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ABSTRACT
Knowledge Graph (KG)-to-Text Generation has seen recent im-

provements in generating fluent and informative sentences which

describe a given KG. As KGs are widespread across multiple do-

mains and contain important entity-relation information, and as

text simplification aims to reduce the complexity of a text while

preserving the meaning of the original text, we propose KGSim-
ple, a novel approach to unsupervised text simplification which

infuses KG-established techniques in order to construct a simplified

KG path and generate a concise text which preserves the original

input’s meaning. Through an iterative and sampling KG-first ap-

proach, our model is capable of simplifying text when starting from

a KG by learning to keep important information while harnessing

KG-to-text generation to output fluent and descriptive sentences.

We evaluate various settings of the KGSimple model on currently-

available KG-to-text datasets, demonstrating its effectiveness com-

pared to unsupervised text simplification models which start with

a given complex text. Our code is available on GitHub1.
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1 INTRODUCTION
Text simplification (TS) is characterized as a text revision task, with

the constraint that the output text should be easier to read than

the input text. The primary objective of TS is to propagate infor-

mation to a more expansive audience, including individuals with

lower literacy levels [47], those with reading disabilities [7], non-

native speakers [37], and individuals lacking specialized knowledge

within specific domains, such asmedically related documents [1, 52].

Therefore it can also enhance various natural language processing

(NLP) tasks that necessitate less complex texts for optimal results,

including question answering [10], information extraction [51], and

machine translation [48].

Models employing generative supervised learning for TS have

typically adhered to a sequence-to-sequence framework, whereby

a complex body of the text is translated into a simplified sentence

in an autoregressive fashion [37, 59]. Conversely, unsupervised

models typically depend on parsing and restructuring sentences to

generate text that is both simpler and semantically relevant [12, 26].

The generative models frequently surpass their counterparts that

depend on editing mechanisms and rules for sentence simplifica-

tion, although they necessitate the availability of abundant parallel

sentence pairs for effective training, which may not be consistently

accessible. Moreover, while supervised models execute the trans-

lation of complex sentences through a series of continuous steps,

unsupervised TS has predominantly concentrated on employing

edit-based approaches. These approaches involve rule-driven oper-

ations, including sentence reordering, splitting, and deletion, pro-

viding a higher level of interpretability, but are inherently limited

by their predefined rule sets.

Recent investigations into unsupervised text simplification (TS)

have delved into the domain of search-based methodologies. These

methods utilize predefined scoring functions that prioritize factors

such as simplicity, fluency, and meaning retention in a sentence

as per the studies conducted by Dehghan et al. [11], Laban et al.

[27], Vo et al. [56]. Similar to supervised counterparts, thesemethod-

ologies can also incorporate a generation phase to maintain the

integrity of sentence structure. Despite these advancements, cur-

rent unsupervised strategies are limited in their capacity to generate

highly fluent sentences. This limitation arises due to the constraints

* These authors contributed equally.

1https://github.com/acolas1/KGSimple
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imposed by edit operations on the structural and syntactical ele-

ments of the input sentences.

As there is a vast amount of data stored in knowledge graphs

(KGs), including patient records [45], legal procedures [14], and

event-related information [9] it is important to convey such infor-

mation to a wide audience. KG-to-text models have seen recent

improvements in transcribing such structured data into fluent natu-

ral language sentenceswhich preserve themeaning of the KG [8, 21].

Still, because of the vast amounts of data stored in KGs, some of

the data may be irrelevant and difficult to understand when tran-

scribing to a user. Furthermore, as the data stored in KGs can act

as a compact representation of narratives, the data stored in KGs

can be used to help interpret such TS models, especially those that

leverage a text generation step. Thus, we propose an unsupervised

framework that infuses TS with KG-to-text generation to generate

simplified texts that preserve the meaning of the original input KG

while generating more fluent texts than existing unsupervised TS

approaches. Whereas current TS approaches rely on input texts,

we extend TS to the KG domain. Our framework, which we call

KGSimple, is a sampling-based approach that utilizes graph opera-

tions to simplify the input’s contents while leveraging pre-trained

KG-to-text generative models to produce fluent and relevant text

with respect to the input KG. An example is illustrated in Figure 1.

We adopt an iterative graph sampling to produce simplified KGs

akin to Markov Chain Monte Carlo (MCMC) sampling, where at

each step a local operation is performed on a KG to reduce the

structural and syntactic complexity of the graph. We then generate

a text from the proposed graph, either accepting or rejecting the

current KG-text pair according to a heuristically defined scoring

function. We explore multiple sampling algorithms to produce a

simplified text, including simulated annealing (SA) [53] to search

for a simplified KG.

Our contributions are as follows:

• We propose KGSimple, an unsupervised KG-text simplifi-

cation framework that can produce simplified text based

on an input KG. Note, that our algorithm can produce both

sentence and paragraph-level simplification.

• We devise up to three sampling techniques to simply more

complex KGs and integrate existing KG-to-text models on

the simplified KGs to generate coherent and simplified texts.

• We experiment on existing KG-to-text data and compare it to

existing text-centric unsupervised TS systems, demonstrat-

ing that KGSimple can at times outperform these models,

specifically in generating fluent simplified text in an inter-

pretable fashion.

2 RELATEDWORK
2.1 Text Simplification
A variety of generative supervised models have been employed,

including sequence-to-sequence models [37], reinforcement learn-

ing techniques [62], and transformer architectures [54]. These ap-

proaches have utilized external paraphrase databases [63], complexity-

weighted loss [25], syntactic rules [31], and complexity features

found within the text [32] to improve their performance.

