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Abstract 
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic 
laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation 
connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing 
prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader–Willi syndrome) and 
acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as 
better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of 
targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the 
development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the 
neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
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Abbreviations: 5-HT, serotonin; αMSH, α-melanocyte stimulating hormone; ACTH, adrenocorticotropic hormone; AgRP, Agouti-related peptide; ARC, arcuate 
nucleus; AVP, arginine–vasopressin; BDNF, brain-derived neurotrophic factor; BMI, body mass index; CART, cocaine- and amphetamine-regulated transcript; 
CCK, cholecystokinin; CNS, central nervous system; CRH, corticotrophin-releasing hormone; DMN, dorsomedial nucleus; DPP4, dipeptidyl peptidase-4; FOXO1, 
Forkhead box protein 1; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone-releasing hormone; GHSR, growth hormone 
secretagogue receptor; GLP-1, glucagon-like peptide-1; GOAT, ghrelin-O-acyltransferase; HCRT, hypocretin; HCRTR, hypocretin receptor; HyOb, 
hypothalamic obesity; IDDM, insulin-dependent diabetes mellitus; INSR, insulin receptor; JAK, Janus kinase; LAGB, laparoscopic adjustable gastric 
banding; LEPR, leptin receptor; LHA, lateral hypothalamic area; MCH, melanin-concentrating hormone; MCR, melanocortin receptor; NPY, neuropeptide Y; 
NTS, nucleus tractus solitaries; NUCB2, nucleobindin-2; OXT, oxytocin; PC, prohormone convertase; PI3K, phosphoinositide 3-kinase; PKB, protein kinase 
B; POMC, proopiomelanocortin; PPY, pancreatic polypeptide Y; PVN, paraventricular nucleus; PYY, polypeptide YY; RCT, randomized controlled trial; REE, 
resting energy expenditure; SOD, septo-optic dysplasia; SON, supraoptic nucleus; SS, somatostatin; STAT, signal transducer and activator of transcription; 
TRH, thyrotrophin-releasing hormone; TRKB, tyrosine kinase receptor B; VMA, vanillylmandelic acid; VMN, ventromedial nucleus.  

ESSENTIAL POINTS
• Hypothalamic obesity is characterized by intractable 

weight gain in the presence of congenital hypothal
amic dysfunction or acquired hypothalamic damage

• Our current understanding of the complex neuroen
docrine circuitry regulating our appetite and weight 
has advanced significantly over the last 3 decades, 
but remains incomplete

• Appetite and weight are maintained through the ac
tions of orexigenic (eg, ghrelin, neuropeptide Y) 
and anorexigenic (eg, leptin, insulin) hormones, 
which interact through multiple neuroendocrine 
networks

• The development of targeted molecular treatments 
for monogenic hypothalamic obesity syndromes has 
revolutionized the landscape for these rare conditions

• However, treatment of congenital or acquired syn
dromic hypothalamic obesity is still lacking, due to 
our incomplete understanding of these circuits which 
are often redundant in nature

Hypothalamic Obesity: A Historical Perspective
Hypothalamic obesity (HyOb) has been defined loosely as a 
“syndrome of intractable weight gain after any hypothalamic 
damage” (1). Despite only measuring about 0.7 cm3 on either 
side of the third ventricle (2), the hypothalamus is a critical re
gion of the brain responsible for regulating 7 endocrine axes 
via its intimate connections to the pituitary gland, as well as 
appetite, metabolism, thirst, circadian rhythms, arousal, tem
perature, memory, and behavior. Therefore, damage or mal
development of this area can have widespread consequences 
on a variety of homeostatic mechanisms and unsurprisingly 
cause, in addition to obesity and appetite dysregulation (clas
sically hyperphagia), panhypopituitarism, sleep disturbances, 
temperature dysregulation, and behavioral disorders (often 
termed as the “hypothalamic syndrome” when present in 
combination). The dense congregation of neurons in this 
area, the poor definition of the various hypothalamic nuclei, 
and the limited resolution of current neuroradiological techni
ques, however, has meant that our current understanding of 
the circuitry underlying these clinical manifestations remains 
incompletely understood. Experiments manipulating the vari
ous hypothalamic genes involved also often result in effects on 
multiple neuronal subtypes or even lethality, further compli
cating the task of deciphering their role in the development 
of this region (3, 4).

HyOb was first described independently in the early 
1900s by the neurologists Joseph Babinski (5) and Alfred 

Fröhlich (6), who respectively described virtually identical 
cases of an adolescent girl and boy presenting with headaches, 
visual impairment, short stature, an increased body mass in
dex (BMI) with centripetal fat distribution and pubertal delay, 
both of whom were found to have a hypothalamo-pituitary 
mass at postmortem. The association between the abnormal 
fat distribution and genital underdevelopment seen in these 
cases led to the Babinski–Fröhlich syndrome initially being de
scribed as “adiposogenital dystrophy” (7).

Over 100 years since its original description, our under
standing of the pathophysiology of HyOb has advanced sig
nificantly, but remains incomplete. Early experiments in 
rodents demonstrated firstly that damage to the hypothal
amus, but not the pituitary, was necessary for its development 
(8, 9). Subsequent more detailed work demonstrated that the 
ventromedial nucleus (VMN) within the hypothalamus was 
crucial for the regulation of weight and appetite, while the ar
cuate nucleus (ARC) and lateral hypothalamic area (LHA) 
were involved to a lesser degree (8, 10). Subsequent experi
ments also indicated that hyperphagia was not necessary for 
the development of obesity, as rats with bilateral VMN elec
trolytic lesions still became obese and hyperinsulinemic 
when entirely tube-fed, whereas their pair-fed counterparts 
did not (11). The first hint of the underlying molecular mech
anism for HyOb appeared with the description of the spontan
eous breeding of the ob/ob (obese) mouse at a ratio of 1:3 to 
the rest of the litter, suggesting an autosomal recessive inher
itance, but achieving a weight 3 times that of its littermates by 
ten months of age (12).

However, it took over 40 years for the advent of molecular 
techniques to clear the path for the cloning of the Ob gene prod
uct, leptin—the first hormone linking the hypothalamus with 
the regulation of appetite and metabolism in humans (13). 
This was followed shortly after by the identification of the first 
monogenic cause of human obesity, congenital leptin deficiency 
(14), and its successful treatment with recombinant human lep
tin (15). Concurrently, a rapid cascade of discovery of other 
hormones and neuropeptides involved in the neuroendocrine 
regulation of appetite and weight was occurring, including 
brain-derived neurotrophic factor (BDNF) (16), neuropeptide 
Y (NPY) (17), polypeptide YY (18), glucagon-like peptide-1 
(GLP-1) (19), cocaine- and amphetamine-regulated transcript 
(CART) (20), agouti-related peptide (AgRP) (21), and ghrelin 
(22). Insulin (23) and α-melanocyte stimulating hormone 
(αMSH) (24) had already been discovered decades earlier, but 
their role in appetite regulation in the hypothalamus was not 
appreciated until several years later (25, 26). Over the last 
2 decades, the corresponding human obesity phenotypes for 
mutations in the genes encoding the above peptides have 
gradually been elucidated, further corroborating their role in 
appetite and weight homeostasis.
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Etiology of Hypothalamic Obesity
While HyOb is a relatively rare form of obesity, it is frequently 
seen in patients with both congenital and acquired disorders 
involving maldevelopment, dysfunction or damage to the 
hypothalamo-pituitary unit. Apart from the various “nonsyn
dromic” and syndromic genetic obesity syndromes described 
in further detail in “Monogenic ‘nonsyndromic’ hypothalamic 
obesity syndromes” and “Syndromic forms of obesity without 
hypothalamic structural defects,” HyOb is also a feature of 
various diseases affecting the structure of the hypothalamus. 
The archetypal congenital midline neurodevelopmental struc
tural disorder of this region, septo-optic dysplasia (SOD) 
is a syndrome of maldevelopment of the optic pathways in 
combination with other midline forebrain defects and/or 
hypopituitarism (27), where up to 31% of patients develop 
obesity (28). Similarly, inexorable, extreme obesity is seen 
commonly in survivors of a wide variety of suprasellar midline 
brain tumors such as craniopharyngiomas (up to 77% (29)), 
low-grade optic pathway gliomas (50-75% (30, 31)), hypo
thalamic hamartomas (28-59% (32, 33)), pituitary adenomas 
(39% (34)), and intracranial germinomas (14% (35)). Other 
acquired causes of HyOb include traumatic brain injury 
(36), infiltrative causes such as Langerhans cell histiocytosis 
(37), and inflammatory causes such as hypophysitis (38).

In this latter group of patients, HyOb can be a consequence 
of both tumor and/or targeted treatments to the area, such as 
surgery or radiotherapy. An analysis by Lustig et al (2003) 
(39) demonstrated that in a cohort of pediatric brain tumor 
survivors, HyOb was associated with hypothalamic tumor in
volvement, tumor histologies frequently presenting in 
the suprasellar midline (such as craniopharyngiomas), radio
therapy to the hypothalamus exceeding 51 Gy, extensive 
hypothalamic surgery, and/or the presence of any other 
hypothalamo-pituitary endocrinopathy, as well as an age of 
<6 years at diagnosis. Therefore, despite the rarity of HyOb 
compared with obesity in the general population (henceforth 
termed “common obesity”), a cohort of patients with both 
congenital and acquired forms of the disorder is rapidly accru
ing. The severity of obesity and its attendant sequelae, as well 
as a current lack of effective treatment options means that the 
financial burden on families and clinical services is significant, 
and an understanding of its underlying pathophysiology is be
coming ever more crucial.

Physiology of Normal Appetite and Weight 
Regulation
The discovery of the monogenic “nonsyndromic” obesity dis
orders (see “Monogenic ‘nonsyndromic’ hypothalamic obes
ity syndromes”) in both animals and humans has helped 
elucidate the complex interplay between appetite-suppressing 
(anorexigenic) and appetite-stimulating (orexigenic) hor
mones circulating between the hypothalamus and peripheral 
tissues. The hypothalamic–gut–adipose tissue circuit can be 
thought of as consisting of an “afferent” arm where peripheral 
tissues signal to the hypothalamus about the body’s metabolic 
status, and an “efferent” arm where the hypothalamus signals 
back to the peripheral tissues via the autonomic nervous sys
tem to maintain homeostasis of the human body’s energy bal
ance (1, 40-42).

