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Operating 
Conditions

Reaction System

Black box model 
optimisation

Update

Key Performance Indicators (KPIs):
• Conversion, Selectivity, Yield
• Concentration of impurities/products …

1Reizman, B. J., Jensen, K. F. (2012). An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction 
Kinetics. Org. Process Res. Dev. 2012, 16, 11, 1770. 
2Bourne, R. A. et al. (2016). Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using 
an automated flow reactor. React. Chem. Eng., 1, 366.

Introduction 
Problem definition: optimisation of flow reaction systems1,2

u

Challenge: identifying a reliable functional form f (model) relating operating conditions (u) to KPIs

KPIs = f (u)

f can be represented by 
1. a data-driven or surrogate model (ML) 
2. a physics-based, mechanistic model
3. a hybrid model, combining 1) and 2) 

Interested in solving the inverse problem

                    u = f-1(KPIs) 



PROS 
• Agile exploration of reaction conditions
• Fast evaluation/optimisation of KPIs 

CONS 
• Knowledge on reaction kinetics not guaranteed 
• Extrapolation to unexplored regions particularly challenging (critical for scale-up!) 
• May require many runs before reaching a convergence
• Extremely sensitive to data quality

Operating 
Conditions

Reaction System

Black box model 
optimisation

Update

KPIs

1Reizman, B. J., Jensen, K. F. (2012). An Automated Continuous-Flow Platform for the Estimation of Multistep Reaction 
Kinetics. Org. Process Res. Dev. 2012, 16, 11, 1770. 
2Bourne, R. A. et al. (2016). Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using 
an automated flow reactor. React. Chem. Eng., 1, 366.

Introduction 
Problem definition: data-driven optimisation in automated flow reaction systems1,2

u



Reaction platforms1 can be:

• Automated: systems allowing enhanced control and data acquisition, 
agile execution of scheduled open-loop experiments, requiring 
minimum user intervention    

• Autonomous: automated reaction system enabling closed-loop 
operation, self-optimisation and experimental design with no user 
intervention during operation. High-level decisions still required 
(Example: choice of design criteria/KPIs targets, stopping rules, etc.)

• Intelligent: autonomous reaction system capable of adapting through 
learning, even in presence of disturbances from the environment. All 
decisions (including high-level ones) are directly taken by the platform 
(no inputs from the user are required)

Introduction
Reaction platforms: where are we heading to?  

Past

Present

Future

1Barz, T., Kager, J., Herwig, C., Neubauer, P., Bournazou, M. N. C., Galvanin, F. (2022). Characterization of reactions 
and growth in automated continuous flow and bioreactor platforms—From linear DoE to model-based 
approaches, Simulation and Optimization in Process Engineering, 273-319. 
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Introduction
Autonomous Reaction Systems – Team Synergies (1) 
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Research Fellows

Introduction
Cloud-based Experimental Design and Analysis Service (EDAS)

EP/R032807/1, Cognitive Chemical Manufacturing 

Cloud-based 
System

Target: Pharma Applications

Identification of kinetic models
• Mechanistic modelling
• Hybrid modelling1 

1Petsagkourakis, P., Galvanin, F. (2021). Safe model-based 
design of experiments using Gaussian processes, 
Computers and Chemical Engineering, 107339.
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Formulation of alternative 
kinetic models

Introduction 
Modelling complex reaction systems: problem definition 
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Reliable 
phenomenological 

process model

Potential kinetic 
mechanisms

Model requirements
• Adequate to represent the physical system
• Minimum variance of prediction(s) in the range of expected 

utilisation
• Robustness in unexplored regions of the design space

Kinetic model 
identification

Chemistry- 
Surface Science

Reactor Model

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 
27-28 September 2023, Portmarnock, Dublin, Ireland



Physical Understanding

Black-box

Mechanistic

Low High

Model complexity“Sloppy”

Robust

Identifiability

Common 
situation

“Model Reduction”