On the other hand, edit-based supervised models have been

developed to simplify complex sentences by leveraging parallel

complex-simple sentences. Alva-Manchego et al. [3] have proposed

a method that learns the keep, replace, and delete operations, while

Dong et al. [12] have developed an end-to-end generative model to

learn where to apply edit operations. Recent work on supervised

edit-based text simplification has focused on predicting token-level

edit-operations in a non-autoregressive fashion [39] or editing the

complex text through a fixed pipeline [2]. However, unlike KGSim-

ple, these approaches require large amounts of parallel supervised

data and focus mainly on sentence and word-level edits. In contrast,

our KG-level edits can produce changes in the output at various

granularities.

Several semi-supervised methods have been proposed for text

simplification. For example, Zhao et al. [64] introduced a back-

translation framework, while Surya et al. [49] employed a style-

transfer technique, andMartin et al. [33] fine-tuned BART approach.

However, these methods still require non-aligned pairs of sentences,

which limits their interpretability and controllability since they are

based on generative networks. On the other hand, unsupervised

edit-based approaches have been explored, where a pipeline of

operations is applied to complex sentences [36].

Recently, iterative approaches have been proposed, where text

simplification is modeled as a search problem [26]. These methods

have integrated text generation [11, 27] and back-translation [56]

as a step in their framework. Although KGSimple is also an iterative

revision-based approach, it differs from these methods in that it

leverages the knowledge graph’s condensed storage of information

as a starting point instead of plain text. Moreover, while previous

work on text simplification has mostly focused on greedy selection

processes, KGSimple considers various sampling strategies, inspired

by adjacent text generation tasks[30].

2.2 KG-Text Generation
Previous research on models that convert KG into natural language

text first employed GNNs to encode the neighborhood structure of

the graph before decoding the information into text [17, 24, 55]. Re-

cent studies in the field of KG-to-text have explored the efficacy of

pre-trained language models [44] and have developed pre-training

tasks to acquire knowledge of the KG representation [19]. These

models have also incorporated graph-based features into trans-

formers, such as a node’s relative position [46] and the graph’s

topology [8, 21], in order to enhance KG encoding. While the pre-

viously mentioned research has concentrated on narrating the KG,

we are the first to apply such KG-to-text models to unsupervised

text generation, specifically, text simplification.

3 APPROACH
3.1 Overview
The proposed framework, KGSimple, comprises a two-fold ap-

proach that employs an iterative process to optimize a given reward

function. As depicted in Figure 2, given an input KG 𝑔, the frame-

work performs the following steps: (1) sample a simplified graph 𝑔′

through diverse graph reduction operations on the structure and

syntactic content of the original graph (refer to Section 3.2), and

(2) generate a corresponding text 𝑦𝑔′ via a KG-to-text generator

(refer to Section 3.3). Both 𝑔 and 𝑦𝑔′ are then evaluated based on a

pre-defined scoring function (refer to Section 3.4).
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Phase 1 Graph Simplification

Antioch,
California

Califonia

Contra Costa
County

English

San Francisco
bay area

language

is_part_of

is_part_ofleader_title

is_part_of

California's
11th state
assembly

district

Delete candidates: 
1. California's 11th
state assembly district
2. Contra Costa
County
3. ...

Phase 2 Graph2Text

Merge candidates: 
(San Francisco bay area,
is part of, Contra Costa
County, California), 
(Contra Costa County,
California, is part of,
Antioch, California), 
(Antioch, California, is
part of, California)

(Contra Costa County, California,
is_part_of, Antioch, California)
(Antioch, California, is_part_of,

California)
(English language, language,

California)
(San Francisco bay area, is_part_of,

Contra Costa County, California)

(English language, language,
California)

(San Francisco bay area, is_part_of,
California)

(English, language, California)
(San Francisco bay area, is_part_of,

California)

(English, language, California)
(San Francisco bay area,

is_part_of, California)

Final Output: San Francisco is
part of California, where English is

spoken. 

Replace candidates: 
English, language ->
English

Figure 1: Illustration of the KGSimple framework: from input KG to generated text.

Input KG

Text GeneratorKG Reduction
Sampler

Operations
Replace
Delete
Merge

Output KG
Generated Texts

Scoring/
Search

N
ew

 In
pu

t K
G

Accepted/Rejected KG

Figure 2: The KGSimple framework: 1) the KG Reduction
Sampler produces a simplifiedKG, 2) the text generator (GAP)
produces a text representation, and 3) the scoring function
evaluates the KG-text pair according to a given condition.

At each iteration of the framework, starting with KG 𝑔0, a reduc-

tion operation is applied to the KG, and a pre-trained generative

model produces a text that corresponds to the current KG. Our

scoring function considers both soft and hard constraints on the

KG-Text pair and determines whether to retain or discard the pro-

posed KG-Text pair for use in the next iteration. If the KG-Text pair

is rejected, KGSimple will randomly sample another operation on

the KG to generate a new text from the generator.

Our scoring function is heuristically defined, and therefore, to

ensure the credibility of our results, we employ three distinct con-

ditional acceptance criteria outlined in Section 3.4. First, we accept

scores that are greater than or equal to zero. Second, we consider

scores greater than the previous score to indicate progress. Finally,

we utilize simulated annealing (SA) as a technique to encourage

the model to explore beyond local minima. By employing these

acceptance criteria, we aim to ensure the robustness and accuracy

of our scoring system.

3.2 Operations
We detail the operation set sampled by KGSimple that simplifies

a KG at each step. We propose candidates by sampling one of the

operations that can modify entities/relation tokens and reduce the

structure of the original KG.

Delete. In this operation, we propose a new candidate KG by

eliminating one of the entities in the original KG. To ensure the

preservation of crucial information after each deletion, we utilize a

TF-IDF score for each phrase, which is calculated using the English

Wikipedia. At each iteration, the model first identifies the entity

node(s) with the lowest degree or least amount of connected edges.

Subsequently, if there are multiple candidates, we exploit the TF-

IDF score to delete the node with the least frequency and the least

centrality. The delete operation enables us to eliminate redundant

branches for graph-level simplification.