Anorexigens

Leptin
Leptin is a 167 amino acid protein encoded by the LEP gene 
on chromosome 7q32.1. As previously discussed, the first 
clue alluding to the existence of leptin arose from the spontan
eous breeding of the Ob/Ob mouse (12), which subsequently 
led to the cloning of the gene and the identification of its pro
tein in mice and humans (13). Shortly after its discovery, the 
Db/Db mouse was also described (43), and cloning of the cor
responding gene causing this phenotype, the leptin receptor 
(LEPR), followed (44). The human phenotypes of congenital 
leptin deficiency and congenital leptin receptor deficiency fur
ther cemented the role of leptin in appetite and weight homeo
stasis (14, 45).

Leptin is synthesized predominantly in white adipose tissue 
(13), and plasma concentrations are unsurprisingly strongly 
positively correlated with BMI (46). Serum leptin concentra
tions are higher in women than in men, but are not related 
to resting energy expenditure, indicating that its main effect 
is on appetite over metabolism (47). Indeed, serum leptin 
has been shown to increase significantly in response to both 
acute and chronic overfeeding, demonstrating that leptin se
cretion is not purely a function of fat mass accumulation 
(48). Contrastingly, leptin concentrations fall with fasting 
(49). Leptin is also secreted by CD4+ T cells (50) and chondro
cytes (51), where it acts as a cytokine. Contrastingly, LEPR is 
expressed on a wide variety of tissues apart from the hypothal
amus and undergoes alternative splicing to generate 4 
isoforms—HLR-5, HLR-15, HLR-67, and HLR-274 
(52-54). The longest isoform, HLR-274, is responsible for the 
effects of leptin on energy homeostasis, with expression in the 
ARC, VMN, LHA, dorsomedial nucleus (DMN), and paraven
tricular nucleus (PVN) of the hypothalamus (55, 56), but it is 
also the most rapidly downregulated and transported to lyso
somes for degradation, thus causing the syndrome of functional 
leptin resistance seen in obesity (53). The ARC appears to be 
the predominant hypothalamic region responsible for leptin’s 
anorexigenic effects, as rats with a nonfunctioning ARC do 
not exhibit a reduction in food intake and weight loss in re
sponse to centrally administered leptin (57, 58).

Binding of leptin to HLR-274 causes signal transduction via 
multiple secondary messengers, including the Janus kinase/ 
signal transducer and activator of transcription (JAK/STAT) 
and the phosphoinositide 3-kinase/protein kinase B/Forkhead 
box protein 1 (PI3K/PKB (AKT)/FOXO1) pathways (59). 
Through the former, leptin increases the transcription of proo
piomelanocortin (POMC), the precursor of the major anorexigen 
αMSH (60), while the latter pathway is common to both leptin 
and insulin signaling, with both hormones stimulating POMC 
neurons, and leptin additionally inhibiting AgRP neurons 
(61, 62) Furthermore, leptin suppresses the FOXO1-stimulated 
expression of NPY and AgRP and FOXO1-inhibited expression 
of POMC (63, 64). The role of leptin in regulating POMC vs 
AgRP/NPY secretion is further supported by the coexpression 
of leptin receptors on both of these neuronal subsets (65, 66).

Insulin
Insulin is a 51 amino acid protein encoded by the INS gene on 
chromosome 11p15.5 and consists of 2 polypeptide chains (A 
and B) linked by disulfide bonds. Both of these originate from 
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the same INS gene product, proinsulin, which is cleaved by en
dopeptidases to form mature insulin in the β cells of the pancreas 
(67), which acts on the insulin receptor (INSR), present on a 
wide variety of tissues including the hypothalamus (68-70).

The discovery of insulin as a treatment for diabetes mellitus 
has been known for decades and is a longstanding historical 
landmark in the field of endocrinology (23), but its role in hypo
thalamic signaling and the regulation of appetite has only been 
recently deciphered (69-71). Intracerebroventricular and hypo
thalamic infusions of insulin have been shown to cause sus
tained reductions in food intake and body weight in baboons 
and rats respectively, with the effect being negated by the pres
ence of anti-insulin antibodies in the VMN (72, 73). Reduction 
of Insr expression in the hypothalamus by antisense oligonu
cleotides in rats, and conditionally knocking out INSR in neur
onal tissues in mice both result in increased appetite and weight 
gain (74, 75). Insulin has been shown to inhibit hypothalamic 
Npy and Agrp expression, and to increase Pomc neuronal acti
vation in rodent models in concert with leptin through PI3K/ 
PKB (AKT)/FOXO1 signaling (61, 63, 76-79).

In insulin-dependent diabetes mellitus (IDDM), an increased 
appetite occurs with both hyperglycemia and hypoglycemia. 
Rats and humans with IDDM have reduced adiposity and con
sequent leptin deficiency, which is reversible with insulin sup
plementation (80, 81). Similarly, adipose tissue-specific Insr 
conditional knockout mice display the opposite phenotype to 
hypothalamic conditional knockouts, with a low fat mass, pro
tection against age-related and HyOb, and reduced glucose in
tolerance (82). This is because insulin is required for fat 
deposition in adipocytes. Hyperglycemic hyperphagia is there
fore mediated by leptin deficiency, with leptin replacement in 
untreated rats with IDDM ameliorating the phenomenon of 
diabetic hyperphagia, despite the diabetes remaining untreated 
(83). Conversely, clinicians treating IDDM will also be aware 
that appetite increases with insulin replacement. The apparent 
dichotomy of these insulin effects may be explained by the ef
fect of insulin on glucose production—insulin induces hypogly
cemia which in turn increases appetite rather than via a direct 
effect of insulin in itself. This principle was demonstrated ele
gantly in experiments by Booth (1968) (84), where concurrent 
administration of intrahypothalamic glucose and subcutaneous 
insulin did not lead to an increased appetite in rats.

The POMC/αMSH/CART system
POMC is a 267 amino acid polypeptide encoded by the 
POMC gene on chromosome 2p23.3. This protein is a precur
sor of 5 separate peptide hormones—adrenocorticotropic 
hormone (ACTH), α-, β-, and γ-melanocyte stimulating hor
mones, and β-endorphin—which are synthesized by a series 
of post-translational proteolytic cleavage steps largely gov
erned by the serine proteases prohormone convertases 1 and 
2 (PC1 and PC2) (85-87). POMC is expressed in the hypothal
amus, anterior and intermediate lobes of the pituitary gland, 
nucleus tractus solitarius (NTS), immune system, and skin, 
and the degree of proteolytic cleavage is site dependent (88). 
For instance, corticotrophs in the anterior pituitary only pro
duce PC1 and are therefore only able to synthesize ACTH 
from POMC, whereas melanotrophs in the intermediate pitu
itary in rodents and skin cells in humans produce both PC1 
and PC2 and are therefore able to synthesize αMSH, which 
stimulate melanogenesis (89, 90). In the central nervous sys
tem (CNS), Pomc expression is restricted to the ARC and 

NTS, both of which exhibit PC1 and PC2 activity, producing 
α-, β-, and γMSH in the former, and αMSH and β-endorphin in 
the latter (91-93).

In mice, acute activation of NTS POMC neurons causes a 
short-term reduction in food intake with no change in body 
weight, while chronic activation of ARC POMC neurons is re
quired to lead to the same effect, but additionally results in a 
reduction in weight. Correspondingly, it is ablation of ARC 
POMC, not NTS POMC neurons, which is required for the 
development of obesity, increased fat mass and glucose in
tolerance (94), with the former neurons being stimulated by 
leptin (95), while the latter are stimulated by cholecystokinin 
(CCK) and inhibited by opioids (96). Overfed rats have a 
marked increase in ARC POMC expression which results in 
a negative feedback loop reducing appetite; the effects of 
which are reduced in the presence of a melanocortin 3/4 recep
tor (MC3R/MC4R) antagonist (97). In humans, homozygous 
POMC mutations cause clinical features involving deficiency 
of all its derivative peptides, including severe obesity, adrenal 
insufficiency, and red hair (98).

The diversity of peptides generated from POMC is mirrored 
by the diversity of their G-protein–coupled melanocortin re
ceptors (MCRs). MC1R, MC2R, and MC5R are responsible 
for skin pigmentation (melanocytes), ACTH induction of ster
oidogenesis (adrenal glands) and temperature regulation 
(widespread exocrine tissues) respectively (90, 99, 100). 
MC3R and MC4R both regulate appetite and weight, with 
MC4R being the predominant receptor present in the PVN, 
DMN, and LHA, but also in the cortex, thalamus, brainstem 
and spinal cord (101), while MC3R is restricted to the ARC 
(102). MC4R receptors on POMC neurons additionally ap
pear to be responsible for increasing energy expenditure with
out an increase in food intake (103), and there is a suggestion 
that MC4R signaling in the PVN is important for integrating 
circadian light cues with glucose metabolism (104). Mc4r−/− 

knockout mice develop severe hyperphagia and obesity 
(105), and dominant mutations in MC4R have been shown 
to be the most common cause of monogenic obesity in humans 
(106, 107). Interestingly, double knockout Mc3r−/−/Mc4r−/− 

rats demonstrate even more severe hyperlipidemia and hyper
glycemia than Mc4r−/− knockout rats, despite the fact that 
knocking out the Mc3r gene alone causes hypophagia and 
fat mass accumulation without necessarily becoming over
weight (108-110).

