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ABSTRACT

We present refined cosmological parameter constraints derived from a cosmic shear analysis of the fourth data release of the Kilo-
Degree Survey (KiDS-1000). Our main improvements include enhanced galaxy shape measurements made possible by an updated
version of the lensfit code and improved shear calibration achieved with a newly developed suite of multi-band image simulations. Ad-
ditionally, we incorporated recent advancements in cosmological inference from the joint Dark Energy Survey Year 3 and KiDS-1000
cosmic shear analysis. Assuming a spatially flat standard cosmological model, we constrain S8 ≡ σ8(Ωm/0.3)0.5 = 0.776+0.029+0.002

−0.027−0.003,
where the second set of uncertainties accounts for the systematic uncertainties within the shear calibration. These systematic uncer-
tainties stem from minor deviations from realism in the image simulations and the sensitivity of the shear measurement algorithm to
the morphology of the galaxy sample. Despite these changes, our results align with previous KiDS studies and other weak lensing
surveys, and we find a ∼2.3σ level of tension with the Planck cosmic microwave background constraints on S8.
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1. Introduction

Weak gravitational lensing by large-scale structure, also known
as cosmic shear, is a powerful technique for studying the matter
distribution in the Universe without assuming a specific corre-
lation between dark and baryonic matter (e.g. Blandford et al.
1991; Miralda-Escude 1991; Kaiser 1992)1. Owing to its
remarkable potential in exploring the cosmic matter distribution,
cosmic shear analysis has gained popularity since its first detec-
tion over 20 years ago (Bacon et al. 2000; Kaiser et al. 2000;
Van Waerbeke et al. 2000; Wittman et al. 2000). When distance
information for source galaxies is also known, we can differ-
entiate between them along the line of sight and perform a
tomographic analysis, which entails reconstructing the 3D mat-
ter distribution from multiple 2D projections. This tomographic

1 However, with increasing precision in weak lensing observations, the
impact of baryonic processes, such as radiative cooling and feedback
from star formation and active galactic nuclei, on the observed matter
distribution can no longer be ignored for small-scale structures (e.g.
van Daalen et al. 2011; Semboloni et al. 2011).

cosmic shear analysis is especially effective for constraining
dark energy properties, as it sheds light on the evolution of cos-
mic structures (e.g. Hu 1999; Huterer 2002).

Recent surveys, such as the Kilo-Degree Survey (KiDS;
de Jong et al. 2013), the Dark Energy Survey (DES; Dark
Energy Survey Collaboration 2016), and the Hyper Suprime-
Cam (HSC) survey (Aihara et al. 2018), primarily focus on con-
straining the amplitude of matter density fluctuations. Conven-
tionally, this quantity is characterised by the parameter S8 ≡

σ8(Ωm/0.3)0.5, where Ωm is the matter density parameter and σ8
is the standard deviation of matter density fluctuations in spheres
of radius 8 h−1 Mpc, computed using linear theory, where the
Hubble constant H0 = 100 h km s−1 Mpc−1. Interestingly, the S8
values derived from these weak lensing surveys are consistently
lower than those predicted by cosmic microwave background
(CMB) observations from the Planck satellite.

Specifically, the latest cosmic shear analyses from
KiDS (0.759+0.024

−0.021; Asgari et al. 2021, hereafter A21), DES
(0.759+0.025

−0.023; Amon et al. 2022; Secco et al. 2022), and HSC
(0.769+0.031

−0.034; Li et al. 2023a; 0.776+0.032
−0.033; Dalal et al. 2023)
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provide S8 values that are roughly 2σ lower than the Planck
predictions (0.832 ± 0.013; Planck Collaboration VI 2020)
based on the standard spatially flat Λ cold dark matter (ΛCDM)
cosmological model. Most recently, a joint cosmic shear analy-
sis of the DES Year 3 data and the fourth data release of KiDS
by the two survey teams (DES and KiDS Collaboration 2023,
hereafter DK23) yields an S8 constraint of 0.790+0.018

−0.014, which
is closer to the Planck results but still shows a level of 1.7σ
difference. This mild difference in the S8 constraints between
the weak lensing surveys and CMB observations triggered
extensive discussions from various perspectives, encompassing
potential systematic errors in the data (e.g. Efstathiou & Lemos
2018; Köhlinger et al. 2019), the influence of the baryonic
physics (e.g. Schneider et al. 2002; Amon & Efstathiou 2022;
Preston et al. 2023), and a potential deviation from the standard
ΛCDM model (see Perivolaropoulos & Skara 2022 for a recent
review).

Here, we focus on the control of systematics in the cosmic
shear analysis, particularly those arising during the KiDS shear
measurement process. Measuring lensing-induced shear from
noisy pixelised galaxy images is a challenging task, compli-
cated further by distortions caused by the point spread function
(PSF) resulting from instrumental and observational conditions,
as well as blending effects that arise when two or more objects
are close on the sky (see Mandelbaum 2018 for a review).
These factors can introduce significant measurement biases
(e.g. Paulin-Henriksson et al. 2008; Melchior & Viola 2012;
Refregier et al. 2012; Massey et al. 2013; Dawson et al. 2016;
Euclid Collaboration 2019) and alter the selection function of the
source sample, leading to selection bias (e.g. Hartlap et al. 2011;
Chang et al. 2013; Hoekstra et al. 2021). Therefore, obtaining
unbiased shear measurements requires careful calibration, which
can be performed using either pixel-level image simulations
(e.g. Miller et al. 2013; Hoekstra et al. 2015; Fenech Conti et al.
2017, hereafter FC17; Samuroff et al. 2018; Mandelbaum et al.
2018) or the data themselves (e.g. Huff & Mandelbaum 2017;
Sheldon & Huff 2017; Sheldon et al. 2020).

Additionally, in the case of large-area imaging surveys,
determining the distance information for individual source
galaxies depends on redshifts derived from broadband photomet-
ric observations. These photometric redshift estimates, which
are subject to significant uncertainty, require careful calibration
using spectroscopic reference samples (e.g. Hoyle et al. 2018;
Tanaka et al. 2018; Hildebrandt et al. 2021). Furthermore, recent
studies have shown that the blending of source images results in
the coupling of shear and redshift biases (e.g. MacCrann et al.
2022; Li et al. 2023b, hereafter L23). Consequently, a joint cal-
ibration of these two estimates becomes essential, which will
necessitate the use of multi-band image simulations in future
cosmic shear analyses.

In light of all these concerns, we implemented several
improvements to the cosmic shear measurements in KiDS, as
detailed in L23. We enhanced the accuracy of the galaxy shape
measurements by using an upgraded version of the lensfit code
(Miller et al. 2007, 2013; Kitching et al. 2008), complemented
by an empirical correction scheme that reduces PSF contami-
nation. More notably, in L23 we introduced SKiLLS (SURFS-
based KiDS-Legacy-Like Simulations), a suite of multi-band
image simulations that enables a joint calibration of shear
and redshift estimates. This is an important element for the
forthcoming weak lensing analysis of the complete KiDS
survey, known as the KiDS-Legacy analysis (Wright et al.,
in prep.).

In this paper we take an intermediate step towards the forth-
coming KiDS-Legacy analysis by applying the improvements
from L23 to a cosmic shear analysis based on the fourth data
release of KiDS (Kuijken et al. 2019). In contrast to previ-
ous KiDS cosmic shear analyses, which used shear calibration
methods developed in FC17 and Kannawadi et al. (2019, here-
after K19) based on single-band image simulations, our anal-
ysis adopted SKiLLS, marking the first instance of multi-band
image simulations being used for KiDS cosmic shear analy-
sis2. We also incorporated recent advancements in cosmological
inference and updated the current cosmological parameter con-
straints from KiDS. In particular, we updated the code for the
non-linear evolution of the matter power spectrum calculation
from hmcode to the latest hmcode-2020 version (Mead et al.
2021). We also investigated the impact of the intrinsic align-
ment (IA) model by incorporating amplitude priors inspired by
Fortuna et al. (2021a).

The remainder of this paper is structured as follows. In
Sect. 2 we introduce and validate the updated KiDS shear cat-
alogue, which is followed by the shear and redshift calibration
in Sect. 3. We describe our cosmological inference method in
Sect. 4 and present the results in Sect. 5. Finally, we summarise
the results in Sect. 6.

2. Updated weak lensing shear catalogue

Our shear catalogue is based on the fourth data release of
KiDS (Kuijken et al. 2019), which combines optical observa-
tions in the ugri bands from KiDS using the European South-
ern Observatory (ESO) VLT Survey Telescope (de Jong et al.
2013) and near-infrared observations in the ZY JHKs bands from
the ESO Visible and Infrared Survey Telescope for Astron-
omy (VISTA) Kilo-degree INfrared Galaxy (VIKING) survey
(Edge et al. 2013). The dataset covers 1006 deg2 survey tiles and
includes nine-band photometry measured using the Gaussian
Aperture and PSF (GAaP) pipeline (Kuijken et al. 2015). The
photometric redshifts (photo-zs) for individual source galax-
ies were estimated using the Bayesian photometric redshift
(BPZ) code (Benítez 2000). After masking, the effective area
of the dataset in the charge-coupled device (CCD) pixel frame
is 777.4 deg2 (Giblin et al. 2021). To perform the cosmic shear
analysis, we divided the source sample into five tomographic
bins based on the BPZ estimates (zB). The first four bins have
a spacing of ∆zB = 0.2 in the range 0.1 < zB ≤ 0.9, while the
fifth bin covers the range 0.9 < zB ≤ 1.2, following the previous
KiDS cosmic shear analyses.

2.1. Galaxy shapes measured with the updated lensfit

When preparing the shear measurements for the upcoming data
release of KiDS, we upgraded the lensfit code (Miller et al. 2007,
2013; Kitching et al. 2008) from version 309c to version 321
(see L23 for details). The latest version includes a correction
to an anisotropic error in the original likelihood sampler, which
previously caused a small yet noticeable residual bias that was
not related to the PSF or underlying shear (Miller et al. 2013;
Hildebrandt et al. 2016; Giblin et al. 2021). We used the new
code to re-measure the galaxy shapes, resulting in a new shear
catalogue. Throughout the paper, we refer to the new shear
catalogue as KiDS-1000-v2 to distinguish it from the previous
KiDS-1000(-v1) shear catalogue (Giblin et al. 2021).

2 K19 did attempt to assign photo-z estimates from data to simulations,
but the actual photo-z measurements were not simulated.
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The raw measurements from the lensfit code suffer from
biases primarily due to the PSF anisotropy, but also because
of the object selection and weighting scheme. To address these
biases, FC17 introduced an empirical correction scheme to
isotropise the original measurement weights, which was used in
previous KiDS studies (see also K19). This correction scheme
mitigates the lensfit weight biases and reduces the bias induced
by the PSF anisotropy to an acceptable level. However, notable
residual biases still persist (Giblin et al. 2021). Moreover, L23
find that the method is susceptible to variations in the sample
size, posing challenges for consistent application to both data
and simulations.

