here W denotes the normalized size of the fluid antenna and λ

1For the two-user case where noise is ignored (which we assume in this
paper), fast FAMA and slow FAMA are the same. For differences of fast and
slow FAMA, readers are referred to [4].



is the wavelength. Without loss of generality, we assume that

the k-th antenna at the BS serves user k. Then the received

signal at the n-th port of user k is given by

y
(n)
k =

2∑
j=1

g
(n)
j,k sj + η

(n)
k , for k = 1, 2, (1)

where g
(n)
j,k ∼ CN (0, σ2

j,k) is the channel gain from the j-th

BS antenna to the n-th port of user k, sj ∼ CN (0, pj) denotes

the data symbol intended for user j, and η
(n)
k ∼ CN (0, σ2

0)
denotes the additive white Gaussian noise.

Denoting the channel vector gj,k = (g
(1)
j,k , . . . , g

(N)
j,k )T and

its covariance matrix by Σj,k = σ2
j,kΣ, we characterize the

spatial correlation of the ports by following the Jake’s model

[22] so that the (n, n′)-th element of Σ is given by

(Σ)n,n′ =
1

σ2
j,k

Cov
[
g
(n)
j,k , g

(n′)
j,k

]
= J0 (2π(n− n′)Δ) , (2)

where Δ = W/(N−1) is the normalized distance between any

two adjacent ports and J0(·) is the zero-order Bessel function

of the first kind. To analyze the system performance, we need

to model the channel coefficients such that they satisfy the

distribution and the correlation characteristics given above.

Denote the eigen-decomposition of Σ by UΘUH , where

U is a unitary matrix and Θ = diag{θ1, . . . , θN} denotes

the eigenvalue matrix. Assume that the eigenvalues in Θ are

arranged in descending order, i.e., θ1 ≥ · · · ≥ θN . Let

gj,k = σj,kUΘ
1
2xj,k, (3)

where xj,k = (x
(1)
j,k, . . . , x

(N)
j,k )T and x

(n)
j,k ∼ CN (0, 1). Note

that x
(n)
j,k can also be expressed as x

(n)
j,k = a

(n)
j,k + ib

(n)
j,k , where

a
(n)
j,k and b

(n)
j,k are independent and identically distributed (i.i.d.)

real Gaussian variables with zero-mean and variance 1
2 . The

n-th element of gj,k, i.e., g
(n)
j,k , can thus be expressed as

g
(n)
j,k = σj,k

N∑
m=1

√
θmun,mx

(m)
j,k

= σj,k

N∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
. (4)

When n′ = n in (2), (Σ)n,n = 1. Hence,
∑N

m=1 θmu2
n,m =

(Σ)n,n = 1. It is therefore known from (3) and (4) that g
(n)
j,k ∼

CN (0, σ2
j,k) and E

[
gj,kg

H
j,k

]
= σ2

j,kΣ. Therefore, the models

in (3) and (4) can perfectly characterize the distribution of the

channel gains and the spatial correlation of the ports.

For user k, its signal-to-interference plus noise ratio (SINR)

at the n-th port is found as

γ
(n)
k =

pk|g(n)k,k |2
pk̄|g(n)k̄,k

|2 + σ2
0

(a)≈ pk|g(n)k,k |2
pk̄|g(n)k̄,k

|2
, (5)

where k̄ = 1 if k = 2 and k̄ = 2 if k = 1, and (a) assumes

that the interference power is much greater than the noise

power. Though SINR is a more accurate performance measure,

signal-to-interference ratio (SIR) is a good approximation for

interference-limited environments. Our objective is to obtain

the outage probability of the FAMA system, given by

pout,k(rk) = Pr

⎧⎨
⎩max

⎧⎨
⎩ |g(1)k,k|2

|g(1)
k̄,k

|2
, . . . ,

|g(N)
k,k |2

|g(N)

k̄,k
|2

⎫⎬
⎭ <

γthpk̄
pk

⎫⎬
⎭

= Pr

⎧⎨
⎩ |g(1)k,k|

|g(1)
k̄,k

|
< rk, . . . ,

|g(N)
k,k |

|g(N)

k̄,k
|
< rk

⎫⎬
⎭ , (6)

where γth denotes the SIR threshold and rk �
√

γthpk̄/pk.