Concurrently, leptin stimulates ARC CART hypothalamic 
neurons, the large proportion of which coexpress POMC/ 
αMSH (111-113). CART is secreted as a 116 amino acid pre
propeptide coded for by the CARTPT gene on chromosome 
5q13.2, with CART being present not just in the hypothalamus 
(where it has been found in the PVN, supraoptic nucleus 
[SON], ARC, zona incerta, and anterior PVN), but also in 
the pituitary, nucleus accumbens, frontal cortex, midbrain 
and adrenal medulla (20, 114, 115). Like POMC, it is post- 
translationally proteolytically cleaved into shorter peptides 
which are biologically active (116). To date, however, the 
equivalent receptor for CART has yet to be identified. 
However, intracerebroventricular administration of CART in 
rats has been shown to inhibit food intake, even cancelling 
out the orexigenic effect of NPY (112, 117). ARC POMC/ 
CART neurons have additionally been shown to project to 
the PVN and regulate the release of thyrotrophin-releasing hor
mone (TRH), and is 1 postulated mechanism by which they 
regulate metabolic homeostasis (118, 119). Other projections 
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of POMC/CART neurons include the medial preoptic nucleus, 
DMN, LHA, and the ARC itself, all of which are involved in 
appetite and weight regulation (120, 121). Cart−/− knockout 
mice exhibit an increase in food intake and weight gain, and 
impaired glucose tolerance and insulin secretion through its 
direct impact on pancreatic β-cell function (122, 123). 
Similarly, heterozygous CARTPT mutations have been de
scribed in a family with severe obesity and reduced metabolic 
rates (124).

Brain-derived neurotrophic factor
BDNF is a 119 amino acid protein encoded by the BDNF gene 
on chromosome 11p14.1 (125). As a member of the nerve 
growth factor (neurotrophin) family, it has a major role in 
neuronal survival and neuroprotection, and is therefore wide
ly expressed (126-129). In the rodent hypothalamus, Bdnf is 
expressed in the VMN, PVN, LHA, and anterior hypothal
amus (130, 131). However, the role of BDNF in regulating ap
petite and weight has proven difficult to study due to its crucial 
role in the nervous system, with Bdnf−/− mice exhibiting early 
postnatal lethality (132, 133).

The first clue to the role of BDNF in appetite–weight homeo
stasis appeared in studies of heterozygous Bdnf+/− mice, where 
food intake and weight (particularly fat mass) were increased 
over time, and serotonergic transmission was dysregulated 
(130, 134). Intracerebroventricular infusion of BDNF in these 
mice caused significant weight loss (130). The role of serotonin 
(5-HT) in BDNF signaling, was supported by the effects of flu
oxetine, which partially reduced the amount of food ingested 
by Bdnf+/− mice, while the role of BDNF as a neurotrophin 
in maintenance of 5-HT neurons was demonstrated by the 
gradual reduction in their number over time, from baseline 
normal quantities (134). Interestingly, in experiments by 
Kernie et al (2000) (130), subgroup analysis in the proportion 
of Bdnf+/− mice who gained weight more slowly demonstrated 
that these mice also exhibited a marked increase in locomotor 
activity compared with the Bdnf+/− mice who became frankly 
obese. The baseline hypothalamic expression of Npy, Agrp, 
Cart, and Lepr was not altered in brain conditional knockout 
mice, but Pomc expression was increased, and the leptin and 
NPY responses to starvation were abnormal (135). BDNF 
has also been shown to have hypoglycemic and anti-diabetic 
effects by improving insulin secretion and sensitivity (136). 
To date, only 1 disease-causing BDNF point mutation has 
been identified in humans in association with hyperphagia, 
obesity, hyperactivity and impaired cognitive function (137). 
Additionally, the obesity observed in the 11p13-14 contiguous 
gene deletion WAGRO syndrome (Wilms tumor, aniridia, 
genitourinary abnormalities, mental retardation, obesity) has 
been ascribed to BDNF haploinsufficiency (138).

BDNF acts through tyrosine kinase receptor B (TRKB) which 
is encoded by the NTRK2 gene on chromosome 9q21.33. 
NTRK2 is widely expressed across the brain and other tissues 
(139). Similar to the phenotype of Bdnf+/− heterozygotes, 
Ntrk2 hypomorphic mice also show hyperphagia, increased 
fat accumulation and obesity (131). Administration of an 
MC4R agonist in the fasted state significantly increases 
Ntrk2 expression in the VMN, indicating that the BDNF/ 
TRKB system lies downstream of the POMC/αMSH/MC4R 
system (131). NTRK2 heterozygous mutations have been de
scribed in human syndromes of obesity and developmental de
lay (140, 141).

Glucagon-like peptide-1
GLP-1 is 1 of 2 incretins secreted by the gut to stimulate insu
lin secretion in response to food (142). It is encoded by the 
same gene encoding glucagon, GCG, on chromosome 
2q24.2, with glucagon, GLP-1 and GLP-2 being coded in se
quential order and the entire polypeptide being synthesized 
as proglucagon, which is post-translationally proteolytically 
cleaved by PC1 and PC3 into its constituent peptides 
(143, 144). GLP-1 is a potent stimulant for insulin secretion, 
and is predominantly released by enteroendocrine L cells in re
sponse to nutrient intake to act on its corresponding receptor, 
GLP-1R (145-147). Additionally, GLP-1 is also produced in 
the NTS, with projections to the hypothalamus (148-150). 
In the brain, GLP1R is expressed in the cerebral cortex, 
SON, PVN, VMN, ARC, DMN, hippocampus, thalamus, 
caudate nucleus, putamen, and globus pallidus (149-151).

A specific phenotype associated with deleterious variants in 
GCG and GLP1R has yet to be defined in humans, although 
Glp1r−/− knockout mice gain less weight when exposed to a 
high-fat diet, and seem to be protected from insulin insensitiv
ity (152). Cell-specific Glp1r mouse knockdown experiments 
in PVN and POMC neurons, however, suggest that GLP-1 ap
pears to work independently of these networks, as these mice 
did not exhibit changes in food intake or weight (although 
PVN Glp1r knockdown mice showed a reduction in energy 
expenditure), and GLP-1 agonist administration still led to 
anorexia and improved glucose tolerance (153). Its effects 
may instead be predominantly mediated by modulation of 
orexigenic pathways, as intracerebroventricular administra
tion of GLP-1 in rats attenuated NPY-induced food intake 
(149), but results are inconsistent and the hypothalamic path
ways through which it exerts its effect remain to be fully elu
cidated (154).

Overall, however, most studies show that intracerebroven
tricular infusion of GLP-1 causes a marked reduction in food 
intake in rats, and, in the longer term, weight loss, by attenuat
ing the increased orexigenic (NPY/AgRP) and reduced anorexi
genic (POMC/CART) responses to fasting, independent of 
its effects on gastric emptying (149, 155-158). Additionally, 
GLP-1 induces c-fos expression in corticotrophin-releasing hor
mone (CRH) and oxytocin (OXT) neurons of the PVN and 
SON, both of which have anorexigenic effects (150). The role 
of GLP-1 originating from the NTS must also not be underesti
mated, as NTS-specific knockdown of the Gcg gene in rats re
sulted in hyperphagia, high-fat diet–induced weight gain and 
fat accumulation, and glucose intolerance (159). The action 
of GLP-1 is terminated rapidly by the actions of dipeptidyl 
peptidase-4 (DPP4), which is present in the capillaries of the in
testinal mucosa (160). Administration of exogenous GLP-1 in 
humans causes increased satiety, reduced food intake, delayed 
gastric emptying, and improved glucose tolerance (161-164), 
with a recent meta-analysis of 25 studies showing an overall ef
fect of weight loss (165). Lastly, GLP-1 concentrations rise 
along with PYY after bariatric surgery, and this rise has been 
postulated to contribute to the sustained weight loss observed 
(166, 167).

Cholecystokinin
CCK is a predominantly gut peptide hormone expressed in I 
cells throughout the small intestinal mucosa (apart from the 
terminal ileum) and is synthesized as a 95 amino acid pro
peptide encoded by the CCK gene on chromosome 3p22.1 
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(168-170). Pro-CCK is then proteolytically cleaved into pepti
des of multiple lengths, with CCK-33 being the predominant 
form found in human plasma and small intestine (171). 
Additionally, CCK is also expressed widely in the CNS, with 
high concentrations in the corpus striatum, hippocampus, 
hypothalamus, thalamus, basal ganglia, mesencephalon, and 
brainstem (particularly the NTS); in these regions, CCK-8 is 
predominant (172-175). In the NTS, neurons with the 
HLR-274 leptin receptor have been found to also contain 
POMC, glucagon and CCK, providing a link between these 
various appetite-regulating networks in the brainstem (174). 
Like many other appetite-regulating hormones, the differen
tial expression of the various molecular forms of CCK in dif
ferent tissues is governed largely by the expression of different 
PC enzymes (176).

CCK acts through its 2 receptors, CCKAR and CCKBR, 
with the former thought to be responsible for its anorexigenic 
effects in the brain (175, 177), despite CCKBR being the pre
dominant form found in the CNS (178, 179). CCKAR is large
ly found peripherally (in the pancreas and stomach where it 
delays gastric emptying), with brain expression being re
stricted to the area postrema and NTS and, unlike CCKBR, 
has a high degree of specificity for CCK-8 (180-182). These 
areas are well-known to be deficient in the blood–brain bar
rier, therefore supporting the postulation that these receptors 
are responsible for the detection of satiety signals from the 
periphery, particularly when peripherally administered 
CCK-8 has been shown not to generally enter the cerebro
spinal fluid space (183) Peripheral administration of CCK-8 
has been shown to inhibit food intake in both animal models 
and humans, supporting this theory (184-186). Targeted 
CCK-8 injections in rats have shown that this effect is specific 
for the anterior hypothalamus, DMN, LHA, PVN, SON, and 
VMN as well as the NTS (187). CCK NTS neurons project to 
the PVN, as well as the VMN, DMN, and ARC, where its ef
fects on MC4R neurons are mediated by CCK-8 on CCKAR 
(175). Conversely, administration of a CCKAR antagonist 
has been shown to increase the subjective sensation of hunger 
in men (177). In a spontaneous rat model of obesity, the 
Otsuka Long Evans Tokushima Fatty (OLETF) rat, Cckar is 
deleted, resulting in hyperphagia, obesity and noninsulin- 
dependent diabetes mellitus (188, 189). CCKAR variants 
and mutations have been reported to be associated with obes
ity in humans (190, 191).