Modelling complex reaction systems
The three dimensions of model identification

3-dimensional 
“Model 
Identification 
Space”

9
Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 
27-28 September 2023, Portmarnock, Dublin, Ireland

ML



Introduction
The mathematical problem: identification of parametric models

10

Kinetic Model
equations

ෝ𝒚 = 𝐠 𝐱, 𝛉, 𝐮

Input variables
Experimental 

conditions 

𝐮 ∈ 𝑈

Parameters

𝛉

Output variables
Concentrations

ෝ𝒚

Reliable 
phenomenological 

process models

Deeper process 
understanding

Process 
design

Non-empirical
process optimisation

Model-based process 
control

Controller∑ Process

Feedback

+

-

System Model
equations

ෝ𝒚 = 𝐠 𝐱, 𝛉, 𝐮
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Propose reaction 
mechanisms

0) (Re)Formulation of competitive kinetic 
models

1) Model analysis/reduction 
→ identifiability/distinguishability tests

Experiment execution

2) Model-Based Design of Experiments
• For model discrimination / parameter precision
• Joint MBDoE 

3) Parameter Estimation

Ok?

Discard 
inadequate 

models 

STOP
NO YES

Chemistry

Surface 
science

Introduction
Kinetic model identification procedures: key steps and bottlenecks
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Adapted from Asprey and Macchietto (2000)1

1 Asprey, S. P., Macchietto, S. (2000), Statistical tools for optimal dynamic model building, 
Computers & Chemical Engineering, 24, 1261. 



• Model identification software
– DoE/Factorial design/User defined experiments -> Screening module

– Model-based design of experiments for model discrimination (MBDoE-MD)1 

– Model-based design of experiments for parameter precision (MBDoE-PE)2 

– Joint design (j-MBDoE)3

– Online model reparametrisation4 

– Robust parameter estimation

• Hardware/Software interface
– Establishing communication protocols

– Python-LabView-Devices integration 

• Automated reactor system
– Reactor design 

– Safe/reliable operation

– Experiments must be reproducible and observable

– Measurement/control system 

Autonomous platforms for kinetic model identification 
Key elements of Autonomous Reaction Platforms

Hardware
Software 
Interface

Model 
Identification 

Software Automated 
Reactor 
System

1Waldron, C; et al. (2019), React. Chem. Eng., 4, 1623.
2Waldron, C et al. (2019). Ind. Eng. Chemi Res. , 58 (49)  22165.
3Galvanin, F. et al. (2016), Computers & Chemical Engineering , 61, 5791.
4Quaglio, M et al. (2019) ,Computers & Chemical Engineering , 124, 270.
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1Waldron C., Pankajakshan A., Quaglio M., Cao E., Galvanin F., Gavriilidis A. (2019), An autonomous microreactor platform for the rapid 
identification of kinetic models, Reaction Chemistry & Engineering, 4, 1623-1636.  
2Quaglio M., Waldron C., Pankajakshan A., Cao E., Gavriilidis A., Fraga E. S., Galvanin F. (2019), An online reparametrisation approach for 
robust parameter estimation in automated model identification platforms, Computers & Chemical Engineering, 124, 270-284.  

Automated reactor → Autonomous (self-optimising) reactor

Goal

Identification of reliable kinetic 

models with minimum time, 

materials and effort 

Model 
Identification 

Algorithms

Autonomous platforms for kinetic model identification
Framework example1,2

13



1Cao and Gavriilidis (2014)

φ = [y0, u, tsp, zsp, τ]T

• y0 set of initial conditions on the measured variables (Ci)
• u   set of manipulated inputs (T, P, F) 
• tsp set of time instants at which the measured variables are sampled
• zsp set of time instants at which the measured variables are sampled 
• τ  the experiment duration (possibly) 

Design vector

Standard MBDoE techniques
MBDoE-MD: Optimal Design for Model Discrimination 
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Different criteria for model discrimination are integrated in the software

