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Abstract. Segmentation of the carotid intima-media (CIM) offers more
precise morphological evidence for obesity and atherosclerotic disease
compared to the method that measures its thickness and roughness dur-
ing routine ultrasound scans. Although advanced deep learning technol-
ogy has shown promise in enabling automatic and accurate medical image
segmentation, the lack of a large quantity of high-quality CIM labels may
hinder the model training process. Active learning (AL) tackles this issue
by iteratively annotating the subset whose labels contribute the most to
the training performance at each iteration. However, this approach sub-
stantially relies on the expert’s experience, particularly when addressing
ambiguous CIM boundaries that may be present in real-world ultrasound
images. Our proposed approach, called pseudo-label divergence-based
active learning (PLD-AL), aims to train segmentation models using a
gradually enlarged and refined labeled pool. The approach has an outer
and an inner loops: The outer loop calculates the Kullback–Leibler (KL)
divergence of predictive pseudo-labels related to two consecutive AL it-
erations. It determines which portion of the unlabeled pool should be
annotated by an expert. The inner loop trains two networks: The student
network is fully trained on the current labeled pool, while the teacher net-
work is weighted upon itself and the student one, ultimately refining the
labeled pool. We evaluated our approach using both the Carotid Ultra-
sound Boundary Study dataset and an in-house dataset from Children’s
Hospital, Zhejiang University School of Medicine. Our results demon-
strate that our approach outperforms state-of-the-art AL approaches.
Furthermore, the visualization results show that our approach less over-
estimates the CIM area than the rest methods, especially for severely
ambiguous ultrasound images at the thickness direction.

⋆ This work was performed when Yucheng Tang was visiting Zhejiang Lab as an intern.
⋆⋆ Corresponding authors: Hongxiang Lin and Ke Huang.
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1 Introduction

Carotid intima-media (CIM) segmentation has been widely applied in clinical
practice, providing a diagnostic basis for atherosclerotic disease (one of the com-
plications of obesity). To identify the contour of the intima-media, i.e., the struc-
ture between the lumen-intima (LI) and the media-adventitia (MA), one of the
available solutions is deep learning-based medical image segmentation for CIM.
Currently, this CIM segmentation approach faces the challenges of lack of large-
quantity images, high-quality labels from ultrasound experts, and a mixture of
clear and ambiguous CIM areas in carotid ultrasound images.

Semi-supervised learning recently applies novel frameworks to a general seg-
mentation task [1][2][3][4]. In particular, the combination of consistency regu-
larization and pseudo-labeling utilizes unlabeled data to partially address the
lack-of-label issue [5]. A different strategy to efficiently utilize labeling effort is
active learning (AL), which can iteratively select a subset of unlabeled data for
annotation by experts, but still reach a model performance otherwise requiring
a much larger training set. AL has been widely applied to image classification
[6][7][8], semantic segmentation [9][10] and medical image segmentation [11][12].
These methods have effectively improved accuracy through experts’ involve-
ment. However, carotid ultrasound images are user-end protocol dependent, and
with high variability in quality, real-world labels on ultrasound images gener-
ally share the same characteristics in high variability. Therefore, after testing
several state-of-the-art AL methods, we would like to incorporate methodologies
from semi-supervised learning designed to extract predictive information from
unlabeled data, and between labeled and unlabeled data, for AL.

In this work, we propose pseudo-label divergence-based active learning (PLD-
AL) to obtain accurate CIM segmentation contributing to the clinical diagnosis
of obesity and atherosclerotic disease. As shown in Fig. 1, unlike the conventional
AL framework that utilizes one machine learning model, PLD-AL is composed
by two networks: the student network is fully trained on the current labeled pool,
and the teacher network is weighted upon previous itself and the student one.
We use divergence, which measures the distance between two model predictions,
to select data for annotation. Furthermore, we use the teacher network to refine
the labels to reduce the noise of labels and improve the effectiveness of the next
network optimization stage.