Peptide YY and pancreatic polypeptide Y
PYY and PPY (both 36 amino acids) are members of the NPY 
class of neuropeptides, all of which are involved in regulating 
appetite and share sequence homologies (192). Both PYY and 
PPY genes are located on chromosome 17q21.31, approxi
mately 10 kb apart, suggesting that these genes arose from a 
duplication event (193).

PYY, like GLP-1, is expressed in enteroendocrine L cells of 
the lower gastrointestinal tract where it is released postpran
dially, as well as the endocrine pancreas and enteric neurons, 
with smaller amounts in the adrenal gland, respiratory tract, 
pituitary gland and hypothalamus (where it is found in the 
PVN, ARC, and SON (194-197). Cleavage of PYY1-36 by 
DPP4 generates PYY3-36, which is able to cross the blood– 
brain barrier (198-200). This cleavage step is necessary for 
the activation of PYY as an anorexigen, as PYY1-36 has no im
pact on food intake in rats deficient in DPP4 (201).

The anorexigenic effects of PYY3-36 are mediated via the Y2 
receptor which is encoded by the NPY2R gene on 4q32.1 and 
expressed in myenteric neurons in the gastrointestinal tract, 
the hippocampus, ARC, medial preoptic nucleus, NTS, area 
postrema, and the piriform cortex (202-204). Peripheral ad
ministration of PYY3-36 in rodents and humans results in in
hibition of food intake and weight gain, but this effect is not 
seen in Y2r−/− mice (205). Appetite suppression is mediated 
via the ARC by reducing hypothalamic Npy expression and ac
tivating POMC neurons. An intact POMC/MC4R system, 
however, is not requisite for this effect as PYY3-36 is also 
anorexigenic in Pomc−/− and Mc4r−/− mice (206, 207). 
Importantly, although human obesity is associated with PYY 
deficiency, PYY3-36 retains its anorexigenic effects in this 
group, without the development of resistance like that seen 
with leptin (208, 209). Additionally, PYY3-36 has also been 
shown to activate catecholaminergic neurons in the area 
postrema and NTS in rats (209). However, development of 
longer-term PYY-based therapies has been impeded by a lack 
of efficacy and side effects of nausea and vomiting (210, 211). 
The increase in PYY and GLP-1 secretion is thought to be a ma
jor factor in the sustained weight loss observed after gastric by
pass surgery (166, 167, 212).

PPY is predominantly secreted by PP (F) cells in pancreatic 
islets adjacent to the duodenum, and like PYY, is responsive 
to food intake (195, 213, 214). Unlike PYY, however, its ac
tions are mediated predominantly by Y4 receptors, coded for 
by the NPY4R gene on chromosome 10q11.22, which is ex
pressed in the hypothalamus, coronary arteries, and ileum 
(215). Peripheral administration of PPY also causes a reduction 
in appetite and food intake in humans and mice, although inter
estingly intracerebroventricular injections in mice caused the 
opposite effect (216, 217). Transgenic mice overexpressing 
Ppy show a reduction in food intake and delayed gastric empty
ing (218). This effect appears to be mediated through Y4 recep
tors via an upregulation of Bdnf expression in the VMN, with 
concurrent downregulation of orexin (Hcrt) expression in the 
LHA (219). Npy4r−/− knockout mice exhibit weight gain and 
increased white adipose tissue accumulation (220).

Nucleobindin-2/nesfatin-1
Nesfatin-1 is the only known biologically active product of 
post-translational proteolytic cleavage of the 396 amino acid 
nucleobindin-2 (NUCB2) protein (encoded by NUCB2 on 
chromosome 11p15.1) by PC enzymes to produce an 82 amino 
acid fragment (221, 222). In the hypothalamus, nesfatin-1 is 
found in the ARC, PVN, SON, and LHA in rats (223). 
NUCB2 is also expressed elsewhere in the CNS and peripher
ally in adipose tissue, ghrelin-secreting gastric mucosal cells, 
and pancreatic islet cells (224-226). In a series of elegant ex
periments, Oh et al (223) demonstrated that of the by-products 
of NUCB2 processing, only nesfatin-1 was able to reduce food 
intake and weight gain in rats, the effects of which were antag
onized by nesfatin-1 antibodies and NUCB2 antisense mor
pholino oligonucleotides. Importantly, this effect persisted 
even in leptin receptor-deficient rats but was abolished by pre
treatment with SHU9119, an MC4R antagonist, indicating 
that the pathways through which nesfatin-1 operates are 
leptin-independent but POMC dependent. Nesfatin-1 positive 
neurons in the PVN and SON have been found to co-express 
OXT and arginine–vasopressin (AVP), and studies have sug
gested that nesfatin-1-induced oxytocinergic signaling in the 
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PVN to POMC neurons in the NTS (but not the ARC) may be 
responsible for causing anorexia in the absence of the actions 
of leptin, with its effects blocked by an OXT antagonist 
(227-229). The discovery of nesfatin-1 has therefore helped 
elucidate the link between the appetite-regulating centers in 
the hypothalamus and brainstem. Despite this, however, the 
receptor for nesfatin-1 has yet to be fully characterized (230).

Oxytocin
OXT is a nonapeptide which is encoded by the OXT gene on 
chromosome 20p13, lying adjacent to the AVP gene but tran
scribed in opposite directions (231). The exomic sequence also 
encodes the carrier protein neurophysin I, such that OXT is 
synthesized as preproOXT-protein neurophysin I, which is 
then proteolytically cleaved by PC1/3 and PC2 during axonal 
transport from the hypothalamus to the posterior pituitary 
where it is stored until secretion, whereupon the free OXT 
peptide dissociates (232-238). OXT is predominantly 
secreted in the magnocellular neurons of the hypothalamic 
SON, and the magnocellular and parvocellular neurons of 
the PVN, with magnocellular projections to the posterior 
pituitary (239, 240). However, PVN neurons have also been 
demonstrated to send projections widely across the CNS 
(240-244). Conversely, neurons expressing OXT have also 
been found outside the hypothalamus indicating that OXT 
synthesis is not restricted centrally (234, 240, 245-251).

Although OXT has long held traditional roles in human par
turition, lactation and ejaculation, its widespread expression 
and neuronal projections allude to its more recently described 
roles in a wider range of physiological and neurobehavioral 
processes. All of its functions are executed via a single G 
protein-coupled receptor encoded by the OXTR gene on 
chromosome 3p25.3 (252-254), which is expressed in numer
ous tissues apart from the breast, ovaries, endometrium, and 
myometrium. OXTR has been found throughout the brain 
(hypothalamus, basal ganglia, lateral septal nucleus, basal nu
cleus of Meynert, substantia nigra, NTS, substantia gelatinosa, 
and hypoglossal nucleus), adipose tissue, the kidneys, blood 
vessels, thymus, pancreas, adrenal glands, and osteoblasts 
(234, 253, 255).

Much of the discovery of the role of OXT in appetite and 
weight regulation has stemmed from animal experiments. 
Arletti et al (256). demonstrated that both central (intracere
broventricular) and peripheral (intraperitoneal) administra
tion of OXT resulted in an anorexigenic effect in rats, with 
these effects being cancelled out by an OXT antagonist. It ap
pears that 1 major site of action for OXT is the VMN (257), 
but OXT can also cause suppression of food intake by acting 
on the nucleus accumbens, part of the brain’s reward circuitry 
(258, 259). Intraperitoneal administration of OXT in rats has 
been shown to cause widespread increased c-fos expression in 
the PVN, ARC, locus coeruleus, NTS, dorsal nucleus of the 
vagus, and area postrema, all of which are known to mediate 
energy homeostasis (260). The influence of OXT on appetite is 
carbohydrate-specific, and does not influence fat intake (261). 
Oxt−/− knockout mice demonstrate a sustained preference for 
sweet tasting and carbohydrate-containing solutions over that 
of lipid-containing emulsions (262-265), while both Oxt−/− 

and Oxtr−/− knockout mice demonstrate long-term weight 
gain and increased white and brown adipose tissue deposition, 
but with reduced adrenaline production and aberrant 
cold-induced thermogenesis despite no significant differences 

in food intake (266-272). These findings support the hypoth
esis that OXT has a greater role in determining energy expend
iture rather than suppressing appetite.

In humans, no known pathogenic human mutations in OXT 
or OXTR have been reported, and therefore the phenotypes of 
the human analogue of the Oxt−/− and Oxtr−/− knockout mice 
have never been described. Due to difficulties in measuring 
CNS and plasma OXT concentrations, studies on plasma 
OXT concentrations in relation to human obesity have pro
duced mixed results, with some studies showing that periph
eral concentrations are higher in obese subjects (273-276), 
while others demonstrate the opposite (277-280). Overall, 
however, the effect of OXT on appetite and weight is likely 
to be anorexigenic. More recently, the widespread use of 
the intranasal route for OXT administration has led to several 
studies analyzing its effects on appetite and weight. Intranasal 
OXT has been shown to reduce food intake and BMI in men 
with common obesity, while in healthy men, it reduced caloric 
intake and postmeal snack consumption with no change in ap
petite or energy expenditure (281-284). Disappointingly, in 
patients with defined HyOb syndromes, the effect of intranasal 
OXT has, however, been underwhelming. In Prader-Willi syn
drome, intranasal OXT was associated with a reduction in 
food-related behavior but with no significant reduction in 
food intake, weight or BMI (285-287). Similarly, intranasal 
OXT demonstrated no effect on appetite in a craniopharyngio
ma survivor (288). Additionally, data on the correlation 
between measured plasma and cerebrospinal fluid OXT con
centrations remains conflicting (289-295) and the pharmaco
kinetics of intranasal OXT is unclear (283, 285, 296-299). 
There are also marked difficulties in the measurement of 
OXT in biological fluids, particularly plasma, due to its inher
ent instability (300), low molecular weight, and low concen
trations, making it subject to interference from other plasma 
proteins (301-304).

