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The role of experience in prioritizing
hippocampal replay

Marta Huelin Gorriz 1, Masahiro Takigawa 1 & Daniel Bendor 1

During sleep, recent memories are replayed by the hippocampus, leading to
their consolidation, with a higher priority given to salient experiences. To
examine the role of replay in the selective strengthening of memories, we
recorded large ensembles of hippocampal place cells while male rats ran
repeated spatial trajectories on two linear tracks, differing in either their
familiarity or number of laps run. We observed that during sleep, the rate of
replay events for a given track increased proportionally with the number of
spatial trajectories run by the animal. In contrast, the rate of sleep replay
events decreased if the animal was more familiar with the track. Furthermore,
we find that the cumulative number of awake replay events occurring during
behavior, influenced by both the novelty and duration of an experience, pre-
dicts which memories are prioritized for sleep replay, providing a more par-
simonious neural correlate for the selective strengthening of memories.

Memory storage goes through a two-stage process in the brain1. First
behavioral episodes are encoded by the hippocampus, and then dur-
ing sleep, these memories are consolidated, with information initially
stored in the hippocampus gradually transformed into a stable, long-
term memory2. Neurons in the rodent hippocampus, commonly
referred to as place cells, are spatially tuned and fire action potentials
when the animal is positioned within a specific region of the environ-
ment, known as a place field3. As the rodent runs along a spatial tra-
jectory throughmultiple placefields, the corresponding place cells fire
in a temporal sequence. During offline states such as quiet restfulness
and non-REM sleep, these same place cells spontaneously reactivate
this sequential pattern, reinstating a neuralmemory trace of the spatial
trajectory previously traversed4,5. The link between hippocampal
replay, memory consolidation, and sleep is supported by extensive
experimental evidence demonstrating (1) a cortico-hippocampal dia-
log during sleep, leading to coordinated replay activity, and (2) a
memory enhancement (or disruption) following a positive (or nega-
tive) manipulation in sleep and/or replay6–18.

However, not all memories are equally valuable for an animal’s
survival. For example, the location of a new food cache should take
precedence over other regions in the environment that provide no
benefit to the animal and are less likely to be visited in the future. As
consolidation is a time-limited process, there is an information
bottleneck for memory storage and a need for efficiency. It is

hypothesized that the brain prioritizes the consolidation of
important and novel memories while delaying or even triaging
memories that are less important to consolidate, leading to their
eventual forgetting6,19. Furthermore, as memories get more
strongly consolidated, the need to continue consolidating these
memories should decrease, providing more opportunities for the
consolidation of newer memories not yet benefited from this pro-
cess. Data in humans indicate that memory prioritization is a con-
sequence of an experience’s salience, which can take multiple
forms, including emotional20, repetition21, reward22, or even per-
ceived future relevance, such as simply informing participants after
training that the task will be later tested23. This ability of the brain to
bias memory processing towardsmore salient experiences requires
sleep; if subjects remained awake following training on a behavioral
task for a similar time period, no bias in-memory processing is
observed23. Furthermore, if sleep does not occur within the 24-h
period following the behavioral task, any saliency bias in memory is
permanently lost, even with two nights of recovery sleep following
sleep deprivation24. These data suggest that memories can be
effectively prioritized or triaged, but only within a limited time
window. How this is accomplished by the brain, specifically how the
hippocampus tags salient memories during learning for later
prioritization during this sleep window for consolidation is
unknown.
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Results
We examined hippocampal replay during post-behavior sleep periods
after male rats (n = 4) ran spatial trajectories on two linear tracks
(Fig. 1A). Following a 1-h sleep period (PRE) in a quiet remote location
(rest box) from the two tracks, the rat ran spatial trajectories on two
novel tracks (RUN1), motivated by a small liquid reward delivered at
each end of the track, every lap. During the first exposure to the novel
tracks, the two tracks differed in the number of laps the rat was per-
mitted to run (16 laps for track 1, and between 1–8 laps for track 2).
Next, the rat was returned to the rest box for a 2 h rest/sleep session
(POST1) and then returned back to the same two linear tracks to run
additional spatial trajectories (RUN2). During the re-exposure to the
two linear tracks, the amount of time the rat spent running on each
track was fixed (approximately 15min/track). However, during RUN2,
the familiarity of the two tracks presumably differed as a consequence
of the number of laps previously run in RUN1 (i.e., always more laps
were previously run on track 1 than track 2). Finally, following RUN2,

the rat had an additional rest/sleep session in the rest box for 1 h
(POST2). This experiment was repeated across 5 days, each with a
different lap condition on track 2 (1, 2, 3, 4, or 8 laps) during RUN1. To
generate novel environments each day, the track geometries and
textures were changed, and the two tracks were repositioned in the
room with new cues (Fig. 1B). The configurations of the room (e.g.,
track geometry and placement, barriers for visual occlusion) and lap
conditions were pseudo-randomly ordered for each subject. During
RUN1, the additional laps on track 1 relative to track 2 (Fig. 1C and
Fig S1A), led to an increase in the total time spent immobile (speed
<4 cm/s) (Fig. 1D and Fig. S1B, two-sided Wilcoxon signed-rank test,
p =0.00013, n = 19) and running (Fig. 1E and Fig. S1C, two-sided Wil-
coxon signed-rank test, p = 0.00013, n = 19). However, no difference
was observed between the two tracks during the re-exposure session
(RUN2, two-sided Wilcoxon signed-rank test, p = 0.78 for total time
spent immobile and p = 0.26 for time spent mobile, n = 19). Further-
more, across all protocols, the average running speed of the animal

Fig. 1 | Behavioralmanipulation of spatial experience. A Experimental design. A
given session started with a 1-h rest period in a remote rest box (PRE) followed by
the first exposure to two novel linear tracks (RUN1), differing in the number of laps
allowed to explore (16 laps on Track 1 and between 1–8 laps on Track 2). After
RUN1, the rat was allowed to rest for 2 h in the rest pot (POST1) before being re-
exposed to both tracks (RUN2), where rat was allowed run on each track for
approximately 15min. The session ended with a 1-h rest session (POST2). B The
configuration of both tracks and the rest box (including track geometry and pla-
cement) as well as the number of laps ran on Track 2 during RUN1 were pseudo-
randomized for each rat.C–F Summary of animal behavior during RUN1 andRUN2.
Data points from track 1 (T1) and track 2 (T2) during the first exposure (RUN1) are

indicated using orange and light blue, respectively. Data points from track 1 and
track 2 during the second exposure (RUN2) are indicated using red and dark blue.
Error bars are presented as mean ± SD for panels (C–F). ***p <0.001, two-tailed
Wilcoxon signed-rank test. C Number of laps run for each protocol. ***p =0.00013
for T1 vs. T2 during RUN1 and p =0.72 for T1 vs. T2 during RUN2. D Time spent
immobile for each protocol. ***p =0.00013 for T1 vs. T2 during RUN1 and p =0.78
for T1 vs. T2 during RUN2. E Time spent mobile for each protocol. ***p =0.00013
for T1 vs. T2 during RUN1 and p =0.26 for T1 vs. T2 during RUN2. FMoving speed
for each protocol. p =0.94 for T1 vs. T2 during RUN1 and p =0.97 for T1 vs. T2
during RUN2. n = 19 sessions from 4 rats.
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between tracks remained similar (Fig. 1F and Fig. S1D, two-sided Wil-
coxon signed-rank test, p =0.94 for RUN1 and p =0.97 for
RUN2, n = 19).

