Development of autonomous platforms for kinetic model identification

Federico Galvanin

Associate Professor of Chemical Engineering Department of Chemical Engineering University College London <u>http://www.homepages.ucl.ac.uk/~ucecfga/</u> Sargent Centre for Process Systems Engineering

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

Outline

Introduction

- Problem definition
- Automated Vs Autonomous reaction systems
- Model identification procedures: key steps and bottlenecks
- Autonomous reaction systems: synergies and collaborations

Autonomous Platforms for Kinetic Model Identification

- Key elements and features
- Integration of standard and advanced Model-based Design of Experiments (MBDoE) techniques
- Case Study 1: Benzoic Acid Esterification in a Capillary Microreactor System
- Case Study 2: Catalytic Methane Oxidation in a Microreactor Platform
- The problem of practical distinguishability under uncertainty

ML-Assisted Model Identification

- Kinetic Model Structure Identification using ANNs-based Optimal Experimental Design
- ML-Assisted Reliability Mapping

Final remarks

<u>ش</u>

Problem definition: optimisation of flow reaction systems^{1,2}

Challenge: identifying a reliable functional form f (model) relating operating conditions (u) to KPIs

f can be represented by

- 1. a data-driven or surrogate model (ML)
- 2. a physics-based, mechanistic model
- 3. a hybrid model, combining 1) and 2)

Interested in solving the inverse problem

u = **f**¹(KPIs)

¹Reizman, B. J., Jensen, K. F. (2012). An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics. Org. Process Res. Dev. 2012, 16, 11, 1770.

²Bourne, R. A. et al. (2016). Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using an automated flow reactor. React. Chem. Eng., 1, 366.

Problem definition: data-driven optimisation in automated flow reaction systems^{1,2}

PROS

- Agile exploration of reaction conditions
- Fast evaluation/optimisation of KPIs

CONS

- Knowledge on reaction kinetics not guaranteed
- Extrapolation to unexplored regions particularly challenging (critical for scale-up!)
- May require many runs before reaching a convergence
- Extremely sensitive to data quality

¹Reizman, B. J., Jensen, K. F. (2012). An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction Kinetics. Org. Process Res. Dev. 2012, 16, 11, 1770.
 ²Bourne, R. A. et al. (2016). Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using an automated flow reactor. React. Chem. Eng., 1, 366.

Reaction platforms: where are we heading to?

Reaction platforms¹ can be:

- Automated: systems allowing enhanced control and data acquisition, agile execution of scheduled open-loop experiments, <u>requiring</u> <u>minimum user intervention</u>
- Autonomous: automated reaction system enabling closed-loop operation, self-optimisation and experimental design with <u>no user</u> intervention during operation. High-level decisions still required (Example: choice of design criteria/KPIs targets, stopping rules, etc.)
- Intelligent: autonomous reaction system capable of adapting through learning, even in presence of disturbances from the environment. All decisions (including high-level ones) are directly taken by the platform (no inputs from the user are required)

Past

Present

Future

Autonomous Reaction Systems – Team Synergies (1)

Federico Galvanin

- Computational Algorithms for Model Identification
- Optimal Experimental Design
- Autonomous Reaction
 Systems
- Machine Learning Applications to Systems Modelling

Asterios Gavriilidis

- Reaction Engineering
- Flow chemistry
- Design of automated reactor platforms
- Integration with online analysis tools

www.ucl.ac.uk/chemicalengineering/research/gavriilidis-lab

Development of autonomous platforms for kinetic model identification

UCL ENGINEERING Change the world

www.homepages.ucl.ac.uk/~ucecfga/

Cloud-based Experimental Design and Analysis Service (EDAS)

Modelling complex reaction systems: problem definition

Model requirements

- Adequate to represent the physical system ٠
- Minimum variance of prediction(s) in the range of expected utilisation
- Robustness in <u>unexplored</u> regions of the design space ٠

760

780

Temperature (K)

800

Ā

740

0.02

0.00

720

820

Modelling complex reaction systems

The three dimensions of model identification

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

The mathematical problem: identification of parametric models

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

Kinetic model identification procedures: key steps and bottlenecks

¹ Asprey, S. P., Macchietto, S. (2000), Statistical tools for optimal dynamic model building, Computers & Chemical Engineering, 24, 1261.