Orexigens

Ghrelin
The discovery of ghrelin is unusual in that it was identified after 
its receptor, the growth hormone secretagogue receptor 
(GHSR), through a process of purification of various rat tissue 
extracts to identify fractions capable of activating it. Using this 
method, a 117 amino acid (prepro-ghrelin) encoded by the 
GHRL gene on chromosome 3p25.3 was identified, which 
then undergoes proteolytic cleavage by PC1/3 enzymes to pro
duce ghrelin (28 amino acids), which is predominantly secreted 
in the oxyntic glands of the stomach (22, 305). Other sources 
of ghrelin secretion include the duodenum, jejunum and the 
lung, with smaller amounts found widely spread across various 
tissues (306, 307). Ghrelin is additionally activated through a 
process of acylation by ghrelin-O-acyltransferase (GOAT), 
which adds an O-n-octanoyl chain to serine-3 of the peptide 
molecule (308). Acylation is a necessary step for ghrelin to 
be able to activate GHSR, and is postulated to be how the func
tion of ghrelin is regulated (22, 309). GHSR itself is expressed 
in the rat and human hypothalamus (particularly the ARC), pi
tuitary, hippocampus, and area postrema, with small amounts 
in the pancreas (310, 311).

Stimulation of GHSR by acylated ghrelin induces GH re
lease independent of, and more potently, than GHRH (312). 
Both dominant and recessive mutations in GHSR have been 
described in humans in association with short stature, some 
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of whom had classical GH deficiency (313, 314). The role of 
ghrelin in modulating appetite and weight was first described 
by Tschop et al (315), where both subcutaneous and intracer
ebroventricular administration of ghrelin in mice led to weight 
gain (with the latter also causing hyperphagia), independent 
of its effects on GH secretion and the NPY signaling pathway. 
The effects of ghrelin on weight were largely mediated by a re
duction in fat catabolism. Ghrelin concentrations were also in
creased by fasting and decreased by re-feeding, particularly 
after an oral glucose load (315). Other rodent studies have 
however suggested that ghrelin lies upstream of the NPY/ 
AgRP and POMC/CART pathway, with ghrelin-induced feed
ing being inhibited by antagonists and antibodies of NPY and 
AgRP, αMSH, and leptin (316). Interestingly, Ghrl−/− knock
out mice display no abnormalities and have similar responses 
to fasting and overfeeding as their wild-type littermates 
(317). Contrastingly, Ghsr−/− knockout mice show a reduction 
in weight in the long-term, particularly in response to a high- 
fat diet where food intake was also impaired (318, 319). 
Mboat4−/− (the gene for GOAT) knockout mice do not show 
any phenotypic differences in response to a standard or high- 
fat diet, but long-term caloric restriction leads to increased 
weight loss and hypoglycemia due to GH insufficiency (320).

In humans, plasma ghrelin is negatively correlated with 
BMI and fat mass (321), and is increased after fasting and in 
anorexia nervosa (306). Total plasma ghrelin concentrations 
are also increased in Prader–Willi syndrome, the archetypal 
genetic HyOb disorder, compared with BMI-matched 
controls even in young children, regardless of growth hor
mone (GH) treatment and preceding the onset of obesity 
(322-324). In this disorder, hyperphagia and weight gain is 
not apparent at birth and only develops in the second “nutri
tional phase,” corresponding to an increase in the acylated: 
unacylated ghrelin ratio (325, 326). Administration of ex
ogenous ghrelin has been shown to increase the subjective sen
sation of hunger and objective food intake in obese and lean 
human subjects (327, 328). However, to date, there have 
been no successful trials of a ghrelin antagonist leading to 
weight loss in humans.

The agouti-related peptide/neuropeptide Y system
The AgRP/NPY system is closely related anatomically to the 
POMC/CART system with both sets of neurons being located 
in the hypothalamic ARC, but with their appetite-regulating 
peptide expression patterns being mutually exclusive and 
working in opposing directions (329, 330). AgRP is a 112 
amino acid peptide related to agouti, a mouse protein which, 
when mutated in a heterozygous state, causes yellow fur (due 
to MC1R antagonism) and obesity (due to MC4R antagon
ism) (331, 332). AgRP is encoded by the AGRP gene on 
chromosome 16q22.1 and expression in mice and humans is 
restricted to the adrenal cortex and medulla, hypothalamus 
(ARC and median eminence), subthalamic nucleus and testis, 
with weaker signals in the lungs and kidney. ARC expression 
is increased in ob/ob (leptin deficient) and db/db (leptin recep
tor deficient) mice, suggesting that AgRP lies downstream 
of the leptin-dependent appetite-regulating pathway (21). 
Indeed, FoxO1 mutations in rodents lead to the loss of the 
ability of leptin to suppress AgRP expression, demonstrating 
the role of the PI3K/PKB/FOXO1 pathway in linking leptin 
with AgRP secretion (63). Subsequent experiments by 

Ollmann et al (333). and Graham et al (334) demonstrated 
that AgRP is a selective MC3R and MC4R competitive antag
onist inhibiting the effects of αMSH, with transgenic mice 
overexpressing the human AGRP and mouse Agrp genes gain
ing significant amounts of weight and developing glucose 
intolerance and insulin insensitivity compared with their litter
mates, but with no change in pigmentation (ie, no effects on 
MC1R). Conversely, ablation of NPY/AgRP neurons leads 
to starvation (335). Expression is increased by fasting in rodent 
models, and plasma concentrations are positively correlated 
with BMI in humans (330, 336). Intracerebroventricular infu
sions of AGRP in mice generate a potent and prolonged in
crease in appetite, activating pathways involving the NTS, 
LHA, amygdala and nucleus accumbens, while antagonizing 
the effects of melanotan-II (an MC4R agonist) and αMSH 
(337-339).

The vast majority of AgRP neurons also coexpress NPY, the 
final known member of the family of appetite-regulating neu
ropeptides (330). Like the other members with which it shares 
sequence homologies, PYY and PPY, NPY is a 36 amino acid 
peptide, encoded by the NPY gene on chromosome 7p15.3 
(340, 341). Similar to PYY, NPY is proteolytically cleaved 
by DPP4 to form NPY3-36, rendering it less effective at activat
ing the Y1 receptor (200, 342). Apart from being colocalized 
in AgRP neurons in the hypothalamic ARC as detailed above, 
NPY expression is widespread within the nervous system, and 
has been demonstrated in the neuronal plexi of the small and 
large intestines, the sympathetic neurons of the autonomic 
nervous system, the spinal cord, SON, PVN, DMN, NTS, me
dulla, locus coeruleus, hippocampus, amygdala, basal ganglia, 
nucleus accumbens, and cerebral cortex (192, 330, 343-350). 
Additionally, NPY has been found in adipose tissue (particu
larly visceral adipocytes), adrenal medulla, blood vessels, and 
activated lymphocytes and monocytes (351-354).

Like AgRP, NPY expression is increased in the fasted state 
as well as in the ob/ob mouse, indicating that it, too, lies 
downstream of anorexigens such as leptin (354-357). 
Indeed, administration of insulin and leptin both result in a re
duction of NPY expression in the ARC, while ghrelin has the 
opposite effect (77, 316, 358). Correction of leptin deficiency 
in the ob/ob mouse similarly reduces Npy expression (359). 
ob/ob Npy−/− double knockout mice have reduced hyperpha
gia and weight gain, an increased energy expenditure and a 
greater degree of physical activity compared to ob/ob mice 
(360). However, Npy−/− mice are still able to decrease their 
food intake and lose weight when treated with leptin, indicat
ing that reduction in NPY is additive to, but not essential for 
leptin’s anorexigenic effects (361). Similarly, NPY is increased 
in the ARC, PVN, VMN and LHA in T1DM, the effect of 
which is reduced by insulin (362, 363).

Unlike PYY and PPY, the actions of NPY are mediated via 
the full range of Y1, Y2, Y3, Y4, and Y5 receptors (344, 350). 
In the gut, Y1 and Y2 receptors mediate NPY’s effects on in
hibiting gastrointestinal motility and secretion (364-367). 
However, the major effect of NPY on the CNS is orexigenic 
and mediated through central Y1 and Y5 receptors, with 
rats receiving intracerebroventricular NPY demonstrating in
creased food intake (mainly via the PVN, by increasing por
tion sizes and carbohydrate intake), white adipose tissue 
accumulation and weight gain, which was largely mediated 
by the hyperphagia observed rather than a reduction in energy 
expenditure (368-371).
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Hypocretin/orexin
The hypocretin (HCRT) gene on chromosome 17q21.2 enco
des 2 peptides, hypocretin 1 (orexin A, 33 amino acids) and 
hypocretin 2 (orexin B, 28 amino acids) which are the result 
of proteolytic cleavage of preprohypocretin (372, 373). The 
effects of the hypocretins are mediated via their receptors, 
hypocretin receptors 1 (HCRTR1) and 2 (HRCTR2), with 
HCRTR1 being selective for hypocretin 1 and HRCTR2 being 
nonselective (373). Hcrt expression has been found in the 
LHA (particularly the perifornical area), DMN, and ventral 
thalamus, with neurons projecting widely, including to the 
PVN, locus coeruleus, and NTS (372-375). The widespread 
connections of these neurons allude to the variety of pathways 
involving the hypocretin system, the most well-known being 
its involvement in regulating arousal and sleep–wake cycle be
haviors (376, 377). Hcrt−/− mice exhibit sleep dysregulation, 
with sleep-onset rapid eye movement and more fragmented 
non-rapid eye movement sleep (378). However, only a single 
case of a heterozygous HCRT mutation associated with the 
narcolepsy–cataplexy syndrome has been described in hu
mans thus far (379). Otherwise, this disorder has been associ
ated with human leukocyte antigen subtypes, supporting an 
immune-mediated rather than genetic pathogenesis (380).

