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Abstract—In conventional multiple-input multiple-output
(MIMO) communication systems, the positions of antennas are
fixed. To take full advantage of spatial degrees of freedom, a new
technology called fluid antenna (FA) is proposed to obtain higher
achievable rate and diversity gain. Most existing works on FA
exploit instantaneous channel state information (CSI). However,
in FA-assisted systems, it is difficult to obtain instantaneous
CSI since changes in the antenna position will lead to channel
variation. In this letter, we investigate a FA-assisted MIMO
system using relatively slow-varying statistical CSI. Specifically,
in the criterion of rate maximization, we propose an algorithmic
framework for transmit precoding and transmit/receive FAs
position designs with statistical CSI. Simulation results show
that our proposed algorithm in FA-assisted systems significantly
outperforms baselines in terms of rate performance.

Index Terms—Antenna position optimization, fluid antenna
system, MIMO, statistical CSI.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have been
widely used as a core technology for wireless communications
because of its ability to improve the reliability and capacity [1].
The conventional MIMO systems typically use fixed-position
antennas (FPAs). Recently, fluid antenna (FA) technology has
been proposed to further improve the diversity and multi-
plexing performance gains [2]–[4]. In a FA-assisted system,
antennas can move1 freely within a given region instead of
being fixed at specific positions. By utilizing more degrees of
freedom in the spatial domain, FA and MIMO can combine
to achieve a much higher spatial diversity gain [5].
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1More precisely, FA should be understood as an antenna that can change
its position and such change may not necessarily involve physical movement
of an antenna. In practice, this may be more suitably achieved by switching
on or off the units in an array of compact radio-frequency pixels.

Several studies have emerged to investigate the performance
of FA-assisted systems. In [2], the authors proposed the new
fluid antenna system (FAS) and studied the performance of
the single-antenna FAS. In [6], the authors indicated that a
single-antenna FAS in a tiny space can reach the capacity
of maximum ratio combining with multiple antennas. In [7],
the average level crossing rate in FAS was given as closed-
form expressions. In [8], the authors proposed the movable
antenna-assisted MIMO system, which is effectively a MIMO
FAS, and studied the capacity maximization problem based
on instantaneous channel state information (CSI). In [9], the
authors investigated the channel modeling and performance
analysis for movable antenna-assisted MIMO systems. Note
that most existing works on FA exploited instantaneous CSI,
which is a strong assumption since it is usually difficult to
acquire instantaneous CSI in FA-assisted systems as changes
in the antenna position will cause channel variation [10], [11].
On the other hand, the slow-changing property of statistical
CSI makes it relatively easy to obtain. Thus, for practical
consideration, statistical CSI can be exploited to facilitate the
transmit design of FA-assisted systems [12]–[14].

In this letter, we investigate a FA-assisted MIMO system
exploiting statistical CSI. Specifically, we study the rate max-
imization problem by jointly optimizing the transmit covari-
ance, the receive FA position, and the transmit FA position.
First, Jensen’s inequality is adopted to simplify the objective
function. Then, we apply the alternating optimization method
and divide the transformed problem into three sub-problems.
We provide a closed-form solution for the transmit covariance
sub-problem, while a second-order Taylor expansion is used
to find a sub-optimal solution for the transmit/receive FA
position sub-problem. Finally, simulation results demonstrate
that the FA-assisted system ensures superior performance over
the conventional FPA-assisted system.

Notations: E{·} represents the expectation operation. The
notation tr{·} means the trace, and ≜ is used for definitions.
Additionally, AH represents conjugate transpose of matrix A
while aT represents transpose of vector a and Ai,j denotes
the (i, j)-th element of matrix A. CN (0,B) is complex
circularly symmetric Gaussian distribution with zero mean and
covariance matrix B. || · ||2 represents the l2 norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MIMO system that consists of a transmit-
ter with N FAs and a receiver with M FAs. FAs at the
transmitter and receiver are all connected to radio frequency
chains via flexible cables so that they can move freely
in the given regions St and Sr, respectively. To represent
the precise positions of the transmit and receive FAs, we
introduce the two-dimensional Cartesian coordinate system.

This article has been accepted for publication in IEEE Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2023.3336805

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on December 11,2023 at 22:57:12 UTC from IEEE Xplore.  Restrictions apply. 