Therefore, a new correction scheme was introduced by L23
that modifies both the measured ellipticities and weights to
ensure the average PSF leakage, defined as the fraction of the
PSF ellipticity leaking into the shear estimator, is negligible in
each tomographic bin. For further details, we direct readers to
L23. In summary, the new correction scheme first isotropises
the measurement weights, then adjusts the measured elliptici-
ties to eliminate any remaining noise bias and selection effects.
We note that this correction scheme is not designed to refine
the shape measurements of individual galaxies; rather, it aims
to ensure that the collectively weighted shear signal is robust
against PSF leakage. In this work, we applied this newly devel-
oped empirical correction to the KiDS-1000-v2 shear catalogue.

2.2. Validation of the shear estimates

In order to use the weak lensing shear catalogue for cosmologi-
cal inference, it is crucial to first verify the accuracy of the shear
estimation and ensure that the residual contamination from sys-
tematic effects is within the acceptable level for scientific anal-
ysis. To achieve this, Giblin et al. (2021) proposed a series of
null-tests to assess the robustness of the KiDS-1000-v1 shear
catalogue. With the updated galaxy shape measurements in the
KiDS-1000-v2 catalogue, it is necessary to repeat some of these
tests to confirm the reliability of the new catalogue.

As the KiDS-1000-v2 catalogue updates only the galaxy
shape measurements while maintaining the established photom-
etry and PSF models, we did not repeat tests related to photome-
try and PSF modelling. We started by examining the PSF leakage
in the weighted lensfit shear estimator, using the first-order sys-
tematics model proposed by Heymans et al. (2006). This model
takes the form (Giblin et al. 2021)

εobs
k = (1 + mk)(ε int

k + γk) + αkε
PSF
k + ck, [k = 1, 2], (1)

where εobs denotes the measured galaxy ellipticity, m is the mul-
tiplicative shear bias3, ε int refers to the intrinsic galaxy ellipticity,
γ stands for the cosmic shear signal (which is the parameter of
interest), α is the PSF leakage factor, and c is an additive term
comprising residual biases unrelated to the PSF or underlying
shear. The subscript k = 1, 2 denotes the two ellipticity compo-
nents. We note that we did not include PSF modelling errors in
Eq. (1), as we used the same PSF model as Giblin et al. (2021),
who had already confirmed its accuracy. Assuming that (ε int

k +γk)
averages to zero for a large galaxy sample (a property validated
with the KiDS data; see, for example, Sect. 3 in Giblin et al.
2021), we can determine the α and c parameters from the data
using a simple linear regression method.

3 Throughout this paper, we interchangeably use “multiplicative bias”
and “shear bias”, as our simulation-based shear calibration only
addresses this parameter. Conversely, PSF leakage and the additive term
are empirically corrected.
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Fig. 1. PSF contamination, α (top panels) and additive term, c (bot-
tom panels) as a function of tomographic bin labelled with the cen-
tral zB value. The measurements are obtained from a weighted linear
fitting using Eq. (1). The red points represent measurements from the
KiDS-1000-v2 catalogue, while the grey points show the measurements
from the KiDS-1000-v1 catalogue. The red and grey bars correspond to
results from the entire sample without tomographic binning.

Figure 1 presents the measured PSF leakage α and the
additive term c for the KiDS-1000-v2 catalogue, alongside the
measurements from the KiDS-1000-v1 catalogues for compari-
son. As expected, the KiDS-1000-v2 catalogue exhibits a mean
α-term consistent with zero for all redshift bins, owing to the
empirical correction scheme outlined in Sect. 2.1 (see also
Sect. 4 in L23). The upgraded lensfit code has reduced the over-
all c2-term by half, reaching a level of c2 ∼ (3 ± 1) × 10−4 for
the entire sample. However, despite this improvement, the c term
has not been eliminated, particularly in distant tomographic bins
where a small but noticeable c term still persists, which was not
seen in the simulations.

To correct for these residual small additive c-terms, we used
the same empirical correction method as in previous KiDS anal-
yses. Specifically, we subtracted the weighted average elliptic-
ity from the observed ellipticity for each redshift bin as εobs

corr =

εobs − εobs. Nevertheless, we caution that subtracting the mean
c-term does not guarantee the removal of all additive biases,
especially when detector-level effects, such as “charge trans-
fer inefficiency” (e.g. Rhodes et al. 2007; Massey 2010) and
“pixel bounce” (e.g. Toyozumi & Ashley 2005), can introduce
position-dependent bias patterns. Although we have detected
such effects in KiDS data (Hildebrandt et al. 2020; Giblin et al.
2021), their level does not affect the current cosmic shear analy-
sis. More specifically, Asgari et al. (2019) show that even if cur-
rent detector-level effects were increased by a factor of 10, they
would not cause significant bias for KiDS-like analyses.

The cosmic shear signal is conventionally measured using
the two-point shear correlation function, defined as4

ξ̂
i j
± (θ) =

∑
ab wawb

[
ε i

t (xa)ε j
t (yb) ± ε i

×(xa)ε j
×(yb)

]∑
ab wawb

, (2)

4 In this study, all measurements of the two-point shear correlation
function are conducted using the TreeCorr code (Jarvis et al. 2004;
Jarvis 2015).
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Fig. 2. Ratio of the PSF contamination, ξsys
+ , computed using Eq. (3)

to the predicted amplitude of the cosmic shear signal, ξΛCDM
+ , across all

15 tomographic bin combinations. The red lines depict results from the
KiDS-1000-v2 catalogue, whereas the grey lines show those from the
KiDS-1000-v1 catalogue. The blue shaded regions represent a range of
±10% of the standard deviation of the measured cosmic shear signal.
This deviation is determined from the covariance matrix using statistics
from the KiDS-1000-v2 catalogue. The dotted horizontal lines indicate
the 2% level of the predicted cosmic shear signal.

where θ represents the separation angle between a pair of galax-
ies (a, b), the tangential and cross ellipticities εt,× are computed
with respect to the vector xa − yb that connects the galaxy pair,
and the associated measurement weight is denoted by w. There-
fore, it is crucial to examine the systematics in the two-point
statistics. Following the method of Bacon et al. (2003), we esti-
mated the PSF leakage into the two-point correlation function
measurement using

ξ
sys
± =

〈εobsεPSF〉2

〈εPSFεPSF〉
, (3)

where the 〈·〉 represents the correlation function.
In Fig. 2 we present the ratio of the measured ξ

sys
+ to the

theoretical predictions of the cosmic shear signal. The blue
shaded region denotes ±10% of the standard deviation of the
cosmic shear signal, extracted from the analytical covariance.
This covariance is calculated using an independent implementa-
tion of the methodology of Joachimi et al. (2021), and it incor-
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Fig. 3. Measurements of the B-mode signals using COSEBIs for the
KiDS-1000-v2 catalogue (red points) compared to the KiDS-1000-v1
catalogue (grey points). The error bars originate from the diagonal of
an analytical covariance matrix, accounting solely for measurement
noise. For the KiDS-1000-v2 catalogue, we re-calculated the covariance
using the method introduced by Joachimi et al. (2021), incorporating
the updated statistics. The p-values for the KiDS-1000-v2 catalogue,
shown in the top-right corner of each panel, were calculated with 20
degrees of freedom, which corresponds to the number of modes used in
each correlation.

porates the sample statistics of the updated catalogue. We com-
pared the results from the KiDS-1000-v2 catalogue with those
from the KiDS-1000-v1 catalogue. We observe general improve-
ments, particularly in the high-redshift bins, where the PSF con-
tamination is now negligible. The only exceptions are found in
some large-scale bins (θ > 60 arcmin), where the expected fidu-
cial cosmic shear signal is relatively small and overwhelmed by
high statistical noise.

To the leading order, the weak lensing effect introduces only
curl-free gradient distortions (E-mode signal), which makes the
curl distortions (B-mode signal) a useful null-test for residual
systematics in the shear measurement5. Following the conven-
tion of KiDS (Hildebrandt et al. 2017; Giblin et al. 2021), we
used the complete orthogonal sets of E/B-integrals (COSE-
BIs; Schneider et al. 2010) to measure the B-mode signal. The
COSEBIs provide an optimal E/B separation by combining dif-
ferent angular scales from the ξ̂± measurements.

Figure 3 presents the measured B-mode signals for all com-
binations of tomographic bins in our analysis, alongside the
B-mode measurements from the KiDS-1000-v1 catalogue for
comparison. To enable a direct comparison, we used the same
scale range of (0′.5, 300′) as in Giblin et al. (2021) for calculating
the COSEBIs B-mode6. Assuming a null signal, we computed
the p-value for each B-mode measurement, setting the degrees
of freedom equal to the number of modes in each measurement
(n = 20). The covariance matrix, accounting only for shot noise,

5 Some higher-order effects from lensing, such as source redshift clus-
tering (e.g. Schneider et al. 2002), and IA of nearby galaxies (e.g.
Troxel & Ishak 2015; Joachimi et al. 2015) can also introduce B-mode
signals. However, these contributions are expected to be negligible for
current weak lensing surveys (e.g. Hilbert et al. 2009).
6 We also evaluated an alternate scale range of (2′, 300′), consistent
with our fiducial cosmic shear analysis. As anticipated, the B-mode sig-
nal was more negligible in this scenario due to reduced small-scale con-
tamination.
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was estimated using an analytical model from Joachimi et al.
(2021) applied to the updated catalogue. It is noteworthy that
our covariance matrix differs from the one used in Giblin et al.
(2021). This is due to the changes in sample statistics resulting
from the updated shape measurement code and redshift calibra-
tion relative to the KiDS-1000-v1 catalogue used in Giblin et al.
(2021). Most diagonal entries in our matrix show reduced uncer-
tainties, ranging from a level of percent to ten percent. There-
fore, if the absolute systematic levels are comparable between
the two catalogues, our test would likely show a slight increase
in the final p-values compared to those in Giblin et al. (2021).
As indicated in the top-right corner of each panel, the estimated
p-values suggest that the measured B-mode signals align with
a null signal across all bin combinations. The lowest p-value,
p = 0.02, was found in the cross-correlation between the first
and third tomographic bins.

After conducting all these tests, we can conclude that the
KiDS-1000-v2 catalogue has reduced systematics when com-
pared to the results from the KiDS-1000-v1 catalogue. These
improvements are largely attributed to the updated version of
the lensfit code, as well as the implementation of a new empiri-
cal correction scheme for PSF contamination. These results give
us the confidence to use the updated catalogue for cosmological
inference.