III. MAIN RESULTS

In this section, we analyze the outage probability of the

two-user FAMA system. Although (3) or (4) can characterize

perfectly the distribution of the channel gains and the spatial

correlation among the ports, each element g
(n)
j,k in gj,k consists

of 2N independent Gaussian variables, i.e., a
(m)
j,k and b

(m)
j,k ,

making further analysis intractable since N is usually very

large. Hence, in the following, we first simplify or approximate

g
(n)
j,k and then analyze the outage probability.

A. Approximation of the Channel Model

It can be found that the channel model (4) is mainly deter-

mined by Σ, which on one hand, ensures g
(n)
j,k ∼ CN (0, σ2

j,k)

since (Σ)n,n =
∑N

m=1 θmu2
n,m = 1, and on the other hand,

determines the correlation of the elements in gj,k. Also, from

(2), we see that Σ is a Hermitian Toeplitz matrix. Since N
is large here, as we will show later, θ1 � θN and only a few

eigenvalues are significant, making it possible to approximate

g
(n)
j,k by taking only a few eigenvalues into account. Specifi-

cally, we consider the largest L � N eigenvalues in (4) and

neglect the other terms so that we have

g̃
(n)
j,k = σj,k

L∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
. (7)

Then, an important question is to what extent g̃
(n)
j,k can approx-

imate g
(n)
j,k . To answer this question, we define a threshold θth

for the eigenvalues of Σ and step function

H(θ, θth) �
{

1, θ > θth,
0, θ ≤ θth.

(8)

In addition, we define⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DN (θth) �
1

N

N∑
n=1

H(θn, θth),

SN (θth) �
1

N

N∑
n=1

θnH(θn, θth).

(9)

Obviously, DN (θth) can be seen as the proportion of eigenval-

ues greater than θth and SN (θth) is the average value of them.

We give their limits in the following theorem.



Theorem 1. As the number of ports N grows large, the limits
of DN (θth) and SN (θth) are, respectively, approximated as

lim
N→+∞

DN (θth) ≈ 1

2π

∫ π

−π

Ĥ(f(x), θth)dx, (10)

lim
N→+∞

SN (θth) ≈ 1

2π

∫ π

−π

f(x)Ĥ(f(x), θth)dx, (11)

where f(x), given in (20), is an exponential-form Fourier
series, and Ĥ(θ, θth), provided in (21), is a smooth approx-
imation of the non-continuous step function H(θ, θth).

Proof: See Appendix A.

In the following table, we compute the limits of DN and SN

using (10) and (11). Since
∑N

n=1 θn = N , which is large, we

set θth = 1. In addition, when computing the limits, we have

to consider a fixed Δ, i.e., fixed adjacent ports distance, since

otherwise the elements of Σ vary with Δ (see (19)). Here we

set Δ = W/99, i.e., the distance between any two adjacent

ports is fixed as if there are 100 ports. Then, we compute the

limits of DN (1) and SN (1) using (10) and (11).

TABLE I
LIMITS OF DN (1) AND SN (1) FOR DIFFERENT W

W 0.5 1 2 3 4

Limit of DN (1) 0.013 0.023 0.043 0.063 0.083
Limit of SN (1) 0.9997 0.9996 0.9993 0.9990 0.9988

Table I shows that the limit of DN (1) is very small, i.e.,

only a small part of eigenvalues are larger than 1, and that of

SN (1) is quite close to 1. Considering that 1
N

∑N
n=1 θn = 1,

the energy of Σ is thus focused on the largest few eigenvalues.

Hence, with a large N , g̃
(n)
j,k in (7) can approximate g

(n)
j,k using

a small L. We will further show this by simulations.

To facilitate our analysis, as in [21], we further introduce

two independent Gaussian variables to g̃
(n)
j,k and get

ĝ
(n)
j,k = σj,k

L∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)

+ σj,k

√√√√1−
L∑

m=1

θmu2
n,m

(
c
(n)
j,k + id

(n)
j,k

)
, (12)

where a
(m)
j,k , b

(m)
j,k , c

(n)
j,k , and d

(n)
j,k are i.i.d. Gaussian variables

with zero-mean and variance 1
2 . In contrast to g̃

(n)
j,k , the model

ĝ
(n)
j,k has two advantages. First, its variance is exactly σ2

j,k.

Second, as we will show in the next subsection, it makes the

outage probability analysis more doable.