Using chronically implanted microdrives25–27, we recorded from
large ensembles of place cells during our behavioral task and the cor-
responding sleep sessions. We observed that place cells globally
remapped between tracks27,28, while having similar place fields on the
same track between RUN1 (first exposure) and RUN2 (re-exposure)
(Fig. 2A, B and Fig. S2). The majority of sessions had at least 50 place
cells per track (Fig. S3A). Using anaïve Bayes decoder, we reconstructed
the rat’s position on each track from the firing rates of place cells during
RUN1 and RUN2, and using this same approach we reconstructed the
virtual spatial trajectories within replay events across the entire
recording session. Candidate replay events were selected based on a
minimum duration >= 100ms, and a z-score threshold of 3 for the
smoothed multi-unit activity across all channels27 (see Methods). Can-
didate replay events with a z-score > 3 for ripple-band power, and a
statistically significant weighted correlation score (p <0.05) for three
different shuffle distributions27,29 (see Methods) were considered sig-
nificant replay events and included in our analysis (Fig. 2C). Replay
events during POST1 and POST2 were classified as replay during puta-
tive sleep state (referred as sleep replay hereafter) if the replay occurred
when the animals’meanmoving speedwithin a 1-min timebinwas lower
than 4 cm/s and the z-scoredMUA activity of the most active units (top
one-third of the units in terms of total spike count) was above 0.
Otherwise, they were classified as rest replay (see Methods).

We first examined how the number of laps run during RUN1
influenced the rate of replay (i.e., the number of replay events per
unit time) that occurredduring POST1, focusing on the first 30min of
cumulative sleep (see Methods). We selected the first 30min of
cumulative putative sleep as this timeframe represents the longest
minimum duration that all animals attained in most sessions. In
addition, for all animals, the first 30min of cumulative sleep was
distributed similarly across time, independent of the session condi-
tion. Using place fields in RUN1 to decode POST1 replay events, we
observed that the rate of sleep replay increased with the number of
laps run by the animal (Fig. 3A, B). On thefirst track, the rat always ran
16 laps, and correspondingly, sleep replay rates were similar across
protocols and generally higher than track 2 (for which the rat always
ran fewer laps). On track 2, replay rates decreased as the number of
laps was reduced across protocols. We observed a significantly
higher sleep replay rate in POST1 for track 1 compared to track 2
across all protocols (Fig. 3B, T1 and T2 mean ± SD:
T1 = 0.0310 ± 0.01events/s, T2 = 0.0185 ± 0.0077 events/s, two-sided
Wilcoxon signed-rank test, p = 0.0002, n = 19). This difference was
also observed in the proportion of active place cells in replay events
of track 1 and track 2 during POST1 (Fig. S3B).

While both trackswere novel to the rat inRUN1, thiswas no longer
the case in RUN2 when rats were re-exposed to the same tracks. While
the time spent on each track was fixed (approximately 15min each),
the tracks now varied in their familiarity, given that the rat always has
had more previous experience (number of laps) on track 1 relative to

Fig. 2 | Hippocampal remapping across tracks and representational stability
across exposures. A Raster plot of cells spiking activity sorted by their peak firing
rate on the track, and the associated decoded posterior probability for example
laps from both tracks. B Cumulative frequency of the population vector (PV) cor-
relations between place field maps during RUN1 and RUN2. Lines with different
colors were used to indicate data from different experimental protocols: dark

purple for T1 with 16 laps, magenta for T2with 8 laps, blue-violet for T2with 4 laps,
blue-green for T2 with 3 laps, jade green for T2 with 2 laps and green for T2 with 1
lap. Gray lines represent the distributions of the shuffled data. C Example neuronal
activity and decodedposterior probability for replay events during POST1 fromRat
2 with a 16-4 laps protocol on track 2 during RUN1.
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Fig. 3 | Hippocampal sleep replay increases with repetition but decreases with
familiarity. A Raster plot of significant replay events for track 1 (top) and track 2
(bottom) during the pre-exposure rest period (PRE), the first exposure to track 1
(RUN1 T1) and track 2 (RUN1 T2), the rest period following the first exposure
(POST1), the re-exposure to track 1 (RUN2 T1) and track 2 (RUN2 T2) and the final
rest period (POST2). B, C Rate of sleep replay for track 1 and track 2 during first
30min of cumulative sleep of POST1 (B) and POST2 (C). For POST1, the lap number
associated with each track during RUN1 was highlighted in bold. For POST2, the lap
number was not highlighted as the time spent on the two tracks was nearly iden-
tical. Each datapoint represents the mean sleep replay rate within a session, color-

coded according to the experimental protocol and track identity (same as Fig. 1C–F
andFig. 2B). ***p =0.0002 for T1 vs. T2POST1 sleep replay (B), ***p =0.002 forT1 vs.
T2POST sleep replay (C), two-tailedWilcoxon signed-rank test.n = 19 sessions from
4 rats. Error bars are presentedasmean ± SD forpanels (B,C).D,ECumulative sleep
replay bias across protocols during POST1 (D) and POST2 (E). The solid line and the
shaded region represent the mean± standard deviation across all sessions for a
given protocol. Color scheme according to the experimental protocol (same as
Fig. 2B), The solid line becomes a dashed line when less than half of the animals are
contributing to the data at each time point. The light blue box outlines the first
30min of cumulative sleep time windows used for analysis in B, C.
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track 2. Using place fields from RUN2 to decode POST2 replay events,
we observed that replay rates in the first 30min of cumulative sleep
were significantly higher for track 2 compared to track 1, suggesting
that the more familiar track replayed less during periods of putative
sleep (Fig. 3C, T1 and T2 mean± SD: T1 = 0.0265 ± 0.010 events/s,
T2 = 0.0366 ±0.011 events/s, two-tailed Wilcoxon signed-rank test
p =0.002, n = 19). This difference was also observed in the proportion
of active place cells in replay events of track 1 and track2 during POST2
(Fig. S3B).

To help control for potential changes in replay rates across ses-
sions and subjects, we next calculated the track replay bias, by sub-
tracting thenumber of track 1 replay events from thenumber of track 2
replay events within a specified time window. Calculating the cumu-
lative track replay bias over time, we observed that the difference in
the number of replay events between track 1 and track 2 grew linearly
in the positive direction (track 1 > track 2) during POST1 sleep periods.
This suggests that the replay bias towards track 1 was present at the
start of the sleep session and was maintained throughout POST1,
beyond the 30min of cumulative sleep that was used in our main
analysis (Fig. 3B, D). Several labs have reported a decay of replaywithin
the first hour of sleep8,30–32, however, more recently replay has been
reported to last for hours, and even days, after the experience33–36. We
observed that the rate of sleep replay for both track 1 and track 2 slowly
decayed (with a similar slope) during POST1 (Fig. S4A, B). This indicates
that a constant bias in the rate of sleep replay between tracks during
POST1 can nevertheless still be maintained in spite of an overall
decrease in sleep replay rates over time. Interestingly, the decay in
sleep replay rates differed in slope between tracks during POST2
(Fig. S4C, D), suggesting that decay rates are not always fixed andmay
depend on behavioral parameters in the task (e.g., familiarity).