2

The coordinates of the n-th (1 ≤ n ≤ N) transmit FA
and the m-th (1 ≤ m ≤ M) receive FA are denoted as
tn = (xn, yn)

T ∈ St and rm = (xm, ym)T ∈ Sr, respectively.
We assume that both St and Sr are A × A square regions,
i.e., St = Sr = [−A/2, A/2] × [−A/2, A/2]. The position
collections of N transmit FAs and M receive FAs are denoted
by t = [t1, . . . , tN ] ∈ R2×N and r = [r1, . . . , rM ] ∈ R2×M ,
respectively.

The transmit signal is denoted by s ∈ CN×1. The transmit
covariance matrix is defined by Q ≜ E{ssH} ∈ CN×N . The
receive signal is expressed as

y(t, r) = H(t, r)s+ z, (1)

where H(t, r) ∈ CM×N is the channel matrix between the
transmitter with N FAs at positions t and receiver with M
FAs at positions r, and z ∈ CM×1 ∼ CN (0, σ2IM ) is the
complex additive white Gaussian noise.

We assume that the size of the FAs moving region is
much smaller than the distance between the transmitter and
the receiver so that the far-field model can be assumed
[8]. In this case, the channel is modeled assuming planar
wavefront, which ignores the amplitude difference between
the received signals of each array element, and considers that
the received signals are simple time-delay relations. Moreover,
for each channel path, the angles of departure (AoDs) and
arrival (AoAs) depend mainly on the scatterer and propagation
environment and do not vary with different antenna positions.

The number of transmit and receive paths is denoted by
L

t
and L

r
, respectively. For the transmitter side, the elevation

and azimuth AoDs of the p-th (1 ≤ p ≤ L
t
) transmit path are,

respectively, denoted as θpt ∈ [0, π] and ϕp
t ∈ [0, π]. In the p-th

transmit path, the propagation distance difference between the
position of the n-th transmit FA and origin t0 = (0, 0)T is [8]

ρpt (tn) = xn sin θ
p
t cosϕ

p
t + yn cos θ

p
t . (2)

Correspondingly, the signal phase difference between the
position of the n-th transmit FA and origin t0 = (0, 0)T in
the p-th transmit path can be obtained as 2πρpt (tn)/λ, where
λ is the signal wavelength. Thus, the transmit field response
vector can be written as

g(t) ≜
[
eȷ

2π
λ ρ1

t (t), . . . , eȷ
2π
λ ρ

Lt
t (t)

]T
∈ CLt×1. (3)

The field response matrix of all N transmit FAs can be denoted
as

G(t) ≜ [g (t1) ,g (t2) , . . . ,g (tN )] ∈ CLt×N . (4)

For the receiver side, the elevation and azimuth AoAs of
the q-th (1 ≤ q ≤ L

r
) receive path are, respectively, denoted

as θqr ∈ [0, π] and ϕq
r ∈ [0, π]. In the q-th receive path, the

propagation distance difference between the position of the
m-th receive FA and origin r0 = (0, 0)T is

ρqr (rm) = xm sin θqr cosϕ
q
r + ym cos θqr , (5)

and the corresponding path phase difference can be obtained
as 2πρqr (rm)/λ. Thus, the receive field response vector can be

written as

f(r) ≜
[
eȷ

2π
λ ρ1

r (r), . . . , eȷ
2π
λ ρ

Lr
r (r)

]T
∈ CLr×1. (6)

The field response matrix of all M receive FAs can be denoted
as

F(r) ≜ [f (r1) , f (r2) , . . . , f (rM )] ∈ CLr×M . (7)

The path response matrix from the origin of the transmit
region t0 = (0, 0)T to the origin of the receive region
r0 = (0, 0)T is defined as Σ ∈ CLr×Lt . Σq,p refers to the
response coefficient between the p-th transmit path and the q-th
receive path. We assume Σq,p is independently and identically
distributed, which is modeled as a Gaussian distributed random
variable with zero mean and variance α2. Therefore, the
channel matrix H(t, r) from transmitter with FAs at positions
t to receiver with FAs at positions r can be written as [8],
[15]

H(t, r) = FH(r)ΣG(t). (8)

By exploiting the property that AoAs/AoDs usually vary much
more slowly than path gains over time-varying channels [16],
[17], the ergodic achievable rate under transmit covariance Q,
transmit FAs positions t, and receive FAs positions r is written
as

R = EΣ

{
log det

(
IM +

1

σ2
H(t, r)QHH(t, r)

)}
. (9)

In this letter, we aim to maximize the achievable rate de-
scribed in (9) using statistical CSI. The optimization problem
is formulated as

max
Q,t,r

EΣ

{
log det

(
IM +

1

σ2
H(t, r)QHH(t, r)

)}
s.t. t ∈ St,

r ∈ Sr,

∥tk − tl∥2 ≥ D, k, l = 1, 2, . . . , N, k ̸= l,

∥rk − rl∥2 ≥ D, k, l = 1, 2, . . . ,M, k ̸= l,

tr(Q) ≤ Pmax,

(10)

where D is defined as the minimum required distance between
transmit/receive FAs to avoid mutual coupling.

