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ABSTRACT
We present a novel dataset collected by ASOS (a major online fash-
ion retailer) to address the challenge of predicting customer returns
in a fashion retail ecosystem. With the release of this substan-
tial dataset we hope to motivate further collaboration between
research communities and the fashion industry. We first explore
the structure of this dataset with a focus on the application of
Graph Representation Learning in order to exploit the natural data
structure and provide statistical insights into particular features
within the data. In addition to this, we show examples of a return
prediction classification task with a selection of baseline models
(i.e. with no intermediate representation learning step) and a graph
representation based model. We show that in a downstream return
prediction classification task, an F1-score of 0.792 can be found
using a Graph Neural Network (GNN), improving upon other mod-
els discussed in this work. Alongside this increased F1-score, we
also present a lower cross-entropy loss by recasting the data into a
graph structure, indicating more robust predictions from a GNN
based solution. These results provide evidence that GNNs could
provide more impactful and usable classifications than other base-
line models on the presented dataset and with this motivation, we
hope to encourage further research into graph-based approaches
using the ASOS GraphReturns dataset.
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1 INTRODUCTION
Part of the unique digital experience that many fashion retailers
deliver is the option to return products at a small or no cost to
the customer. However, unnecessary shipping of products back
and forth incurs a financial and environmental cost. With many
fashion retailers having a commitment to minimizing the impact of
the fashion industry on the planet, providing a service which can
forecast returns and advise a customer of this at purchase time is
in line with these goals.

With the continual development of e-commerce platforms, it is
important that systems are able to model the user’s preferences
within the platform’s ecosystem by using the available data to guide
users and shape the modern customer experience. One approach
to this challenge, which has sparked huge interest in the field of
recommendation systems [15], are representation learning based
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methods. Representation learning provides a framework for learn-
ing and encoding complex patterns present in data, which more
naive machine learning (ML) approaches are unable to capture as
easily. However at present, the available data that is able to facili-
tate such research avenues is scarce. Further to this, the number of
available datasets which include anonymised customer and product
information (and their interactions) is even less available.

E-commerce platforms in the fashion industry are in a unique
position to contribute to this research by making data publicly
available for use by the machine learning community. Of particular
interest to ASOS is the application of machine learning to predicting
customer returns at purchase time, due to this, we present the ASOS
GraphReturns dataset in this article. The labelled purchase (return
or not returned) connections between customers and products in
this dataset naturally lends itself to a graph structure which has
motivated our interest in encouraging the exploration of graph rep-
resentation learning based solutions, which we provide an example
of in Sect. 4. Graph Neural Networks (GNNs) have been the subject
of immense success in recent years [3, 4, 10, 13, 14] and provide an
intuitive way to exploit structured data. Another benefit of using
GNNs is that they are able to make predictions for new instances
not seen before. This is a particular attractive feature for industry
environments where new products and customers are continually
added.

In this work, we first present the ASOS GraphReturns dataset1
and discuss some of the properties and features of this data. Using
this data we then provide some examples demonstrating the use of
GNNs with this data based on the downstream task of predicting
customer returns. This information may then be used to inform
customers based on their choice and make a personalised recom-
mendation (i.e. a different size, style, colour etc.) at purchase time
that has a lower probability of being returned.

The structure of the document is as follows: Sect. 2 describes the
novel fashion retail dataset, Sect. 3 overviews the methodology and
some example benchmark results are discussed in Sect. 4. Finally in
Sect. 5 we summarise this contribution and provide some insights
into potential further studies which could benefit from this dataset.