We next examined how the track replay bias was affected by
familiarity during POST2, where familiarity increased with the amount
of prior exposure (number of laps) run on the track during RUN1. We
observed a negative track replay bias for periods of sleep across
POST2, indicating that track 2 replayed more than track 1 throughout
POST2 (albeit over a shorter sleep session),with the cumulative change
in bias between track 2 and track 1 more similar between protocols
(Fig. 3C, E). Together, these results suggest that both repetition and
familiarity influence sleep replay resulting in (1) higher replay rates
withmoreexperienceon anovel track (more laps), and (2) lower replay
rates with greater familiarity (i.e., more prior experience on the same
track). Interestingly, we observed a similar qualitative relationship for
repetition and familiarity with rest replay events (Fig. S5), however,
track differences were only statistically significant in POST2 (POST1 T1
and T2 mean± SD: T1 = 0.0186 ±0.0074, T2= 0.0160 ±0.0081, two-
tailed Wilcoxon signed-rank test p =0.3164, n = 19; POST2
T1 = 0.0100 ±0.0056, T2 =0.0188 ±0.0072, two-tailed Wilcoxon
signed-rank test p = 0.0010, n = 19).

We next investigated whether any additional factors that varied
between tracks could influence the rate of replay. Although we were
able to decode the trajectories accurately across all protocols (Fig. S2),
the median decoding error generally decreased with the number of
laps run by the animal on a novel track. As an alternative approach, we
measured sleep replay during POST1 using place fields obtained in
RUN2,whichwere fully stabilized after 15min of running on each track.
Using this approach, we observed the identical trendof a higher rate of
track 1 sleep replay (relative to track 2) during POST1 (Fig. S6A). Given
the possibility that the place cell representations may partially remap
betweenRUN1 andRUN2,we also quantified sleep replayduring POST1
using place fields calculated from the final (single) lap for both track 1
and track 2 regardless of the total laps ran. The result remained con-
sistent with themain finding (Fig. S6B). Becausewewere limited in the
number of sessions that could be recorded from each animal, we used
a fixed protocol with the rat always running more laps on track 1
compared to track 2, and with track 1 always being the first track used

in the re-exposure. While it is possible that sleep replay rates increase
with the recency of the behavioral episode to the sleep session (i.e.,
higher replay rates for track 2), previous replay data comparing replay
between two novel tracks with a similar duration of experience sug-
gests that this is not a significant effect27.

How does the hippocampus choose whichmemories to prioritize
for replay, given that the cues important for this decision (e.g., reward,
repetition, and familiarity) occur during the behavioral episode, and
are no longer present later during sleep? We next explored candidate
neural correlates during behavior that could predict the difference in
sleep replay rates observed during both POST1 and POST2. Both
learning and memory consolidation are postulated to rely on the
phenomenon of theta sequences, the ordered firing of place cells
occurring every theta cycle, encoding spatial trajectories sweeping
from behind to in front of the animal’s current position37. More
recently, it has been shown that impaired theta sequences result in
degraded sleep replay, suggesting that theta sequences may be
necessary for the initial formation of memory traces17. Alternatively,
the repeated ordered firing of place cells during behavior, postulated
to be necessary for sleep replay to later occur, could instead be pro-
duced during awake replay. This form of replay is qualitatively similar
to sleep replay but typically occurs during behavioral episodes and
outside periods of locomotion-driven theta activity when the animal is
resting, grooming, or consuming reward38,39. During awake replay, a
spatial trajectory within the local environment typically reactivates,
however, although less frequent, remote replay of an experience
outside of the current environment is also possible40–43. Awake replay
may play multiple functional roles, with evidence supporting both
goal-directed behavior44,45 and memory function46,47.

First, to examine the role of theta sequences in modulating the
rate of sleep replay, we computed the Bayesian decoded theta cycle
normalized by the animal’s position and duration of the theta cycle,
and observed strengthening of the sequential structure (the decoded
position gradually shifting frombehind to in front of the animal) as the
number of laps increased,while theta sequences for both tracks during
RUN2 were qualitatively similar (Fig. 4A). The number of theta
sequences (weighted correlation, p <0.05, see Methods) was sig-
nificantly higher for track 1 compared to track 2 during RUN1 (Fig. 4B,
T1 and T2 mean± SD: T1 = 1546± 647 theta sequences, T2 = 263 ± 205
theta sequences, two-tailed Wilcoxon signed rank p =0.0001, n = 19),
matching the pattern of track 1 and track 2 sleep replay during POST 1.
However, we did not observe a significant difference in the number of
theta sequences between track 1 and track 2 for RUN2 (Fig. 4C, T1 and
T2 mean ± SD: T1 = 1751 ± 753 theta sequences, T2 = 1702 ± 850 theta
sequences, two-tailed Wilcoxon signed-rank test p = 0.5732, n = 19).

We next examined if local awake replay during the behavioral task
influenced the rate of sleep replay (seeMethods).Weobserved that the
rate of awake replay was similar across protocols in RUN1, without a
statistically significant difference between track 1 and track 2, albeit
with the rate of awake replay during a single lap on track 2 being
qualitatively much lower than other protocols (Fig. 5A, T1 and T2
mean± SD: T1 = 0.13 ± 0.042 events/s, T2 = 0.12 ± 0.070 events/s, two-
tailed Wilcoxon signed-rank p =0.60, n = 19). However, the rate of
awake replay was higher for track 2 compared to track 1 during RUN2
(Fig. 5B, T1 and T2 mean± SD: T1 = 0.086±0.033, T2 = 0.13 ± 0.042,
two-tailed Wilcoxon signed-rank p = 0.0038, n = 19), similar to the
relationship of track 1 and track 2 sleep replay during POST2.

Unlike theta sequences which were strengthened with familiarity,
local replay rates on the trackdecreasedwith increasing familiarity.We
quantified this by calculating the population vector correlation
between place cells from the same track between RUN1 and RUN2 and
found a significant regression with the rate of local awake replay dur-
ing RUN2 (Fig. 5C, R2 =0.273, p = 4.49 × 10−4). In other words, themore
the place cells remapped (or were not stable) between RUN1 and RUN2
for a given track, which was more prevalent with less prior experience
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during RUN1, the higher the rate of local awake replay. These results
support previous work reporting thatmore reactivations occur during
behavioral episodes for novel environments compared to familiar
ones48–50.

Thus far, theta sequence number and awake replay rate were
unable to explain the combined effect of repetition and familiarity/
novelty on sleep replay. However, we speculated that the cumulative
number of awake replay events should differ between tracks in RUN1,
much like theta sequences, as a consequence of time spent on the
track. Furthermore, the cumulative number of awake replay events
should also be sensitive to familiarity during RUN2, as a consequence
of awake replay rates decreasing with familiarity, and a similar time
spent on each track (15min each). We observed that for RUN1, awake
replay number was significantly higher for track 1 compared to track 2
(Fig. 6A, T1 and T2 mean ± SD: T1 = 53.1 ± 35.5, T2 = 9.5 ± 8.5, two-tailed
Wilcoxon signed-rank test p =0.0001, n = 19), while the opposite was
true for RUN2, with track 2 having significantly more awake replay
events than track 1 (Fig. 6B, T1 and T2 mean± SD: T1 = 37.5 ± 17.0,
T2 = 56.1 ± 20.8, Signed rank test p = 0.0013, n = 19). Thus, unlike our
observation for theta sequences and awake replay rate, the cumulative
number of local awake replay events RUN1 and RUN2 better mirrored
the pattern of track 1 and track 2 sleep replay during both POST1
(T1 > T2) and POST2 (T1 < T2), respectively.