B. Outage Probability

Based on (6) and (12), the outage probability of user k can

be approximated as

pout,k ≈ Pr

⎧⎨
⎩ |ĝ(1)k,k|

|ĝ(1)
k̄,k

|
< rk, . . . ,

|ĝ(N)
k,k |

|ĝ(N)

k̄,k
|
< rk

⎫⎬
⎭ . (13)

For convenience, we denote Φ
(n)
k = |ĝ(n)k,k |/|ĝ(n)k̄,k

|. The fol-

lowing theorem provides the cumulative distribution function

(CDF) of max
{
Φ
(1)
k , . . . , Φ

(N)
k

}
.

Theorem 2. With the approximation ĝ
(n)
j,k provided in (12), the

CDF of max
{
Φ
(1)
k , . . . , Φ

(N)
k

}
is given by (14) (see bottom of

this page), where F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(rk) is provided in
(15). In (15), Q1(·, ·) and I0(·) are respectively the Marcum
Q-function of order 1 and the modified Bessel function of the
first kind, and α

(n)
j,k as well as β

(n)
j,k are given in (25).

Proof: See Appendix B.

Using Theorem 2, we could obtain the following approxi-

mation of the FAMA system’s outage probability as

pout,k(rk) ≈ F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk), for k = 1, 2. (16)

IV. SIMULATION RESULTS

In this section, simulation results are presented to evaluate

the performance of the two-user FAMA system and also the

accuracy of the proposed approximation. For convenience, we

assume equal transmit power for both users, i.e., p1 = p2.

Moreover, since σj,k can be regarded as the large-scale fading

of the link from the j-th BS antenna to user k, we assume

σ1,k = σ2,k, i.e., the channels from different antennas at the

BS to both users experience the same large-scale fading. It is

obvious that σj,k does not affect the value of (6). Hence, in

the simulations, we simply set σ1,k = σ2,k = 1. Notice that

though the channel model g
(n)
j,k in (4) has been significantly

F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk) =
1

π2L

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

{
−

L∑
m=1

[(
a
(m)
k,k

)2
+
(
a
(m)

k̄,k

)2
+
(
b
(m)
k,k

)2
+
(
b
(m)

k̄,k

)2]}

×
N∏

n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(rk) da
(1)
k,k · · · da(L)

k,kda
(1)

k̄,k
· · · da(L)

k̄,k
db

(1)
k,k · · · db(L)

k,kdb
(1)

k̄,k
· · · db(L)

k̄,k
(14)

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(rk) = 1−
∫ +∞

0

Q1

⎛
⎝
√√√√α

(n)
k,k

β
(n)
k,k

,
rkz√
β
(n)
k,k

⎞
⎠ z

β
(n)

k̄,k

exp

⎛
⎝−

z2 + α
(n)

k̄,k

2β
(n)

k̄,k

⎞
⎠ I0

⎛
⎝
√

α
(n)

k̄,k

β
(n)

k̄,k

z

⎞
⎠ dz (15)
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simplified by ĝ
(n)
j,k , the CDF expression in Theorem 2 is hard to

compute as it is a 4L-fold integral (let alone the integral (15)).

Here, we obtain the outage probability based on the channel

models g
(n)
j,k , ĝ

(n)
j,k , and ĝ

(n)
j,k using Monte Carlo simulations. All

the results were obtained by averaging over 106 independent

channel realizations.

In Fig. 1, we show (in contrast to Table I) that the channel

model g
(n)
j,k can be approximated by taking into account only

a few eigenvalues of Σ. It is understood from (7) that g̃
(n)
j,k

follows Gaussian distribution with zero-mean and variance∑L
m=1 θmu2

n,m (since σj,k = 1). Fig. 1 shows the value of

1

N

N∑
n=1

L∑
m=1

θmu2
n,m, (17)

which can be seen as the average variance of g̃
(n)
j,k , ∀n ∈ {1,

· · · , N}. Since
∑N

m=1 θmu2
n,m = 1, as L increases, the value

of (17) should approach 1. Fig. 1 shows that this is true and

can be realized by a small L. For example, when W = 0.5 and

W = 2, the value of (17) is close to 1 with L, respectively,

10 20 30 40 50 60 70 80 90 100
10−5

10−4

10−3

10−2

10−1

100

Number of ports N

O
ut

ag
e 

pr
ob

ab
ili

ty

Exact g
(n)
j,k

Approx. ĝ
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(n)
j,k

γth = 5 dB, Exact g
(n)
j,k

γth = 5 dB, Approx. ĝ
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being 3 and 6. Therefore, we can approximate g
(n)
j,k using either

g̃
(n)
j,k or ĝ

(n)
j,k such that further analysis can be simplified.