2 DATA DESCRIPTION
The train (test) data contains purchases and returns recorded by
ASOS between Sept-Oct 2021 (Oct-Nov 2021), including the cor-
responding anonymous customer and product variant2 specific
information. The data is organised into customers (with hashed
customer ID’s to preserve anonymity), product variants and events
(i.e. a purchase or return of a product by a customer). The training
(testing) dataset includes ∼ 770, 000 (∼ 820, 000) unique customers
and ∼ 410, 000 (∼ 410, 000) product variants, where every customer
has at least one return and each product variant has been purchased
at least once. To connect customers and products the data contains
a total of 1.4M (1.5M) purchase events each labeled as a return (1)
or no return (0) in both the training and testing datasets. The prob-
lem of predicting customer returns is then presented as an edge
classification task as depicted in Fig. 1. This structure is similar to

1The dataset can be found at https://osf.io/c793h/.
2Note that product variants include variations in size and colour and therefore a
product may contain multiple variants.

that of the Amazon reviews data [9] which also includes labeled
links between customers and products.

Within each customer/product variant node, we also include
specific node features, such as the average return rate, the ratios
of different reasons for returns, and historical information relat-
ing to the number of purchases/returns made. Fig. 1 displays an
exhaustive list of all the features included in this dataset. Fig. 2
(left) displays a subset of correlations between customer (top) and
product (bottom) features. Within these correlations, one can ob-
serve strong associations such as male customers being less likely
to make a return or a more expensive product in general having a
higher return rate. Fig. 2 (right) summarises a selection of statistics
related to the distribution of return labels across countries and
brands included within the data. It can be seen that the data shows
a larger proportion of returns across specific individual markets
which could prove useful in ML based classification tasks3.

Of particular interest to neural message passing techniques is the
inherent graph structure that this dataset holds. In order to apply
graph neural networks to data, one must first arrange the data into
nodes that contain specific features and edges that link these node
instances. This extra potential structure that can be constructed
from the ASOSGraphReturns dataset further enhances themodality
of the data from the raw structure and node features/correlations
discussed above. In Fig. 3, we show the data in an undirected het-
erogeneous graph structure with 5 different edge types linking
customers to their shipping countries and product variants to each
other and their corresponding brands, product types and top return
reasons by defining intermediate virtual nodes in all cases. These
virtual nodes can be constructed in multiple ways, however in this
paper the virtual nodes contain an averaged set of features for each
instance i.e. a product type node will contain the average set of
feature values for all products linked to this node.

3 METHODOLOGY
In this section, we present the methodology for a number of ex-
ample baseline methods applied to the task of predicting customer
returns in Sect. 4. The methods considered here aim to provide an
early benchmark for future studies involving this dataset. For the
graph representation learning based approach, the data is arranged
into a highly connected structure with virtual nodes for: customer
shipping countries, products, product types, product brands and
top return reasons for product variants as described in Fig. 3.

We investigate the use of a Logistic Regression, a 2-layer MLP, a
Random Forest [1], and an XGBoost [2] classifier trained directly
on the raw data (i.e. not arranged into a graph) described in Sect. 2.
For these models, the customer and product specific features are
joined by each labelled purchase link in the data. Further to this,
we also investigate a benchmark for a GNN based model trained in
conjunction with the same baseline 2-layer MLP as a classifier head.
In this case the output of the GNN is the learnt embeddings and the
MLP provides a final classification layer for the downstream tasks.

To construct an embedding for an edge e𝑎𝑏 between two nodes
𝑎 and 𝑏, in general one can perform an operation involving both

3Due to the manner in which this dataset is constructed (i.e. only including cus-
tomers who have at least one return), these statistics do not reflect the true ASOS
purchase/return statistics.

https://osf.io/c793h/
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Figure 1: The raw data structure includes customer and product specific information linked by purchases. These purchase
links are labeled with a no return (blue) or return (red) label. The entire list of node features for customers and products is
also provided here.

representations for each node,

e𝑎𝑏 = O
(
h(𝐾)
𝑎 ,h(𝐾)

𝑏

)
. (1)

where in the case described above, O is described as a 2-layer MLP
classifier which performs the final classification from the output of
the GNN.