Autonomous platforms for kinetic model identification

Key elements of Autonomous Reaction Platforms

Model identification software

- DoE/Factorial design/User defined experiments -> Screening module
- Model-based design of experiments for model discrimination (MBDoE-MD)¹
- Model-based design of experiments for parameter precision (MBDoE-PE)²
- Joint design (j-MBDoE)³
- Online model reparametrisation⁴
- Robust parameter estimation

Hardware/Software interface

- Establishing communication protocols
- Python-LabView-Devices integration

Automated reactor system

- Reactor design
- Safe/reliable operation
- Experiments must be reproducible and observable
- Measurement/control system

Autonomous platforms for kinetic model identification *Framework example*^{1,2}

¹Waldron C., Pankajakshan A., Quaglio M., Cao E., Galvanin F., Gavriilidis A. (2019), *An autonomous microreactor platform for the rapid identification of kinetic models*, Reaction Chemistry & Engineering, *4*, 1623-1636. ²Quaglio M., Waldron C., Pankajakshan A., Cao E., Gavriilidis A., Fraga E. S., Galvanin F. (2019), *An online reparametrisation approach for*

Closed-Loop

DoE

Standard MBDoE techniques

MBDoE-MD: Optimal Design for Model Discrimination

Example of MBDoE-MD criterion¹

 $\begin{array}{c} \text{maximize} \mathcal{T}_{ij}(\boldsymbol{\varphi}) \\ = \left[\hat{\mathbf{y}}(\boldsymbol{\varphi}, \hat{\boldsymbol{\theta}}_{i}) - \hat{\mathbf{y}}(\boldsymbol{\varphi}, \hat{\boldsymbol{\theta}}_{j}) \right]^{\mathrm{T}} \mathbf{V}_{ij}^{-1}(\boldsymbol{\varphi}) \left[\hat{\mathbf{y}}(\boldsymbol{\varphi}, \hat{\boldsymbol{\theta}}_{i}) - \hat{\mathbf{y}}(\boldsymbol{\varphi}, \hat{\boldsymbol{\theta}}_{j}) \right] \end{array}$

Operating conditions optimised online to maximise the divergence between model predictions

Different criteria for model discrimination are integrated in the software

Design vector	 y₀ set of initial conditions on the measured variables (C_i) u set of manipulated inputs (T, P, F)
$\boldsymbol{\varphi} = [\mathbf{y}_0, \mathbf{u}, \mathbf{t}^{sp}, \mathbf{z}^{sp}, \tau]^{\mathrm{T}}$	 t^{sp} set of time instants at which the measured variables are sampled z^{sp} set of time instants at which the measured variables are sampled τ the experiment duration (possibly)

¹Buzzi-Ferraris G, Forzatti P. (1983), A new sequential experimental design procedure for discriminating among rival models. Chemical Engineering Science, 1, 38, 225.

Standard MBDoE techniques

MBDoE-PE: Optimal Design for Improving Parameter Precision

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

Joint Model-based Design of Experiments (j-MBDoE)¹

Multi-objective MBDoE formulation (MBDoE-MD/MBDoE-PE)

- Optimal design for discriminating between N_M competing kinetic models²
- Optimal design for improving the estimation of kinetic parameters³

$$\varphi^{MD} = \arg \max_{\varphi \in D} \left\{ \psi^{MD} \right\} = \arg \max_{\varphi \in D} \left\{ \sum_{M,N=1}^{N_{M}} P_{M} P_{N} \left[\sum_{i=1}^{N_{v}} \frac{\left(\hat{y}_{M,i} - \hat{y}_{N,i} \right)^{2}}{\sigma_{y,i}^{2}} \right]_{M,N} \right\}$$

$$\psi^{PE} = \sum_{j=1}^{N_{M}} \left\| \mathbf{H}_{j} \right\| / N_{M} \le \varepsilon$$
st $\varepsilon^{MIN} \le \varepsilon \le \varepsilon^{MAX}$ " ε -constraint method"
$$P_{i} = \operatorname{prop} \mathcal{P}_{i}$$

$$\hat{y}_{ji} = i\text{-th}$$
MBDoE for model
discrimination

¹Galvanin, F. et al. (2016), Comp. Chem. Eng, 61, 5791-5806 ²Schwaab, M. et al. (2006), Chem. Eng. Sci., 61, 5791-5806 ³Reizman, B. J., Jensen, K. F. (2012), Org. Process Des. Dev., 16, 1770-1782 Design of experimental conditions providing the greatest difference between model predictions

j-MBDoE

... ensuring at the same time the best possible reduction of parametric uncertainty

 P_i = probability of the i-th model to be the "true" model \hat{y}_{ji} = *i*-th predicted response of the *j*-th model

Explorative MBDoE based on G-optimality maps¹

Challenges:

- MBDoE algorithms tend to be "greedy"
 - → only highly informative regions of the design space are mapped in the online optimization
- Can we formulate an optimal experimental design problem allowing agile experimental design space exploration?