Note that the optimization problem in (10) involves a non-
concave objective function with expectation operation, non-
concave minimum required distance constraints, and coupled
variables. These challenges make it difficult to tackle.

III. STATISTIAL CSI-AIDED RATE MAXIMIZATION

Here, we first use Jensen’s inequality to derive an analytical
upper bound for (9). Then we propose an algorithm to convert
the nonconvex problem (10) into several convex sub-problems.
Finally, we discuss the convergence and computational com-
plexity of the proposed rate maximization algorithm.

A. Upper Bound of the Achievable Rate

For (10), computing the expectation values is quite resource-
consuming. Utilizing the traditional Monte Carlo method to
manipulate the expectation operation is also computationally
cumbersome. Therefore, we replace the original objective
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function with its tight upper bound. Jensen’s inequality [18]
can be exploited to derive the upper bound of R, given by

R ≤ R ≜ log det

(
IM +

1

σ2
EΣ

{
H(t, r)QHH(t, r)

})
= log det

(
IM +

1

σ2
FH(r)EΣ

{
ΣPΣH

}
F(r)

)
,

(11)
where we define P ≜ G(t)QGH(t). Utilizing the statistical
characteristics of Σ, the expectation term in (11) can be further
written as [18]

EΣ

{
ΣPΣH

}
= tr(P)α2ILr

. (12)

Correspondingly, the objective function can be rewritten as

R = log det

(
IM +

α2

σ2
tr
(
G(t)QGH(t)

)
FH(r)F(r)

)
.

(13)
Although the expectation operation is replaced, the prob-

lem is still very challenging since the optimization problem
has a non-concave objective function, non-concave minimum
required distance constraints and coupled variables. In the
following, we exploit the alternating optimization method to
handle the rate maximization problem. The idea of alternating
optimization is to optimize the objective function with respect
to one variable while keeping the remaining variables fixed
[19]. All variables are iterated until the convergence condition
is satisfied. The alternating optimization algorithm can at least
find the local optimal solution of the original problem [19].

B. Optimization of Transmit Covariance Matrix

With given r and t, the transmit covariance matrix opti-
mization sub-problem can be written as

max
Q

log det

(
IM +

α2

σ2
tr
(
G(t)QGH(t)

)
FH(r)F(r)

)
s.t. tr(Q) ≤ Pmax.

(14)
Because the derivative of log det(I+ xW) with respect to

x is always greater than 0, maximizing the objective function
in (14) is equivalent to maximizing tr

(
G(t)QGH(t)

)
. Thus,

the sub-problem can be reformulated as

max
Q

tr
(
G(t)QGH(t)

)
s.t. tr(Q) ≤ Pmax.

(15)

Since the trace operation obeys the Cauchy-Schwarz in-
equality, we have tr(MN) ≤

√
tr(M2) tr(N2) [20]. The

equality holds when M is a multiple of N. Applying this
property to the objective of (15), we have

tr
(
G(t)QGH(t)

)
= tr

(
QGH(t)G(t)

)
≤
√
tr(Q2) tr([GH(t)G(t)]2).

(16)

When the objective function reaches its maximum value, it
satisfies that Q is a multiple of GH(t)G(t). Moreover, the
optimal solution of Q should also satisfy tr(Q) = Pmax.

C. Optimization of Receive FA Position

With given Q and t, the receive FA position optimization
sub-problem can be written as

max
r

log det

(
IM +

α2

σ2
tr
(
G(t)QGH(t)

)
FH(r)F(r)

)
s.t. r ∈ Sr,

∥rk − rl∥2 ≥ D, k, l = 1, 2, . . . ,M, k ̸= l.
(17)

Let a = α2

σ2 tr
(
G(t)QGH(t)

)
. The objective function R

can be rewritten as

R = log det
(
IM + aFH(r)F(r)

)
= log det

(
ILr

+ aF(r)FH(r)
)

= log det

(
ILr

+ a

M∑
m=1

f(rm)fH(rm)

)
.

(18)

The final expression in (18) decouples the position variables of
M receive FAs, making it easier to optimize each FA position
separately.