3. Shear and redshift calibration

The main improvement in our calibration comes from the
use of SKiLLS multi-band image simulations, as developed
in L23. These simulations fuse cosmological simulations with
high-quality observational data to create mock galaxies with
photometric and morphological properties closely resembling
real-world galaxies. The observational data used by SKiLLS,
drawn from the catalogue of Griffith et al. (2012), is identical
to that used in K19. In L23, we developed a vine-copula-based
algorithm that learns the measured morphological parameters
from this catalogue and assigns them to the SURFS-Shark
mock galaxies (Elahi et al. 2018; Lagos et al. 2018). We veri-
fied that the learning procedure maintains the observed multi-
dimensional correlations between morphological parameters,
magnitude, and redshifts. Nevertheless, both the observed cat-
alogue from Griffith et al. (2012) and the learning algorithm
possess inherent limitations, resulting in unavoidable uncertain-
ties in our simulation input catalogue. These uncertainties are
addressed in our shear calibration in Sect. 3.2.

To create KiDS+VIKING-like nine-band images, SKiLLS
replicated the instrumental and observational conditions of 108
representative tiles selected from six sky pointings evenly dis-
tributed across the footprint of the KiDS fourth data release.
The star catalogue was generated for each sky pointing using
the Trilegal population synthesis code (Girardi et al. 2005) to
account for the variation in stellar densities across the footprint.
For the primary r-band images, on which the galaxy shapes were
measured, SKiLLS included the correlated pixel noise intro-
duced by the stacking process and the PSF variation between
CCD images.

On the data processing side, SKiLLS followed the entire
KiDS procedure, including object detection, PSF homogeni-
sation, forced multi-band photometry, photo-z estimation, and
shape measurements. The end result is a self-consistent joint
shear-redshift mock catalogue that matches KiDS observations
in both shear and redshift estimates. By taking this end-to-end
approach, we accounted for photo-z-related selection effects in
our shear bias estimation and enabled redshift calibration using

the same mock catalogue. While our current analysis focuses
on the improvement in shear calibration, it represents an inter-
mediate step towards the KiDS-Legacy analysis, which will
implement joint shear and redshift calibrations facilitated by the
SKiLLS mock catalogue.

3.1. Calibration

To correct for shear bias in our measurements, we adopted the
method used in previous KiDS studies (FC17, K19). For each
tomographic bin i, we applied an average shear bias correction
factor, mi, which is derived by averaging the individual m val-
ues of all sources within the respective tomographic bin. These
individual m values are determined using Eq. (1), based on simu-
lations mapped on a grid of the lensfit reported model signal-to-
noise ratio and resolution. Here, the resolution is defined as the
ratio of the PSF size to the measured galaxy size. To align our
simulations more closely with the target data, we followed KiDS
conventions and re-weighted the simulation estimates according
to the grid of signal-to-noise ratio and resolution. Further details
about the re-weighting procedure can be found in Sect. 5.1 of
L23.

Although the averaging method addresses the noise in indi-
vidual source’s m estimation, it does not account for correlations
involving shear bias. Thus, we have 〈[1+mi(θ′)][1+m j(θ′+θ)]〉 =

(1 + mi)(1 + m j), with θ and θ′ representing different separation
angles between galaxy pairs. To test this assumption, we directly
measured 〈[1 + mi(θ′)][1 + m j(θ′ + θ)]〉 from image simulations
and compared it to (1+mi)(1+m j). Further details on this test can
be found in Appendix A. In summary, we find a negligible dif-
ference between the two estimators, a result that falls well within
the current KiDS requirements. This validates the assumption for
the KiDS analysis.

Given that the updated galaxy shape measurements also
lead to changes in the sample selection function, it is neces-
sary to repeat the redshift calibration for the KiDS-1000-v2
catalogue, even though our primary focus is to improve shear
calibration. To quantify the changes in galaxy samples intro-
duced by the modifications in shape measurements from the
KiDS-1000-v1 to KiDS-1000-v2 catalogues, we compared their
effective number densities before applying any redshift calibra-
tion. The observed percentage differences in each tomographic
bin, from low to high redshift bins, are −1.8%, −0.4%, 0.2%,
1.3%, and 3.2%. Here, negative values indicate a decrease in
density from the v1 to the v2 catalogue, while positive val-
ues signify an increase. These differences are largely attributed
to changes in the weighting scheme brought by the lensfit
updates, as well as the implementation of the new empirical
correction scheme for PSF leakage, as discussed in Sect. 3
and in L23. For this, we employed a methodology identical to
the one used by Wright et al. (2020), Hildebrandt et al. (2021),
and van den Busch et al. (2022, hereafter vdB22). It is based
on a direct calibration method (Lima et al. 2008) implemented
with a self-organising map (SOM; Kohonen 1982; Masters et al.
2015). More information on our implementation is provided
in Appendix B, while Wright et al. (2020), Hildebrandt et al.
(2021), and vdB22 offer more comprehensive discussions.

The SOM-based redshift calibration method uses a “gold
selection” criterion to filter out sources that are not represented
in the spectroscopic reference sample (see Appendix B). How-
ever, this process influences shear biases as it alters the selection
function of the final sample. To ensure a consistent estimation
of shear biases, we created the SKiLLS-gold catalogue by mim-
icking this quality control on the SKiLLS mock catalogue, using
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Table 1. Data properties for the KiDS-1000-v2 catalogue.

Bin Photo-z range neff [arcmin−2] σε,i δz = zest−ztrue mraw mfinal σm

1 0.1 < zB ≤ 0.3 0.68 0.27 0.000 ± 0.0096 −0.023 −0.021 0.019
2 0.3 < zB ≤ 0.5 1.30 0.26 0.002 ± 0.0114 −0.025 −0.023 0.008
3 0.5 < zB ≤ 0.7 1.97 0.28 0.013 ± 0.0116 −0.013 −0.015 0.007
4 0.7 < zB ≤ 0.9 1.39 0.27 0.011 ± 0.0084 0.018 0.015 0.006
5 0.9 < zB ≤ 1.2 1.35 0.29 −0.006 ± 0.0097 0.032 0.031 0.006

Notes. Comparable summary statistics for the KiDS-1000-v1 catalogue can be found in Table 1 of A21. We note that the differences in summary
statistics between our work and A21 stem from both the updated lensfit code and the enhanced redshift calibration outlined in vdB22. The
effective number density neff and the ellipticity dispersion per ellipticity component σε,i are calculated using the formulae provided in Appendix C
of Joachimi et al. (2021). The neff values in this table are derived from an effective area of 777.4 sq. deg. in the CCD pixel frame, making them
directly comparable to the values in Table 1 of A21. The correlated Gaussian redshift priors are based on the differences between the estimated
and true redshifts, δz = zest−ztrue, as reported in vdB22. The priors are denoted as µi ± σi, where µi represents the mean shift and σi corresponds
to the square root of the covariance matrix’s diagonal elements. The mraw results are derived from idealised constant shear simulations, while the
mfinal results, our fiducial outcomes, include corrections for the shear-interplay effect and PSF modelling bias. Statistical uncertainties, determined
by the simulation volume, are directly computed from the fiducial simulations and denoted as σm.

the same SOM trained by the spectroscopic reference sample as
the real data. We derived the appropriate shear bias correction
factors from this SKiLLS-gold catalogue for individual tomo-
graphic bins, and present these values in Table 1. It is worth
noting that the shear bias estimates presented in this work dif-
fer slightly from those in L23, which did not include the gold
selection procedure. Despite this, the differences in the esti-
mated shear biases are relatively minor across all tomographic
bins, with the first tomographic bin showing the most noticeable
change of 0.008.

Our fiducial results, mfinal, account for the impact of PSF
modelling uncertainties and the “shear interplay” effect, which
occurs when galaxies from different redshifts are blended
together. For more details on these effects, we refer the reader
to L23 and MacCrann et al. (2022). Additionally, we provide the
idealised mraw results, which do not consider these higher-order
effects. By comparing the cosmological constraints obtained
from these two cases, we aim to evaluate the robustness of pre-
vious KiDS results with respect to these higher-order effects,
which were not taken into account in the earlier shear calibra-
tion (FC17; K19).

3.2. Calibration uncertainties

Systematic uncertainties arising from redshift and shear cali-
brations can propagate into cosmological analyses, potentially
leading to biased results. Therefore, it is crucial to adequately
address these uncertainties in the analysis. In this section we out-
line our approach to managing these calibration uncertainties.

The uncertainties in redshift calibration were addressed by
introducing an offset parameter for the estimated mean red-
shift of galaxies in each tomographic bin. This offset parameter,
described as correlated Gaussian priors, serves as a first-order
correction to both the statistical and systematic uncertainties
associated with redshift calibration. Table 1 lists the exact val-
ues for these parameters, which we obtained from vdB22 and
Hildebrandt et al. (2021). They determined these prior values
using spectroscopic and KiDS-like mock data generated by
van den Busch et al. (2020). We consider the current priors to
be conservative enough to account for any potential changes in
the redshift biases from KiDS-1000-v1 to KiDS-1000-v2, given
that both catalogues use the same photometric estimates. How-
ever, for the forthcoming KiDS-Legacy analysis, we plan to re-
estimate these values based on the new SKiLLS mock data.

We improved our approach to handling uncertainties related
to the shear calibration. In L23, nominal uncertainties were pro-
posed for each tomographic bin based on sensitivity analyses.
This aimed to ensure the robustness of the shear calibration
within the specified uncertainties, but at the cost of reducing sta-
tistical power. In this work, we aim to improve this approach
by separately accounting for the statistical and systematic uncer-
tainties within the shear calibration.

The statistical uncertainties, as presented in Table 1, are com-
puted directly from simulations and are limited only by the
volume of the simulations, which can be increased with more
computing resources7. These uncertainties are also easily prop-
agated into the covariance matrix for cosmological inference.
Although increasing the simulation volume could, in principle,
reduce these uncertainties, we find that the current values already
comfortably meet the KiDS requirements; thus, further efforts in
this direction were considered unnecessary.

If the SKiLLS simulations perfectly match KiDS data, these
statistical uncertainties would be the only contribution to the
final uncertainty from the shear calibration. However, since our
simulations are not a perfect replica of the real observations,
residual shear biases may still be present in the data even after
calibration. These biases, referred to as systematic uncertainties,
are typically the primary source of error in shear calibration.
Increasing the simulation volume cannot improve these uncer-
tainties as they are determined by the realism of the image sim-
ulations. The level of these uncertainties can only be roughly
estimated through sensitivity analyses.