Potential solution

Explorative MBDoE based on G-optimality maps (*G-map eMBDoE*)

¹Cenci, F., Pankajakshan, A., Galvanin, F. (2023), An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction uncertainty, Computers & Chemical Engineering, 177, 108353, <u>https://doi.org/10.1016/j.compchemeng.2023.108353</u>

Francesca Cenci

*Explorative MBDoE based on G-optimality maps*¹

Explorative MBDoE based on G-optimality maps (G-map eMBDoE)

- Step 3: eMBDoE first discriminates points based on a <u>G-optimality threshold</u> $J_G = \sum_{i=1}^{N_y} V_{y,i}$
 - $J_G \geq J_{G,\text{thr}} J_{G,\text{max}}$

- N_y number of response variables
- ψ_H scalar measure of FIM
- Step 4: Then, the experiment with the highest amount of information based on MBDoE-PE design criteria is selected

¹Cenci, F., Bawa, S., Gavriilidis, A., Facco, P., Galvanin, F. (2023), An exploratory model-based design of experiments technique to aid parameters identification and reduce prediction uncertainty, Computer-Aided Chemical Engineering, 1-6.

Ì

Explorative MBDoE based on G-optimality maps¹

G-map eMBDoE Settings

- $J_{G,thr} = 0.75$
- D-optimal experimental design

Π

- u₂
- Efficient reduction of prediction uncertainty in the design space compared to MBDOE and DoE
- Satisfactory estimation of the full set of model parameters, thanks to the MBDoE step 4
- Methods have been developed to automatically adjust the G-optimality threshold

¹Cenci, F., Bawa, S., Gavriilidis, A., Facco, P., Galvanin, F. (2023), An exploratory model-based design of experiments technique to aid parameters identification and reduce prediction uncertainty, Computer-Aided Chemical Engineering, 1-6.

Development of a holistic Python package for optimal selection of experimental design criteria¹

UCL ENGINEERING

Change the world

20

¹Tillmann, M. T., Galvanin, F. (2023), Development of a holistic Python package for optimal selection of experimental design criteria in kinetic model discrimination, Computer-Aided Chemical Engineering, 631-636. ² <u>https://github.com/mtt9/HoliMI</u>

Case study 1 *Benzoic acid esterification in a capillary microreactor*

Benzoic Acid Esterification with Ethanol using Sulfuric Acid (homogeneous)

- Liquid phase reaction
- PTFE capillary reactor
- Online HPLC as measurement system

Objective

 Identify a kinetic model from a sequence of steady state flow experiments

Data fitting results for **two candidate kinetic models** using two identical preliminary steady-state factorial campaigns

Model	$\chi^2 (\chi_{\rm ref}^2 = 43.7)$	Result
$r = kC_{BA}$ $r = kC_{BA}^{2}$	16.2 156	Possible model Reject model

Design vector in MBDoE

$$\boldsymbol{\varphi} = [T, F, c_{\text{IN, i}}]$$

- Temperature
- Flowrate
- Concentration of benzoic acid in the feed

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A. (2019) An autonomous microreactor platform for the rapid identification of kinetic models. **Reaction Chemistry and Engineering** 4, 1623. <u>10.1039/C8RE00345A</u>.

Case study 1: Benzoic acid esterification in a capillary microreactor *MBDoE VS DoE*¹

• Steady-state MBDoE experiments produced **significantly smaller uncertainty regions** than the ones designed by a full factorial DoE using the **same number of steady-state experiments**

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A. (2019) An autonomous microreactor platform for the rapid identification of kinetic models. **Reaction Chemistry and Engineering** 4, 1623. <u>10.1039/C8RE00345A</u>.