The output of the MLP classifier head is then the predicted prob-
ability for the two class labels (return or no return) which are fed
into the cross entropy (CE) loss [6]:

LCE = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 ) (2)

where 𝑁 is the total number of predictions, 𝑦𝑖 is the true class
label (i.e. 0 or 1 for binary classification) of instance 𝑖 and 𝑝𝑖 is the
predicted probability for the observation of instance 𝑖 . Here we
note that the CE loss takes into account the probability of each
classification, whereas the F1-score only considers the final classifi-
cation label. Therefore it is an important metric to consider when
one is interested in robust predictions, as is needed for an effective
fashion industry solution for reducing the number of returns.

In order to train the GNN discussed in the following section, an
extra step is included into this methodology whereby the purchase
events are only trained on if the product variant involved has an
average return rate of higher than 80% or lower than 20%, in order
to provide more robust positive and negative examples of return
instances to the GNN. The reason for this is to investigate and avoid

issues involving oversmoothing in the representations learnt by the
GNN, however all results are quoted on the entire test set with no
filtering. The result of this is a dataset with 200,000 purchase events
and an average vertex degree for the real nodes of 5 for product
variant nodes and 2 for customer nodes.

4 EXPERIMENT RESULTS

Model Test Scores

Precision Recall F1-score CE Loss LCE

Logistic Regression 0.723 0.726 0.725 0.602
Random Forest 0.788 0.712 0.748 0.630

MLP 0.870 0.656 0.748 0.582
XGBoost 0.805 0.745 0.774 0.561
GNN 0.816 0.758 0.792 0.489

Table 1: Results for models considered in this section evalu-
ated on the full test data.

Table 1 displays the precision, recall and F1-scores each model
evaluated on the full test dataset (1.5M purchase events). The final
hyperparameter values are chosen based on a validation set, ran-
domly and uniformly constructed from 10% of the training data and
are listed as: Logistic Regression (𝐶 = 5.0, tol. = 10−4), MLP (# of lay-
ers = 2, hidden dim. = 128), Random Forest (# of estimators = 100,
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Figure 2: General summary of data statistics including correlations between customer and product specific features (left) and
distributions of return labels (right) within each country (top) and brand (bottom).

max. depth = 6, min. samples split = 2, min. samples leaf = 1,
max. leaf nodes = 10), XGBoost [2] (booster = gbtree, max. depth
= 4, 𝜂 = 0.1, 𝛾 = 1, min. child weight = 1, 𝜆 = 2, objective = Bi-
nary Logistic, early stopping rounds = 5), GNN (1 GraphSAGE [8]
layer with dim. = 16, all aggregations = max. pool, dropout = 0.2,
normalise = True)4. For the MLP (16,641 trainable parameters) and
GNN (49,665 trainable parameters) models, an Adam optimizer is
used with a learning rate of 0.01.

The results in Table 1 show a superior performance for a GNN
based approach trained on high and low returning examples (de-
scribed in Section 3) across all metrics considered, indicating that a
graph-based approach yields a better performing and more robust
classification model. For reference, when comparing the same GNN
to one trained on all available data, an F1-score of 0.783 was found,
suggesting the GNN’s performance may suffer from oversmoothing
when being trained on less discrete positive and negative examples.
Furthermore, as mentioned in Sect. 3, the classifier head attached to
the GNN is the same MLP model also present in Table 1, therefore

4Any parameters not listed here are left at their default values provided by the pack-
ages sklearn [12] (Logistic Regression & Random Forest), xgboost [2] (XGBoost),
PyTorch [11] (MLP). and PyG [5] (GNN).

supporting the expectation that the graph embeddings from the
GNN are able to encode useful information from the data. Table 1
also suggests that the GNN’s predictions are more robust, based on
a lower final CE loss (Equation (2)) combined with a higher F1-score
evaluated on the test set.