Since the systematic residual shear biases directly scale
the data vector, accurately quantifying their impact using the
covariance matrix is challenging. Therefore, we used a forward
modelling approach to capture the impact of these systematic
uncertainties. Instead of incorporating these uncertainties into
the covariance matrix, we examined how the final estimates
of the cosmological parameters change due to the shift in sig-
nals caused by the systematic residual shear biases. This for-
ward modelling approach can be easily implemented using sim-
ple optimisation algorithms since the shift is small, and the
covariance remains unchanged. More details on how to deter-
mine residual shear biases and implement the forward modelling
approach are provided in Appendix C.

7 However, the finite volume of the input galaxy sample prevents an
indefinite increase.
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4. Cosmological inference

The cosmological inference in this study largely aligns with the
approach used in the KiDS-1000-v1 analyses (A21; vdB22),
with minor modifications primarily influenced by the recent
joint DES Y3+KiDS-1000 cosmic shear analysis (DK23). In this
section, we outline the configurations and reasoning behind these
choices in our fiducial analysis. For certain notable changes, we
also conducted extended analysis runs with different configura-
tions to evaluate the impact of these modifications. Our analysis
code is publicly accessible8.

Our code builds upon the Cat_to_Obs_K1000_P19 and
the KiDS Cosmology Analysis Pipeline (KCAP)10 infrastruc-
ture, as developed in Giblin et al. (2021), Joachimi et al. (2021),
A21, Heymans et al. (2021), and Tröster et al. (2021). The
Cat_to_Obs_K1000_P1 pipeline converts KiDS shear and red-
shift measurements into various second-order statistics, with
the assistance of the TreeCorr code (Jarvis et al. 2004; Jarvis
2015). Meanwhile, KCAP estimates cosmological parameters
using the CosmoSIS framework, which bridges the likelihood
function calculation pipelines with sampling codes (Zuntz et al.
2015).

We measured the shear field using COSEBIs (Schneider
et al. 2010). As reported by Asgari et al. (2020), COSEBIs offer
enhanced robustness against small-scale effects on the shear
power spectrum, which primarily stem from complex baryon
feedback. Furthermore, we accounted for baryon feedback when
modelling the matter-matter power spectrum using hmcode-
2020 (Mead et al. 2021) within the camb framework with the
version 1.4.0 (Lewis et al. 2000; Howlett et al. 2012).
hmcode-2020, an updated version of hmcode (Mead et al.

2015, 2016), models the non-linear matter-matter power spec-
trum, incorporating the influence of baryon feedback through
an enhanced halo-model formalism. This updated model is
empirically calibrated using hydrodynamical simulations, fol-
lowing a more physically informed approach. Unlike its
predecessor calibrated with OWLS hydrodynamical simula-
tions (van Daalen et al. 2011), this newer version uses the
updated BAHAMAS hydrodynamical simulations for calibra-
tion (McCarthy et al. 2017). These simulations, in turn, are
calibrated to reproduce the observed galaxy stellar mass func-
tion and the hot gas mass fractions of groups and clusters.
This calibration ensures that the simulation accurately reflects
the impact of feedback on the overall distribution of matter
(refer to McCarthy et al. 2017 for further details). Furthermore,
hmcode-2020 improves the modelling of baryon-acoustic oscil-
lation damping and massive neutrino treatment, achieving an
improved accuracy of 2.5% (compared to the previous version’s
5%) for scales k < 10 h Mpc−1 and redshifts z < 2 (Mead et al.
2021).

The model incorporates a single-parameter variant, TAGN,
representing the heating temperature of active galactic nuclei
(AGNs). Higher TAGN values correspond to more intense AGN
feedback, leading to a lower observed matter power spectrum.
Following DK23, we used a uniform prior on log10(TAGN)
that ranged from 7.3 to 8.0. This choice was motivated by
the findings from the BAHAMAS hydrodynamical simulations
(McCarthy et al. 2017; van Daalen et al. 2020).

Given the characteristics of COSEBIs and the implementa-
tion of the hmcode, the KiDS-1000-v1 analyses included small-
scale measurements down to θmin = 0′.5. This strategy was, how-

8 https://github.com/lshuns/CSK1000LF321
9 https://github.com/KiDS-WL/Cat_to_Obs_K1000_P1
10 https://github.com/KiDS-WL/kcap

ever, re-evaluated in DK23, who suggest more stringent scale
cuts for the KiDS COSEBIs data vector, determined by the
baryon feedback mitigation strategy proposed by Krause et al.
(2021). Following this recommendation, we applied a scale cut
of θmin = 2′ in our fiducial analysis.

We used the non-linear linear alignment (NLA) model to
describe the IA of galaxies. This model combines the linear
alignment model with a non-linear power spectrum and contains
a single free parameter AIA to describe the amplitude of IA sig-
nals (Hirata & Seljak 2004; Bridle & King 2007). It is also com-
mon to include a power law, with an index denoted as ηIA, to
capture potential redshift evolution of the IA strength. To distin-
guish it from the redshift-independent NLA model, we refer to
this variant as the NLA-z model.

In line with previous KiDS analyses, we took the redshift-
independent NLA model as our fiducial choice since introducing
ηIA has a minimal effect on the primary S8 constraint (A21) and
since current direct observations of IA signals show little evi-
dence of substantial redshift evolution (e.g. Joachimi et al. 2011;
Singh et al. 2015; Johnston et al. 2019; Fortuna et al. 2021b;
Samuroff et al. 2023). However, Fortuna et al. (2021a) suggest
that the selection of galaxy samples resulting from the redshift
binning may introduce a detectable redshift variation in the IA
signal, although its impact remains negligible for current weak
lensing analyses. To assess the impact of ηIA on our results, we
performed an extended run using the NLA-z model, following
the same prior selection as in DK23.

The KiDS-1000-v1 analyses adopted a broad and uninforma-
tive prior for AIA, ranging from [−6, 6], considering that the data
can constrain it and that an incorrect informative prior could bias
the final cosmological results. Although uncertainties regarding
IA signals remain large, recent developments in the field have
improved our knowledge of the expected IA signal strength. For
instance, Fortuna et al. (2021a) used a halo model formalism,
incorporating results from the latest direct IA measurements, and
predicted AIA = 0.44 ± 0.13 for the redshift-independent NLA
model targeted for KiDS-like mixed-colour lensing samples11.
This prediction aligns well with the constraints from recent
cosmic shear analyses (A21; Secco et al. 2022; Li et al. 2023a;
Dalal et al. 2023). Moreover, recent studies revealed that other
nuisance parameters in such analyses, especially those related to
redshift calibration uncertainties, can result in misleading AIA
values (Hikage et al. 2019; Wright et al. 2020; Li et al. 2021;
Fischbacher et al. 2023).

Given these considerations, we consider it necessary to
explore the prior for the AIA parameter. As an initial step towards
a fully informed AIA approach, we began by simply narrowing
the previously broad prior, leaving a more comprehensive explo-
ration of the IA model setups for the forthcoming KiDS-Legacy
analysis. In our fiducial analysis, we chose a flat yet narrower
prior of [−0.2, 1.1], which corresponds to the 5σ credible region
of predictions by Fortuna et al. (2021a). We note that our new
prior will not significantly impact the sampling results, provided
that the final posterior distributions fall within the set prior range.
For comparison purposes, we also conducted a test run using the
wider [−6, 6] prior.

Sampling the high-dimensional posterior distribution is a
challenging task. In the KiDS-1000-v1 analyses, an ellipsoidal
nested sampling algorithm, MultiNest (Feroz et al. 2009), was

11 Fortuna et al. (2021a) also examined the NLA-z model under similar
conditions, but found the fits were predominantly driven by the low-
redshift bins, resulting in less accurate recovery of large-scale align-
ments at high redshifts.
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used. However, recent studies demonstrated that MultiNest
systematically underestimates the 68% credible intervals for S8
by about 10% in current weak lensing analyses (Lemos et al.
2023; DK23; Li et al. 2023a). A promising alternative is the
sliced nested sampling algorithm, PolyChord (Handley et al.
2015a,b). It provides more accurate estimates of parame-
ter uncertainties, making it our choice for the main analy-
sis. However, it is worth noting that PolyChord is nearly
five times slower than MultiNest. Consequently, we retained
MultiNest for testing purposes. For our sampler settings, we
followed DK23, adopting parameters nlive = 500, nrepeats = 60
and tolerance = 0.01 for PolyChord; and nlive = 1000, effi-
ciency = 0.3, tolerance = 0.01, and constant efficiency = False for
MultiNest.

When presenting point estimates and associated uncertain-
ties for parameter constraints, we adhere to the recommenda-
tions of Joachimi et al. (2021). We derived our best-fit point
estimates from the parameter values at the maximum a poste-
rior (MAP). Given that the MAP reported by the sampling code
can be affected by noise due to the finite number of samples,
we enhanced the precision of the MAP by conducting an addi-
tional local optimisation step. This process initiates from the
MAP reported by the sampling code and utilises the Nelder–
Mead minimisation method (Nelder & Mead 1965), a method
also employed by A21. To represent uncertainties linked to these
estimates, we computed the 68% credible interval based on
the projected joint highest posterior density (PJ-HPD) region.
This hybrid approach is more robust against projection effects
stemming from high-dimensional asymmetric posterior distribu-
tions than traditional 1D marginal summary statistics (refer to
Sect. 6 in Joachimi et al. 2021 for a comprehensive discussion).
To facilitate comparison with results from other surveys, we also
provide constraints based on the traditional mean and maximum
of the 1D marginal posterior, along with their respective 68%
credible intervals.

It is worth noting that, as systematic uncertainties from
shear calibration are excluded in the construction of our covari-
ance matrix (see Sect. 3.2), the uncertainties derived from the
main sampling chains do not fully account for the true uncer-
tainties. To compensate for the additional uncertainties arising
from residual shear biases, we employed a forward modelling
approach. This method involves shifting the data vector and sub-
sequently the likelihood, based on the estimated residual shear
biases, followed by recalculating the MAP. As the adjustment
is minor and the covariance matrix remains static, it is not nec-
essary to re-sample the posterior distribution. Instead, we sim-
ply needed to repeat the previously mentioned local optimisation
step. Starting with the original MAP and using the updated like-
lihood, we can determine the new MAP corresponding to each
shift in the data vector. The variation in these MAP estimates
represents additional uncertainties introduced by the systematic
uncertainties arising from shear calibration. Further details on
this process can be found in Appendix C.

Table 2 summarises the model parameters and their priors as
used in our fiducial analysis. These parameters can be broadly
classified into two categories: the first category includes five cos-
mological parameters, which describe the spatially flat ΛCDM
model we employed. We fixed the sum of the neutrino masses to
a value of 0.06 eV c−2, where c is the speed of light. This choice
is based on the Hildebrandt et al. (2020) finding of the negligi-
ble influence of neutrinos on cosmic shear analyses. The second
category encompasses three nuisance parameters, accounting for
astrophysical and measurement uncertainties as previously dis-
cussed. We note that all parameters, with the exception of TAGN

Table 2. Fiducial model parameters and their priors.