Example of MBDoE-MD criterion1

Operating conditions optimised online to maximise the divergence between model predictions

1Buzzi-Ferraris G, Forzatti P. (1983), A new sequential experimental design procedure for discriminating among 
rival models. Chemical Engineering Science, 1, 38, 225.
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MBDoE formulation for flow reactor systems

Fisher information matrix (FIM)
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Sampling in space

Optimal design for improving parameter estimation

φ = [y0, u, tsp, zsp, τ]T

• y0 set of initial conditions on the measured variables (Ci)
• u   set of manipulated inputs (T, P, F) 
• tsp set of time instants at which the measured variables are sampled
• zsp set of time instants at which the measured variables are sampled 
• τ  the experiment duration (possibly) 

Design vector

INFO from spatial domain
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Standard MBDoE techniques
MBDoE-PE: Optimal Design for Improving Parameter Precision 
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MBDoE-PE criterion (A, D, E, …)

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 
27-28 September 2023, Portmarnock, Dublin, Ireland



1Cao and Gavriilidis (2014)
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Multi-objective MBDoE formulation (MBDoE-MD/MBDoE-PE)
• Optimal design for discriminating between NM competing kinetic models2 
• Optimal design for improving the estimation of kinetic parameters3

Design of experimental conditions 
providing the greatest difference 
between model predictions

… ensuring at the same time the 
best possible reduction of 
parametric uncertainty  

st “ε-constraint method”

MBDoE for improving 
parameter estimation

MBDoE for model
discrimination

1Galvanin, F. et al. (2016), Comp. Chem. Eng, 61, 5791-5806
2Schwaab, M. et al. (2006), Chem. Eng. Sci., 61, 5791-5806
3Reizman, B. J., Jensen, K. F. (2012), Org. Process Des. Dev., 16, 1770-1782 

Pi = probability of the i-th model 
 to be the “true” model

ŷji = i-th predicted response of 
 the j-th model 
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j-MBDoE

Advanced MBDoE techniques
Joint Model-based Design of Experiments (j-MBDoE)1 



Advanced MBDoE techniques
Explorative MBDoE based on G-optimality maps1

17
1Cenci, F., Pankajakshan, A., Galvanin, F. (2023), An exploratory model-based design of experiments approach 
to aid parameters identification and reduce model prediction uncertainty, Computers & Chemical Engineering, 
177, 108353, https://doi.org/10.1016/j.compchemeng.2023.108353

Challenges:
• MBDoE algorithms tend to be “greedy”
      only highly informative regions of the   

  design space are mapped in the online 
  optimization

• Can we formulate an optimal 
experimental design problem allowing 
agile experimental design space 
exploration?

Francesca Cenci Pierantonio Facco

Explorative MBDoE based on G-optimality 

maps (G-map eMBDoE)

Potential solution

https://doi.org/10.1016/j.compchemeng.2023.108353


Advanced MBDoE techniques
Explorative MBDoE based on G-optimality maps1

18

1 2 3 4

 Explorative MBDoE based on G-optimality maps (G-map eMBDoE)

▪ Step 3: eMBDoE first discriminates points based on a G-optimality threshold 𝐽𝐺 = σ
𝑖=1

𝑁𝑦 𝑉𝑦,𝑖

▪ Step 4: Then, the experiment with the highest amount of information based on MBDoE-PE 

design criteria is selected 

𝐽𝐺 ≥ 𝐽𝐺,thr𝐽𝐺,max
𝑁𝑦

scalar measure of FIM𝜓𝐻

number of response variables

1Cenci, F., Bawa, S., Gavriilidis, A., Facco, P., Galvanin, F. (2023), An exploratory model-based design of 
experiments technique to aid parameters identification and reduce prediction uncertainty, Computer-Aided 
Chemical Engineering, 1-6. 