In Fig. 2, we plot the outage probability of a user obtained

by, respectively, using the exact channel model g
(n)
j,k , and its

approximations g̃
(n)
j,k and ĝ

(n)
j,k . It is illustrated that the outage

probability resulted from g̃
(n)
j,k and ĝ

(n)
j,k is respectively an upper

and lower bound to that based on g
(n)
j,k . As L increases, the

bounds approach quickly to the curve obtained from g
(n)
j,k , and

the approximation is good enough when L = 4 (with W = 1
and N = 100), which is consistent to the observation in Fig. 1.

Since both g̃
(n)
j,k and ĝ

(n)
j,k can approximate g

(n)
j,k well, and it is

more convenient to analyze the outage probability based on

ĝ
(n)
j,k , we depict only g

(n)
j,k and ĝ

(n)
j,k in subsequent results.

Figs. 3 and 4 investigate the impact of N and W on the

outage probability. Note that for all the settings, we employ

the same approximation level L = 10. Several observations

can be made from these two figures. First of all, for small W ,

e.g., W = 1, the outage probability remains almost constant

even when N increases. For larger W , the outage probability

decreases first with N , indicating a great diversity gain and



then saturates. This is because the antenna ports are strongly

correlated. With a fixed W , increasing N helps reduce the

outage probability at the beginning, but can no longer bring

diversity gains when N gets large since a smaller port distance

causes strong inter-correlation. Secondly, it can be seen from

Fig. 4 that for a given N , the system’s outage probability can

be dramatically reduced by increasing W . Moreover, Fig. 3 and

Fig. 4 also show that with a small W , the solid and dashed

lines completely coincide, but for a large W , e.g., W = 4.5 or

W = 5, the outage probability obtained using ĝ
(n)
j,k is obviously

smaller than that resulted from g
(n)
j,k . This is because we set

L = 10 for all the configurations. It is known from Fig. 1 that

this is good enough for the approximation when W is smaller

than 4. However, when W = 5, L has to be at least 12 such

that the value of (17) approaches 1. In this case, the outage

probability obtained from ĝ
(n)
j,k is a lower bound to that based

on g
(n)
j,k , which is also demonstrated by Fig. 1.

V. CONCLUSIONS

This paper investigated the outage performance of a two-

user FAMA system under a fully correlated channel model that

accurately accounts for the correlation between any two ports

of the fluid antenna. We showed that each channel coefficient

could be well approximated by L largest eigenvalues and

L � N . With the approximation, the outage probability has

been expressed as a 4L-fold integral. Simulation results have

verified the accuracy of the approximation and demonstrated

great outage performance of the FAMA scheme.
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APPENDIX A

PROOF OF THEOREM 1

It is known from (2) that Σ is a Hermitian Toeplitz matrix

and can thus be re-expressed as

Σ =

⎡
⎢⎢⎢⎢⎣

φ0 φ1 · · · φN−1

φ1 φ0
. . .

...
...

. . .
. . . φ1

φN−1 · · · φ1 φ0

⎤
⎥⎥⎥⎥⎦ . (18)

According to (2) and [21, (47)], the coefficient φn can be

expressed as the following Fourier form

φn = J0(2πnΔ) =
1

2π

∫ π

−π

ei2πnΔ sin xdx

=
1

2π

∫ π

−π

f(x)e−inxdx, for n = 0, . . . , N − 1, (19)

where

f(x) =

m=+∞∑
m=−∞

J0(2πmΔ)eimx, ∀x ∈ [−π, π], (20)

is a real and integrable function.

Then we apply [23, Theorem 1.1] to evaluate the limiting

distribution of DN (θth) and SN (θth). Note that [23, Theo-

rem 1.1] requires H(θ, θth) to be a continuous function. Thus,

we replace H(θ, θth) by a smooth and analytic approximation.

There are different ways to approximate a step function. Here

we adopt the logistic function

Ĥ(θ, θth) =
1

1 + e−2t(θ−θth)
, (21)

as an approximation of H(θ, θth), where a larger t corresponds

to a sharper transition at θ = θth. Then we have

lim
N→+∞

DN (θth) = lim
N→+∞

1

N

N∑
n=1

H(θn, θth)

≈ lim
N→+∞

1

N

N∑
n=1

Ĥ(θn, θth) =
1

2π

∫ π

−π

Ĥ(f(x), θth)dx, (22)

where the last step follows by using [23, Theorem 1.1]. Hence,

(10) is true. Analogously, based on the definition of SN (θth)
in (9) and (21), (11) can be proven by following similar steps.