Table 2 displays the F1-scores evaluated on the test set for indi-
vidual country markets. In all country instances, the GNN based
approach obtains a superior F1-score to all other models considered.
When comparing the results in these tables with the correlations
discussed in Fig. 2 one can observe that those countries with higher
correlations to a particular return label (1 or 0) are among the top
performing F1-scores in Table 2.

Single market results are of particular interest to the wider e-
commerce fashion industry in order to understand how to deliver
the best service to customers and products across different indi-
vidual markets. The ability to obtain results such as these are an
important and unique feature in the novel ASOS GraphReturns
dataset as it facilitates a level of understanding into how an ML
model is performing across different areas and identify it’s weak-
nesses. Note that a similar analysis can be done for different brands
or product types.
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Figure 3: Representation of the richer graph structure contained within the ASOS returns data and how it can be recast into
a form better suited to graph representation learning. Virtual nodes are shown for countries, products, product types, brands
and return reasons with extra connections added to each customer and product variant node.

Model Country A Country B Country C Country D
Trained on all markets

F1-score LCE F1-score LCE F1-score LCE F1-score LCE
Logistic Regression 0.635 0.611 0.776 0.606 0.658 0.611 0.593 0.608
Random Forest 0.655 0.633 0.785 0.633 0.672 0.635 0.606 0.633

MLP 0.680 0.527 0.792 0.527 0.691 0.528 0.626 0.518
XGBoost 0.731 0.556 0.806 0.567 0.717 0.567 0.664 0.561

GNN 0.757 0.436 0.821 0.487 0.744 0.485 0.732 0.494

Model Country E Country F Country G Country H
Trained on all markets

F1-score LCE F1-score LCE F1-score LCE F1-score LCE
Logistic Regression 0.812 0.591 0.729 0.618 0.673 0.605 0.671 0.610
Random Forest 0.817 0.624 0.745 0.638 0.717 0.630 0.683 0.636

MLP 0.819 0.514 0.754 0.542 0.727 0.520 0.696 0.528
XGBoost 0.827 0.561 0.772 0.573 0.751 0.561 0.728 0.563

GNN 0.842 0.487 0.801 0.500 0.774 0.489 0.744 0.505
Table 2: Summary of F1-scores and CE losses (LCE) evaluated on the test data for each individual country market. In these
results we use a GNN model with 1 SAGEGraph layer (dim. = 16) trained with all extra nodes considered from Sect. 3.
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5 CONCLUSION
In this work we have presented a novel dataset to inspire new
directions in fashion retail research. This dataset is particularly
suited to graph representation learning techniques and exhibits a
naturally rich geometrical structure.

The baseline models which have been presented here to provide
an early benchmark trained on the presented data support the claim
that a GNN based approach achieves a higher yield over the metrics
considered. The best performing model is a GNN model described
in Sect. 3 and 4 which obtained a final F1-score of 0.792 and a test CE
loss score of 0.489 when evaluated on the test set. These results are
an improvement from the next best performing model (2% higher
F1-score and 6% lower CE loss) indicating the potential for graph
based methods on this naturally graph structured data. Of particular
interest for e-commerce companies is the level of confidence when
making a prediction which will affect the likelihood of a customer
being notified by the prediction. Therefore the final test CE loss
value for the GNN being lower than other models implies that
overall the GNN is likely more confident about its classifications
than the other non-graph based approaches. In order to reinforce
this point, a future analysis of these predictions could include the
investigation of calibrated probabilities as in [7].

As discussed, our primary goal is to provide a novel dataset to
facilitate future research studies in fashion retail. This data is pre-
sented with labeled purchase links between customers and product
variants which can be used in a supervised learning setting (as
in Sect. 4). However due to the graph structure of this data, it is
possible to also use this data in the unsupervised setting with a
wider range of transformer based models. Finally we wish to high-
light the potential application of this dataset to advancements in
recommendation systems. With the definite labels provided in this
dataset which label a return, a future research direction would be
investigating the universality of the GNN embeddings and how
these translate into new recommendation systems for sustainable
fashion.
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