Case study 1: Benzoic acid esterification in a capillary microreactor *Optimal design of transient flow experiments*

Optimal design of transient flow experiments for the Identification of kinetic parameters¹

- The transient PFR can be described by a system of ideal batch reactors
- Dead volume between end of reactor and sampling needs to be known
- Transient experiments can provide faster estimation of kinetic parameters
- Design vector for MBDoE: $\phi = [T, F, c_{\text{IN, BA}}, \alpha_{\text{T}}, \alpha_{\text{V}}, \alpha_{\text{C}}]$

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2020) Model-based design of transient flow experiments for the identification of kinetic parameters. **Reaction Chemistry & Engineering**, 5, 112. <u>10.1039/c9re00342h</u>.

Case study 1: Benzoic acid esterification in a capillary microreactor *Optimal design of transient flow experiments*¹

Control variable profiles (temperature, flowrate and benzoic acid inlet concentration) designed **intuitively** and by **MBDoE**

Confidence ellipsoids of kinetic parameters for transient experiments designed intuitively and by MBDoE

- MBDoE improves significantly the parameter precision obtained from transient experiments
- Parameter precision obtained in transient from a single run:
 - → similar to that obtained from <u>8 steady-state MBDoE runs</u>¹
- ... transient experiments required significantly less time and resources to run!

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2020) Model-based design of transient flow experiments for the identification of kinetic parameters. **Reaction Chemistry & Engineering**, 5, 112. <u>10.1039/c9re00342h</u>.

Case study 1: Benzoic acid esterification in a capillary microreactor *Closed-loop identification including MBDoE-MD and MBDoE-PE*

Closed Loop MBDoE for Kinetic Model Discrimination and Parameter Estimation¹

Benzoic Acid Esterification on Amberlyst-15 (heterogeneous) with Ethanol

Bead-string reactor offers small external mass transfer resistance

Four candidate kinetic models

 $r'_{BA} = \frac{-kC_{BA}C_{EtOH}}{\left(1 + K_{W}C_{W} + K_{EtOH}C_{EtOH}\right)^{2}}$

 $r'_{BA} = \frac{-kC_{BA}C_{EtOH}}{\left(1 + K_{BA}C_{BA} + K_{EtOH}C_{EtOH} + K_{W}C_{W} + K_{EB}C_{EB}\right)^{2}}$

 $r'_{\rm BA} = -kC_{\rm BA}C_{\rm FtOH}$

 $r'_{BA} = \frac{-kC_{BA}C_{EtOH}}{(1 + K_{W}C_{W})^2}$

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous 25 Catalyst. Industrial & Engineering Chemistry Research, 58, 2216. 10.1021/acs.iecr.9b04089.

(M1)

(M2)

(M3)

(M4)

Case study 1: Benzoic acid esterification in a capillary microreactor *Closed-loop identification including MBDoE-MD and MBDoE-PE*

Closed Loop MBDoE for Kinetic Model Discrimination and Parameter Estimation

1.8 steady-state experiments designed by a full factorial DoE method M1, M2, M3, M4

2. 64 simulated experiments to test practical model identifiability based on rank of FIM M1, M2

3. MBDoE-designed discriminating experiments
 (MBDoE-MD) M2

 4. MBDoE designed experiments for improved parameter precision (MBDoE-PE) M2

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous Catalyst. Industrial & Engineering Chemistry Research , 58, 2216. <u>10.1021/acs.iecr.9b04089</u>.

Case study 1: Benzoic acid esterification in a capillary microreactor

Closed-loop identification including MBDoE-MD and MBDoE-PE

Identified (apparent) kinetic model (Model 2)

$$r'_{BA} = \frac{185.3 \exp\left(-\frac{68\ 800}{RT}\right) \times C_{BA}C_{EtOH}}{\left(1 + 0.53C_{W}\right)^{2}}$$

¹Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous7 Catalyst. Industrial & Engineering Chemistry Research, 58, 2216. 10.1021/acs.iecr.9b04089.

- Bead string reactor provided plug flow behaviour with efficient ٠ mass transfer
- The methodology proposed minimized the number of experiments required for kinetic model identification
- It prevents the use of nonidentifiable models ٠
- MBDoE-MD distinguished between two candidate models ٠
- MBDoE-PE improved parameter precision
- All kinetic experiments were **completed in 3 days**

0.70

Catalytic methane oxidation in flow microreactor systems

Overall chemical reaction of methane oxidation over Pd/Al2O3 catalyst¹:

$$CH_4 + 2O_2 \xrightarrow{Pd/Al_2O_3} CO_2 + 2H_2C$$

Three candidate kinetic models are considered for the methane oxidation reaction after a screening and identifiability study based on 12 candidate models ²