Parameter Symbol Prior

Density fluctuation amp. S8 [0.1, 1.3]
CDM density ωc [0.051, 0.255]
Baryon density ωb [0.019, 0.026]
Hubble constant h [0.64, 0.82]
Scalar spectral index ns [0.84, 1.1]
AGN heating temperature log10(TAGN[K]) [7.3, 8.0]
Intrinsic alignment amp. AIA [−0.2, 1.1]
Redshift offsets δz N(µ;σ2)

Notes. The first section lists the primary cosmological parameters
describing the ΛCDM model assumed, while the second section con-
tains nuisance parameters related to baryon feedback, intrinsic align-
ments, and redshift biases. The values in square brackets indicate the
limits of top-hat priors. The notation N(µ;σ2) refers to a normal prior
with mean µ and (co-)variance σ2, as specified in Table 1.

and AIA, retain the same priors as those used in the KiDS-1000-
v1 cosmic shear analyses. The TAGN parameter replaces the pre-
vious baryon feedback amplitude parameter associated with the
preceding version of hmcode, while the AIA parameter adopts a
narrower prior for reasons previously discussed.

5. Results

In this section we present our cosmological parameter con-
straints and evaluate the robustness of our findings against a
variety of systematic uncertainties. We begin by presenting the
outcomes from our fiducial analysis in Sect. 5.1. We then assess
the impact of shear biases in Sect. 5.2, by quantifying the shifts
in final constraints resulting from different shear bias scenar-
ios. This highlights the main development of our work. Addi-
tionally, since we implemented several changes to the cos-
mological inference pipeline, we evaluate the effects of these
adjustments by comparing results from multiple setup variations
in Sect. 5.3.

5.1. Fiducial analysis results

Our fiducial model has a total of twelve free parameters: five
are cosmological parameters specifying the spatially flat ΛCDM
model with a fixed total neutrino mass, and the remaining seven
are nuisance parameters addressing astrophysical and redshift
calibration uncertainties, as detailed in Sect. 4. However, not all
of these parameter are constrained by the cosmic shear analy-
sis. In this section, we focus on the primary parameters that our
analysis constrains. Meanwhile, the posterior distributions for all
free parameters are displayed as contour plots in Appendix D for
reference.

Table 3 provides the point estimates along with their corre-
sponding 68% credible intervals for the primary parameter as
constrained by our fiducial analysis using the PolyChord sam-
pling code. We display results using three summary statistics:
MAP and PJ-HPD, the mean of the 1D marginal posterior, and
the maximum of the 1D marginal. As discussed in DK23, each of
these approaches has its own advantages and limitations. Specif-
ically, the accurate determination of MAP and PJ-HPD can be
challenging, while marginal constraints for multi-dimensional
posteriors are prone to projection effects. Aligning with the
KiDS convention, we chose the MAP and PJ-HPD constraints
as our headline results, but caution against direct comparisons
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Table 3. Primary parameter constraints from our fiducial analysis, based
on the KiDS-1000-v2 catalogue, as determined using the PolyChord
sampling code.

Parameter MAP and PJ-HPD Marginal
Mean Maximum

S8 0.776+0.029+0.002
−0.027−0.003 0.765+0.029

−0.023 0.769+0.027
−0.029

Ωm 0.259+0.115+0.001
−0.064−0.001 0.302+0.062

−0.115 0.273+0.102
−0.088

σ8 0.835+0.151+0.002
−0.158−0.003 0.791+0.124

−0.163 0.752+0.173
−0.129

AIA 0.348+0.350+0.009
−0.322−0.011 0.400+0.330

−0.339 0.397+0.340
−0.346

Notes. Our headline results, based on the MAP and PJ-HPD statistics,
include additional uncertainties that account for systematic uncertain-
ties within the shear calibration. These uncertainties, originating from
minor deviations from realism in the image simulations and the shear
measurement algorithm’s sensitivity to the morphology of the galaxy
sample, are estimated using a forward modelling approach (as detailed
in Sect. 5.2). On the other hand, the statistical uncertainties within
the shear calibration, determined by the simulation volume, are folded
into the main uncertainties through their inclusion in the covariance
matrix used for the cosmological inference. The mean-marginal is deter-
mined through postprocess within CosmoSIS using the default set-
tings (Zuntz et al. 2015); while the max-marginal is calculated using the
ChainConsumer with the settings of statistics = “max” and kde = 1.0
(Hinton 2016). The indicated uncertainties correspond to the 68% cred-
ible intervals.

with results from other surveys that might use different sum-
mary statistics. The uncertainties we report include additional
contributions from the systematic uncertainties associated with
our shear calibration, as detailed in Sect. 5.2. These additional
uncertainties are overall small compared to the main sampling
uncertainties, so when plotting the posterior distributions or con-
ducting extended runs for test purposes, we did not incorporate
these uncertainties.

Figure 4 shows the projected 2D posterior distributions
for the parameters Ωm and S8, as derived from our fiducial
setups employing PolyChord and MultiNest. We see that
MultiNest results yield a roughly 10% narrower width of the
posterior distribution compared to PolyChord, aligning with
previous findings (Lemos et al. 2023; DK23; Li et al. 2023a).
However, as expected, the results from the two sampling codes
show consistency in terms of best-fit values.

In addition, we compared our cosmic shear results with
those from the CMB analysis by the Planck satellite, using
their baseline ΛCDM chains with the Plik likelihood from
their most recent Planck-2018 results (Planck Collaboration VI
2020). More specifically, we used their constraints based on the
auto power spectra of temperature (TT), of E-modes (EE), and
their cross-power spectra (TE), excluding CMB lensing signals.
An offset is evident between our results and those from Planck-
2018. Adopting the Hellinger distance tension metric (Beran
1977; Heymans et al. 2021; DK23), we detect a 2.35σ tension
in the constrained S8 values. For the constrained parameter set
(S8, Ωm), a similar level of tension, 2.30σ, was found using the
Monte Carlo exact parameter shift method (Raveri et al. 2020;
DK23).

Figure 5 presents our primary S8 constraints and compares
them with those from other contemporary cosmic shear sur-
veys and the Planck CMB analysis. For ease of comparison,
we show all three summary statistics for our fiducial results,
while for other surveys, we display their headline values, as
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Ωm
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S
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KiDS-1000-v2: PolyChord

KiDS-1000-v2: MultiNest

Planck -2018

Fig. 4. Comparison of projected 2D posterior distributions for the
parameters Ωm and S8 as derived from our fiducial setups using two
sampling codes – PolyChord (solid black line) and MultiNest
(dashed grey line) – against the Planck-2018 results (solid red line).
The contours correspond to the 68% and 95% credible intervals
and are smoothed using a Gaussian kernel density estimation (KDE)
with a bandwidth scaled by a factor of 1.5, made possible by the
ChainConsumer package (Hinton 2016).

per their preferred summary statistics. Overall, our results align
well with those from all major contemporary cosmic shear
surveys.

We note that our fiducial analysis pipeline is similar to the
DK23 Hybrid pipeline with one notable difference: while DK23
included a free neutrino parameter, we kept the total neutrino
mass fixed. DK23 showed that this additional degree of free-
dom in the cosmological parameter space can slightly increase
the projected marginal S8 values relative to an analysis with a
fixed neutrino mass. However, since we refer to their MAP and
PJ-HPD results in Fig. 5, the comparison should not be influ-
enced by these projection effects (for more details, refer to the
discussion in DK23).

It is interesting to note that our fiducial results align almost
identically with the KiDS-1000-v1 re-analysis conducted by
DK23, who used the A21 redshift calibration. This alignment
arises from a balance of several effects in our analysis. Our
improved shear calibration tends to increase S8, while the
enhanced vdB22 redshift calibration tends to lower it. More-
over, thanks to our enhanced empirical corrections for PSF leak-
ages, our S8 constraints are less affected by changes in the small
scale cut used in measuring two-point correlation functions. The
shifts we observe are roughly two times smaller than those in the
KiDS-1000-v1 re-analysis conducted by DK23, which we dis-
cuss in more detail in Sect. 5.3.2. This helps reconcile the minor
difference between our results and those of A21.

5.2. Impact of shear biases

The primary aims of this study are to assess the impact of
higher-order shear biases on the final parameter constraints
and to develop a methodology for effectively addressing shear
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Fig. 5. Marginalised constraints on S8 derived from our fiducial analysis
with PolyChord, compared with those from other contemporary cos-
mic shear surveys and the Planck CMB analysis. Three sections, sepa-
rated by dotted horizontal lines, indicate results of different origins. The
first section includes results from individual cosmic shear surveys with
their own analysis pipelines. The second section presents results from
a collaborative effort between the DES and KiDS teams, who built a
hybrid pipeline for analysing the data from both groups (DK23). The
final section displays results from the Planck CMB analysis. Different
labels are used for different statistical methods: the diamond represents
results using the MAP and PJ-HPD statistics, the square denotes the
mean-marginal statistics, and the circle shows the maximum-marginal
statistics. The error bars correspond to the 68% credible intervals.

calibration uncertainties. Both of these aims can be achieved by
examining the shifts in the constrained cosmological parame-
ters resulting from different shear bias scenarios. As discussed
in Sect. 4 and Appendix C, the residual shear biases have only a
minor effect on the measured data vector. This allows us to deter-
mine the shifts in the best-fit values of the constrained parame-
ters using a local minimisation algorithm, such as the Nelder–
Mead method (Nelder & Mead 1965). These shifts in the best-fit
values indicate the additional uncertainties stemming from sys-
tematic uncertainties in shear calibration.

Figure 6 shows shifts in our primary S8 constraints for dif-
ferent residual shear bias scenarios. For comparison, we also
include a shaded region denoting different levels of PJ-HPD
credible intervals, as derived from our fiducial PolyChord
chain. Apart from the extreme case where no shear calibration is
applied, all other residual shear bias scenarios result in shifts less
than 10% of the initial sampling uncertainties. Notably, neglect-
ing the higher-order correction for the shear-interplay effect and
uncertainties in PSF modelling results in a negligible shift of
only −0.03σ (labelled “Using mraw” in the figure). This finding
reinforces the reliability of previous KiDS cosmic shear analy-
ses, which did not consider these higher-order effects.