Advanced MBDoE techniques
Explorative MBDoE based on G-optimality maps1

19

u
1

u2

G-map eMBDoE Settings
- JG,thr = 0.75
- D-optimal experimental design

- Efficient reduction of prediction uncertainty in the design space compared to MBDOE and DoE
- Satisfactory estimation of the full set of model parameters, thanks to the MBDoE step 4 
- Methods have been developed to automatically adjust the G-optimality threshold 

1Cenci, F., Bawa, S., Gavriilidis, A., Facco, P., Galvanin, F. (2023), An exploratory model-based design of 
experiments technique to aid parameters identification and reduce prediction uncertainty, Computer-Aided 
Chemical Engineering, 1-6. 

MBDoE



Advanced MBDoE techniques
Development of a holistic Python package for optimal selection of experimental design criteria1 

20

1Tillmann, M. T., Galvanin, F. (2023), Development of a holistic Python package for optimal selection of 
experimental design criteria in kinetic model discrimination, Computer-Aided Chemical Engineering, 631-636.
2 https://github.com/mtt9/HoliMI

→   MBDoE-MD: first step 
towards optimal selection of 

MBDoE settings

• Computational tool for 
Holistic Model 
Identification (HoliMI2)

• Different model 
selection/MBDoE-MD 
criteria implemented

Maerthe Theresa 
Tillmann, MSc

Model selection methods and probability threshold

https://github.com/mtt9/HoliMI


Benzoic Acid Esterification with Ethanol using Sulfuric Acid (homogeneous) 

Data fitting results for two candidate kinetic models using two 
identical preliminary steady-state factorial campaigns

• Liquid phase reaction
• PTFE capillary reactor
• Online HPLC as measurement system

Objective 
• Identify a kinetic model from a sequence of 

steady state flow experiments 

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A. (2019) An autonomous microreactor platform 
for the rapid identification of kinetic models. Reaction Chemistry and Engineering 4, 1623. 10.1039/C8RE00345A.

Case study 1
Benzoic acid esterification in a capillary microreactor  

21

φ = [T, F, cIN, i] 

Design vector in MBDoE

• Temperature 
• Flowrate 
• Concentration of benzoic 

acid in the feed

https://doi.org/10.1039/C8RE00345A
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Uncertainty of parameters KP1 and KP2 for the Steady-State Factorial 
(SSF) and Steady-State MBDoE (SSMBDoE) D- and E- optimal campaignsSteady-State Factorial (SSF) Vs 

Steady-State MBDoE (SSMBDoE) campaigns 𝑘 = 𝑒𝑥𝑝  −𝐾𝑃1 −
𝐾𝑃2 ∗ 10000

𝑅
∗  

1

𝑇
−

1

𝑇𝑀
   𝑟𝐵𝑧𝐴𝑐𝑖𝑑 = −𝑘𝐶𝐵𝑧𝐴𝑐𝑖𝑑  

• Steady-state MBDoE experiments produced significantly smaller uncertainty regions than the ones 
designed by a full factorial DoE  using the same number of steady-state experiments 

Case study 1: Benzoic acid esterification in a capillary microreactor
MBDoE VS DoE1   

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A. (2019) An autonomous microreactor platform 
for the rapid identification of kinetic models. Reaction Chemistry and Engineering 4, 1623. 10.1039/C8RE00345A.

https://doi.org/10.1039/C8RE00345A
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Optimal design of transient flow experiments for the Identification of kinetic parameters1

𝑑𝐶𝐵𝐴,𝑖

𝑑𝜏
= 𝑟𝐵𝐴,𝑖     for 𝑖 = 1,… ,𝑁𝑠𝑝  

 
𝑑𝑇 𝑖

𝑑𝜏
= −𝛼𝑇     for 𝑖 = 1,… ,𝑁𝑠𝑝  

• The transient PFR can be described by a system of ideal batch reactors
• Dead volume between end of reactor and sampling needs to be known
• Transient experiments can provide faster estimation of kinetic parameters
• Design vector for MBDoE: 

Case study 1: Benzoic acid esterification in a capillary microreactor
Optimal design of transient flow experiments   

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2020) Model-based design of 
transient flow experiments for the identification of kinetic parameters. Reaction Chemistry & Engineering, 5, 
112. 10.1039/c9re00342h.