After removing the m-th column vector f(rm) from matrix
F(r), we denote the remaining L

r
× (M − 1) matrix as

F̄m = [f (r1) , f (r2) , . . . , f (rm−1) , f (rm+1) , . . . , f (rM )].
After separating F(r) into f(rm) and F̄m, the objective
function R can be rewritten as [8]

R = log det
(
ILr

+ a
(
F̄mF̄H

m + f(rm)fH(rm)
))

= log det
(
ILr

+ a
(
ILr

+ aF̄mF̄H
m

)−1
f(rm)fH(rm)

)
+

log det
(
ILr

+ aF̄mF̄H
m

)
= log det

(
1 + afH(rm)

(
ILr

+ aF̄mF̄H
m

)−1
f(rm)

)
+

log det
(
ILr

+ aF̄mF̄H
m

)
.

(19)
With given {rk, k ̸= m}Mk=1, maximizing R equals maxi-

mizing p(rm) = fH(rm)Bmf(rm), where

Bm =
(
ILr

+ aF̄mF̄H
m

)−1 (20)

is a positive definite matrix independent of rm. Then the
receive FA position optimization sub-problem can be refor-
mulated as

max
rm

p(rm) = fH(rm)Bmf(rm)

s.t. rm ∈ Sr,

∥rm − rk∥2 ≥ D, k = 1, 2, . . . ,M, k ̸= m,
(21)

which can be handled by the second-order Taylor expansion
approach described in [8].

D. Optimization of Transmit FA Position

With given Q and r, the transmit FA position optimization
sub-problem can be written as

max
t

log det

(
IM +

α2

σ2
tr
(
G(t)QGH(t)

)
FH(r)F(r)

)
s.t. t ∈ St,

∥tk − tl∥2 ≥ D, k, l = 1, 2, . . . , N, k ̸= l.
(22)
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Algorithm 1 Rate Maximization Algorithm with Statistical
CSI

Require: M , N , L
t
, L

r
, {θpt }

Lt
p=1, {ϕp

t}
Lt
p=1, {θqr }

Lr
q=1,

{ϕq
r}

Lr
q=1, σ2, α2, Σ, D, Pmax.

Ensure: t, r, Q.
1: Initialize t, r, threshold ε, set iteration i = 0, and calculate

objective function R
(0)

as (13).
2: repeat
3: Update Q by optimizing sub-problem (15).
4: for m = 1: M do
5: Calculate Bm as (20).
6: Update rm by optimizing sub-problem (21).
7: end for
8: for n = 1: N do
9: Calculate Cn as (25).

10: Update tn by optimizing sub-problem (26).
11: end for
12: Set i = i+ 1.
13: Calculate R

(i)
as (13).

14: until |R(i) −R
(i−1)| ⩽ ε.

With t being the optimization variable, maximizing the
objective function in (22) is equivalent to maximizing
tr
(
G(t)QGH(t)

)
. Thus, the sub-problem can be reformu-

lated as

max
t

tr
(
G(t)QGH(t)

)
s.t. t ∈ St,

∥tk − tl∥2 ≥ D, k, l = 1, 2, . . . , N, k ̸= l.

(23)

Similarly, using the Cauchy-Schwarz inequality, the objec-
tive function in (23) is upper bounded by (16). Thus, maxi-
mizing the objective function in (23) is same as maximizing

tr
(
GH(t)G(t)GH(t)G(t)

)
= tr

(
G(t)GH(t)G(t)GH(t)

)
= tr

(
N∑

n=1

g(tn)g
H(tn)

N∑
m=1

g(tm)gH(tm)

)
.

(24)
With given {tk, k ̸= n}Nk=1, maximizing (24) equals to

maximizing tr
(
g(tn)g

H(tn)Cn

)
= gH(tn)Cng(tn), where

Cn =

N∑
m ̸=n

g(tm)gH(tm) (25)

is a positive semidefinite matrix independent of tn. Then
the transmit FA position optimization sub-problem can be
reformulated as

max
tn

q(tn) = gH(tn)Cng(tn)

s.t. tn ∈ St,

∥tn − tk∥2 ≥ D, k = 1, 2, . . . , N, k ̸= n,

(26)

which can be handled by the second-order Taylor expansion
described in [8].

To summarize, a statistical CSI-aided rate maximization
algorithm for FA-assisted systems is detailed in Algorithm 1.
The proposed algorithm consists of outer and inner iterations.