To further explore the role of theta sequence and awake replay in
shaping sleep replay rate, we applied a linear regression analysis to
identify the factors that could more universally predict the rate of
sleep replay during both POST1 and POST2. Using a simple regression
analysis, we found that the time spent on a track due to task manip-
ulation (Fig. 7A, R2 =0.347, p = 1.3 × 108, n = 76), as well as all the three
candidate neural correlates were predictive of the rate of sleep replay

(Fig. 7B–D, number of theta sequence: R2 =0.390, p = 1.02 × 10−9,
n = 76, rate of awake replay: R2 =0.219, p = 1.2 × 10−5, n = 76, number of
awake replay: R2 =0.554, p = 7.9 × 10−15, n = 76). Extending our regres-
sion analysis to look more broadly at theta cycles and awake sharp-
wave ripple (SWR) events (see Methods), the predictive relationships
remained significant for both number of theta cycles and awake SWR
events (but not awake SWR rate) (Fig. 7E–G, number of theta cycle:
R2 =0.338, p = 2.22 × 10−8, n = 76, rate of awake SWR events:
R2 = −0.013, p =0.806, n = 76, number of awake SWR events:
R2 =0.497, p = 7.27 × 10−13, n = 76). While all three metrics showed a
statistically significant regression with sleep replay rate, it is plausible
that these three neural correlates exert different degrees of influence
on sleep replay, or alternatively may be a byproduct of any collinearity
across behavioral protocols. Therefore, we next sought to examine the
relative contribution of theta sequences and awake replay toward
sleep replay rate using a mixed-effect linear regression analysis. The
model used the three candidate neural correlates as well as the time
spent on track as the fixed effects and included the subject id as the
random effect to account for animal variability. All metrics were z-
scored such that the standardized beta coefficient could be used to
compare the relative weight of each fixed-effect term. We calculated
the 95% confidence interval for the standardized beta coefficient such
that the relative predictive power of the metric would be considered
statistically insignificant when it overlapped with zero. We found that
only the standardized beta coefficient of rate and cumulative number
of awake replay were significantly greater than zero (Fig. 7H), high-
lighting the relative importance of awake replay in explaining sleep
replay. If alternatively, we only used theta cycles and SWR events
during behavior, metrics that rely on oscillatory activity but not place
cell sequences (thus not sensitive to the size of the place cell

Fig. 4 | Number of theta sequences increases with the repetition of trajectories
but are insensitive to contextual novelty and familiarity. A Averaged theta
sequences per protocol. Each plot represents the averaged decoded probabilities
of three consecutive theta sweeps over 80 cm. The sequences are centered in the
trough of the theta cycle and the animal’s current position on the x-axis and the y-
axis, respectively. The hotness of the color indicates themagnitude of the decoded
probabilities.B,CNumber of theta sequenceon track 1 and track 2 duringRUN1 (B)
and RUN2 (C) for each protocol. The lap number associated with each track during

RUN1 was made in bold. The lap number was not highlighted as the time spent on
the two tracks was nearly identical. Each datapoint represents the mean theta
sequence for a given track within a session, color-coded according to the experi-
mental protocol and track identity (same as Fig. 1C–F and Fig. 2B). ***p = 0.0001 for
T1 vs. T2 RUN1 theta sequence (B), p =0.57 for T1 vs. T2 RUN2 theta sequence (C),
two-tailed Wilcoxon signed-rank test. n = 19 sessions from 4 rats. Error bars are
presented as mean± SD for panels B, C.
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ensemble),we found that only the standardizedbeta coefficient for the
cumulative number of awake SWReventswas significantly greater than
zero (Fig. 7I). Interestingly, in contrast to sleep replay, the rate and
cumulative number of awake replay events but not theta sequences

were predictive of rest replay during the POST sessions (Fig. S7A–G).
Using a mixed-effect regression analysis, awake replay number
remained the best predictor of rest replay with a significant standar-
dized beta coefficient (Fig. S7H). Therefore, while these results do not
eliminate a possible role for theta sequences in sleep replay, especially
when the environment was novel, the prioritization of offline sleep
replaywasmoreparsimoniously explained across our entire dataset by
the cumulative number of awake replay events.

To further validate our observation that a higher number of local
awake replay events during a behavioral episode resulted in a higher
priority for this spatial trajectory to subsequently replay during sleep,
we extended our analysis to individual place cells. We examined only
place cells with place fields on both tracks, and asked whether the
difference in the number of local awake replay events a given cell
participates in (track 1 – track 2) during RUN, predicts the observed
difference in sleep replay rates for that cell (track 1 – track 2) during the
subsequent POST session. We observed a significant regression in 18
out of 19 POST1 sleep sessions and 16 out of 19 POST2 sleep sessions
(Fig. S8), indicating that themore times a cell participates in the replay
of a given track, the more likely that cell is to participate during the
sleep replay of that track. To confirm that the result is not trivially
explained by the overall firing rate on the track and during sleep or
decoding accuracy, we further applied a decoding-independent ana-
lysis. Instead of using Bayesian decoding, we classified SWR events as
either track 1 or track 2 reactivation eventswhen the proportionof one
of the track’s selective place cells was 20% greater than the proportion

Fig. 6 | Local awake replaynumber increaseswith repetitionbut decreaseswith
familiarity. A, B Number of local awake replay on track 1 and track 2 during RUN1
(A) and RUN2 (B) for each protocol. Eachdatapoint represents themean number of
local awake replay for a given track within a session, color-coded according to the
experimental protocol and track identity (same as Fig. 1C–F and Fig. 2B).***p =
0.00013 for T1 vs. T2 RUN1 awake replay number, ***p =0.0013 for T1 vs. T2 RUN2
awake replay number, two-tailed Wilcoxon signed-rank test. n = 19 sessions from 4
rats. Error bars are presented as mean ± SD for panels A, B.

Fig. 5 | Rate of local awake replay is sensitive to contextual novelty and
familiarity. A, B Rate of local awake replay on track 1 and track 2 during RUN1 (A)
and RUN2 (B) for each protocol. Each datapoint represents the mean local awake
replay rate for a given track within a session, color-coded according to the
experimental protocol and track identity (same as Fig. 1C–F and Fig. 2B). p =0.60
for T1 vs. T2 RUN1 awake replay rate (A), ***p =0.0038 for T1 vs. T2 RUN2 awake
replay rate (B), two-tailed Wilcoxon signed-rank test). The lap number associated
with each track during RUN1 is indicated in bold. In RUN2, the lap number is not
highlighted as the time spent on the two tracks is similar.n = 19 sessions from4 rats.
Error bars are presented as mean ± SD for panels (A, B). C Regression between the
population vector correlationbetween exposures and the rate of local awake replay
during RUN2. The rate of local awake replayduringRUN1 for each session is plotted
on the x-axis at position 0 for visualization purposes only. n = 38 datapoint from
both tracks during RUN2 of 19 sessions (4 rats).
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Fig. 7 | The predictive relationship between the awake replay, theta sequences,
and sleep replay. A–G Linear regression of behavioral or neural metric and rate of
POST sleep replay during first 30min of cumulative sleep. A Time spent on track.
B Number of theta sequence. C Awake replay rate. D Awake replay number.
E Number of theta cycles. F Awake SWR rate. G Awake SWR number. n = 76 data
points from both tracks during RUN1 and RUN2 of 19 sessions (4 rats). Each data-
point is color-coded according to the experimental protocol and track identity

(same as Fig. 1C–F). H, I Mixed-effect regression for the relationship between
candidate neural correlates and sleep replay. H place cell sequences. I Oscillatory
events. Each bar indicates the magnitude of the standardized beta coefficient
associated with different factors with the error bar showing the estimated 95%
confidence interval. Asterisks (*) where the 95% confidence interval of the stan-
dardized beta coefficient does not overlap with 0. See the source data associated
with this figure for more information about the models.
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from the other track (where a track selective cell only had a place field
on one of the tracks). Next, using place cells with place fields on both
tracks (a non-overlapping population), we quantified the difference in
firing rate and participation between track 1 and track 2 events during
PRE, RUN, and POST SWR events. We observed that place cell firing
(e.g., firing rate difference or participation track difference) during
awake SWR events could explain firing during POST SWR events but
not during PRE SWR events (Fig. S9). These results collectively suggest
that the relationship between the number of awake the replay and the
rate of replay during post-experience sleep is highly conserved for
individual neurons, regardless of their magnitude of firing rate on the
track or overall level of participation during sleep replay.