Our contributions are as follows: we propose PLD-AL, which aims to train
segmentation models using a gradually enlarged and refined labeled pool. First,
we automatically select and annotate large divergence data between the current
and previous AI models, facilitating fast convergence of the AL model to most
sound data in the unlabeled pool. Second, we propose a strategy to refine the
labels in the labeled pool alternatingly with the proposed label-divergence-based
AL algorithm, which improves the robustness compared to the conventional AL
approach. We conducted experiments to demonstrate that our method yielded
competitive performance gains over other AL methods. Finally, we applied the
trained model to a real-world in-house hospital dataset with noisy labels and
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(a) Conventional AL (b) Pseudo-label divergence based AL

Fig. 1. (a) Conventional AL that trains a machine learning model to select an un-
labeled subset for an expert to annotate. (b) We propose a novel AL framework to
progressively annotate data by selecting top-n largest divergence between student and
teacher network predictions. Additionally, such a framework can also refine the labeled
data assumed to be noisy.

obtain accurate CIM segmentation results. We release our code at https://
github.com/CrystalWei626/PLD_AL.

2 Method

Section 2.1 establishes mathematical formulation on the main task of CIM seg-
mentation in our AL framework. Our proposed AL approach has two loops: in
Section 2.2, the outer loop implements progressive annotation on the automat-
ically selected unlabeled pool; in Section 2.3, the inner loop trains the neural
networks on the labeled pool and subsequently refines it through a feedback
routine.

2.1 Mathematical notations and formulation

Denote x ∈ RI×J a carotid ultrasound image and y ∈ RI×J the corresponding
CIM mask. Let DL = XL×YL and XU be the initial labeled and unlabeled pools,
where XL is the carotid ultrasound image set, and YL is the corresponding label
set. We aim to improve generalization ability of the AI model by selecting the
most informative data in XU and delivering them to an expert for annotation.

We propose a novel AL framework: PLD-AL for CIM segmentation, as illus-
trated in Fig. 1 and Alg 1. First, AI models are trained on DL and used to refine
YL. Then, the AI models select data from XU for expert to annotate, forming
a new set of labeled data. Finally, we update DL and XU and use new DL to
train the same AI models.
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Algorithm 1: PLD-AL
1 Input: Initial labeled pool DL = XL × YL; Unlabeled pool XU ; Judgment

threshold τ ; Refining threshold λ;
2 Initialize θS and θT ;
3 for t = 1, · · · T do
4 θ

(0)
T ← θT ; θ(0)S ← θS ;

5 for k = 1, · · · ,K do
6 θ

(k)
S := Opt(θ

(k−1)
S ;DL, lr); ▷ Optimize θ

(k)
S on DL

7 θ
(k)
T := αθ

(k)
S + (1− α)θ

(k−1)
T ; ▷ Update θ

(k)
T by EMA

8 M(k) = mean(x,y)∈DL
IoU(y, F (x|θ(k)S )); ▷ Calculate mIoU

9 if k > K1 then
10 M̃ = argmin

∑k
l=1 ∥M̃ −M

(l)∥2ℓ2 ; ▷ Fit the mIoU curve
11 if M̃′

(k)− M̃
′
(k − 1) < τ then

12 for x ∈ XL, i ∈ {1, 2, ...I}, j ∈ {1, 2, ...J} do
13 pij = F (x(i, j)|θ(k)T ); ▷ Predict on teacher network
14 y(i, j) = argmax{pij} if max pij > λ; ▷ Refine YL

15 θS ← θ
(k)
S , θT ← θ

(k)
T ;

16 break;

17 d(x) = meani,jDivKL(x(i, j), θS , θT ), x ∈ XU ; ▷ Compute KL divergence
18 XA = argx∈XU

TOPnd(x); ▷ Select unlaleled data
19 YA = {y = Expert(x) : x ∈ XA}; ▷ Annotate by expert
20 DA = XA × YA;DL ← DL

∪
DA; XU ← XU \XA; ▷ Update DL, XU

21 Output: DL; θT

In each AL iteration, we use a mean-teacher architecture as the backbone
of AL. The student and the teacher networks, respectively parameterized by θS
and θT , share the same neural network architecture F , which maps the carotid
ultrasound image x ∈ RI×J to the extended three-dimensional CIM mask prob-
ability p ∈ RI×J×2, whose 3rd-dimensional component pij ∈ R2 denotes the
softmax probability output for binary classification at the pixel (i, j). We use
the divergence between pseudo-labels generated by student and teacher networks
to assist in selecting data for the expert to annotate.