Replace. To semantically simplify the graph, at each iteration,

we select the most complex and least frequent word based on the

IDF score. After selecting the complex word, we employ a two-

stage approach to generate feasible replacements: (1) we obtain

candidate phrases by leveraging a complex word dictionary from

Simple PPDB [43], and (2) we consider a candidate phrase to be an

appropriate substitution when it has a lower IDF score than the

complex word.

For instance, suppose that the original KG contains the phrase:

(‘The menu’ ‘offer’ ‘vegetarian alternatives’). In that case, our model

can replace the word ‘alternatives’ with ‘options’. Similarly, for

another phrase such as (‘Annual Avant Garde Festival of New York’,
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‘inception’, ‘1963’), we replace the word ‘inception’ with ‘beginning’.
These operations significantly enhance the semantic simplicity of

the graphs.

Merge. To further simplify the graphs, we consider merging

operations to certain types of edges:

1) Transitive edges: For two edges (𝑒1, 𝑟1, 𝑒2) and (𝑒2, 𝑟2, 𝑒3),
our model merges them into (𝑒1, 𝑟1 |𝑠𝑒𝑝 |𝑟2, 𝑒3).
For example, with (Steven Gerrard, play, Liverpool F.C.) and
(Liverpool F.C., locate in, the county of Merseyside), our model

will merge them into (Steven Gerrard, play|sep|locate in, the
county of Merseyside)

2) Edge pairs that share both head and tail entities: For two

edges (𝑒1, 𝑟1, 𝑒2) and (𝑒1, 𝑟2, 𝑒2), our model merges them into

(𝑒1, 𝑟1 |𝑠𝑒𝑝 |𝑟2, 𝑒2).
For example, (‘2013–14 Albanian Superliga’, ‘location’, ‘Alba-
nia’) and (‘2013–14 Albanian Superliga’, ‘country’, ‘Albania’).

3) Edge pairs that share the same head or tail entity: For two

edges (𝑒1, 𝑟1, 𝑒2) and (𝑒1, 𝑟2, 𝑒3) or (𝑒2, 𝑟1, 𝑒1) and (𝑒3, 𝑟2, 𝑒1),
our model merges them into (𝑒2, 𝑟1 |𝑠𝑒𝑝 |𝑟2, 𝑒3).

Furthermore, we use the sum of the IDF of all the phrases in the

two edges to select the most complex and least informative pair

to merge. The Merge operation improves our model’s ability to

further simplify the graph structure.

3.3 Generator
As part of the second phase of KGSimple, the proposed knowledge

graph 𝑔𝑡 is subjected to a generative KG-to-text model in each

iteration, which produces a natural language output text 𝑦. This

output text is generated based on the following probability formula:

𝑃 (𝑦𝑔𝑡 ) =
𝑛∏
𝑖=1

𝑃 (𝑤𝑖 |𝑤𝑖−1
1

, 𝑔𝑡 )

, where 𝑤𝑖 is the token generated at position 𝑖 , 𝑛 is the output

length, and 𝑦𝑔𝑡 is the output text corresponding to the proposed

graph at iteration 𝑡 .

By leveraging text generative models like GAP [8], our frame-

work produces coherent and relevant sentences that describe the

contents of the given graph. Note that multiple passes through

this model, coupled with our scoring function, help improve the

output of these models iteratively. This iterative process can reduce

hallucination, which refers to the model generating content during

the decoding step that lacks support from the given input data.

3.4 Scoring
Several previous studies have examined unsupervised TS, using

heuristic-based reward functions to evaluate various syntactic and

semantic aspects of the output text𝑦 based on individual metrics [18,

26, 27]. These reward functions aim to ensure that the output text

is fluent (𝑆𝑓 𝑙 ), preserves the original meaning (𝑆𝑚𝑝 ), and is simpler

in content than the input (𝑆𝑠𝑖𝑚), while also rejecting poor quality

candidates generated through the iterative process. To refine these

reward functions for the KG case, we propose using the product of

all individual rewards to ensure balance across all criteria.

3.4.1 Fluency. To ensure that the generated candidates are gram-

matically correct and fluent, we use the syntactic log-odds ratio

(SLOR) score [42], which is defined as the sentence log-probability

normalized by the unigram probability and sentence length, as the

fluency score 𝑆𝑓 𝑙 . The SLOR score works well as a proxy for fluency,

as previous work has found that SLOR highly correlates with the

human evaluation of grammatically acceptability [28] and fluency

in the sentence compression task [20].

Given a unigram probability model, pre-trained language model

(LM), and text, SLOR assigns a score to the text 𝑦𝑡 at iteration 𝑡 as:

𝑆𝐿𝑂𝑅(𝑦𝑡 ) =
1

|𝑦𝑡 |
(ln(𝑝𝐿𝑀 (𝑦𝑡 )) − ln(𝑝𝑈 (𝑦𝑡 ))) ,

where |𝑦𝑡 | is the length of the text, 𝑝𝐿𝑀 (𝑦𝑡 ) is the probability of 𝑦𝑡
under a given LM, 𝑝𝑈 is the unigram probability measures as:

𝑝𝑈 (𝑦𝑡 ) =
∏
𝑤∈𝑦𝑡

𝑝 (𝑤)

, where 𝑝 (𝑤𝑖 ) is the unconditional probability of token𝑤 produced

by a unigram-text model.