Discussion
Here we have examined two factors that are postulated to influence
which memories are prioritized during consolidation- (1) repetition,
which we varied by controlling the number of laps run by the rat in a
single waking bout, and that when increased resulted in a higher rate
of sleep replay during POST1, and (2) familiarity, which varied as a
result of the number of laps run by the rat in the previous behavioral
episode (RUN1), and when increased resulted in a lower rate of sleep
replay in POST2. The effects of prior experience on familiaritymay be
influenced by the amount of time elapsed between RUN1 and RUN2,
and whether or how much time the animal slept during this period,
however, these were not varied parametrically in our experiments.
We observed that the number of theta sequences increased with the
number of laps run by the rat during RUN1, but were unaffected by
differences in familiarity during RUN2. In contrast to this, the rate of
awake replay was not modulated during RUN1 by the number of laps
run by the rat, however, during RUN2, awake replay rate decreased as
the prior experience on the track increased (greater familiarity). The
change in sleep replay rate for both POST1 (repetition change) and
POST2 (familiarity change), while not fully explained by the rate of
awake replay or the number of theta sequences, could be most
robustly predicted by the cumulative number of awake replay events
(Fig. S10). Furthermore, we observed at the level of individual place
cells, that the more awake replay events a cell participated in (for a
given track), the more likely it would participate in subsequent sleep
replay events of that track. Together these data suggest that a
memory will be prioritized to be replayed during sleep if there has
previously been more awake replay of this memory, cumulatively
over the behavioral episode, with the repetition of an experience and
the novelty of the context as factors that can generate more awake
replay. While the number of theta sequences and local awake replay
events tend to be correlated, in general, we would speculate an
important distinction- given that theta sequences occur at a much
higher number than awake replay events, they provide a more rea-
listic mechanism for the synaptic strengthening across cell assem-
blies, a likely prerequisite for subsequent sleep replay17,51,52. However,
once enough theta sequences have occurred for sleep replay to
manifest, awake replay likely becomes the more important factor
in deciding which memories should be prioritized or triaged
during sleep.

Awake replay provides a possiblemechanism for explaining how
a cue during a behavioral episode can drive online changes that lead
to the later prioritization of the memory during sleep replay when
this cue is no longer present53. Importantly, reward, emotion, and
novelty have all been implicated as drivers for an increased rate of
awake replay, suggesting that awake replay rates increase with the
salience of an experience or the need to update the cognitive
map38,41,48,54,55. However, even when reward or novelty is lower, longer
duration or more repetitive experiences can still lead to more sleep
replay and stronger memories21,56, because while the overall rate of
awake replay can be lower, this is compensated by an increased time

period during the behavior when awake replay can occur. It is
important to note that our data does not address whether repetition
of the spatial trajectory, overall time of the behavioral episode, and/
or time inactive during which awake replay normally occurs are key
factors modulating sleep replay, as they were largely interdependent
in our experimental design. Furthermore, because the animal
received a reward for each spatial trajectory, it is difficult to dis-
ambiguate between their direct relationship with replay rate. While
physical reward can be measured, the subjective value of the spatial
trajectory (whichmay changewith novelty and satiety) is challenging
to evaluate, and may even change across the behavioral episode.
Finally, one key feature of awake replay, not previously observedwith
theta sequences, is the ability of the hippocampus to reactivate a
remote environment while the animal is awake and able to process
new cues40. Previous work has demonstrated that remote awake
replay can be influenced by external cues, such as when an observer
ratwatches a demonstrator rat running a spatial trajectory, which can
trigger the replay of the same trajectory first experienced by the
observer rat57. Given that human memories can be selectively
strengthened during sleep when human subjects are instructed after
training that only a subset of the task will be rewarded22,23, theremust
be a mechanism by which memories can be tagged post hoc to
receive a higher priority for consolidation58. We would postulate that
when new information is provided after the behavioral task,
increasing its future relevance, awake remote replay of the task could
theoretically occur, leading to the prioritization of this memory
during sleep replay, which would result in a stronger memory post-
consolidation. While we cannot discount the possibility that awake
replay may also serve other functions, including planning and
memory storage44–47,55, it is also possible that these are simply a
byproduct of what part of the cognitive map needs to be tagged to
ensure the most efficient prioritization during sleep.

A fundamental question remains - how does awake replay tag a
memory, subsequently leading to its prioritization during sleep replay.
Which memory replays during sleep at a given moment is likely a
stochastic process, however, the probability of a salient memory
replaying could still be increased by the brain. We have previously
proposed that this bias can be the direct consequence of the increased
excitability of cortical neurons that represent the behavioral episode59.
Recent evidence suggests that the neocortex influences what the
hippocampus replays during sleep8,13,15. During sleep, epochs of
increased cortical activity (up states) precede epochs of increased
hippocampal activity (frames) during which replay occurs8. Further-
more, the content of cortical activity prior to a sharp-wave ripple can
be used to predict what the hippocampus will replay15. Similarly, pre-
senting a task-related cue such as a sound, presumably directly driving
auditory cortex, will increase the likelihood that the spatial trajectory
related to this cue subsequently replays13. Together, these data indi-
cate that cortical activity at the start of a cortical upstate influences
whichmemories can replay. Likewise, if cortical circuits representing a
memory have an increased excitability during sleep (specificallyduring
the upstate), they may in turn have amore influential vote on what the
hippocampus replays, prioritizing this memory for consolidation.

If an increase in excitability within a cortical circuit is required to
prioritize a memory for replay during sleep, then how does awake
replay play a role in this process? One possibility is that awake replay
may occur alongside the reactivation of neuromodulatory pathways
(e.g., dopamine), to allow the offline potentiation of co-activated
cortical circuits. This appears to be an important distinction between
awake and sleep replay, given that the coordinated replay between the
VTA and hippocampus has been observed in awake but not sleeping
animals60. However, this potentiation is likely temporary, as given that
the rate of replay decreases over the cumulative sleep (Fig. S4A, B), the
potentiating effects of awake replay on sleep replay rate should
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diminish with sufficient sleep such that a memory progressively loses
its priority for replay. This provides a potential feedback mechanism
for the memory triage process where the more a memory replays, the
more its replay rate is decreased, effectively de-prioritizing a memory
that has sufficiently replayed.

Methods
The data presented are from four male Lister Hooded rats [Rat 1 (Q-
BLU), Rat 2 (P-ORA), Rat 3 (N-BLU), Rat 4 (M-BLU)]. Prior to surgery,
rats were housed in pairs and kept at 90% of free-feeding weight with
free access to water. The housing room was maintained at a tem-
perature of 22 ± 2 °C, 55 ± 10% of humidity, and on a 12-h light/dark
cycle. All procedures were carried out during the light phase of the
cycle in order to facilitate sleep during the rest sessions. All experi-
mental procedures and post-operative carewere approved and carried
out in accordance with the UK HomeOffice, subject to the restrictions
and provisions contained in the Animals (Scientific Procedures) Act
of 1986.