Model	Rate law	
Model 1	$r_{\rm CH_4} = k P_{\rm avg} y_{\rm CH_4}$	33.33% M
Model 2 (LH)	$r_{\rm CH_4} = \frac{k_{\rm r} K_{\rm CH_4} P_{\rm CH_4} \sqrt{K_{\rm O_2} P_{\rm O_2}}}{\left(1 + K_{\rm CH_4} P_{\rm CH_4} + \sqrt{K_{\rm O_2} P_{\rm O_2}}\right)^2}$	
Model 3 (MVK)	$r_{\rm CH_4} = \frac{k_1 k_2 P_{\rm CH_4} P_{\rm O_2}}{k_1 P_{\rm O_2} + 2k_2 P_{\rm CH_4} + (k_1 k_2 / k_3) P_{\rm O_2} P_{\rm CH_4}}$	Initial prob

33.33% Model 2 Model 3 Model 1 33.33%

Initial probability of model correctness

¹J. H. Lee, D. L. Trimm (1995), Catalytic combustion of methane, Fuel Processing Technology 42, 339. ²S. G. Bawa, A. Pankajakshan, C. Waldron, E. Cao, F. Galvanin, A, Gavriilidis (2023). *Chemistry–Methods*, *3*, 1. 28 **UCL ENGINEERING** Change the world

The platform – microreactor technology

П

UCL ENGINEERING

Change the world

29

https://www.youtube.com/watch?v=kMCtQqbPixk

Case study: catalytic methane oxidation LabView Graphical User Interface and digital twin

File Edit View Project Operate Tools Window Help

D 20

II

https://www.youtube.com/watch?v=kMCtQqbPixk

?

LabView Graphical User Interface and digital twin

Probability not to reject kinetic model after MBDoE_3

https://www.youtube.com/watch?v=kMCtQqbPixk

Ī

Results from the autonomous platform: inputs/outputs

Campaign for kinetic model validation:

- 1. Preliminary set of DoE experiments
 - for pre-screening
- 2. MBDoE-MD runs
- 3. MBDoE-PE runs
- Switch between
 steps 2) and 3)
 dictated by the
 best model
 probability (>95%)
- STOP when parameters are all precisely estimated (t-test satisfied)

Results from the autonomous platform: model calibration

Model Adequacy

Parameter precision (Model 3)

The problem of practical model distinguishability¹

Results can be analysed retrospectively

- Probability density plots of model responses
- Overlap ratio

Arun Pankajakshan **Research Assistant** 3000 Overlap ratio: 80.49% density Model 2 Model 3 2000 Observed value Estimated probability 1000 0 0222 0 0228 0 0234 0 0240 0 0210 0.0216 Methane mole fraction

Ī

"Easily" distinguishable models

Challenging model discrimination

¹Pankajakshan, A., Bawa, S., Gavriilidis, A., Galvanin, F. (2023). Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study. Reaction Chemistry & Engineering (in press).

Machine Learning (ML)-Assisted Model Identification Goals and features

Integration of machine learning (ML) techniques and MBDoE:

To assist model discrimination and selection 1.

Optimal Experimental Design for Kinetic Model Recognition Using Artificial Neural Networks (ANNs)^{1,2}

To efficiently design experiments under uncertain scenarios 2.

8 -

6 u_1

4

2 -

2

8

 u_2

 u_1

Safe model-based design of experiments using Gaussian processes³

To identify design regions of model reliability 3.

Machine Learning (ML)-Assisted Model Reliability Mapping⁴

¹ Quaglio et al., (2020), Computers & Chemical Engineering 135, 106759 ² Sangoi et al. (2022), CACE, 49, 117

³ Petsagkourakis, P., Galvanin, F. (2021), Computers & Chemical Engineering 151, 107339 ⁴ Quaglio et al. (2018), Chemometrics and intelligent laboratory systems 172, 58

Change the world

Machine Learning (ML)-Assisted Model Identification

ML-assisted digital twin platform for real-time optinisation of reaction systems

)16/1 UCL ENGINEERING Change the world

¹https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X024016/2

Kinetic Model Recognition using ANNs *Proposed approach*

In the proposed approach, ANNs are used to model the **cognitive processes** of the **scientist's brain** rather than building a black-box representation of the physical system.