The S8 shifts, resulting from the input morphology test
simulations, indicate additional systematic uncertainties in our
shear bias calibration. To generate these test simulations, we
changed the input values for three morphological parameters of
the adopted Sérsic profile: the half-light radius (labelled “size”
in the figure), axis ratio (labelled “q”), and the Sérsic index
(labelled “n”). The adjustments were based on the fitting uncer-
tainties reported by Griffith et al. (2012), from whose catalogue
we derived the input morphology for our simulations (refer to
Sect. 2.1.2 of L23). For simplicity, we shifted all galaxies in
the same direction for each test simulation, implicitly assum-

−0.02 0.00 0.02
∆S8

No m correction

Using mraw

Input size shift up

Input size shift down

Input q shift up

Input q shift down

Input n shift up

Input n shift down

Fig. 6. Shifts in best-fit values of S8 under different residual shear bias
scenarios. The shift, ∆S8, is calculated as ∆S8 = Stest

8 − Sfiducial
8 , where

Stest
8 represents the best-fit values in the test scenarios determined by a

local minimisation method that uses the best-fit values from the fiducial
analysis (Sfiducial

8 ) as a starting point. The grey shaded regions represent
different percentiles of the credible intervals derived from our fiducial
PolyChord run. From the innermost to the outermost region, these
percentiles are 6.8%, 20.4%, and 34%, corresponding to 0.1, 0.3, and
0.5 fractions of the reported sampling uncertainties. The dashed lines
display the maximum shifts encountered in the six sets of morphol-
ogy test simulations. These maximum shifts are used as the additional
uncertainties in the reported best-fit values to account for the systematic
uncertainties arising from shear calibration.

ing that the fitting uncertainties stem from a coherent bias in
that direction. This means that our test results represent the most
extreme scenario. To consider both directions, we adjusted the
input values in both positive and negative directions, leading to
a total of six test simulations. Further details regarding the gen-
eration and comparison of these test simulations can be found in
Appendix C.

We observe that shifts in the input galaxy axis ratio lead to
the most significant changes in S8: a −0.10σ shift for increased
input axis ratio and a +0.06σ shift for decreased input axis ratio.
This behaviour aligns with our expectations for the lensfit code
employed in our analysis. As it incorporates prior information
on measured galaxy ellipticities during its Bayesian fitting pro-
cess, it is more sensitive to changes in the distributions of sample
ellipticities.

These S8 shifts, obtained from the test simulations, provide
a quantitative measure of the potential impact of inaccuracies
in the input morphology and the sensitivity of the lensfit code
to the underlying sample morphology distributions. When pre-
senting the S8 constraints, we accounted for these systematic
uncertainties by including the maximum shifts in the reported
uncertainties. In other words, we considered the shifts corre-
sponding to the changes in input axis ratio (represented as
dashed lines in Fig. 6), from the six sets of test simulations,
as additional systematic uncertainties. These are reported along-
side the original statistical uncertainties from the main sam-
pling chain. It should be noted that these additional systematic
uncertainties are specific to the SKiLLS image simulations and
the lensfit shape measurement code used in our analysis. To
reduce these uncertainties, future advancements in shear mea-
surements should focus on improving the realism of image sim-
ulations and enhancing the robustness of the shear measurement
algorithm.
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5.3. Impact of altering inference setups

Although our main updates revolve around the shear measure-
ment and calibration, we also implemented several modifications
to the cosmological inference pipeline, drawing upon recent
developments from DK23. As such, it is beneficial to conduct
some extended runs with various setup configurations.

For these test runs, we employed MultiNest as our sam-
pling code, as it operates approximately five times faster than
PolyChord, but at the cost of underestimating the width of
the posterior distributions and thus the reported uncertainties by
about 10%. However, the best-fit values from MultiNest are
not biased (as evident in Fig. 4). Thus, comparisons made using
MultiNest will yield conservative but unbiased results.

5.3.1. Priors for the NLA model

We began by testing the prior for the NLA model. As dis-
cussed in Sect. 4, our fiducial analysis implemented a redshift-
independent NLA model with a narrow flat prior for the
amplitude parameter AIA. This model, motivated by the work
of Fortuna et al. (2021a), serves as an alternative to the uninfor-
mative broad prior previously used. To investigate the impact of
this change on our final results, we performed two additional
runs: one employing a redshift-independent NLA model with a
broad AIA prior ranging from [−6, 6], in line with KiDS-1000-
v1 analyses, and another allowing for a redshift-dependent IA
amplitude, namely, the NLA-z variant. The redshift evolution is
modelled using a power law of the form [(1 + z)/(1 + 0.62)]ηIA ,
with priors of [−5, 5] for both AIA and ηIA, in line with DK23.

Figure 7 presents a comparison of the posterior distributions
obtained from the different NLA prior setups, and Table 4 lists
the point estimates for the critical S8 parameter. We see con-
sistent constraints on S8 across all setups. The constrained AIA
under our narrower prior setup also aligns with those from the
broad priors, albeit spanning a narrower range due to the con-
strained prior range, validating the prior range used in our fidu-
cial analysis. Additionally, we observe that the ηIA parameter is
not constrained by the data, suggesting that the use of the NLA-z
model may not be necessary for current weak lensing analyses.

5.3.2. Different scale cuts

In our fiducial analysis, we adopted a scale cut for the measured
data vectors, ranging from 2′ to 300′, as suggested by DK23.
This is a change from the KiDS-1000-v1 analyses, which used
a range of 0′.5 < θ < 300′. A re-analysis of KiDS-1000-v1 with
this new scale cut by DK23 led to a 0.7−0.8σ increase in the
S8 constraint. Using mock analyses, they found that this offset
could arise from noise fluctuations 23% of the time.

In light of the updates to our shear measurement, we revisited
this test. Interestingly, as shown in Fig. 8, we observe a smaller
difference between the two scale cuts than what was reported
by DK23. Specifically, we observe shifts of −0.17σ, −0.40σ,
and −0.31σ, corresponding to the MAP and PJ-HPD, mean
marginal, and maximum marginal summary statistics, respec-
tively (refer to Table 4 for exact values).

We attribute this increased robustness against small scale
fluctuations to our improved empirical corrections of the PSF
leakages into shear measurement. This is supported by Figs. 2
and 3, where we see that the shear signals measured from
the KiDS-1000-v2 catalogues exhibit overall smaller systematic
errors. We note that Giblin et al. (2021) performed a mock test
using the two-point correlation function and identified a change

NLA: AIA : [−0.2, 1.1]
NLA: AIA : [−6, 6]
NLA-z: AIA, ηIA : [−5, 5]

-1
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0.7 0.8
S8

-4

0

4

η I
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-1 0 1
AIA

-4 0 4
ηIA

Fig. 7. Comparison of projected posterior distributions for the param-
eters S8, AIA, and ηIA, derived from three different NLA prior setups.
The contours correspond to the 68% and 95% credible intervals and are
smoothed using Gaussian KDE with a bandwidth scaled by a factor of
1.5.

θmin = 2′

θmin = 0.′5

0.7
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Fig. 8. Comparison of projected posterior distributions for the parame-
ters Ωm, S8, and AIA, derived from two different scale cuts. The contours
correspond to the 68% and 95% credible intervals and are smoothed
using Gaussian KDE with a bandwidth scaled by a factor of 1.5.

of less than 0.1σ in the S8 constraints when the detected PSF
residuals were incorporated into the KiDS-1000-v1 mock data.
Nevertheless, it is plausible that these systematic effects have
a more significant influence on COSEBIs, given their use of
more sophisticated weighting functions (Schneider et al. 2010).
To quantify the improvements brought about by the updated
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Table 4. Point estimates for S8 from different inference setups.

Setups MAP and PJ-HPD Mean marginal Maximum marginal

χ2 S8 ∆S8 S8 ∆S8 S8 ∆S8

Fiducial: PolyChord 62.7 0.776+0.029+0.002
−0.027−0.003 – 0.765+0.029

−0.023 – 0.769+0.027
−0.029 –

Fiducial: MultiNest 62.7 0.774+0.027
−0.023 0.00σ 0.765+0.028

−0.017 0.00σ 0.771+0.023
−0.027 0.00σ

NLA: AIA: [−6, 6] 62.7 0.774+0.034
−0.020 0.02σ 0.766+0.028

−0.020 0.03σ 0.770+0.023
−0.026 −0.01σ

NLA-z: AIA, ηIA: [−5, 5] 62.7 0.776+0.022
−0.025 0.10σ 0.765+0.027

−0.020 0.00σ 0.770+0.023
−0.025 −0.05σ

Scales: 0′.5 < θ < 300′ 64.5 0.769+0.014
−0.036 −0.17σ 0.755+0.029

−0.022 −0.40σ 0.763+0.022
−0.030 −0.31σ

KiDS-1000-v1 setups 64.9 0.771+0.017
−0.029 −0.13σ 0.755+0.026

−0.020 −0.44σ 0.759+0.022
−0.024 −0.50σ

Notes. “Fiducial: PolyChord” denotes our headline results, which are the same as those presented in Table 3. “Fiducial: MultiNest” represents
the same parameter setup as our fiducial analysis, but employs the MultiNest sampling code. We used this as the reference to assess test
results because all test runs utilise the MultiNest code for increased speed. When comparing the Fiducial: MultiNest results with the primary
PolyChord results, we can conclude that the best-fit values obtained from MultiNest are unbiased. The relative shift in S8, denoted as ∆S8,
is calculated by comparing the best-fit values from the test runs to the reference Fiducial: MultiNest run. The ∆S8 values are expressed as a
fraction of σ, which signifies the standard deviation of estimates from the test run. We calculated ∆S8 for different summary statistics separately
for consistency. For MAP and PJ-HPD results, we also present the best-fit χ2 values. For comparison, the best-fit χ2 values from A21 and vdB22
are 82.2 and 63.2, respectively.

shear measurements regarding the robustness of the COSEBIs,
a similar mock analysis based on the COSEBIs statistic is war-
ranted. We consider this an important topic for future study. For
the current analysis, the test results simply affirm the robustness
of our primary S8 constraints.

5.3.3. KiDS-1000-v1 setups

To draw a direct comparison with the KiDS-1000-v1 results and
evaluate the impact of our improved shear measurements and
calibration, we performed a test run using the same inference
pipeline and parameter priors as in the KiDS-1000-v1 analyses
conducted by A21 and vdB22. The differences compared to our
fiducial analysis setup include: measurements from scales of 0′.5
to 300′, use of the older version of hmcode, sampling with the
MultiNest code, and a broad AIA prior ranging from [−6, 6].
As shown in Fig. 9, our test results are well aligned with the
outcomes of the analyses by A21 and vdB22. Notably, our new
results show an increase in the S8 value relative to vdB22, bring-
ing it closer to the result obtained by A21.

We re-emphasise that our redshift calibration aligns with that
of vdB22, who expanded the redshift calibration sample to more
than double the size used by A21 (see Appendix B for details).
This means that our redshift-related selection function closely
mirrors that used in the vdB22 sample. However, due to changes
in the weighting and selection scheme between the KiDS-1000-
v2 catalogue and the KiDS-1000-v1 catalogue, our sample can-
not be considered as directly comparable to theirs.