Behavioral protocol
Prior to the start of recordings, rats were trained for approximately
two days, 30min each, to run back and forth on a linear track with
reward delivered at each end. Training occurred in a different room
and track from theoneusedduring the recordings. The training period
was extended further if required. We designed a 5-day experiment
where each day consisted of one recording session where the animal
underwent one out of five possible protocols. In each protocol, rats
encountered two novel tracks and were allowed to run back and forth
for a variable number of laps (with running the entire length of the
track back and forth considered a single lap), with a reward consisting
of chocolate-flavored milk delivered at each end of the track. The
protocols differed in the number of laps the rat had to run on the
second track, which was always less than the first track.

A given recording session started with a 1-h sleep period in which
the animals were allowed to sleep in the rest box. The rest box con-
sisted of a circular enclosure with walls 50 cm tall and with a towel
placed at the bottom, to which the animals had been previously
habituated. Next, rats were exposed for the first time to the two novel
tracks. These first exposures were separated by 10-min rest in the rest
box to facilitate discrimination between the experiences correspond-
ing to each track. In the first track (T1), rats always ran 16 laps back and
forth. The number of laps ran on T1 was constant across all five pro-
tocols and was used as a control. In the second track (T2), rats ran a
lower number of laps, which varied between 1, 2, 3, 4, or 8 laps. The
number of laps run on T2 changed every day and the order was
pseudo-randomized for each animal. After the first exposure to T1 and
T2, the animals were immediately placed back into the rest box and
were allowed a 2-h sleep period to consolidate the experience. To
ensure that place field stability was achieved for each track, rats were
exposed for a second time to the same tracks. This time, animals were
allowed to run for 15min on each track, a sufficient amount of time for
acquiring a stable hippocampal representation of the track61. As
before, both exposures were separated by a 10-min rest in the rest box.
As a final step, rats were allowed to sleep for another hour.

Experimental setup
Akey element of the protocol was to ensure the animals encountered a
new environment and two novel tracks every day. With that goal in
mind, we designed a modular maze consisting of wooden planks of
medium-density fiberboard (MDF) cut to different sizes. Pieces ofMDF
couldbe attached together into different configurations usingwooden
dowels, thus easily creating multiple track shapes using the same
pieces. All rats were exposed to the same track shapes, with the order
pseudo-randomized across sessions and tracks. This was done to
minimize any potential effect of a particular track shape on the results

of the experiment. To facilitate tracking and prevent slipping, theMDF
pieces were painted with gripping black paint (Blackfriar, UK) and
sprayed with matt black paint (Hycote, UK). To further ensure hippo-
campal remapping across days and tracks (i.e., to ensure tracks were
different enough to be recognized as such), we used a variety of tex-
tures to cover the tracks and alsomade use of distal visual cues hanged
on the walls to simulate different rooms. Additionally, large vertical
polypropylene black sheets were used as panels to divide the room,
thus creating the illusion of sub-rooms and changing the overall spatial
configuration of the room across days. The whole recording setting
was surrounded by black curtains mounted on the ceiling and lit up
with dimmable blue LED strips (CPC, 12 V).

The behavioral task was automated using custom-made software
with Bonsai (https://bonsai-rx.org//) and Arduino board (http://www.
arduino.cc/). The software monitored the position of the animal
through four webcams placed in the ceiling (Logitech C930E 1080p
HD Webcam) and controlled the delivery of the liquid reward by
activating the infusion pumps (dual Aladdin, WPI) upon the animal’s
entry in the region of interest set near the reward wells, at each end of
the track.

Electrophysiological recordings
A large-scale independently movable microdrive array was used to
record single units62. The design of the microdrive was modified to
both improve flexibility and reduce weight, to increase the number of
tetrodes, and to duplicate the number of targeted areas. Rat 2 (P-ORA)
was implanted with a dual-hippocampal microdrive, while the three
remaining were implanted with a microdrive targeting both the dorsal
hippocampus and primary visual cortex (V1).

The body of both types of microdrive was designed using an
online 3D modeling software (Vectary Inc.) and later 3D-printed
(Form2 3D printer, Formlabs). Each microdrive contained 24 inde-
pendently movable tetrodes carried inside two polyimide tubes: an
inner (ID: 0.0035”; OD: 0.0055”, IWG) and outer (ID: 0.0071”; OD:
0.0116”, IWG). The outer polyimide contained the inner one, and it was
used as a guide tube to direct the inner polyimide through the body of
themicrodrive. The inner polyimide was glued to both the tetrode and
the movable screw, allowing the tetrode to slide up and down while
protecting it from bending during the movement. The dual-
hippocampal microdrive had two outputs with 12 tetrodes each that
targeted the hippocampal region in each hemisphere. For the
hippocampal-visual cortex microdrive, 16 tetrodes were used to
record from the hippocampal area, while the remaining 8 tetrodes
targeted the visual cortex. Tetrodeswere assembled using four twisted
tungsten microwires (12 µm diameter, Tungsten 99.95% CS, CFW),
individually gold-plated to <200 kΩ impedance (NanoZ, White Matter
LLC). To protect the microdrive and achieve a better grounding, we
designed a cone that could both contain the microdrive and act as a
Faraday cage. The structure of the cone was built from aluminum foil
glued into a plastic sheet, and grounded to the Electrode Interface
Board (EIB) of the microdrive through a soldered wire.

Surgical procedure
For the surgical implantation of themicrodrive, rats were induced and
maintained under isoflurane anesthesia (1.5–3% at 2 L/min). Carprofen
(0.1mL/100 g animal weight in a solution of 1:10, Pfizer Ltd, UK) and
Baytril (10mg/Kg, Bayer) were given pre-surgically to prevent pain and
infection. Following the induction of anesthesia, the animals were
shaved and placed on the stereotaxic frame with ear bars. After dis-
infecting the skin with antiseptic (Betadine) and saline, an incision was
made to expose the skull, which was carefully cleaned with 10%
hydrogen peroxide diluted in phosphate-buffered saline and a phos-
phoric acid-based etching gel agent (37.5%, Gel Etchant) to improve
bonding to dental acrylic. Throughout the surgery the animal’s body
temperature was kept constant with a heating pad.
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For rats implanted with the hippocampal-visual cortex microd-
rive, the craniotomy aimed at the pyramidal cell layer in the CA1 area
of the right dorsal hippocampus, targeted the coordinates (from
bregma: ML = 2.5mm, AP = 3.72mm). For the rat implanted with the
double-hippocampal microdrive, bilateral craniotomies were made
above the dorsal hippocampal CA1 cell layer with coordinates (from
bregma: ML = +/−2.5mm, AP = −3.72). Two small metal screws with a
soldered wire were placed in the frontal right parietal bone and the
right occipital bone (above the cerebellum), where they served as
reference and ground, respectively. Extra screws were added in
strategic positions in the skull to act as an anchor for the implant. The
microdrive and screws were fixed in place using metabond (Super
Bond C&B) and dental acrylic (Simplex Rapid ®, Kemdent, UK).
Finally, the skin was sutured and the animal was left to recover in a
heated chamber and monitored until fully recovered all motor
functions and the ability to drink and eat. As post-surgical care, rats
were administeredwith low doses of analgesics (Metacam, 1.5mg/mL
Oral Suspension for Dogs 10mL, Boehringer Ingelheim) during 72 h.
Animals were housed individually and allowed to recover with food
and water ad libitum for a week, before returning to being kept at
90% of their free-feeding weight.