2.2 Outer Loop: Divergence based AL

The outer loop is an AL cycle that selects data for the expert to annotate
according to the divergence between the predictions of the student and teacher
networks. First, we initialize θS and θT . We complete the inner loop proposed
in Section 2.3, and obtain the trained parameters for the student and teacher
networks. Then, we select n data from XU for the expert to annotate. We suggest
using the Kullback–Leibler (KL) divergence to assist in selecting data, as shown
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in Eq. (1):

DivKL(x(i, j), θS , θT ) =

2∑
c=1

F (x(i, j)|θT ) log
F (x(i, j)|θT )
F (x(i, j)|θS)

. (1)

We consider data prediction uncertainty as a decisive metric for data selection.
It is deduced that the KL divergence between the output of the primary and the
auxiliary models in a dual-decoder architecture can approximate the prediction
uncertainty [13][14].

We compute the KL divergence scores d(x) = meani,jDivKL(x(i, j), θS , θT ) of
the data in XU . Let XA be the subset that contains data x in XU corresponding
to the top-n largest d(x) values (denoted by TOPnd(x)). With this, we can next
obtain the label set YA in terms of XA by means of the expert’s annotates and
the required post-processing step; see Section 3.1 for details. Lastly, we add the
selected dataset with its label set XA×YA into DL and delete XA from XU . We
repeat the above steps until reaching the maximum number of AL iterations.

2.3 Inner Loop: Network optimization and label refinement

The inner loop trains the neural networks by the labeled pool and refines noisy
labels through a feedback routine. In the kth epoch of the inner loop, we first
use the last labeled pool DL to optimize the training parameter θ

(k)
S by mini-

batch stochastic gradient descent. The loss function consists of a supervised loss
Lsup between labels and predictions of the student model, and a consistency loss
Lcon between the predictions of the student and the teacher models. These can
be implemented using the cross-entropy loss and the mean squared error loss,
respectively. Then, we update θ

(k)
T by exponential moving average (EMA) with

a decay rate α as Eq. (2):

θ
(k)
T = αθ

(k)
S + (1− α)θ

(k−1)
T . (2)

We refine noisy labels based on the idea that the fitness soars sharply at first
but slows down after the model begins to fit noise[15]. We interrupt the model
training before it begins to fit noise, then refine the labels utilizing the current
network output. We calculate the model fitness via a series of the intersection
over union (mIoU)[16] scores sampled at every training epoch. To estimate the
ratio of change of the model fitness, we fit the mIoU curve M̃(k) via e.g., the
exponential regression formed in Eq. (3) when the length of mIoU series is larger
than a designated parameter K1 ∈ N+:

M̃(k) = a(1− exp{−b · kc}), (3)

where a, b, and c are the fitting parameters to be determined by least squared
estimate. Then we calculate the ratio of change of the model fitness γk via the
derivative of the mIoU curve M̃′

(k): γk = M̃′
(k) − M̃′

(k − 1). When training
stops at this epoch k satisfying γk < τ (τ is a judgment threshold), we lastly
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predict the CIM mask probability pij = F (x(i, j)|θ(k)T ) via the teacher network
for each pixel at (i, j) and update the noisy label y(i, j) in YL if max pij > λ (λ
is a refining threshold).