To provide a more quantitative understanding of the sample
differences among the three analyses, we compared the effective
number density of the source sample in our analysis to those used
in A21 and vdB22. The differences for each tomographic bin are
9.6%, 9.8%, 6.1%, 10.6%, and 2.8% when compared to A21;
and −1.8%, −1.3%, −0.7%, 0.7%, and 3% when compared to
vdB22. Here, positive values signify an increase, while negative
values denote a decrease. The differences between our catalogue
and that of A21 stem from both shear measurement and red-
shift calibration, whereas the difference between ours and that of
vdB22 arises mainly from the shear measurement, as we used the
same SOM for the “gold” selection (see Appendix B). As such,
comparing our results directly with those of vdB22 can provide

KiDS-1000-v2: KiDS-1000-v1 setups
KiDS-1000-v1: van den Busch+22
KiDS-1000-v1: Asgari+21 COSEBIs
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0
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A
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Fig. 9. Comparison of projected posterior distributions for parameters
Ωm, S8, and AIA from our analysis (dashed grey lines) based on the
KiDS-1000-v2 catalogue, to those from vdB22 (solid orange lines) and
A21 (dotted green lines), both of which are based on the KiDS-1000-
v1 catalogues. The cosmological inference pipeline and parameter pri-
ors are identical across all three analyses presented here. In terms of
measurements, vdB22 and A21 used the same shear measurements and
calibration, while vdB22 and our analysis share the same redshift cali-
bration. The contours correspond to the 68% and 95% credible intervals
and are smoothed using Gaussian KDE with a bandwidth scaled by a
factor of 1.5.

clearer insights into the impact of our improvements in shear
measurements. It is also worth noting that the increased effec-
tive number density in high redshift bins compared to vdB22
is largely due to the increased weighting of faint objects in
the updated version of lensfit code. However, this comes at the
cost of increased sample ellipticity dispersion, with a maximum
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increase of 6% found in the fifth bin. These subtle differences
in the source catalogues change the noise properties of the sam-
ples. Consequently, even with perfect calibration in each study,
we would not expect to derive identical cosmological constraints
from each analysis.

Interestingly, the increase in number density from A21 to
vdB22, and in this work, does not significantly reduce the
marginalised uncertainties of the final cosmological parameters.
This can be largely attributed to the fact that the majority of
the constraining power in the KiDS analysis comes from the
high redshift bins, as illustrated in Fig. 7 of A21, whereas our
increase in number density is most pronounced in the lower red-
shift bins. Additionally, changes in the redshift distributions, due
to alterations in the redshift calibration sample, could further
impact the final constrained uncertainties, as demonstrated in
Table 3 of vdB22. Lastly, due to the intricate degeneracy among
nuisance and cosmological parameters, caution should be used
when inferring that an increased number density will directly
lead to a reduction in the marginalised uncertainties of specific
parameters.

6. Summary

We have conducted a cosmic shear analysis using the KiDS-
1000-v2 catalogue, which is an updated version of the public
KiDS-1000(-v1) catalogue with respect to shear measure-
ments and calibration. Under the assumption of a spatially flat
ΛCDM cosmological model, we derived constraints on S8 =
0.776+0.029+0.002

−0.027−0.003 based on the MAP and PJ-HPD summary statis-
tics. The second set of uncertainties was incorporated to account
for the systematic uncertainties within our shear calibration. The
mean-marginal and maximum-marginal values obtained from
the same sampling chain are 0.765+0.029

−0.023 and 0.769+0.027
−0.029, respec-

tively. Our results are consistent with earlier results from KiDS-
1000-v1 and other contemporary weak lensing surveys but show
a ∼2.3σ level of tension with the Planck CMB constraints.

The main improvements in our analysis, relative to the
KiDS-1000-v1 cosmic shear analyses, are attributed to the
enhanced cosmic shear measurement and calibration. These
enhancements were achieved through the updated version of
the lensfit shape measurement code, a new empirical correc-
tion scheme for PSF contamination, and the newly developed
SKiLLS multi-band image simulations, as detailed in L23. We
verified the reliability of the new measurement via a series of
catalogue-level null tests proposed by Giblin et al. (2021). The
results indicate that the KiDS-1000-v2 catalogue shows over-
all better control over measurement systematics compared to
the KiDS-1000-v1 catalogues. This improvement in reducing
measurement systematics helps in reducing noise in small scale
measurements, thereby enhancing the robustness of our cosmo-
logical parameter constraints against varying scale cut choices.

Our methodology for shear calibration largely aligns with
the one detailed in L23, where we accounted for higher-order
blending effects that arise when galaxies from different redshifts
are blended, as well as the uncertainties in PSF modelling. How-
ever, when comparing the outcomes from the shear calibration
with and without these higher-order adjustments, we find that
these effects have a negligible impact on the present weak lens-
ing analysis, a conclusion that is in line with the findings of
Amon et al. (2022).

We recommend treating the statistical and systematic uncer-
tainties from the shear calibration separately, given their distinct
origins. The statistical uncertainties, which are determined by
the simulation volume, can be reduced and incorporated into the

covariance matrix used for cosmological inference. On the other
hand, systematic uncertainties, associated with the realism of
image simulations and the sensitivity of the shape measurement
algorithm, can be more effectively addressed when considered as
residual shear biases post-calibration. Assuming these residual
shear biases are small, a forward modelling approach, combined
with a local minimisation method, can be used to estimate their
impact on the final parameter constraints. In our analysis, these
additional systematic uncertainties contribute roughly 8% of the
final uncertainty on S8. However, ongoing efforts to enhance
shear measurement and calibration, such as increasing the real-
ism of image simulations through Monte Carlo control loops
(Refregier & Amara 2014) and leveraging new techniques such
as Metacalibration/Metadetection (Huff & Mandelbaum
2017; Sheldon & Huff 2017; Sheldon et al. 2020; Hoekstra et al.
2021) to improve measurement robustness against underlying
sample properties, may well lead to a reduction in these addi-
tional systematic uncertainties.

In our fiducial analysis, we opted for a redshift-independent
NLA model with a narrow flat prior for the IA amplitude param-
eter, AIA, motivated by the work of Fortuna et al. (2021a). How-
ever, we also investigated two alternative scenarios: one with a
broad AIA prior for the redshift-independent NLA model, echo-
ing the KiDS-1000-v1 analysis by A21, and the other the NLA-
z variant, allowing for redshift evolution of the IA amplitude,
as per the recent joint DES Y3+KiDS-1000 cosmic shear anal-
ysis (DK23). In all three scenarios, we find fully consistent
constraints for S8 and AIA, which indicates that the impact of
the variations is negligible in these scenarios. To better under-
stand the IA signals and their impact on cosmic shear analy-
ses, future tests need to implement more substantial variations
in IA models, for instance the halo model formalism introduced
by Fortuna et al. (2021a). Such an exploration would not only
enhance our understanding of the measured IA signals, but also
help mitigate correlations between nuisance parameters, thereby
improving the precision of future cosmic shear analyses.
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Appendix A: Shear bias in two-point statistics

When calibrating the shear measurements in the two-point corre-
lation function, it is usually assumed that the correlations involv-
ing the shear bias can be ignored, which includes correlations
between different tomographic and spatial angular bins. This
simplification leads to the following relationship between the
true correlation function of cosmic shear in tomographic bins
i, j, denoted as ξi j, and the measured signal ξ̂i j:

ξ̂i j(θ) = 〈γ̂i(θ′) γ̂ j(θ′ + θ)〉

= 〈[1 + mi(θ′)] [1 + m j(θ′ + θ)] γi(θ′) γ j(θ′ + θ)〉

= 〈[1 + mi(θ′)] [1 + m j(θ′ + θ)]〉 ξi j(θ)

' (1 + mi)(1 + m j) ξi j(θ),

(A.1)

where mi is estimated by averaging over all sources in a given
tomographic bin i, and we use 〈·〉 to denote the correlation func-
tion. We also assumed that the shear bias is independent of the
underlying shear to simplify the equation. The result of Eq. (A.1)
allows us to average the multiplicative biases over all the galax-

ies in a given tomographic bin to mitigate the individual noisy
bias estimation.

However, in principle, the shear bias can be scale dependent
due to spatial fluctuations in source density (e.g. Samuroff et al.
2018). With SKiLLS, we can directly examine these correlations
by measuring the shear bias in the two-point estimators. We mea-
sured the shear correlation function in the SKiLLS mock cata-
logue using Eq. (2). Since we know the true ξi j

+ (θ) = γ2
input in

simulations, where γinput is the amplitude of the constant input
shear, we can estimate the shear bias in the two-point correlation
function directly by comparing the measured ξ̂i j

+ to the input ξi j
+

following Eq. (A.1).
Figure A.1 shows the difference between the shear biases

with and without considering its correlations, defined as ∆mξ ≡

〈[1 + mi(θ′)] [1 + m j(θ′ + θ)]〉 − (1 + mi)(1 + m j). It shows that the
difference is negligible across all scales and tomographic bins, in
agreement with the statistical uncertainties of our shear calibra-
tion, which are represented by the shaded regions. These find-
ings confirm that we can neglect the correlations between shear
biases in the current KiDS weak lensing analysis.
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Fig. A.1. Two-point correlations between the multiplicative shear biases. The correlation is estimated as ∆mξ ≡ ξ̂
i j
+/γ

2
input − (1 + mi)(1 + m j). The

15 panels represent the different combinations of the five redshift bins utilised in our cosmic shear analysis. The shaded regions within each panel
denote the statistical uncertainties of our shear calibration for each tomographic bin, as outlined in Table 1.
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Appendix B: SOM redshift calibration

This appendix provides information on the redshift calibration
reference sample and SOM configurations used in our analy-
sis. For a more comprehensive overview and validation of the
SOM redshift calibration method in the KiDS analysis, we refer
to Wright et al. (2020), Hildebrandt et al. (2021), and vdB22.

We employed the fiducial spectroscopic sample described in
vdB22 as our calibration reference sample. This sample com-
prises spectroscopic redshift estimates (spec-zs) from various
spectroscopic surveys that overlap with KiDS fields, enabling
us to assign KiDS photometric measurements to objects in the
reference sample. In cases where an object had multiple spec-
troscopic measurements, vdB22 defined a specific hierarchy to
select the most reliable redshift estimates based on the quality
of the measurements. For further details on the adopted spec-
troscopic samples and the compilation procedure, readers are
referred to Appendix A of vdB22.