SLOR penalizes an LM’s probability by the unigram probability,

stabilizing the LM probability in the presence of rare tokens as the

LM score may assign a lower probability to those texts containing

rare tokens. This ensures that rare tokens do not penalize a text’s

fluency score which is important when evaluating the output text

of a KG containing rare entity tokens as we do not want to penalize

these rare tokens.Where previous works have used recurrent neural

networks to calculate the LM probability for SLOR, we use a pre-

trained GPT-2 [6] model with byte-pair encoding (BPE). To keep

the score between [0,1] we avoid calculating the log of the model

scores, instead opting to use their raw probabilities:

𝑆𝑓 𝑙 (𝑦𝑡 ) =
1

|𝑦𝑡 |
(𝑝𝐿𝑀 (𝑦𝑡 ) − 𝑝𝑈 (𝑦𝑡 ))

.

3.4.2 Salience. Salience has been typically defined as the similarity

between a candidate text and pseudo-reference text, where a text

with high salience has similar semantic meaning and both contain

particularly important words [13]. To measure the salience of a

generated simplified text, we use the F1 of BERTScore [61] between

the generated text at the current iteration 𝑦𝑡 and the text generated

from the original KG 𝑦0, defined as:

𝑆𝑚𝑝 (𝑦0, 𝑦𝑡 ) = BERTScore(𝑦0, 𝑦𝑡 )
The BERTScore leverages the pre-trained BERT model when

calculating the cosine similarity between two texts. Where previous

work [11, 26] uses the cosine similarity as a hard filter, our salience

calculation acts as a soft score which is multiplied by our other

scoring metrics, as the BERTScore typically falls between a very

narrow high range in multiple settings [16].

3.4.3 Simplicity. Following previous work, we evaluate the sim-

plicity 𝑆𝑠𝑖𝑚𝑝 of a generated text 𝑦 with the Flesch Reading Ease

(FRE) score [22], which measures the readability of a text based on

the number of total sentences, words, and syllables. A lower score

indicates that a text is more difficult to read. While the FRE score

typically ranges from [0,100], the highest possible score is 121.22

with no theoretical lower bound. Therefore, to bound the range

from [0, 1] we set the simplicity score to:

𝑆𝑠𝑖 (𝑦𝑡 ) =
𝐹𝑅𝐸 (𝑦) − 𝜆

121.22 − 𝜆
,
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where 𝜆 is a tunable hyper-parameter representing the lowest pos-

sible raw FRE score in a given dataset. For our purposes, we set

𝜆 = −30, in our experiments as a lower bound.

3.4.4 Entity Score. Unlike prior work in unsupervised TS, our task

is a KG-to-text simplification task. Therefore, we check whether the

generated text 𝑦𝑡 accurately narrates the currently proposed KG 𝑔𝑡 .

To do so, we penalize the reward function if the KG-to-text model

hallucinates any new entities that do not appear in the generated

text. Because a KG is a compact and structured representation, it

may be the case that the corresponding text would need to mention

new entities in order to produce fluent sentences. We, therefore,

impose a soft constraint if the model hallucinates new entities. The

entity score 𝑆𝑒𝑛 is defined as:

𝑆𝑒𝑛 (𝑦𝑡 , 𝑔𝑡 ) = 1 −
|𝐸𝑦𝑡 \ 𝐸𝑔𝑡 |

|𝐸𝑔𝑡 |
,

where 𝐸
𝑔
𝑡 and 𝐸

𝑦
𝑡 are the entities in 𝑔𝑡 and 𝑦𝑡 .

3.4.5 Hard Constraints. In order to prevent our model from pro-

ducing invalid results, we define hard (binary) constraints on the

proposed simplified KG and output text which cause the score to

zero out if triggered.

As our sampled operations induce a reduction of the KG, our

first hard constraint is a graph brevity penalty score 𝑆𝑔𝑏 , which is

set to zero if the number of triples in proposed KG 𝑔𝑡 is reduced

below a certain threshold. In our experiments, we set the threshold

as the ratio 𝑟𝑜𝑝 = 0.6 ≥ |𝑇𝑔

𝑡−1 |
|𝑇𝑔

𝑡 | , where |𝑇𝑔

𝑡−1 | and |𝑇𝑔
𝑡 | denote the

number of triples in the previous and proposed graph, respectively.

Our second phase generates text from KG’s, which may halluci-

nate entities that are likely to appear in a generated narration. Since

our approach aims to remove unimportant entities’ information,

we verify that those entities that were specifically deleted from

𝑔 do not appear in the simplified text. If these entities do appear

in the generated text, the deleted entity score 𝑆𝑑𝑒 is set to zero,

automatically rejecting the sample.

3.4.6 Overall. As the various scores capture distinct facets of the
simplified input, we compute the overall reward function as:

𝑆 (𝑦0, 𝑦𝑡 , 𝑔𝑡−1, 𝑔𝑡 ) = 𝑆𝑓 𝑙 (𝑦𝑡 ) · 𝑆𝑚𝑝 (𝑦0, 𝑦𝑡 )
· 𝑆𝑠𝑖 (𝑦𝑡 ) · 𝑆𝑒𝑛 (𝑦𝑡 , 𝑔𝑡 )
· 𝑆𝑔𝑏 (𝑔𝑡−1, 𝑔𝑡 ) · 𝑆𝑑𝑒 (𝑦𝑡 , 𝑔0)

3.5 Search Algorithms
In this paper, we investigate various acceptance conditions for

the reward scoring function previously defined in our framework.

These acceptance conditions include accepting the current proposal

if and only if its score is greater than zero, accepting the proposal

if its score is higher than the previous score, and employing an SA

approach that promotes optimal solution exploration in the model’s

initial stages. The SA approach sets a threshold that is controlled

by probability. If the candidate KG 𝑔𝑡 is accepted at iteration 𝑡 , it is

processed next. However, if it is rejected, the algorithm proposes

another operation on 𝑔𝑡−1.
While previous work has applied SA to other text generation

tasks [30], we remodel SA for TS. In the SA approach, at each

iteration 𝑡 a KG proposal 𝑔𝑡 is accepted with probability:

𝑝 (𝐴|𝑔𝑡−1, 𝑔𝑡 , 𝑦𝑡−1, 𝑦𝑡 ,𝑇 ) = min{1, 𝑒−Δ𝐸/𝑇 }
Δ𝐸 = 𝑆 (𝑦𝑡 , 𝑔0, 𝑔𝑡 ) − 𝑆 (𝑦𝑡−1, 𝑔0, 𝑔𝑡−1),

where𝑇 is the temperature or tolerance, initially set to a high value

and decreased via a cooling rate [23].