One of the early clues supporting the role of the hypocretins 
in appetite and weight regulation was the late-onset obesity 
observed in mice which had undergone genetic ablation of 
Hcrt, despite a reduction in food intake compared with their 
wild-type counterparts (381). Patients with narcolepsy also 
have an increased tendency to being overweight or obese 
(382). The perifornical area of the LHA has been shown to 
be a major site of NPY-induced feeding, where NPY axons 
synapse with neurons containing hypocretin (329, 383). 
Additionally, the locus coeruleus is densely innervated by 
hypocretin-secreting neurons, which increase its noradrener
gic output as well as arousal and locomotor activity in rats 
(374). Pharmacogenetic activation of Hcrt neurons increases 
food intake but also locomotor activity and energy expend
iture (384). Additionally, both hypocretins are orexigenic 
when administered intracerebroventricularly in rats (373). 
Similarly, Hcrt expression is upregulated by fasting and re
duced by insulin (373, 385). In humans, plasma hypocretin 
1 is negatively associated with BMI (386).

However, the overall effect of the hypocretin system on ap
petite is far from straightforward, with other experiments 
demonstrating varying and occasionally opposing effects. 
Increased Hcrt signaling results in resistance to high-fat 
diet–induced obesity in the presence of a reduced food intake 
and increased energy expenditure, an effect largely mediated 
via Hcrtr2 (387, 388). The same mice involved in these experi
ments were also resistant to age-related weight gain, an effect 
thought to be due to the loss of hypocretin neurons over time 
in animal models (377, 389). Some authors have suggested 
that these differences in the effects of hypocretins may be re
lated to the environment they are studied in, as other signaling 
molecules secreted by Hcrt neurons may also be impaired in 
experiments involving neuronal destruction rather than those 
using more targeted genetic knockout techniques (390).

Other Appetite-Regulating Peptides
Several other peptides have been described in the literature, 
particularly in animal models, to be involved in appetite regu
lation. However, their role in humans has yet to be fully 

elucidated, and to date no clear human phenotypes of equiva
lent animal models have been described. Amongst these are 
melanin-concentrating hormone (MCH; gene PMCH on 
chromosome 12q23.2, 19 amino acids), which has been 
shown in rodent models to be present in neurons in the 
LHA alongside Hcrt-expressing cells, acting on MCH recep
tors (encoded by MCHR1 and MCHR2) throughout the ner
vous system (329, 391, 392). Evidence from rodent knockout 
models of Promch and Mchr1, as well as overexpressing 
Promch transgenic mice, suggest that MCH acts as an orexi
gen, stimulating feeding and weight gain (393). To date, how
ever, only genetic variants of unknown significance and single 
nucleotide polymorphisms have been identified in PMCH, 
MCHR1, and MCHR2 to be associated with obesity in hu
mans, although 2 inactivating MCHR1 mutations have been 
identified in underweight individuals (393, 394).

Similarly, adiponectin (gene ADIPOQ on chromosome 
3q27.3, 244 amino acids) is produced by adipocytes (395). 
Unlike leptin, however, plasma adiponectin is negatively cor
related with BMI, and is increased after bariatric surgery (396, 
397). Despite this, adiponectin (Acrp30) knockout mice do 
not demonstrate differences in weight compared to their wild- 
type counterparts, and animal models suggest that the role of 
adiponectin is largely in the mediation of insulin sensitivity, 
lipid clearance, vascular remodelling, and inflammation 
(398, 399). The effects of intracerebroventricular adiponectin 
on appetite and weight are conflicting (400, 401), and to date, 
no human phenotypes involving disordered energy homeosta
sis and adiponectin mutations have been described.

Other peptides such as CRH, GHRH, TRH, somatostatin 
(SS), resistin, interleukin-1β, and 5-HT have also been described 
in the literature as having appetite- and/or weight-regulating ef
fects but will not be discussed here (40, 41, 329, 402-404). 
Additionally, the role of inflammation in obesity is only begin
ning to be characterized, with the involvement of peptides 
such as GDF15 only starting to be elucidated (405).

Current Understanding of Appetite and Weight 
Homeostasis in Man
The regulation of appetite and weight in humans is therefore 
governed by a balance between anorexigenic and orexigenic 
signaling pathways, with obesity being the result of an imbal
ance between energy intake and expenditure. In the fed state 
(Fig. 1A), there is an increase in leptin secretion from adipocytes, 
activating its receptors in the hypothalamus, particularly in the 
VMN and ARC, to signal an increase in adiposity (48, 56). 
Concurrently, insulin is released by pancreatic β-cells in response 
to an increase in blood glucose concentration. Both leptin and 
insulin act in concert via the PI3K/PKB/FOXO1 signaling path
way to stimulate POMC/CART and inhibit AgRP/NPY neurons 
in the ARC, with leptin additionally increasing POMC synthesis 
via the JAK/STAT pathway (59-64, 76, 77, 79).

Simultaneously, other peripheral peptides are secreted 
along the gastrointestinal tract in response to feeding. 
GLP-1 is secreted by enteroendocrine L cells in response to 
the presence of glucose, potentiating insulin secretion, delay
ing gastric emptying, and suppressing orexigenic pathways 
in the hypothalamus and NTS (145, 146, 149, 161, 163). 
CCK, produced by the small intestine, acts on CCKAR in 
the stomach (where it delays gastric emptying) and the NTS, 
the latter sending its own CCK- and POMC-mediated signals 
to the hypothalamus to promote anorexigenic signaling via 
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MC4R (96, 175, 182). PYY and PPY, secreted by enteroendo
crine L cells and pancreatic PP cells respectively, both cause 
delayed gastric emptying, with PYY activating POMC and in
hibiting NPY neurons, while PPY increases BDNF and re
duces HCRT synthesis, thereby inducing an overall 
anorexigenic effect (205, 219).

Centrally, activation of POMC/CART neurons in the ARC 
and NTS, and the subsequent generation of αMSH to act on 
MC3R and MC4R in the ARC, PVN, DMN and LHA of the 
hypothalamus, as well as CART, leads to a suppression of 
food intake and an increase in energy expenditure (97, 103, 
105, 118, 119, 329). Concurrently, while the role of BDNF 
in promoting anorexia is still being fully elucidated, it appears 
that its signaling is both stimulated by and responsible for pro
moting POMC secretion, while also increasing energy expend
iture through increased physical activity (131, 135, 137). 
Additionally, the orexigenic AgRP/NPY pathway is suppressed 
by leptin and insulin, and by the lack of the main peripheral 
orexigenic hormone, ghrelin (77, 316, 358).

Increased central anorexigenic signaling then increases out
put through its efferent arm, which is largely mediated by the 
sympathetic nervous system via the locus coeruleus (406-408). 
The sympathetic nervous system is then responsible, via 
β-adrenoceptors, for increasing various catabolic processes 

such as mitochondrial biogenesis, glycogenolysis, lipolysis, 
thermogenesis, and increased activity, supported by an in
crease in TRH signaling (1, 42), Concurrently, insulin secre
tion is suppressed via α-adrenoceptors, thus closing the 
feedback loop (409). The PVN is also responsible for secreting 
TRH, CRH, and OXT, all of which are able to suppress food 
intake and/or increase energy expenditure (40, 118, 119, 329, 
402, 410, 411).

Conversely, in the fasted state (Fig. 1B), leptin and insulin 
signaling is suppressed alongside other peripheral anorexigens 
(due to a lack of calories within the gastrointestinal tract), 
therefore removing the “brakes” on the appetite-regulating 
circuitry (48). Additionally, gastric ghrelin secretion is 
increased (316). A consequent reduction in POMC/CART sig
naling leaves the orexigenic AgRP/NPY pathway unopposed, 
MC3R and MC4R occupancy free to be antagonized by 
AgRP, and for NPY secretion to increase (63, 333, 334, 
355-357). The lack of opposition to the orexigenic drive 
also increases the effects of the hypocretins, particularly in 
the LHA, which are also stimulated by fasting (373, 385). 
The overall effect is therefore one of a reduction in sympathet
ic nervous system activity, and, via the PVN and LHA, an in
crease in vagal nerve firing via projections to the medial 
longitudinal fasciculus (412). This subsequently reduces 
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Figure 1. Schematic illustrating the complexity of currently elucidated major anorexigenic and orexigenic appetite- and weight-regulating circuitry. Solid 
arrows signify afferent pathways, dashed arrows signify efferent pathways. (A) In the fed state, peripheral anorexigenic pathways signal via the NTS and 
directly to the VMN/ARC to ultimately increase αMSH/CART agonism on MC4R and reduce appetite. This then signals via efferent 
pathways, largely via the sympathetic nervous system to increase various compensatory catabolic pathways, including glycogenolysis, lipolysis, ther
mogenesis and suppression of insulin secretion. (B) In the fasted state, the anorexigenic “brakes” are released, leaving the main peripheral orexigen, 
ghrelin to increase AgRP/NPY antagonism of MC4R and increase appetite. Efferent pathways, largely acting via the vagus nerve, then increase various 
compensatory anabolic pathways, including lipogenesis, peristalsis, and postprandial insulin secretion, partly via GLP-1. αMSH, α-melanocyte-stimulating 
hormone; AgRP, agouti-related peptide; ARC, arcuate nucleus; BDNF, brain-derived neurotrophic factor; CART, cocaine- and amphetamine-regulated 
transcript; CCK, cholecystokinin; CN X, vagus nerve; DMN, dorsomedial nucleus; GLP-1, glucagon-like peptide 1; LC, locus coeruleus; LHA, lateral 
hypothalamic area; MC4R, melanocortin receptor 4; NPY, neuropeptide Y; NTS, nucleus tractus solitarious; POMC, proopiomelanocortin; PVN, 
paraventricular nucleus; PYY, peptide YY; VMN, ventromedial nucleus.
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energy expenditure and increases various anabolic processes, 
including lipogenesis (eventually increasing leptin secretion), 
peristalsis and nutrient absorption, and postprandial insulin 
secretion, thereby closing the feedback loop (1, 413-415). 
Part of this latter response is additionally mediated by 
GLP-1, which in itself is an anorexigen.