Concerning the inner iteration, the optimization sub-problems
satisfy the convergence conditions mentioned in [8]. For
outer iterations, the objective function is bounded and non-
decreasing. The proposed iterative algorithm can therefore be
guaranteed to converge.

The computational complexity of Algorithm 1 is ana-
lyzed as follows. In Step 3, the computational complexity
of updating Q is O

(
N2L

t

)
. From Step 4 to Step 7, the

corresponding complexity to compute receive FA position
r is estimated as O

(
MNLrγ

1
r
+M2.5 ln(1/β)γ2

r

)
, where

γ1
r

and γ2
r

are the maximum number of inner iterations
and the maximum number of iterations required to handle
the quadratic programming problem, respectively, and β is
the accuracy of the interior-point method [8]. Similarly, the
computational complexity of updating t from Step 8 to Step
11 is O

(
MNLtγ

1
t
+N2.5 ln(1/β)γ2

t

)
. Hence, assuming the

maximum number of outer iterations is γ, the total computa-
tional complexity is O((N2L

t
+MNL

r
γ1

r
+M2.5 ln(1/β)γ2

r
+

MNL
t
γ1

t
+N2.5 ln(1/β)γ2

t
)γ).

IV. SIMULATIONS RESULTS

In this section, we provide numerical analysis to show the
performance of the proposed statistical CSI-aided algorithm.
We consider a MIMO system, including a transmitter and a
receiver each with 4 FAs. The number of transmit and receive
paths is set as Lt = Lr = 3. We assume that the elevation and
azimuth AoDs/AoAs {θpt }

Lt
p=1, {ϕp

t}
Lt
p=1, {θqr }

Lr
q=1, {ϕq

r}
Lr
q=1

are all independent and identically distributed variables ran-
domly distributed in [0, π]. The variance of Σi,j is set as
α2 = 1/Lr . The signal wavelength is set as λ = 1.5 m. The
minimum required distance between transmit/receive FAs is
set as D = λ/2. The average power of noise is set as σ2 = 15
dBm. The signal-to-noise (SNR) is defined as Pmax/σ

2.
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Fig. 1: Convergence of Algorithm 1 under different values of Pmax.

We compare the proposed design with the following base-
lines:

FPA: The antennas at the transmitter and receiver are
uniformly linear arrays and the inter-element antenna spacing
is λ/2.

RFA: The antennas at the transmitter are uniformly linear
arrays, and the inter-element antenna spacing is λ/2. The
antennas at the receiver are FAs, which can move freely in
the given region.

The convergence performance of Algorithm 1 under dif-
ferent values of Pmax is presented in Fig. 1. It is shown that
Algorithm 1 can converge after a few iterations.
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Fig. 3: Rate versus the size of the normalized region A/λ.

Fig. 2 compares the achievable rates of the FA-assisted
MIMO system and baselines with respect to SNR. We can
observe that for different SNR, the rate performance of the
proposed design always outperforms the RFA and FPA de-
signs, and the performance gain rises with the increase of
SNR. Specifically, when SNR = 15 dB, the proposed FA design
obtains 38.04% and 15.72% performance gains compared with
the FPA and RFA designs.

Fig. 3 illustrates the achievable rates of the FA-assisted
MIMO system and baselines with respect to region size
(normalized by wavelength) A/λ. It is observed that all FA-
based approaches (either RFA or our proposed scheme) benefit
from a larger antenna region. When the normalized region
A/λ size reaches 2, we can observe that curves corresponding
to FA and RFA converge, which means that we can use a
limited region of transmit/receive FAs to achieve the maximum
achievable rate. Besides, it is clearly shown that compared
with the RFA and FPA designs, the proposed FA design
dramatically improves the rate performance of the MIMO
system. Specifically, when A = 3.5λ, the proposed FA design
obtains 34.72% and 23.68% performance gains compared with
the FPA and RFA designs, respectively.

V. CONCLUSION

In this letter, we investigated rate maximization for a FA-
assisted MIMO system with statistical CSI under the minimum
inter-antenna distance and power constraints. To simplify the
objective function, Jensen’s inequality was used to derive an
analytical upper bound for the ergodic achievable rate. Then
an alternating optimization approach was utilized to tackle the
rate maximization problem. We investigated the relationship

between the achievable performance and system parameters,
such as the normalized region size and SNR. Numerical results
demonstrated the performance gains of the FA-assisted system
over the conventional FPA counterpart. Moreover, the results
revealed that a limited region of transmit/receive FAs can be
used to achieve the maximum achievable rate.
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