After recovery, implanted rats were screened for hippocampal
single units by gradually lowering the tetrodes until reaching the CA1
pyramidal cell layer. Neuronal activity and position data were acquired
with a 96-channel digital acquisition system (Neuralynx, DigitalLynx).
The signals were pre-amplified and digitized on the head-stage at a
sampling rate of 30 kHz. Local field potential and spikes were then
band-pass filtered in the Neuralynx acquisition unit at 0.1 Hz and
600Hz–6000Hz, respectively. Video tracking was acquired at 25 fps
using a camera also connected to the Neuralynx acquisition device,
while two LEDs mounted in the head-stage were used to infer head-
direction and position of the animal. Once tetrodes reached CA1,
recording sessions started.

Upon completion of the experiments, animals were deeply
anaesthetized with isoflurane (3% isoflurane with an oxygen flow rate
of 2 L/min) and the locations of the recording sites were marked with
electrolytic lesions by passing current through an electrode of each
tetrode (10 s, 30 µA). Animals were then terminated via an intraper-
itoneal injection of a lethal dose of Euthatal (0.5mL/100 g, sodium
pentobarbital) and perfused transcardially with saline (0.9% sodium
chloride solution) followed by 10% Formalin. The fixed brains were
then removed from the skull while carefully extracting the implanted
microdrive, and post-fixed in 10% Formalin at 4 °C for a minimum of
48 h. Next, the brains were placed in a container with 30% sucrose
solution to achieve cryoprotection. Once the brains sunk in the con-
tainer, they were mounted on a block with Optimum Cutting Tem-
perature (OCT) and sectioned coronally with a cryostat (Leica, CM1850
UV) at a thickness of 30 µm. The obtained brain slices were then wet-
mounted onto superfrost plus slides (ThermoScientific), Nissl-stained,
and coverslipped using DPX mounting media (Sigma Aldrich). Finally,
slices were examined under a Leica DMi8 microscope in order to
detect the tetrodes track reaching into the hippocampal CA1 pyr-
amidal layer. Whole-slice images were obtained using bright-field set-
tings at 25X magnification.

Spike sorting and unit isolation
Spiking data was sorted using the semi-automatic clustering software
KlustaKwik 2.0 (K.Harris, http://klustakwik.sourceforge.net/) and then
manually curated with Phy-GUI (https://github.com/kwikteam/phy).
Putative single units were isolated based on the spike waveform, auto-
correlograms, and their stability across the recording session. The rest
of the clustered activity was classified in either multi-unit activity
or noise.

Position data was collected by tracking the LEDs attached to the
head-stage during recordings. The instantaneous speedwas calculated

as the derivative of the position data. Tracking errors due to large
reflections or transient failure to detect the head-stage’s LED were
cleaned offline by (1) constraining tracking areas around the track’s
and rest box’s area; (2) removing large jumps between consecutive
pixels by setting a maximum distance jump of 40 cm; (3) setting a
speed threshold of 100 cm/s. All discarded position points and their
corresponding timestamps were then linearly interpolated. Cleaned
tracking and speed data were next converted from pixels to cm/s and
linearized from a two-dimensional coordinate into a single coordinate
(x, the distance traveled along the track).

Local field potential analysis
The power spectral density (PSD) of the hippocampal LFP was quan-
tified using Welch’s method (pwelch, MATLAB) with 2 s windows with
50% overlap for the entire session. The PSD was used to identify the
channels with higher power for theta (4–12 Hz) and ripple
(125–300Hz) oscillations, as well as the channel with the largest dif-
ference in normalized theta to ripple power. The LFP of the selected
channels was down-sampled from 30 kHz to 1 kHz and band-passed
filtered in forward and reverse directions in order to avoid phase
delays (MATLAB command filtfilt). The instantaneous phases were
estimated using the Hilbert transform.

Putative sleep quantification
Putative sleep was defined by periods of immobility (windows of 60 s
with velocity lower than 4 cm/s) accompanied by transient periods of
high multi-unit activity (z-score greater than 0). In order to reduce
noise levels when setting the multi-unit activity (MUA) threshold, only
themost active units (top 1/3 units in terms of total spike counts) were
used. To account for intrasubject variability, both the velocity and
MUA threshold were visually checked for each data and session and
corrected if needed. As a control, we compared our putative sleep
detection method with one based on the LFP activity, as it has been
commonly used in other studies34,63. For each session, we calculated
the LFP theta/delta ratio based on the channels with higher theta and
delta power, respectively. Awake periods were classified as high z-
scored theta power (>0.5) and high velocity (>4 cm/s). NREM periods
were characterized by low z-scored theta power (<0.5), low mobility
(<4 cm/s) and high z-scored theta/delta ratio (>0.5), while REM sleep
periods were classified as high z-scored theta power (>0.5), low
mobility (<4 cm/s) and high z-scored theta/delta ratio (>0.5). For the
purposes of this analysis, NREM and REM periods were merged, and
then compared to the putative sleep periods obtained with our
detection method. The putative sleep detected periods with each
method were highly correlated (mean all sessions = 0.51 ± 0.15, with a
mean p-value < .001 ± 0.002).

Place cell classification
Putative principal hippocampal cells were identified by selecting units
with a half-width half max (HWHM) larger than 500 µs and mean firing
rate <5Hz across the entire recording session. For place cell classifi-
cation, spike trains were speed-filtered to only include the spiking
activity between 4 cm/s and 50 cm/s. A principal cell was classified as a
spatially selective place cell if it had a minimum peak firing rate that
was >1 Hz in its unsmoothed ratemap for at least one of the two linear
tracks.

To generate firing ratemaps (the spike histogram divided by the
total dwell time at each position bin), the position data was discretized
in 2 cmbins for visualization and plotting, and 10 cmbins for Bayesian
decoding. Only raw (unsmoothed) ratemaps were used for all Bayesian
decoding analyses.

Bayesian decoding of animal’s spatial trajectory
A naïve Bayesian decoding algorithm was applied to reconstruct the
estimated position of the animal during behavior and replay events
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based CA1 hippocampal spiking activity64:
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where P(x|n) is the probability of the animal being at a specific position
given the observed spiking activity, C is a normalization constant, x is
the animal’s position, fi(x) is thefiring rate of the ith placefield at a given
location x, and n is the number of spikes in the time window τ. The
normalization constant was defined as the summed posterior prob-
abilities across both tracks for first exposure and second exposure
separately. We used non-overlapping temporal windows of 250ms to
decode the animal’s location while running on the track, 20ms
windows to decode replay events, and 10ms windows to decode theta
sequences.

The decoding errorwas defined as the differencebetween the real
location of the animal and the estimated position with maximum
likelihood. The decoding accuracy of each session was analyzed by
quantifying the confusion matrices of the median decoding error.
Sessions with a decoding error higher than 15 cm in the re-exposures
were discarded.