φ = [T, F, cIN, BA, αT, αV, αC ] 

https://doi.org/10.1039/c9re00342h
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Control variable profiles (temperature, flowrate and benzoic acid 
inlet concentration) designed intuitively and by MBDoE

Confidence ellipsoids of kinetic parameters for transient 
experiments designed intuitively and by MBDoE

• MBDoE improves significantly the parameter precision obtained from transient experiments

• Parameter precision obtained in transient from a single run:  

                       similar to that obtained from 8 steady-state MBDoE runs1

• … transient experiments required significantly less time and resources to run! 

Case study 1: Benzoic acid esterification in a capillary microreactor
Optimal design of transient flow experiments1   

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2020) Model-based design of 
transient flow experiments for the identification of kinetic parameters. Reaction Chemistry & Engineering, 5, 
112. 10.1039/c9re00342h.

https://doi.org/10.1039/c9re00342h
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Closed Loop MBDoE for Kinetic Model Discrimination and Parameter Estimation1

Benzoic Acid Esterification on Amberlyst-15 (heterogeneous) with Ethanol

Four candidate kinetic models

Bead-string reactor offers small external mass transfer resistance 

Case study 1: Benzoic acid esterification in a capillary microreactor
Closed-loop identification including MBDoE-MD and MBDoE-PE  

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of 
Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous 
Catalyst. Industrial & Engineering Chemistry Research , 58, 2216. 10.1021/acs.iecr.9b04089.

https://doi.org/10.1021/acs.iecr.9b04089
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Closed Loop MBDoE for Kinetic Model Discrimination and Parameter Estimation

3. MBDoE-designed 
discriminating 
experiments

    (MBDoE-MD)
    M2

4. MBDoE designed 
experiments for 
improved 
parameter 
precision

    (MBDoE-PE)
    M2

1.8 steady-state 
experiments 
designed by a full 
factorial DoE 
method

    M1, M2, M3, M4

2. 64 simulated 
experiments to test 
practical model 
identifiability 
based on rank of 
FIM

    M1, M2

Case study 1: Benzoic acid esterification in a capillary microreactor
Closed-loop identification including MBDoE-MD and MBDoE-PE  

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of 
Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous 
Catalyst. Industrial & Engineering Chemistry Research , 58, 2216. 10.1021/acs.iecr.9b04089.

https://doi.org/10.1021/acs.iecr.9b04089
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Identified (apparent) kinetic model (Model 2)
• Bead string reactor provided plug flow behaviour with efficient 

mass transfer 

• The methodology proposed minimized the number of 
experiments required for kinetic model identification 

• It prevents the use of nonidentifiable models

• MBDoE-MD distinguished between two candidate models

• MBDoE-PE improved parameter precision

• All kinetic experiments were completed in 3 days 

                 … against 2 weeks for a full factorial DoE! 

Case study 1: Benzoic acid esterification in a capillary microreactor
Closed-loop identification including MBDoE-MD and MBDoE-PE  

1Waldron, C; Pankajakshan, A; Quaglio, M; Cao, E; Galvanin, F; Gavriilidis, A; (2019) Closed-Loop Model-Based Design of 
Experiments for Kinetic Model Discrimination and Parameter Estimation: Benzoic Acid Esterification on a Heterogeneous 
Catalyst. Industrial & Engineering Chemistry Research , 58, 2216. 10.1021/acs.iecr.9b04089.

https://doi.org/10.1021/acs.iecr.9b04089


Three candidate kinetic models are considered for the methane oxidation reaction after a 
screening and identifiability study based on 12 candidate models 2