4 EXPERIMENTS
4.1 Data
To evaluate the KGSimple framework, we use the WebNLG [15]

KG-to-text dataset and DART [35] structured data record to text

generation dataset, as the KGs contained within these datasets

were constructed for natural language text generation. WebNLG

is a hand-crafted triple-to-text dataset that contains graphs from

DBPedia [5] with up to 7 triples paired with reference texts. DART is

a human-annotated and automatic-converted dataset incorporated

from WikiSQL [65], WikiTableQuestion [41], WebNLG 2017, and

Cleaned E2E [38] with 21.6 words on average for each table.

We extract the more complex KGs from the WebNLG and DART

datasets, considering those KGs containing more than 3 triples as

complex. We thus experimented on 583 samples on WebNLG and

500 samples on DART. As there currently only exists unsupervised

text-based approaches for TS, for a fair comparison we first gen-

erate a text with a KG-to-text model from each of the KGs. We

use GAP [8] for WebNLG and T5 [44] for DART to generate such

golden sentences. The generated text then serves as the complex

text input in each of the baselines.

4.2 Competing Models
We evaluate KGSimple under the three aforementioned search cri-

teria, namely: 1) greater than previous, 2) greater than zero, and

the SA algorithm. As in previous work, we consider the complex

input as an upper bound for each of the evaluation metrics. Each

text generated by GAP/T5 acts as the golden reference, as it is the

starting point used in all of the evaluated approaches.

For the unsupervised competing approaches, we compare them

with state-of-the-art edit-based iterative approaches. First, we com-

pare against [26], an iterative revision-based approach composed

of a delete (RM), extraction (EX), lexical substitution (LS), and re-

ordering (RO) operation. We include the RM+EX+LS+RO setting

and denote it as EditTS. Next, we compare against USDP [56], a sen-

tence simplification system that uses a dependency tree structure

to decode a structurally simpler output. The generated output is

then back-translated to English to generate lexical simplifications.

Finally, we compare to GRS [11], an iterative framework that uses

explicit edit operations to reduce complex text, including a gener-

ative paraphrase module. In our experiments, we use the PA+DL

setting of GRS which performs both deletion and paraphrasing on

an input text.

4.3 KGSimple Settings
For the KG-to-text generator, we use the GAP w/ type encoding [8]

and T5 [35] models, which were fine-tuned on simple graphs (1-3

triples) from the WebNLG and DART dataset, respectively. GAP

is a KG-to-text model that combines graph-aware elements into

the BART [29] text generative model. We leave all of the default
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Table 1: Comparison of unsupervised text simplification models on WebNLG and DART. Len, CR, SC, and SR, refer to the
Length, Compression Ratio, Syllable Count, and Syllable Ratio. EO, Add, and Delete, refer to Entity Text Overlap, Entity Text
Added, and Entity Text Deleted. The constituency tree Height and Diameter are denoted by CTH and CTD, and the fluency
(CoLA) and salience (BERTScore) are denoted by F and S. GM is the geometric mean between the CR, SR, F, and S scores. ↑/↓
indicates that a higher/lower value is better.

(a) Result on WebNLG

Len ↓ CR ↓ SC ↓ SR ↓ CTH ↓ CTD ↓ EO Add ↓ Delete ↑ F ↑ S ↑ GM ↑
Baseline (GAP) 37.45 1.00 47.63 1.00 23.59 36.28 - - - 0.62 1.00 -

EditTS 33.17 0.90 40.82 0.89 22.74 33.73 0.89 0.29 0.53 0.48 0.96 0.27

USDP 24.78 0.69 27.53 0.60 20.92 26.55 0.59 0.06 1.26 0.54 0.93 0.50

GRS 26.04 0.71 31.87 0.68 20.31 29.51 0.75 0.68 1.39 0.56 0.93 0.47

Prev 31.39 0.85 38.70 0.82 22.22 32.51 0.75 0.53 1.26 0.63 0.93 0.35

SA 23.69 0.65 28.84 0.63 20.79 27.89 0.61 0.62 1.91 0.62 0.90 0.52

Zero-best 30.01 0.82 36.94 0.79 22.33 31.90 0.75 0.56 1.34 0.64 0.92 0.39

Zero-last 23.07 0.64 28.12 0.61 20.58 27.19 0.59 0.59 1.91 0.61 0.90 0.53

(b) Result on DART

Len ↓ CR ↓ SC ↓ SR ↓ CTH ↓ CTD ↓ EO Add ↓ Delete ↑ F ↑ S ↑ GM ↑
Baseline (T5) 28.94 1.00 36.75 1.00 19.61 30.66 - - - 0.51 1.00 -

EditTS 26.94 0.94 33.03 0.91 19.48 29.63 0.67 0.18 0.25 0.43 0.96 0.22

USDP 18.21 0.67 20.77 0.59 18.06 21.03 0.30 0.05 1.13 0.37 0.93 0.46

GRS 21.78 0.75 27.25 0.75 17.69 25.91 0.53 0.45 0.90 0.51 0.94 0.42

Prev 26.58 0.93 33.02 0.90 18.85 29.03 0.58 0.16 0.46 0.51 0.96 0.24

SA 19.52 0.71 23.55 0.67 17.28 24.78 0.46 0.30 1.03 0.50 0.92 0.46

Zero-best 24.20 0.86 29.46 0.82 18.63 27.79 0.52 0.25 0.76 0.52 0.94 0.33

Zero-last 17.72 0.64 21.49 0.61 16.81 22.75 0.40 0.37 1.20 0.51 0.91 0.51

hyper-parameters for GAP and T5, and set the beam size to 5, with a

repetition penalty of 1.0. T5 is a state-of-art data-to-text generation

model and has been evaluated on DART. We use T5-base in our

experiment and follow the same setting as in [44].