The Pathophysiology of Hypothalamic Obesity
The complexity and redundancy of the various hypothalamic- 
gut-brainstem appetite-regulating pathways has therefore 
made elucidating the “final common pathway” that could 
help identify novel targets for the treatment of both obesity 
and HyOb difficult. To date, only monogenic HyOb disorders 
resulting in deficiencies of anorexigens have been described in 
humans; the lack of equivalent mutations resulting in overex
pression of orexigens has meant that this arm of appetite regu
lation is less well understood. Additionally, limits in the 
resolution of current magnetic resonance imaging techniques 
has meant that the neuroanatomical and functional study of 
the hypothalamus and its widely projecting connections is dif
ficult, not just in healthy subjects, but even more so in diseased 
states where its normal neuroanatomical structure can be dis
torted. Patients with HyOb have classically been described as 
hyperphagic, and this is supported by the phenotype demon
strated in the majority of the monogenic obesity syndromes in
volving mutations of genes participating in the leptin/POMC/ 
CART/MCR signaling pathway.

Studies of the pathophysiology and management of HyOb 
were initially largely dominated by 2 major hypotheses— 
firstly, that hypothalamic (VMN) damage leads to impaired 
satiety, hyperphagia, obesity and eventual hyperinsulinemia 
(ie, predominantly afferent pathway driven); and secondly, 
that VMN damage leads to disinhibited vagal innervation of 
pancreatic β-cells, hyperinsulinemia, and obesity. After the 
early work on the roles of different hypothalamic centers in 
energy homeostasis by Smith (9) and Hetherington and 
Ranson (10), studies in the 1980s began to recognize the 
role of the efferent pathway, stemming from studies (416) 
which demonstrated that hyperphagia, obesity, and hyperin
sulinemia was attenuated in streptozotocin-induced diabetic 
rats with VMN lesions who additionally had fetal pancreatic 
tissue transplanted under their renal capsules, indicating that 
an intact vagus nerve was necessary for their development. 
Subsequent experiments in rats with VMN lesions showed 
that subdiaphragmatic vagotomy reversed the HyOb and hy
perinsulinemia usually observed, primarily by reducing food 
intake (417). These studies then led to attempts to curb hyper
insulinemia in HyOb, but with only marginal success at 
weight loss, indicating that the lipogenic and anabolic effects 
of insulin were not the sole drivers of weight gain.

In humans, several lines of evidence suggest that the role of a 
reduction in energy expenditure cannot be underestimated as 
a predominant mechanism resulting in weight gain. This hy
pothesis is supported by studies of Prader–Willi syndrome pa
tients, the archetypal syndromic form of HyOb. In this 
disorder, infants present with feeding difficulties from birth 
(phase 1a) but severe hyperphagia in later life (phases 3-4) 
(325). Prior to the onset of hyperphagia in early to midchild
hood (phase 2b), however, weight gain is observed with no ob
servable abnormalities in appetite and a normal caloric intake 
for age (phase 2a). This is associated with a concomitant re
duction in resting energy expenditure (REE).

In studies of acquired causes of HyOb, pediatric patients 
with craniopharyngiomas have been shown to consume less 
calories than BMI-matched controls with common obesity, 
mainly by a reduction in fat intake (418). Concurrently, 
through accelerometry, the same authors demonstrated that 
the amount of physical activity undertaken by HyOb patients 
was reduced compared with their counterparts with common 
obesity. While it could equally be postulated that food intake 
diaries are inaccurate at measuring true caloric intake and in
stead reflect the perception of participants, in this pediatric 
study, it would have been hard not to imagine that at least a 
proportion of these diaries had been completed by the parents 
of the participants rather than the participants themselves. 
Additionally, ad libitum food intake studies, widely regarded 
as the gold standard for studying appetite and satiety, are diffi
cult to ethically perform in the pediatric setting (419). Similarly, 
another study of pediatric patients with HyOb due to various 
causes also demonstrated that REE in these patients was signifi
cantly reduced compared to participants with common obesity 
(420). These authors however found that there were no signifi
cant differences in caloric intake between the groups.

The mechanisms underlying this reduction of energy expend
iture largely remain to be elucidated. While the idea that a de
crease in sympathetic nervous system output via efferent 
appetite-regulating pathways would seem obvious, the evi
dence supporting this is conflicting. In 1 study comparing plas
ma catecholamine responses to insulin-induced hypoglycemia 
in children with craniopharyngioma to short normal age- 
matched controls, the peak plasma adrenaline was lower, while 
the peak plasma noradrenaline was higher in the former group, 
with a lower 24-hour urinary excretion of adrenaline, dopa
mine and vanillylmandelic acid (VMA) (421). A similar study 
of adult craniopharyngioma patients had previously reported 
similar findings (422). It is worth noting, however, that the me
dian and mean BMIs of craniopharyngioma participants in this 
latter study were 0.5 (interquartile range 0.1-1.8) SDS and 
28.3 ± 5.1 kg/m2, respectively (ie, not all obese). Similarly, a 
study comparing spot urinary catecholamines in survivors of 
pediatric-onset craniopharyngiomas demonstrated that urin
ary homovanillic acid and VMA concentrations were signifi
cantly lower in obese patients with craniopharyngioma than 
those with a normal BMI (who had comparable values to con
trols), and this was related to hypothalamic involvement of the 
tumor rather than irradiation or degree of tumor resection 
(423). However, a further study of adolescents and young 
adults with craniopharyngiomas and HyOb showed that heart 
rate variability (a measure of autonomic nervous system activ
ity) and 24-hour urinary adrenaline (epinephrine), noradren
aline (norepinephrine), metanephrine, normetanephrine, and 
VMA output was not significantly different to that of age-, 
sex-, and BMI-matched controls, despite a lower REE and in
creased Epworth sleepiness scale scores (424, 425).

Taken together, these data suggest that a possible mech
anism (particularly in acquired HyOb which has been 
studied in more detail) is that an early reduction in sympa
thetic nervous system output, and consequently a reduc
tion in REE, leads to weight accumulation and eventual 
HyOb over time in patients at risk. Comparatively, it 
also suggests that once common obesity is attained 
through a chronic increase in caloric intake, the biochem
ical and endocrine processes observed are virtually identi
cal to that of HyOb.
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Monogenic “Nonsyndromic” Hypothalamic Obesity 
Syndromes
As discussed above, the advent of the molecular genetic era has 
led not just to the discovery of a wide range of appetite- and 
weight-regulating peptides involved in the hypothalamic– 
gut–adipose tissue neuroendocrine circuitry controlling energy 
homeostasis, but also their associated monogenic HyOb syn
dromes involving mutations in their genes (Table 1). All of these 
syndromes are associated with hyperphagia, particularly those 
involving the leptin—POMC/CART—MC4R and BDNF— 
TRKB pathways. Replacement therapy of some of these 
deficient peptides, or their downstream effectors, has already 
proven successful in some of these disorders.

Although these forms of HyOb are often classified as “non
syndromic” disorders, additional phenotypic features are 
often observed, alluding to the interconnectivity of these path
ways with other aspects of neuroendocrine function. For in
stance, congenital leptin deficiency and leptin receptor 
mutations both result additionally in hypogonadotropic 
hypogonadism (in contrast to common obesity where puberty 
is often early (14, 15, 45, 426). This is because leptin acts as a 
“metabolic gate” signaling the fed state, with a permissive ef
fect on the onset of puberty by modulating GnRH secretion 
(440-442). Recombinant human leptin replacement therapy 
has been found to reverse this clinical finding (15). Similarly 
POMC deficiency can result in a clinical phenotype not just 
easily attributable to deficits in the secretion of all its constitu
ent peptides (HyOb [αMSH], central hypoadrenalism [ACTH], 
red hair, and pale skin [αMSH]), but also consisting of other 
hypothalamo-pituitary hormone deficiencies due to interac
tions between the POMC system and these axes (428, 443). 
Mutations in the BDNF/TRKB pathway, due to its role in 
supporting neuronal survival, are predictably associated with 
neurocognitive defects (137, 141). Finally, mutations in 
genes affecting hypothalamic development (SIM1), post- 
translational processing of appetite-regulating hormones 
(PCSK1), or common downstream signaling pathways 
(SH2B1) lead to HyOb through their impact on multiple 
appetite- and weight-regulating hormones (429, 435, 438).

Syndromic Forms of Obesity Without Hypothalamic 
Structural Defects
Syndromic obesity is defined as the presence of obesity along 
with characteristic additional pleiotropic clinical features 
such as developmental delay, dysmorphisms, and other con
genital anomalies. In comparison with monogenic HyOb syn
dromes with “nonsyndromic” additional clinical features, the 
biological link between these disorders and obesity largely re
mains unknown, or is not attributable to a single gene defect. 
While only a handful of monogenic HyOb syndromes have 
been identified, a recent systematic review identified 79 unique 
obesity syndromes in the literature, of which only 19 had been 
fully genetically elucidated (444). However, it is worth noting 
that with the current advancements in molecular genetics, 
over time, the genetic pathways linking some of these disor
ders with obesity may be discovered, leading to their reclassi
fication as a monogenic HyOb syndrome. While it is beyond 
the scope of this chapter to discuss all of these disorders, the 
commonest genetic form of syndromic HyOb, Prader–Willi 
syndrome, will be reviewed here.

Prader–Willi syndrome
Prader–Willi syndrome is, in effect, a contiguous gene deletion 
syndrome of the paternal copies of several imprinted genes in 
the 15q11-13 region (SNRPN, NDN, MAGEL2, MKRN3, 
SNORD116), with a birth incidence of 1 in 20 000 and an 
overall population prevalence of 1 in 52 000 (445). The dele
tion of the paternally expressed genes can either arise directly 
(75%), or through maternal uniparental disomy (22%), im
printing errors (3%) or paternal chromosomal translocation 
(<1%) (446, 447). The major diagnostic criteria include neo
natal and infantile hypotonia, feeding difficulties with a poor 
suck and poor weight gain in infancy (usually requiring nutri
tional support), followed by rapid-onset weight gain and hy
perphagia in childhood, characteristic facial dysmorphisms, 
hypogonadism, developmental delay or learning difficulties, 
and 1 of the genetic defects described above (448). More re
cently, the nutritional phases observed have been described 
in greater detail. As detailed above, weight gain and a reduc
tion in REE (phase 2a) precedes the hyperphagia observed in 
childhood (phase 2b) (325). Hypothalamo-pituitary dysfunc
tion is a recognized component of this disorder, and apart 
from the severe HyOb and hyperphagia observed (leading to 
parents often needing to lock fridges and cupboards at night), 
deficiencies in GH, luteinizing hormone, follicle-stimulating 
hormone (FSH), and ACTH have been described (449, 450).