28

Model 2

Model 1

Model 3

Initial probability of model correctness

Model Rate law

Model 1

Model 2

(LH)

Model 3

(MVK)
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+ +

Overall chemical reaction of methane oxidation over Pd/Al2O3 catalyst1:
 

Case study 2: Catalytic methane oxidation 
Catalytic methane oxidation in flow microreactor systems  

2 3Pd/Al O
4 2 2 2CH 2 O CO 2 H O+ ⎯⎯⎯⎯⎯→ +

28
1J. H. Lee, D. L. Trimm (1995), Catalytic combustion of methane, Fuel Processing Technology 42, 339.
2 S. G. Bawa, A. Pankajakshan, C. Waldron, E. Cao, F. Galvanin, A, Gavriilidis (2023). Chemistry–Methods, 3, 1. 
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Flow 

streams 

https://www.youtube.com/watch?v=kMCtQqbPixk

Case study 2: catalytic methane oxidation
The platform – microreactor technology   

29

Reactor Setup
• Silicon-glass reactor
• 10 mg of 5 wt.% Pd/Al2O3

• ±3 ⁰C axially at 400 ⁰C
• Online analysis by GC

https://www.youtube.com/watch?v=kMCtQqbPixk
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https://www.youtube.com/watch?v=kMCtQqbPixk

Case study: catalytic methane oxidation
LabView Graphical User Interface and digital twin

https://www.youtube.com/watch?v=kMCtQqbPixk
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Case study: catalytic methane oxidation
LabView Graphical User Interface and digital twin

https://www.youtube.com/watch?v=kMCtQqbPixk

https://www.youtube.com/watch?v=kMCtQqbPixk


Case study: catalytic methane oxidation
Results from the autonomous platform: inputs/outputs

Campaign for kinetic 
model validation:
1. Preliminary set of 

DoE experiments 
for pre-screening

2. MBDoE-MD runs
3. MBDoE-PE runs

• Switch between 
steps 2) and 3) 
dictated by the 
best model 
probability (>95%)

• STOP when 
parameters are all 
precisely estimated 
(t-test satisfied)



- Only 4 MBDoE-
MD experiments 
required for 
model 
discrimination!

- Additional 6 
experiments 
needed for a 
precise estimation 
of kinetic model 
parameters

Model Adequacy Parameter precision (Model 3) 

Case study: catalytic methane oxidation
Results from the autonomous platform: model calibration



Model Adequacy Parameter precision (Model 3) 

Case study: catalytic methane oxidation
Results from the autonomous platform: model calibration



Case study: catalytic methane oxidation
The problem of practical model distinguishability1

Results can be analysed retrospectively 
- Probability density plots of model responses 
- Overlap ratio 

“Easily” distinguishable models Challenging model discrimination

Arun Pankajakshan 
Research Assistant

1Pankajakshan, A., Bawa, S., Gavriilidis, A., Galvanin, F. (2023). Autonomous kinetic model identification 
using optimal experimental design and retrospective data analysis: methane complete oxidation as a case 
study. Reaction Chemistry & Engineering (in press).   



Machine Learning (ML)-Assisted Model Identification
Goals and features

Integration of machine learning (ML) techniques and MBDoE:

1. To assist model discrimination and selection

2. To efficiently design experiments under uncertain scenarios

3. To identify design regions of model reliability

Optimal Experimental Design for Kinetic Model 
Recognition Using Artificial Neural Networks (ANNs)1,2

Safe model-based design of experiments 
using Gaussian processes3

Machine Learning (ML)-Assisted 
Model Reliability Mapping4 

1 Quaglio et al., (2020), Computers & Chemical Engineering 135, 106759
2 Sangoi et al. (2022), CACE, 49, 117
3 Petsagkourakis, P., Galvanin, F. (2021), Computers & Chemical Engineering 151, 107339
4 Quaglio et al. (2018), Chemometrics and intelligent laboratory systems 172, 58