We set the probability of sampling the [delete, replace, merge]
operations to a uniform distribution of [ 1

3
,
1

3
,
1

3
]. We run each

input for 50 iterations with a batch size of 64. All components of

our scorer are weighted equally, where we calculate the sentence

probability for the fluency scorer using GPT-2 and calculate the

BERTScore using theHuggingFace evaluate library
2
. For the greater

than previous and SA search algorithms, we normalize all scores

between 0 and 1. To extract entities from the output text in the entity

scorer, we use the spaCy [34] named entity recognition module. All

experiments were performed on 2 NVIDIA A-100 GPUs.

4.4 Metrics
To evaluate all of the models, we measure intrinsic metrics asso-

ciated with text simplicity, including the text length, number of

syllables, semantic tree height, and semantic treewidth. As we pro-

pose a KG simplification approach, we also measure on entity-based

metrics. These include counting the entity overlap between the in-

put/output (entity text overlap), how many entities were added to

2
https://github.com/huggingface/evaluate

the output (entity text added), and howmany entities were removed

from the input (entity text deleted). As we want to ensure the out-

put is coherent, we evaluate the fluency and similarity using the

CoLA [57] and BERTScore. We use CoLA, as the LM perplexity does

not account for repetition or grammar when scoring. For CoLA, we

report the probability that a text is indeed acceptable. We exclude

the FKGL from our evaluation, as FKGL was designed for a text of at

least 200 words [4, 58]. Additionally, Tanprasert and Kauchak [50]

have recently found that FKGL can be easily manipulated via basic

post-processing steps and argue to instead report the individual

components of FKGL, i.e., sentence length and syllable count. There-

fore, we report these, along with coherence metrics (fluency and

saliency), and a geometric mean which combines the size metrics

with the coherence metrics. Unlike prior work on unsupervised TS,

where the data still comes from a supervised dataset, our datasets do

not contain any simplified text. We, therefore, exclude calculating

the BLEU [40] or SARI [60] scores.

5 RESULTS
We present the results on WebNLG and DART in table 1. We refer

to the complex generated text data as Baseline. For the KGSimple

search algorithm with the "greater than zero" condition, we report
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both the last accepted iteration (Zero-last) and the best-scored it-

eration (Zero-best), as this condition is more loosely constrained

than our other conditions. We denote the "greater than prev" and

SA algorithms as Prev and SA, respectively.

5.1 WebNLG
From table 2a, we can observe that KGSimple with SA outperforms

the KGSimple configurationwith the Prev search constraint in terms

of intrinsic simplification metrics, with a text compression ratio of

0.65, syllable ratio of 0.63, and constituency tree height/diameter

of 20.79 and 27.89. Although Zero-last produces slightly shorter

sentences than the SA approach, the SA approach produces more

fluent sentences. Conversely, the Zero-best approach and the more

tightly conditioned Prev method produce more fluent sentences.

Hence, for the unsupervised text simplification approaches there

may be some trade-off between length and fluency which future

work can further study. When scoring the geometric mean between

the length ratios, fluency, and saliency, we find that the SA and Zero-
last search constraints perform similarly, where Zero-last produces
slightly shorter texts and SA produces slightly more fluent texts. In

terms of text entity metrics, the SA and Zero approaches perform
similarly, where Prev keeps more of the entities from the original

text. All KG-based simplification approaches perform consistently

and similarly for fluency and saliency, where they seem to be able to

produce grammatically correct and semantically similar texts. This

may be in part because the generator excels at producing coherent

text from KGs, while our simplification approach manages to keep

and combine the important KG features.

Compared to the text-based unsupervised models, KGSimple can

generate shorter texts, while producing similar results in terms of

syllable counts and constituency tree height/diameter. KGSimple

also produces more fluent texts compared to GRS and USDP. While

the model proposed by Kumar et al. [26] has similar fluency scores

compared to KGSimple, their text lengths do not decrease by much,

with a compression ratio of 0.85, compared to the KGSimple SA
compression ration of 0.65 and Zero-last compression ratio of 0.64.

For the entity-based metrics, KGSimple deletes more entities than

the text-based approach, but can also introduce some newer entities.

When compared to USDP and GRS, KGSimple has similar text entity

overlap. The KG-based approaches all outperform the text-based ap-

proach in linguistic acceptability (fluency). Note that although GRS

uses the CoLA as a constraint in their search algorithm, KGSimple

still outperforms GRS on this metric. While GRS is the only other

generative-based unsupervised approach, KGSimple consistently

outperforms the model. Therefore, KGSimple appears to be a better

overall system when desiring more variability and flexibility in sim-

plifying sentences. The text-based approaches do achieve a slightly

higher BERTScore than the KG-based approaches. However, this

may be because the edit text-based approaches focus on directly

modifying (cutting) the original text, while our KG-based approach

needs to produce a new text from the currently proposed KG at

each iteration.

5.2 DART
From table 1b, compared to the results from WebNLG, we can

observe a consistent performance of KGSimple on DART. With

Table 2: KGSimple output
graph analysis: number
of triples (Triples), in/out
triple ratio (TR), entity
ratio (ER), and relation
ratio (RR).