APPENDIX B

PROOF OF THEOREM 2

For convenience, we denote aj,k = (a
(1)
j,k, . . . , a

(L)
j,k )

T and

bj,k = (b
(1)
j,k , . . . , b

(L)
j,k )

T . It is known from (12) that ĝ
(n)
j,k is a

Gaussian variable, and for a given (aj,k, bj,k), it follows

ĝ
(n)
j,k |(aj,k, bj,k) ∼ CN

(
σj,k

L∑
m=1

√
θmun,m

(
a
(m)
j,k + ib

(m)
j,k

)
,

σ2
j,k

(
1−

L∑
m=1

θmu2
n,m

))
. (23)

Hence, |ĝ(n)j,k ||(aj,k, bj,k) follows Rice or Rician distribution

as shown below

|ĝ(n)j,k ||(aj,k, bj,k) ∼ Rice

(√
α
(n)
j,k ,

√
β
(n)
j,k

)
, (24)

where

α
(n)
j,k = σ2

j,k

⎡
⎣( L∑

m=1

√
θmun,ma

(m)
j,k

)2
+

(
L∑

m=1

√
θmun,mb

(m)
j,k

)2⎤⎦,
β
(n)
j,k =

σ2
j,k

2

(
1−

L∑
m=1

θmu2
n,m

)
. (25)

Based on (24), we have

|ĝ(n)k,k ||(ak,k, bk,k) ∼ Rice

(√
α
(n)
k,k,

√
β
(n)
k,k

)
,

|ĝ(n)
k̄,k

||(ak̄,k, bk̄,k) ∼ Rice

(√
α
(n)

k̄,k
,
√

β
(n)

k̄,k

)
. (26)

Note that |ĝ(n)k,k | and |ĝ(n)
k̄,k

| are independent. Then for user

k, Φ
(n)
k |(ak,k,ak̄,k, bk,k, bk̄,k) is the ratio of two independent

Rice random variables.



We now derive its CDF. For convenience, we consider

two independent Rician variables Ẑ ∼ Rice(
√
α1,

√
β1),

Z ∼ Rice(
√
α2,

√
β2), and denote R = Ẑ/Z. Then the CDF

of R can be derived as

FR(r) = Pr{Ẑ ≤ rZ} =

∫ +∞

0

FẐ(rz)fZ(z)dz

= 1−
∫ +∞

0

Q1

(√
α1

β1
,
rz√
β1

)
×

z

β2
exp

(
−z2+α2

2β2

)
I0

(√
α2

β2
z

)
dz, (27)

where the last step follows from directly using the CDF

and probability density function (PDF) of Rice distribution,

Q1(·, ·) is the Marcum Q-function of order 1, and I0(·) is

the modified Bessel function of the first kind. Using (27), the

CDF F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k ) can be obtained directly

and is provided in (15). For a given (ak,k,ak̄,k, bk,k, bk̄,k),

(12) indicates that Φ
(n)
k , ∀n ∈ {1, · · · , N} are independent of

each other. Hence,

F
(Φ

(1)
k ,··· ,Φ(N)

k )|(ak,k,ak̄,k,bk,k,bk̄,k)
(r

(1)
k , · · · , r(N)

k )

=

N∏
n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k ). (28)

The joint CDF of (Φ
(1)
k , . . . , Φ

(N)
k ) is thus the expectation of

(28) over (ak,k,ak̄,k, bk,k, bk̄,k) and is provided in (29) at the

bottom of this page. Since

F
max

{
Φ

(1)
k ,...,Φ

(N)
k

}(rk) = F
(Φ

(1)
k ,...,Φ

(N)
k )

(rk, . . . , rk), (30)

by replacing all r
(n)
k in (29) with rk, we get (14).
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F
(Φ

(1)
k ,...,Φ

(N)
k )

(r
(1)
k , . . . , r

(N)
k ) = E(ak,k,ak̄,k,bk,k,bk̄,k)

[
N∏

n=1

F
Φ

(n)
k |(ak,k,ak̄,k,bk,k,bk̄,k)

(r
(n)
k )

]

=
1

π2L

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

{
−

L∑
m=1

[(
a
(m)
k,k

)2
+
(
a
(m)

k̄,k

)2
+
(
b
(m)
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+
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