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

UCL ENGINEERING

Change the world

Kinetic Model Recognition using ANNs¹

Proposed approach

¹Quaglio, M., Roberts, L., Jaapar, M., Dua, V., Galvanin, F. (2020). An artificial neural network framework for classifying chemical reaction types from experimental data. *Computers and Chemical Engineering.*, 135, 106759.

ANNs-based Optimal Experimental Design

Proposed procedure

Input layer size:	3 x (total number of samples)
One hidden layer:	100 nodes activation function = <i>rectified linear unit</i>
Output layer:	8 nodes, corresponding to each kinetic model activation function = <i>softmax</i>
Accuracy:	number of kinetic models correctly classified total number of kinetic models in the test set

- Objective function used in the optimal DoE: ANN test-accuracy
- A differential evolution algorithm (DEA)¹ is chosen for the optimization
 → population-based algorithm inspired by the evolutionary theory

¹Storn R., Price K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces", Journal of Global Optimization, 11, 4, 341-359. DOI: 10.1023/A:1008202821328

ANNs-based Optimal Experimental Design

Effect of design variables on ANN accuracy

- Very high accuracy achieved with limited number of experiments in low noise scenarios
- **High accuracy achieved** (close to 90%) when temperature, reactant concentration and sampling time are optimised even in the most uncertain measurements scenario

¹Sangoi, E., Quaglio, M., Bezzo, F., Galvanin, F. (2022). Optimal Design of Experiment Based on Artificial Neural Network Classifiers for Fast Kinetic Model Recognition. In: 14th International Symposium on Process Systems Engineering (PSE 2021, Kyoto).

ANN-based Optimal Design Vs MBDoE-MD Effect of dataset quality on discrimination performance¹

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

ML-Assisted Reliability Mapping

Constrained Model-Based Design of Experiments

What will happen if the model is not reliable in the experimental design?

\rightarrow Local mismatch on information prediction

Solution: we can predict <u>where</u> the model is reliable (i.e. regions of reliability in the design space) \rightarrow reliability maps using Model-Based Data Mining (MBDM)¹

¹Quaglio M., Fraga E., Cao E., Gavriilidis A. and Galvanin F. (2017). A model-based data mining approach for determining the domain of validity of approximated models. *Chemometrics and Intelligent Laboratory Systems*, 172, 58-67

ML-Assisted Reliability Mapping

Constrained MBDoE: iterating kinetic model identification procedure¹

m

Final remarks

Identification of kinetic models in Autonomous Reaction Platforms

- Fast identification of kinetics integrating i) model discrimination (MBDoE-MD); ii) parameter precision (MBDoE-PE); ii) joint MBDoE-MD/MBDoE-PE
- Algorithms used in online applications and cloud-based services (EDAS)
- Online tracking of model adequacy for mechanistic understanding
- Techniques developed to handle practically non-identifiable («sloppy») models
- Exploratory MBDoE based on G-optimality (G-map eMBDoE) now integrated
- Kinetic model recognition using ANNs
 - Possibility to leverage ML to identify the model structure
 - → <u>ANN-based optimal experimental design</u>
 - Trade-off between noise and number of measurements to be carefully evaluated by design
- ML-Assisted Model Reliability Mapping
 - Systematic approach to model building using ML techniques
 - Integration in autonomous platforms

Future works

Identification of kinetic models in Autonomous Reaction Platforms

- Integration of tools for online model diagnostics¹
- Integration of ANN-based model identification framework in autonomous platforms, and potential combination with MBDoE
- Integration of generative algorithms for model identification

-> SINDY² integration

- Integration of new MBDoE techniques including exploratory MBDoE³
- Integration of **optimization-free methods** for online MBDoE⁴
- Application to large reaction networks systems
- Application to flexible reaction systems (Taylor Vortex reactors)

¹Quaglio, M., Fraga, E. S. & Galvanin, F. (2020), A diagnostic procedure for improving the structure of approximated kinetic models. Computers & Chemical Engineering, 133, 106659. ²Brunton, S. L., Proctor, J. L. & Kutz, J. N. (2016), Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113, 3932.

³Cenci, F., Pankajakshan, A., Galvanin, F. (2023), An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction uncertainty, Computers & Chemical Engineering, 177, 108353, <u>https://doi.org/10.1016/j.compchemeng.2023.108353</u>

⁴Friso, A., Galvanin, F. (2023), An optimization-free Fisher information driven approach for online design of experiment, Computer-Aided Chemical Engineering, 52, 13.