(a) Result on WebNLG

Triples TR ER RR

Prev 3.31 0.67 0.84 0.74

SA 2.09 0.45 0.66 0.50

Zero 2.03 0.44 0.65 0.49

(b) Result on DART

Triples TR ER RR

Prev 4.32 0.78 0.87 0.83

SA 2.19 0.41 0.61 0.45

Zero 2.03 0.39 0.58 0.42

Table 3: Overall ratio anal-
ysis for the accepted in-
dividual individual Delete
(D), Replace (R), and Merge
(M) graph operations for
KGSimple.

(a) Result on WebNLG

D R M

Prev 0.33 0.34 0.33

SA 0.26 0.45 0.28

Zero 0.26 0.47 0.28

(b) Result on DART

D R M

Prev 0.55 0.34 0.11

SA 0.50 0.33 0.17

Zero 0.47 0.35 0.18

SA, KGSimple achieves better performance on the intrinsic sim-

plification metrics (length and syllable count), compared to Prev.
On the other hand, the method with a tighter condition, Zero-
best compared to Zero-last, again generated more fluent sentences.

This provides further evidence of the possible tradeoff between the

length and fluency of text-simplification methods. Generally, all

KG-based methods achieve similar performance for fluency and

saliency, while Prev preserves more entities from the original text

as in WebNLG. Again here, as with WebNLG, the Zero-last and SA
approaches gave the best geometric means between compression

ratio, syllable ratio, fluency, and saliency scores.

On DART, unlike in the experiments on WebNLG, USDP gener-

ates shorter texts than those generated by the KGSimple SA algo-

rithm. However, note the discrepancy in the fluency score, where

USDP has the lowest linguistically acceptable generated texts. So

while the texts may be the shortest, they may not be as useful as

those generated by KGSimple, which may have a slightly better

balance between the metrics. While EditTS and GRS achieve com-

patibly similar fluency performance against KGSimple, KGSimple

Zero-last and SA generate shorter texts with lower compression

ratios of 0.64 and 0.71. On the entity-based evaluation, KGSim-

ple adds fewer new entities while deleting more entities and less

entity overlap than all text-based approaches except USDP. This

may be because USDP directly removes sentences/clauses from the

text. On linguistic metrics, KGSimple, on the other hand, gener-

ates more fluent texts with the highest fluency score of 0.52 and

the highest saliency score of 0.96. Additionally, compared to the

generative-based approach GRS, our SA and Zero-last KGSimple ap-

proach generates shorter sentences on average, while maintaining

a consistent text fluency score.

Generally, the performance of KGSimple on DART is consistent

with the result on WebNLG when compared to the text-based base-

lines. Compared to the text-based baselines which rely on using
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CT ST

the bronze ataturk monument (izmir) is located in izmir and

was inaugurated on 27 july 1932. the capital of the country

is ankara and the largest city istanbul. the country’s leader is

ahmet davutoğlu and the currency is the turkish lira.

the bronze atatürk monument is located in the largest city of

izmir and was inaugurated on the 27th of july, 1932.

the american submarine nr-1 has a 3.8m ship beam and a top

speed of 8.334 km/h. it was built by the company general

dynamics electric boat and was launched on january 25, 1969.

the american submarine nr-1 has a top speed of 8.334 km/h

and was launched on january 25, 1969.

the city of aarhus, which has to its northeast mols, is governed

by a magistrate. the city is the location of the school of business

and social sciences at the aarhus university which is affiliated

with the european university associations which has its head-

quarters in brussels

the school of business and social sciences at the aarhus univer-

sity has its headquarters in the city of aarhus and has strong

connections with the academic community.

the city of lahore is served by the allama iqbal international

airport which is located in pakistan. the airport is operated by

the pakistan civil aviation authority and has a runway length

of 2900.0.

the city of lahore is served by the allama iqbal international

airport which is operated by the civil aviation authority.

the 14th new jersey volunteer infantry monument is located

in the district of the monocacy national battlefield, frederick

county, maryland, united states. the monument was estab-

lished on 11th july 1907 and belongs to the category of historic

districts in the united states.

the 14th new jersey volunteer infantry monument is located

in frederick county, maryland, united states.

Table 4: Examples from the WebNLG and DART datasets. Left: complex text (CT). Right: simplified text (ST) results generated
by the KGSimple framework.

separate models for text generation and simplification, KGSimple

integrates the KG-to-text models in its simplification framework, to

produce syntactically simpler and more fluent texts, while keeping

fewer entities from the original sentences and introduces fewer

entities for text generation.

6 ANALYSIS
6.1 Graphs
As KGSimple is a graph-centric approach, we compare the input

KGs to the reduced KGs from which the simplified text is generated

in table 2. We compare the graph statistics in each of our search

settings, including the number of triples (Triples), output-to-input

KG size ratio (TR), output-to-input unique entity ratio (ER), and

output-to-input unique relation ratio (RR). From the table, we can

see that although the simulated annealing (SA) algorithm imposed

a tighter constraint than the Zero algorithm, which accepts the

current proposal as long as the overall score was greater than zero,

the SA was able to reduce the KG almost as close to the Zero-
last condition. In contrast, as expected, the Prev algorithm has

the overall largest number of final triples and restricts the graph

reduction to 67% and 78% of the original KG. Thus, our input-output

graph analysis confirms that the SA condition can encourage further

KG reduction (search space exploration) for KG-text simplification,

while the more restrictive Prev condition may get stuck at local

minima. This is reflected when analyzing both the entity (ER) and

relation (RR) analysis, where the Prev condition contains a larger

ratio compared to SA and Zero.

6.2 Operations
The KGSimple framework is an iterative approach that proposes

changes to a KG based on sampled graph-reduction operations.