For our calibration, we used a 101 × 101 hexagonal SOM
trained on the r-band magnitude and 36 colours derived from
the PSF-matched, list-driven nine-band ugriZY JHKs photome-
try from the KiDS+VIKING surveys. This SOM is identical to
the fiducial SOM constructed in vdB22. We segregated the refer-
ence and target samples into the trained SOM cells separately for
each tomographic bin, allowing us to create comparable group-
ings between the spectroscopic and photometric sources in each
bin. During this process, we further categorised the original
SOM cells using a hierarchical cluster analysis implemented by
the “hclust” function within the r Stats Package12 to increase
the number of galaxies per grouping. We adopted the same num-
ber of clusters per bin (4000, 2200, 2800, 4200, and 2000) as
(Wright et al. 2020), who determined these numbers using sim-
ulations produced by van den Busch et al. (2020).

To mitigate the effects of photometric noise and the incom-
pleteness of the reference sample, we applied an additional
selection step to the SOM groupings. We excluded any group-
ing where the mean spectroscopic redshift of the reference sam-
ple zspec and the mean photometric redshift of the target sample
zB exhibited a significant discrepancy, defined as |zspec − zB| >
5σmad. Here, σmad represents the normalised median absolute
deviation of all SOM groupings, which we calculated to be 0.122
in our case. This step allowed us to define the KiDS “gold” sam-
ple, which we used to compute the redshift distributions and per-
form the cosmic shear analysis.

Appendix C: Systematic uncertainties from the
shear calibration

In this appendix, we outline our approach to addressing the sys-
tematic uncertainties arising from shear calibration. Our method-
ology involves two primary steps: In Sect. C.1, we quantify
the potential residual biases after implementing our simulation-
based shear calibration. In Sect. C.2, we propagate these sys-
tematic uncertainties into the final uncertainties of the estimated
cosmological parameters.

We propose a separate accounting of the shear calibration
uncertainties, as it is considered more accurate and informa-
tive than the traditional approach, which uses nominal shear
calibration uncertainties that are deliberately overestimated to
encompass potential systematic uncertainties arising from shear
calibration. Our approach clearly illustrates the extent to which

12 https://www.rdocumentation.org/packages/stats/
versions/3.6.2/topics/hclust

the final cosmological parameters of interest are influenced by
these systematic uncertainties from shear calibration.

Furthermore, as mentioned in Sect. 3.2, these system-
atic uncertainties have fundamentally different origins from
the statistical uncertainties incorporated in the covariance
matrix. They represent the fundamental limitations of cur-
rent simulation-based shear calibration methods. The limi-
tations inherent in these systematic uncertainties cannot be
eliminated by merely increasing the scale of image simula-
tions. However they can be mitigated by empirically enhanc-
ing the realism of the image simulations, for example, using the
Monte-Carlo Control Loop method (Refregier & Amara 2014),
or by improving the robustness of the shear measurement
algorithm, such as the Metacalibration/Metadetection
method (Huff & Mandelbaum 2017; Sheldon & Huff 2017;
Sheldon et al. 2020; Hoekstra et al. 2021).

C.1. Quantifying residual shear biases with sensitivity
analysis

Residual biases may persist after simulation-based shear calibra-
tion due to imperfect alignment between simulations and data,
as elucidated by K19. These discrepancies pose challenges for
shear calibration methods dependent on image simulations and
underscore the need for re-weighting simulations to more closely
align with the data. However, given that intrinsic galaxy proper-
ties in real data are unknown, this re-weighting process relies
on noisy measured properties, rendering it vulnerable to cali-
bration selection biases as discussed by FC17. The uncertain-
ties linked with the measured properties cause galaxies to be
intermixed among defined bins, leading to the up-weighting or
down-weighting of certain galaxies. As a result, even if the re-
weighted sample aligns with the data in terms of the distribution
of measured properties, it does not ensure identicality in terms
of intrinsic properties. In other words, shear biases can still vary
between two samples with identical distributions of apparent
measured properties. Our aim is to quantify these residual biases
and incorporate them into the final uncertainties of cosmological
parameters.

The SKiLLS multi-band image simulations used in this anal-
ysis incorporate several enhancements, informed by insights
gathered from previous KiDS simulation studies (FC17; K19).
These improvements include: reproducing variations in star den-
sity, PSF, and noise background across the KiDS footprint; incor-
porating faint galaxies down to an r-band magnitude of 27
to account for correlated noise from undetected objects (e.g.
Hoekstra et al. 2017); including realistic clustering from N-body
simulations to address blending effects (e.g. K19); and adopting
an end-to-end approach for photo-z estimation to account for
photo-z measurement uncertainties. These improvements aug-
ment the robustness of the shear biases estimated from SKiLLS
against various observational conditions.

In an investigation on the propagation of observational biases
in shear surveys, Kitching et al. (2019) demonstrated that the
measured shear power spectrum is, to first order, predominantly
influenced by the mean of the multiplicative bias field across a
survey. This suggests that if the shear bias estimated from simu-
lations accurately reflects the mean value of the targeted sample,
the shear calibration will be robust enough for KiDS-like cos-
mic shear analyses. Therefore, we conclude that potential resid-
ual biases related to observational conditions have negligible
influence on our shear calibration, and we focused on system-
atic uncertainties arising from galaxy morphology uncertainties,
specifically the assumed Sérsic profile and its parameters derived
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Fig. C.1. Changes in input morphological parameter values for assessing residual biases after simulation-based shear calibration. From left to right,
the order is half-light radius, axis ratio, and Sérsic index. Top panels: Relationship between relative fitting uncertainties and the r-band magnitude,
as measured from the catalogues of Griffith et al. (2012). The values shown are calculated using the median values of the binned samples. Middle
panels: Overall distributions of input morphological parameters. Comparisons are drawn among the fiducial (grey shades), the test sample with
input values increased by an amount corresponding to the relative uncertainties (red lines), and the test sample with input values decreased by
the same amount of relative uncertainties (blue lines). Bottom panels: Shifts in multiplicative biases in tomographic bins resulting from changes
in input morphological parameter values. Both fiducial and test simulations are re-weighted using the same dataset via the method detailed in
Sect. 3.1.

from Hubble Space Telescope observations (Griffith et al. 2012).
For a model-fitting shape measurement code like lensfit, these
galaxy morphology uncertainties are the main sources of resid-
ual shear biases after implementing the simulation-based shear
calibration.

The deviation from the Sérsic profile is challenging to
address for the current SKiLLS simulations, as our copula-
based learning algorithm requires a parameterised model for its
application. However, the Sérsic model has been validated as
sufficient for KiDS-like analyses by K19, who used the same
morphology catalogue as our work. Thus, we focus on the
measurement uncertainties of the Sérsic parameters: half-light
radius, axis ratio, and Sérsic index. We first examined the fit-
ting uncertainties reported by Griffith et al. (2012) to assess the

accuracy of these parameters in our input catalogue. We find
that the median relative uncertainties for these parameters are a
smooth function of galaxy magnitude, as shown in the top panels
of Fig. C.1. This allows us to capture these correlations through
simple linear interpolation.

We interpreted these relative uncertainties as indicators
of the systematic uncertainties in our input morphology. We
assumed the most extreme scenarios, in which these measured
statistical uncertainties are all caused by a coherent bias in the
same direction. Consequently, we adjusted all galaxies in our
input sample in the same direction, with the amplitude of the
adjustment determined based on their r-band magnitude using a
simple linear interpolation of the measured median correlations.
We examined shifts towards both larger and smaller values and
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considered the three Sérsic parameters separately. This resulted
in six test simulations corresponding to the six different sets
of variations in input morphology parameter values. The input
parameter distributions for these test simulations, as shown in
the middle panels of Fig. C.1, are compared to the distributions
of the fiducial simulations. A clear shift of the entire distribution
is evident, suggesting that our test simulations represent the most
extreme scenarios in which the measured statistical uncertain-
ties are coherently biased in the same direction, a situation that
is unlikely in reality. Therefore, the residual biases we identified
from these test simulations provide a conservative estimate.

We applied the same data analysis procedures to the test sim-
ulations as we did to the fiducial simulations, including shear
and redshift estimates. We also followed the same re-weighting
procedure for the test simulations as for the fiducial simulations,
ensuring that the calibration selection biases are also captured.
The differences in shear biases between these test simulations
and our fiducial simulation are illustrated in the bottom panels
of Fig. C.1. The small differences indicate that the residual shear
biases, after implementing our fiducial shear bias calibration, are
insignificant.

C.2. Propagating residual shear biases with forward
modelling

Accurately incorporating the systematic uncertainties from shear
calibration into the covariance matrix presents a challenge, as
residual shear biases directly scale the data vector, as shown in
Eq. (A.1). A more direct approach is to assess the shift in the
measured shear signal caused by the residual shear biases and
evaluate how these data vector shifts influence the constrained

cosmological parameters. Given the minor residual shear biases
illustrated in Fig. C.1 and the unchanged covariance, it is not
necessary to reiterate the sampling of the posterior distributions
for each shift. Instead, we can implement a local minimisation
algorithm to find nearby best-fit values for each shift, using start-
ing points from the fiducial sampling chain. The range of these
new best-fit values, each associated with a shift, indicates the
additional systematic uncertainties introduced by the residual
shear biases.

This approach naturally integrates with our existing cosmo-
logical inference method, as outlined in Sect. 4, which already
requires an additional local optimisation step to refine the best-
fit values identified by the sampling code. We simply replicated
this optimisation step, using the original best-fit value as the
starting point and the shifted likelihood to determine the best-
fit values associated with various alterations in measured sig-
nals. The variability in these test best-fit values provides an
expanded credible region for the inferred parameters, thereby
representing the systematic uncertainties from shear calibration.
We included these additional uncertainties when presenting the
point estimates of our primary parameters (see Sect. 5.2 for
details).

Appendix D: Contour plots for all free parameters

In this appendix, we provide two supplementary contour plots
that display the posterior distributions of all twelve free param-
eters from our fiducial analyses, as produced by both the
PolyChord and MultiNest sampling codes. The overall con-
cordance between the results generated by PolyChord and
MultiNest is evident.
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Fig. D.1. Posterior distributions of cosmological and baryonic parameters from our fiducial analyses, as generated by PolyChord (solid black
lines) and MultiNest (dashed grey lines). The contours represent the 68% and 95% credible intervals and are smoothed using a Gaussian KDE
with a bandwidth scaled by a factor of 1.5. We note that S8 is the only parameter that our data robustly constrain.
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KiDS-1000-v2: PolyChord

KiDS-1000-v2: MultiNest
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Fig. D.2. Posterior distributions of S8 and nuisance parameters from our fiducial analyses, as generated by PolyChord (solid black lines) and
MultiNest (dashed grey lines). The contours represent the 68% and 95% credible intervals and are smoothed using a Gaussian KDE with a
bandwidth scaled by a factor of 1.5. We note that the Gaussian priors we have set, as outlined in Table 2, strongly influence the redshift offset
parameters. The dotted lines represent the central values of these Gaussian priors.
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