Wenyao Lyu

PhD student

Acknowledgements

Academics

Federico Galvanin (UCL) Asterios Gavriilidis (UCL) Eric Fraga (UCL)

Research Associates/Assistants

Panagiotis Petsagkourakis Emmanuel Agunloye Arun Pankajakshan

PhD Students

Marco Quaglio Solomon Bawa Enrico Sangoi Conor Waldron Francesca Cenci (UniPD) Wenyao Lyu Andrea Friso

MSc Students

Maerthe Theresa Tillmann

Sargent Centre for Process Systems Engineering

EPSRC

Engineering and Physical Sciences Research Council

- EP/R032807/1 "Cognitive chemical manufacturing"
- EP/V050796/1 "Fully Automated Platforms for Drug Nanocrystals Manufacturing via Continuous-Flow, Data-Driven Antisolvent Crystallization
- EP/X024016/1 "Development of a machine learning assisted digital twin platform for realtime optimization of reaction systems under uncertainty"

ENGINEERING

<u>Change</u> the world

Thank you for listening!

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 27-28 September 2023, Portmarnock, Dublin, Ireland

UCL ENGINEERING Selected publications

- 1. Waldron, C; Pankajakshan, A, Quaglio, M, Cao, E; Galvanin, F, Gavriilidis, A; (2019) An autonomous microreactor platform for the rapid identification of kinetic models. **Reaction Chemistry and Engineering** 4, 1623. <u>10.1039/C8RE00345A</u>.
- 2. Waldron, C; Pankajakshan, A, Quaglio, M, Cao, E; Galvanin, F, Gavriilidis, A; (2019) Model-based design of transient flow experiments for the identification of kinetic parameters. **Reaction Chemistry & Engineering**, 5, 112. <u>10.1039/c9re00342h</u>.
- 3. Pankajakshan, A; Waldron, C; Quaglio, M; Gavriilidis, A; Galvanin, F; (2019) A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model-Identification Platforms. **Engineering, 6**, 1049. <u>10.1016/j.eng.2019.10.003</u>.
- 4. Quaglio, M; Waldron, C; Pankajakshan, A; Cao, E; Gavriilidis, A; Fraga, ES; Galvanin, F; (2019) An online reparametrisation approach for robust parameter estimation in automated model identification platforms. **Computers & Chemical Engineering**, 124, 270. <u>10.1016/j.compchemeng.2019.01.010</u>.
- Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous Catalyst. Industrial & Engineering Chemistry Research, 58, 2216. 10.1021/acs.iecr.9b04089.
- 6. Quaglio, M.; Roberts, L.; Jaapar, M.; Dua, V.; Galvanin, F; (2020). An artificial neural network framework for classifying chemical reaction types from experimental data. **Computers and Chemical Engineering**, 135, 106759. <u>10.1016/j.compchemeng.2020.106759</u>
- 7. Petsagkourakis, P.; Galvanin, F. (2021). Safe model-based design of experiments using Gaussian processes. **Computers & Chemical Engineering**, 151, 107339. <u>10.1016/j.compchemeng.2021.107339</u>
- 8. Quaglio, M; Fraga, ES; Galvanin, F; (2020) A diagnostic procedure for improving the structure of approximated kinetic models. Computers & Chemical Engineering , 133 , 106659. <u>https://doi.org/10.1016/j.compchemeng.2019.106659</u>
- Sangoi, E; Quaglio, M, F. Bezzo; Galvanin, F (2022). Optimal Design of Experiments Based on Artificial Neural Network Classifiers for Fast Kinetic Model Recognition. Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ June 19-23, 2022, Kyoto, Japan. <u>https://doi.org/10.1016/B978-0-323-85159-6.50136-6</u>
- 10. Cenci, F., Bawa, S., Gavriilidis, A., Facco, P., Galvanin, F. (2023), An exploratory model-based design of experiments technique to aid parameters identification and reduce prediction uncertainty, Computer-Aided Chemical Engineering, 1-6. <u>https://doi.org/10.1016/B978-0-443-15274-0.50001-9</u>
- 11. Cenci, F., Pankajakshan, A., Galvanin, F. (2023), An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction uncertainty, Computers & Chemical Engineering, 177, 108353, https://doi.org/10.1016/j.compchemeng.2023.108353
- Pankajakshan, A., Bawa, S., Gavriilidis, A., Galvanin, F. (2023). Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study. Reaction Chemistry & Engineering (in press). <u>https://doi.org/10.1039/D3RE00156C</u>