GOAL: Coupling physics-informed ML and optimal experimental design 
algorithms for reaction optimisation1

PI: Federico Galvanin
f.galvanin@ucl.ac.uk

Machine Learning (ML)-Assisted Model Identification
ML-assisted digital twin platform for real-time optinisation of reaction systems

1https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X024016/1

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X024016/1


Experimental data Output

1
2

N

3

data fed to the 
ANN as input 

output 
vector

matrix of hidden 
neurons

In the proposed approach, ANNs are used to model the cognitive processes of the 
scientist’s brain rather than building a black-box representation of the physical system.
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“KINETIC MODEL”

𝑟𝐴→𝐵 = 𝑘𝐶𝐴

𝑟𝐴→𝐶 = 𝑘𝐶𝐴
2

𝑟𝐵→𝐶 = 0

Artificial Neural Network

Kinetic Model Recognition using ANNs
Proposed approach

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 
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Experiment 
design

Random kinetic 
parameters
generation

Simulation of kinetic 
experiments

Data generated 
in-silico

60%

Training data

2. ANN training, validation, 
optimisation and testing

Experimental data

1. in-silico data generation stage (performed N times, offline)

Library of 
possible kinetic 

models

Test dataValidation data

20% 20%

Trained 
Neural Network

Most likely 
kinetic model

perform
experiments

Kinetic Model Recognition using ANNs1

Proposed approach

1Quaglio, M., Roberts, L., Jaapar, M., Dua, V., Galvanin, F. (2020). An artificial neural network framework for 
classifying chemical reaction types from experimental data. Computers and Chemical Engineering., 135, 106759.
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ANNs-based Optimal Experimental Design
Proposed procedure

• Objective function used in the 
optimal DoE: ANN test-accuracy

• A differential evolution algorithm 
(DEA)1 is chosen for the optimization 
→ population-based algorithm 
inspired by the evolutionary theory

1Storn R., Price K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over
continuous spaces”, Journal of Global Optimization, 11, 4, 341-359. DOI: 10.1023/A:1008202821328 40



ANNs-based Optimal Experimental Design
Effect of design variables on ANN accuracy

Effect of temperature and reactant A 
concentration on ANN accuracy (1 sample)1

• Very high accuracy achieved with limited number of experiments in low noise scenarios 
• High accuracy achieved (close to 90%) when temperature, reactant concentration and sampling 

time are optimised even in the most uncertain measurements scenario
1Sangoi, E., Quaglio, M., Bezzo, F., Galvanin, F. (2022). Optimal Design of Experiment Based on Artificial 
Neural Network Classifiers for Fast Kinetic Model Recognition. In: 14th International Symposium on 
Process Systems Engineering (PSE 2021, Kyoto).  41



Experimental data Output

1
2

N

3

data fed to the 
ANN as input 

output 
vector

matrix of hidden 
neurons
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“KINETIC MODEL”

𝑟𝐴→𝐵 = 𝑘𝐶𝐴

𝑟𝐴→𝐶 = 𝑘𝐶𝐴
2

𝑟𝐵→𝐶 = 0

Artificial Neural Network

ANN-based Optimal Design Vs MBDoE-MD
Effect of dataset quality on discrimination performance1

What if this approach is compared 
to a standard MBDoE approach for 
model discrimination? 

1N. Riske (2021). Mechanistic Model Discrimination Using 
Model-Based Design of Experiments and Artificial Neural 
Networks (Master’s Thesis). 
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𝑅(𝐮)

domain of

applicability

domain of

reliability

𝑅(𝐮)

domain of

applicability

domain of

reliability

MODELLING   HYPOTHESES 
MUST   BE   REFORMULATED

MODELLING ASSUMPTIONS ARE APPROPRIATE FOR THIS 
SPECIFIC APPLICATION
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ML-Assisted Reliability Mapping 
Domain of applicability VS Domain of model reliability