Detection of replay event
Replay trajectoriesweredecodedusing aBayesiandecoding algorithm,
as described in Tirole et al. (2022)27. Detection of candidate sharp-wave
ripple (SWR) associated replay events was based on the thresholds set
onbothmulti-unit activity (MUA) and ripple-bandpower.MUAwasfirst
binned into 1ms steps and smoothed with a Gaussian Kernel
(sigma = 5ms). Only MUA bursts with a maximum duration of 300ms
and z-scored activity over 3 were included. Next, the ripple-band
filtered LFP signal was smoothed with a 0.1 s moving average filter, and
calculated the amplitude of ripple-band filtered signal using theHilbert
transform. The candidate replay event was required to pass ripple
threshold set at z-score of 3. Candidate replay events passing both
thresholdswerenext speed-filtered (above 5 cm/s), anddiscarded if the
events involved less than 5 different units active or if their durationwas
below 100ms or above 750ms. Therefore, each event should contain
at leastfive 20ms timebins for decoding. Events detectedwithin 50ms
of each other were combined.

Replay events were classified as rest, sleep, or awake local replay.
Local awake replay was defined as replay events where its decoded
track identitymatched the track on which the animal was currently on.
Replay events during POST1 and POST2 were classified as sleep replay
if they occurredwhen animals’meanmoving speedwithin a 1-min time
bin was lower than 4 cm/s accompanied by transient periods of high
multi-unit activity (z-score greater than 0), otherwise they were clas-
sified as rest replay. For some analyses that examined the relationship
between awake SWR events and sleep replay, candidate SWR events
before decoding were used. To classify a given candidate replay event
as significant for a given track, we quantified the weighted correlation
of the posterior probability matrix, which calculates the correlation
coefficient between time (T) and decoded position (P) by weighting
each estimated position by its decoded probability (prob):
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Where xi is the ith position bin, tj is the jth time bin and probij is the
probability at the position bin i and time bin j.

To determine the statistical significance of the replay events, we
compared each candidate event’s weighted correlation score to three
different shuffled distributions:
1. Spike train circular shift, in which the spike count vectors for each

cell were independently circularly shifted in time within each
replay event, prior to decoding.

2. Place field shift, in which each ratemap was circularly shifted in
space by a random amount of position bins prior to decoding.

3. Circular shift of position, in which posterior probability vectors
for each time bin were independently circularly shifted by a ran-
dom amount.

If the score of the candidate event was greater than the 95th
percentile of the distribution for all three shuffles then the event was
considered to be significant. In a few occasions, replay events were
found to be significant for both tracks (hereafter referred as multi-
tracks events). Themean proportion ofmulti-tracks events during first
exposure and re-exposure were 0.0431 ± 0.0048 and 0.0571 ± 0.0047,
respectively. Those events were assigned to one of the tracks by
computing the Bayesian bias score for each track. Each score was
calculated as the sum of the posterior probabilitymatrix for one track,
normalized by the total sum across tracks. To assign the replay event
to a specific track, the Bayesian bias score was required to be greater
than 60%, otherwise the event was discarded. We do not think the
proportion of multi-track events is high enough to have any major
impacts on our findings.

To optimize the detection of replay events and avoid discarding a
minority of events due to noisy decoded probability at the beginning
or the end of the event, candidate replay events were split into two
segments where the midpoint was determined based on theminimum
MUA activity in the middle third of the candidate event. Halved seg-
ments were decoded and analyzed for statistical significance inde-
pendently if they passed the same selection criteria described above
with the exception of the p-value threshold adjusted to p < 0.025 to
account for multiple comparisons.

Sleep replay activity was analyzed over the first 30min of cumu-
lative sleep (in all figures unless explicitly indicated), to allow a
balanced comparison between POST1 and POST2 sleep. To calculate
the average rate of sleep replay, we divided the number of replay
events over 30min of cumulative sleep by 30min. For local awake
replay, we first counted the total number of local replay events
occurring on the linear track and divided the number of events by the
total amount of time spent immobile (period when speed <4 cm/s) to
calculate the average rate of local awake replay.

Detection of theta sequences
Theta cycles were detected using a peak-trough detectionmethod. A
sliding window was used to search for extrema within a voltage
range, which was set to be 25% of the median amplitude of the total
signal across the session (code based on online script http://nocurve.
com/virtual-lab/finding-peaks-and-troughs-in-a-noisy-curve/). Con-
secutive peaks and troughs were deleted by selecting the maximum
extrema. Theta cycles were speed-filtered (below 5 cm/s) and exclu-
ded if they occurred in the reward zone (within 20 cm from each end
of the track). Cycles shorter than 80ms or longer than 200ms were
discarded. Theta phase was calculated extracting the angle from the
Hilbert transform and binned into windows of 2π length (equivalent
to a complete cycle). Next, spike phases were extracted through
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linear interpolation and assigned to each window. Theta windows
with less than 2 active units were excluded. Phase bin edges from
each window were then interpolated back to time and spike
sequences contained within each time windowwere decoded using a
naïve Bayesian decoder (described above). Theta sequences were
decoded for each running direction, using directional ratemaps, and
repeated on a lap-by-lap basis using the smoothed ratemaps from the
corresponding lap. The resulting posterior probability matrix for
each sequence was then centered on the animal’s current location
(±40 cm), such that the actual position of the rat in thewindowwas at
0 cm. All decoded sequences for one running direction were next
reversed in order to average all the posterior probability matrices
across all theta cycles.

Similar to replay detection, theta sequence was quantified using
weighted correlation. The significance of theta sequences was deter-
mined by comparing the obtained score to three different shuffled
distributions:
(1) Spike train circular shift, a pre-decoding shuffle that alters the

spike timing of each cell within theta sequence by circularly
shifting the spike times in the temporal dimension;

(2) Circular shift of position, which circularly shifts the estimated
positions within a time bin,

(3) Circular shift of decoded theta phase, which disrupts the phase
domain by circularly shifting the estimated phase in each position
bin, but maintains the relationship between position and spike
probability.

If the score of the candidate theta sequence event was greater
than the 95th percentile of the distribution for all three shuffles then
the event was considered to be significant.

Simple and mixed-effect linear regression analysis
Simple linear regression was used to quantify the predictive relation-
ship between the metric of interest and the rate of subsequent sleep
replay for track 1 and track 2 events across both exposure sessions
(MATLAB function fitlm). To further examine the relativemagnitude of
the effects of different neural and behavioral variables to the rate of
sleep replay, we applied mixed-effect linear regression analysis
(MATLAB function fitlme). For the effect of awake replay and theta
sequence on sleep replay, we fitted a mixed-effect model for sleep
replay rate with the rate and number of local awake replay, the number
of theta sequence, and the total time spent on the track as fixed effects
and animal identity as a random effect:

Sleep replay rate ~ rate of awake replay + number of awake
replay + number of theta sequence + total time spent on the track + (1/
animal).

For the effect of awake SWR and theta cycles on sleep replay, we
fitted a mixed-effect model for sleep replay rate with the rate and
number of local awake SWR events, the number of theta cycles, and
total time spent on the track as fixed effects and animal identity as
random effect:

Sleep replay rate ~ rate of awake SWR events + number of awake
SWR events + number of theta cycles + total time spent on the
track + (1/animal).

All metrics were converted into standardized z-scores such that
the standardized beta coefficient can be used to compare the relative
weight of each fixed-effect term. We calculated the 95% confidence
interval for the standardized beta coefficient such that the relative
predictive power of the metric would be considered statistically
insignificant when it overlapped with zero.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data availability via a public repository is delayed due to this dataset’s
use in several manuscripts in preparation. However, all data are avail-
able immediately upon reasonable request to the corresponding
author. Source data are provided in this paper.

Code availability
All custom-written MATLAB code is available on Zenodo: https://doi.
org/10.5281/zenodo.10085294.
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