3 Experiments and Results

3.1 Experiment Settings

Implementation Details. We used the PyTorch platform (version 1.13.1) to
implement our method. And we adapted the same UNet++ [17] structures as
the encoding-decoding structures for the student and the teacher networks. We
implemented 1000 training iterations with a total mini-batch size of 14 and
initial batch size of labeled data of 2 on an Nvidia GeForce RTX 3070 GPU
with 8192 MB of memory (Nvidia, Santa Clara, CA, United States). Since the
number of labeled data increases after completing each AL iteration, the batch
size of labeled data should increase by 2 synchronously to keep the total epoch
num unchanged. We used stochastic gradient descent (SGD) as the optimizer
with the parameter settings: momentum (0.9) and weight decay (0.0001). We
set EMA decay rate α = min{1 − 1/(iter + 1), 0.99}, where iter is the current
training iteration number. 2021 regions of interest (ROI) of size 256× 128 were
cropped from original carotid ultrasound images for model training using tem-
plate matching technique [18]. We set the number of AL iterations, fixed labeling
budget, initial labeled and unlabeled data, and the test data as 5, 200,159, 1857,
and 1204, respectively. During each annotation phase, experts manually marked
the CIM boundaries with scatters and we subsequently generated the complete
CIM masks via the Akima interpolation method [19]. θS and θT was initialized
by the pre-train model5 on ImageNet [20]. At our best practice, we chose the
hyper-parameters λ = 0.8, τ = 0.005 and K1 = 1.

Dataset. We employed the publicly available Carotid Ultrasound Bound-
ary Study (CUBS) dataset6[21] and the in-house dataset acquired at Children’s
Hospital, Zhejiang University School of Medicine. The CUBS dataset contains
ultrasound images of the left and right carotid arteries from 1088 patients across
two medical centers and three manual annotations of LI and MA boundaries by
experts. According to the description of these annotations in the dataset spec-
ification, the analytic hierarchy process (AHP) [22] was adapted to weigh the
three expert’s annotations to obtain accurate labels for testing. We randomly
performed morphological transformations (dilation and erosion) by OpenCV [23]
on the accurate labels to generate noisy labels for training. The in-house dataset
comes from 373 patients aged 6-12, with 2704 carotid ultrasound images. We
picked 350 images with visible CIM areas and applied the model trained on
CBUS to CIM segmentation. The data acquisition and the experimental proto-
col have been approved by the institutional review board of Children’s Hospital,
Zhejiang University School of Medicine.
5 https://github.com/pprp/timm
6 https://data.mendeley.com/datasets/fpv535fss7/1
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Table 1. Quantitative results of performance comparison, the metrics were calculated
over the test dataset and took the mean. Bold font highlights the optimal performance
except for the upper limit. The asterisk ∗ denotes p < 0.001 compared with the rest
methods.

Method Dice (%) ↑ IoU (%) ↑ ASD (voxel) ↓ 95HD (voxel) ↓ Time (S) ↓
Random 70.96± 8.26 57.01± 8.80 3.79± 1.05 15.95± 6.41 118.69± 6.38

Entropy[26] 76.62± 2.20 63.26± 2.75 2.07± 0.02 9.21± 2.09 192.24± 36.13
Confidence[12] 74.86± 0.21 61.93± 0.34 2.47± 0.89 11.15± 3.97 166.56± 2.93

CoreSet[27] 79.92± 0.31∗ 67.39± 0.43 1.88± 0.11∗ 6.33± 0.62∗ 199.78± 47.20
CDAL[28] 78.20± 1.61 65.15± 2.06 2.01± 0.10 7.83± 1.51 165.15± 2.74

Ours 83.51± 0.28∗ 72.33± 0.46∗ 1.69± 0.02∗ 4.72± 0.11∗ 139.06± 28.66

Upper Limit 84.01 73.03 1.53 4.24 213.77

Evaluation Metrics We utilized dice coefficient (Dice) [24], intersection
over union (IoU) [16], average surface distance (ASD), 95% covered Hausdorff
distance (95HD) [25], and the average training time of 5 AL iterations as evalu-
ation metrics of the CIM segmentation performance compared to the generated
ground truth on the unseen test set.

3.2 Performance Comparison

We evaluated the performance of AL methods on the CIM segmentation task
using the CUBS dataset.

Baselines. We compared our method to other AL methods, including AL
methods with query strategy based on random selection (Random), entropy
increase (Entropy) [26], prediction confidence (Confidence) [12], CoreSet [27]
and predicted probability diverse contexts (CDAL) [28]. All of the backbones of
these baseline methods are fully supervised models.