Domain of applicability Vs 
Domain of reliability 

We need to identify where the 
model is reliable in the design space 

This affects all the 
model-based activities

u
1 u
1

u2 u2

Continuos Flow Reactor Technology for Industrial Applications (CFRT 14) 
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𝑢1
𝑢2

Reliability map1 𝑅(𝐮)

Distribution of information

Experimental design is 
constrained to conditions at 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐮 > 0

𝑢1
𝑢2

𝐼(𝐮)

1Quaglio M., Fraga E., Cao E., Gavriilidis A. and Galvanin F. (2017). A model-based data mining approach for determining 
the domain of validity of approximated models. Chemometrics and Intelligent Laboratory Systems, 172, 58-67

What will happen if the model is not reliable in the experimental design? 
→ Local mismatch on information prediction 
Solution: we can predict where the model is reliable (i.e. regions of reliability in the design space)
→ reliability maps using Model-Based Data Mining (MBDM)1 

ML-Assisted Reliability Mapping 
Constrained Model-Based Design of Experiments

𝑢
1

𝑢
1
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1. Model-Based 

Data Mining

N

Y

3. Constrained 

Model-Based 

Design of 

Experiments 

for Parameter 

Precision

approximated model 

structure

ෝ𝒚 = 𝐠 𝛉, 𝐮

experimental data 

and related errors

execute new 

experiment(s)

STOP

additional 

experimental data

parameter 

statistics?

values for model 

parameters

2. Machine learning 

algorithm (SVM)

ML-Assisted Reliability Mapping 
Constrained MBDoE: iterating kinetic model identification procedure1

𝑹 > 𝟎

𝑹 < 𝟎

1Quaglio M., Fraga E. S., Galvanin F. (2018). Constrained model-based 
design of experiments for the identification of approximated models, 
IFAC-PapersOnLine, 51(15), 515-520 . 



Final remarks

• Identification of kinetic models in Autonomous Reaction Platforms
– Fast identification of kinetics integrating i) model discrimination (MBDoE-MD); ii) 

parameter precision (MBDoE-PE); ii) joint MBDoE-MD/MBDoE-PE

– Algorithms used in online applications and cloud-based services (EDAS)

– Online tracking of model adequacy for mechanistic understanding 

– Techniques developed to handle practically non-identifiable («sloppy») models 

– Exploratory MBDoE based on G-optimality (G-map eMBDoE) now integrated 

• Kinetic model recognition using ANNs
- Possibility to leverage ML to identify the model structure 

      → ANN-based optimal experimental design

- Trade-off between noise and number of measurements to be carefully evaluated by 
design

• ML-Assisted Model Reliability Mapping 
– Systematic approach to model building using ML techniques

– Integration in autonomous platforms 

46
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Future works

• Identification of kinetic models in Autonomous Reaction Platforms

– Integration of tools for online model diagnostics1

– Integration of ANN-based model identification framework in autonomous platforms, 
and potential combination with MBDoE

– Integration of generative algorithms for model identification 

-> SINDY2 integration 

– Integration of new MBDoE techniques including exploratory MBDoE3

– Integration of optimization-free methods for online MBDoE4

– Application to large reaction networks systems

– Application to flexible reaction systems (Taylor Vortex reactors)
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1Quaglio, M., Fraga, E. S. & Galvanin, F. (2020), A diagnostic procedure for improving the structure of approximated kinetic models. Computers & Chemical Engineering, 133, 106659.
2Brunton, S. L., Proctor, J. L. & Kutz, J. N. (2016), Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national 
academy of sciences, 113, 3932. 
3Cenci, F., Pankajakshan, A., Galvanin, F. (2023), An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction 
uncertainty, Computers & Chemical Engineering, 177, 108353, https://doi.org/10.1016/j.compchemeng.2023.108353
4Friso, A., Galvanin, F. (2023), An optimization-free Fisher information driven approach for online design of experiment, Computer-Aided Chemical Engineering, 52, 13. 
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