Table 3 compares the relative acceptance ratios of the delete, replace,

and merge operations. From the results on WebNLG, in all search

algorithms, our most accepted operation was replace, while delete
andmerge were not accepted as often. For DART, the most accepted

operation was delete, while merge was not as frequently accepted

as in the WebNLG dataset. We currently use node centrality and

TD-IDF to find those nodes to delete from the KG. While these

nodes may not be as important in the KG, they may at times convey

information that is crucial when transcribing the text either for

semantic or fluency purposes. The discrepancy in both datasets for

merge may be because the datasets contain different ontologies,

graph structures, and relations. WebNLG may contain more sets

of triples that are acceptable to merge, while DART’s KGs may

contain a more sporadic structure. The merge operation may be

further modified depending on the overall structure of the KG’s

and ontology found in the specific dataset.

6.3 Examples
We showcase five examples produced by KGSimple in Table 4 by

comparing the text produced by the KG-to-text model on the orig-

inal complex KG to the last accepted output text which was gen-

erated from the simplified KG. From these examples, we see that

KGSimple has the capacity to simplify text by implicitly cutting sen-

tences/clauses, replacing tokens, and merging phrases via the KG



Can Knowledge Graphs Simplify Text? CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 5: Case study from theWebNLG. Show the original text,
simplified result by USDP, and result by KGSimple frame-
work step by step

Original Text:

The alternative name for the AMC Matador is Vam Classic and

it is classed as a mid-size car. It is made in Kenosha, Wisconsin,

and has an AMC straight 6 engine.

USDP:

and it is classed - <mask> as a mid - size car .

KGSimple:

Graph 0: (Vam classic, alternative name, AMC Matador),

(Kenosha, Wisconsin, assembly, AMC Matador), (mid-size car,

class, AMC Matador), (AMC straight-6 engine, engine, AMC

Matador)

↓
Graph 1: (Kenosha, Wisconsin, assembly, AMC Matador),

(mid-size car, class, AMC Matador), (AMC straight-6 engine,

engine, AMC Matador)

↓
Graph 2: (Kenosha, Wisconsin, found, AMC Matador), (mid-

size car, class, AMC Matador), (AMC straight-6 engine, en-
gine, AMC Matador)

↓
Graph 3: (Kenosha, Wisconsin, found, AMC Matador), (mid-

size car, class, AMC Matador)

↓
Simplified text: The AMC Matador is classed as a mid-size

car and is found in Kenosha, Wisconsin.

reduction operations. For example in the second example, where the

text is about the "submarine nr-1", our approach removes phrases

regarding the "ship beam" and "general dynamics electric boat",

which were nodes in the complex KG. KGSimple also merges the

two sentences via the merge operation on the KG. However, as our

method is a generative approach (KG-to-text), one limitation is that

the approach is prone to hallucination, similar to other generative

approaches, such as GRS [11]. For example, in the first example

referring to the "bronze ataturk monument", the simplified text

implies that the monument is located in the largest city of "izimir",

but the original text describes "istanbal" as the largest city. Second,

replacement is limited by the dictionary contained in PPDB, as some

complex words are not substituted. Nevertheless, as seen from all

the examples, our approach can robustly cut out sentences, clauses,

and specific details (entities/relations) which are not as important

according to KGSimple’s reduction step. For instance, in the last

example about the "14th new jersey volunteer infantry monument",

KGSimple simplifies some information about the exact location of

the monument while fluently conveying its general location. Over-

all, the results across both the WebNLG and DART complex KGs

show that KGSimple can coherently simplify the information found

in the KGs and transform them into natural language sentences.

6.4 Case Study
To further demonstrate how KGSimple simplifies text by leverag-

ing the graph compared to the text-based approaches, we show a

detailed simplification in this section and compare it to the USDP

model. As shown in Table 5, the original sentence is:

The alternative name for the AMCMatador is Vam Classic
and it is classed as a mid-size car. It is made in Kenosha, Wis-
consin, and has an AMC straight 6 engine.
Note, that as the original texts are all generated by the GAP KG-to-

text model, there may be discrepancies between the graph and the

text. For example, here, GAP replaced assembly in the graph with

made when generating the original text.

We can see that the simplified text generated by USDP is shorter

than KGSimple, but is less fluent and informative. In fact, USDP

is more of a sentence-level method which usually keeps a sub-

sentence as the simplified result. Compared to such an approach,

KGSimple is able to simplify texts on various granularities, includ-

ing the word level, by leveraging triple-level operations. Moreover,

instead of selecting individual sentences, KGSimple also attempts

to merge sentences together for further simplification via its merge

operations on the KG. Following the operations also improves the

interpretability of the simplification process.

Specifically, in step 1, KGSimple first identifies alternative name
as an uncommon term and removes the related triple to simplify

the graph. Then in step 2, KGSimple locates the term assembly
as a complex term with replacement in the dictionary. Thus, it

replaces the word with found to simplify the graph on the text

aspect. Finally, in step 3, the model notices the termAMC straight-
6 engine with the lowest TF-IDF score in the graph. Again, the

delete operation behaves to remove this triple to further simplify

the graph. As there is no further operation applied to the graph,

GAP translates the graph back into the text as the final result. This

example demonstrates how KGSimple simplifies texts on both the

graph and text level, with explainable progress at each operation,

which further shows the usefulness of KGs when attempting to

interpret text simplification models.

7 CONCLUSION
We proposed KGSimple, a novel unsupervised KG-centric text sim-

plification framework. We have demonstrated that text simplifica-

tion can be accomplished via a KG-first approach, where the KG

is reduced to its more crucial components and then narrated to

natural language text via KG-to-text models. By considering both

the KG and text in the reward, our approach has the potential to

outperform text-centric unsupervised models as indicated by our

results on the WebNLG and DART datasets, specifically able to

generate less complex sentences while maintaining a relatively

high fluency score. As we have developed the first framework for

KG-text simplification, we encourage future work in other natural

language generation tasks to explore KG-oriented approaches. We

also encourage adapting our framework to other types of struc-

tured data such as tables or relational databases, where consumer

healthcare data such as electronic medical records are often stored.
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