Furthermore, we trained a supervised model by the fully labeled pool with
accurate labels yielding an upper limit of generalization ability. We compared
this upper limit to the performance of all the methods.

Table 1 illustrates the quantitative results of different methods on the test
dataset. It shows that our method based on the KL divergence query strategy
improves the mean generalization metrics (Dice, IoU, ASD, and 95HD) com-
pared with other AL methods. In particular, it significantly (two-tailed Wilcoxon
signed-rank test with p < 0.001) outperforms the others in terms of any metric.

3.3 Ablation Study

We conducted ablation study on the CUBS dataset to demonstrate the impor-
tance of the label refinement module proposed in Section 2.3. We canceled the
label refinement module and substituted the label refinement module with con-
fidence learning (CL) for noise label correction [29].

Table 2 illustrates the results of ablation study experiment. Our method
substantially outperforms the method without the label refinement module and
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Table 2. Quantitative results of ablation study, the metrics were calculated over the
test dataset and took the mean. The abbreviations, Refine and CL, represent the label
refinement module and confidence learning[29], respectively. Bold font highlights the
optimal performance except for the upper limit. The asterisk ∗ denotes p < 0.001
compared with the rest methods.

Method Dice (%) ↑ IoU (%) ↑ ASD (voxel) ↓ 95HD (voxel) ↓ Time (S) ↓
w.o. Refine 80.17± 1.37 67.68± 1.86 1.97± 0.05 6.73± 0.99 301.93± 27.38
Refine→CL 81.08± 1.36 68.9± 1.84 1.86± 0.10 5.82± 0.69 689.09± 34.03
w/ Refine 83.51± 0.28∗ 72.33± 0.46∗ 1.69± 0.02∗ 4.72± 0.11∗ 139.06± 28.66

Upper Limit 84.01 73.03 1.53 4.24 213.77

slightly outperforms the method with CL. In particular, it significantly (two-
tailed Wilcoxon signed-rank test with p < 0.001) outperforms the others in terms
of all the metrics. Moreover, the training time of our method is significantly
reduced compared to CL since CL needs to estimate the uncertainty during
training to correct the noisy data smoothly, which leads to more computational
cost.

3.4 Application on in-house dataset
We applied the teacher network trained in Section 3.2 to the in-house dataset ac-
quired at a pediatric hospital. Figure 2 visualizes three example images with dif-
ferent CIM area qualities (clear, mildly ambiguous, severely ambiguous). Qual-
itatively, the generalization ability of the model trained by our method is much
better than those trained by other methods, regardless of image quality. More-
over, as shown in Fig. 2, Random over-estimates the CIM area, while CoreSet,
CDAL, and our method produces more conservative results but lost continuity
in the severely ambiguous image. Quantitatively, the mean Dice, IoU, ASD, and
95HD of our method are 79.20%, 66.99%, 1.92 voxels, and 6.12 voxels, respec-
tively, indicating a small but rational generalization loss on the in-house data.

4 Conclusion

We propose a novel AL framework PLD-AL, by training segmentation mod-
els using a gradually enlarged and refined labeled pool to obtain accurate and
efficient CIM segmentation. Compared with other AL methods, it achieves com-
petitive performance gains. Furthermore, we applied the trained model to an
in-house hospital dataset and obtained accurate CIM segmentation results. In
the future, we will extend our approach to subsequently calculate CIM thickness
and roughness for clinical evaluation of obesity or atherosclerotic disease. We will
also investigate the robustness of the proposed method in terms of inter-expert
variations and noisy annotation labels. Our approach merely involves one expert
in the loop, which may potentially be sensitive to the expert’s experience. Mul-
tiple experts may consider minimizing inter-reader differences during human-AI
interactive labeling [30].
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Fig. 2. Qualitative results of application study. It shows the visualization of CIM
segmentation on input images with clear, mildly ambiguous, and severely ambiguous
CIM areas, respectively. The images are chosen from the in-house dataset. We used
the model with the best quantitative results in Section 3.2 to generate the masks. The
green, red, and blue masks represent segmented true positive, false positive, and false
negative, respectively.
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