From an appetite regulation perspective, the most notable 
finding observed in Prader–Willi syndrome is an increase in 
circulating ghrelin preceding the onset of hyperphagia 
(322-324, 450, 451). Importantly, the plasma acylated to un
acylated ghrelin ratio is increased, due to an overall increase in 
acylated ghrelin (326). Contrastingly, in common obesity, 
both forms of circulating plasma ghrelin were decreased as 
an expected compensatory response to a positive energy bal
ance. The mechanism behind this difference remains unclear. 
Additionally, post-prandial PPY secretion is impaired 
(452, 453). The literature surrounding measurement of plas
ma OXT concentrations in Prader–Willi syndrome is conflict
ing, with some authors finding it is decreased relative to the 
degree of obesity, while others have reported that both plasma 
and cerebrospinal fluid OXT is increased (451, 454, 455). 
Confusingly, postmortem studies suggest that the number of 
OXT neurons in the PVN is reduced in these patients (456). 
To date, the only evidence-based endocrine therapy for this 
disorder is GH, which results in an improvement in body com
position, REE, bone mineral density and muscle strength on 
top of linear growth (446, 457). Other treatment trials, in
cluding SS analogues, PPY and OXT have failed to yield long- 
term results in terms of a reduction in food intake or weight 
gain, although OXT may improve the feeding difficulties in in
fancy and behavioral difficulties in childhood and later life 
(285-287, 322, 458, 459).

Hypothalamic Obesity in Congenital and Acquired 
Structural Hypothalamic Disorders
Unlike monogenic HyOb syndromes, the pathophysiology of 
HyOb in congenital (eg, SOD) and acquired (eg, suprasellar 
tumors, traumatic brain injury, hypophysitis) disorders of 
the hypothalamo-pituitary region is less clear. The size of 
the hypothalamus precludes detailed anatomical study using 
current magnetic resonance imaging techniques (in clinical 
practice this is usually 1.5-3T), although higher strength 
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scanners (up to 7T) may help improve the visualization of this 
structure (460). However, to date, there are few data on the 
correlation between hypothalamic structure and function, 
particularly in mapping out its connectivity with other regions 

within the CNS (461-464). Moreover, when normal neuro
anatomy is distorted by congenital malformations or dis
rupted by acquired diseases such as suprasellar tumors, 
interpretation becomes even more difficult. Lastly, it is likely 

Table 1. Monogenic nonsyndromic causes of hypothalamic obesity and current evidence-based targeted treatments in humans

Protein (gene) Inheritance Primary mechanism Other phenotypic features Evidence-based 
targeted treatments 
for human obesity

Leptin (LEP) (14, 426) Autosomal 
recessive

Leptin deficiency Hypogonadotropic hypogonadism, 
immune system dysfunction  
(CD4+ T cell lymphopenia), 
postural hypotension

Recombinant leptin 
(15)

Leptin receptor (LEPR) (45) Autosomal 
recessive

Leptin resistance GH deficiency, central 
hypothyroidism, 
hypogonadotropic 
hypogonadism

Setmelanotide 
(MC4R agonist) 
(427)

Proopiomelanocortin 
(POMC) (428, 429)

Autosomal 
recessive

POMC (αMSH precursor) 
deficiency

ACTH deficiency, red hair, pale skin 
(GH deficiency, central 
hypothyroidism, 
hypogonadotropic 
hypogonadism)

Setmelanotide (430)

Melanocortin 3 receptor 
(MC3R) (431)

De novo 
heterozygous

αMSH resistance None described None

Melanocortin 4 receptor 
(MC4R) (106, 107)

Autosomal 
dominant

αMSH resistance None described Setmelanotide (432)

Cocaine- and 
amphetamine-regulated 
transcript (CARTPT) (124)

Autosomal 
dominant

CART deficiency None described None

Brain-derived neurotrophic 
factor (BDNF) (137, 138)

De novo 
heterozygous

BDNF deficiency Cognitive impairment, 
hyperactivity; or as part of the 
11p13-14 contiguous gene 
deletion WAGRO syndrome 
(Wilms tumor, aniridia, 
genitourinary abnormalities, 
mental retardation, obesity)

None

Tyrosine receptor kinase B 
(NTRK2) (141)

De novo 
heterozygous

BDNF resistance Global developmental delay, 
short-term memory impairment, 
behavioral stereotypies, impaired 
nociception

None

Prohormone convertase 1/3 
(PCSK1) (429, 433, 434)

Autosomal 
recessive

Failure of cleavage of proinsulin 
to insulin, proglucagon to 
glucagon/GLP-1/GLP-2, 
pro-CCK to CCK-8, POMC 
to α-MSH/ACTH, 
pro-CART to CART, 
proghrelin to ghrelin, 
pro-AgRP to AgRP, 
pro-GHRH to GHRH, 
pro-GnRH to GnRH, 
pro-AVP to AVP

GH, LH, FSH, ACTH, AVP 
deficiencies, impaired glucose 
tolerance/diabetes mellitus, 
postprandial hypoglycemia, 
malabsorptive diarrhea

None

Single-minded homolog 1 
(SIM1) (435-437)

De novo 
heterozygous

Disrupted hypothalamic 
development (particularly of 
the SON and PVN, with 
reduced MC4R expression 
and OXT, AVP, TRH, CRH 
and SS neurons)

Hypogonadotropic hypogonadism, 
facial dysmorphism, behavioral 
difficulties, “Prader–Willi 
syndrome-like” phenotype

None

SH2B adaptor protein 1 
(SH2B1) (438)

Autosomal 
dominant/de 
novo 
heterozygous)

Disrupted leptin and insulin 
signaling (via JAK/STAT 
pathway)

As part of the 16p11.2 contiguous 
gene deletion syndrome, mild 
developmental delay

None

Steroid receptor coactivator-1 
(SRC1) (439)

De novo 
heterozygous

Disrupted leptin signaling (via 
impairment of STAT3 
pathway which stimulates 
POMC transcription)

None described None
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that the hypothalamic injury represented by these disorders is 
widely heterogenous, and the degree of damage or disruption 
to the individual nuclei is highly variable. We discuss the com
monest causes of congenital (SOD) and acquired (brain tu
mors) hypothalamic obesity here.

Septo-optic dysplasia
SOD is a rare developmental disorder of the forebrain, optic 
pathway and pituitary gland, with an incidence of about 
1 in every 10 000 births (465). It is loosely defined by the pres
ence of at least 2 of 3 components of the triad of optic nerve 
hypoplasia, midline forebrain defects (eg, agenesis of the cor
pus callosum, absent septum pellucidum) or hypopituitarism 
(27, 465). While SOD is a congenital malformation disorder, 
its etiology is multifactorial, with both genetic and environ
mental factors being implicated. For instance, the incidence 
of SOD is correlated with indices of deprivation such as un
employment and teenage pregnancies (465). Variants in a 
wide range of hypothalamo-pituitary developmental tran
scription factors have also been described in association 
with SOD (eg, HESX1, OTX2, SOX2, PROKR2, KAL1, 
FGF8, TCF7L1), but in the majority (99%), the underlying 
etiology is not identifiable (27, 466-470). Many of these genes 
also show variable expressivity, with an overlap with other 
disorders such as Kallmann syndrome (KAL1, FGF8, 
FGFR1) or combined pituitary hormone deficiency (HESX1, 
PROKR2) (471-474).

HyOb develops in 31% of patients with SOD, and can oc
cur even in 12% of patients with isolated optic nerve hypopla
sia (28). Associated neurological features are frequent (57% 
with bilateral optic nerve hypoplasia), ranging from focal 
neuro-ophthalmological deficits to developmental delay 
(475, 476). Additionally, social communication, and repeti
tive or restrictive behavioral difficulties can occur in a third 
of patients (477). The combination of visual impairment, be
havioral and sleep difficulties, hyperphagia, and weight gain 
seen in this condition can often be extremely difficult to man
age. Some of these features are likely caused by hypothalamic 
dysfunction, although this is difficult to demonstrate.

Central nervous system tumors
CNS tumors are the commonest cause of acquired HyOb and 
the second commonest childhood malignancy, accounting for 
25% of cancers in children <15 years with an annual inci
dence of 35 cases/million/year, which is rising each year due 
to improvements in diagnosis (478-483). More than 80% of 
childhood CNS tumor survivors develop at least 1 endocrine 
deficit, GH deficiency being most frequent (484). The etiology 
of these endocrinopathies is multifactorial, particularly with 
suprasellar tumors which lie in close proximity to the hypo
thalamus and pituitary gland, accounting for 5% to 16% of 
all CNS tumors in childhood and young adulthood (485). 
In this scenario, hypothalamo-pituitary dysfunction and 
HyOb can be secondary to tumor- (location, histology) or 
treatment-related (neurosurgery, radiotherapy) factors (39). 
The risk of HyOb has been shown to be increased with the ex
tent of neurosurgical resection, and therefore more conserva
tive surgical approaches are increasingly being advocated 
(486-488). However, although much of HyOb has often 
been blamed on iatrogenic damage from surgical interventions 
or radiotherapy, 1 longitudinal study of craniopharyngiomas 
showed that increases in BMI SDS often occurred months to 

years preceding the diagnosis, with hypothalamic tumor in
volvement being a significant risk factor (489).

It is worth noting that 5-year survival for this subgroup of 
pediatric CNS tumors is high, particularly as the 2 commonest 
histologies found in this region are benign (craniopharyngio
mas 95%, low-grade gliomas 96% (31, 490)). Despite this, 
HyOb is significantly over-represented in this subcohort 
and, like SOD, this is often coupled with visual deficits and 
neurobehavioral dysfunction (491-494), making management 
of these patients, who have already survived 1 life-threatening 
disorder, complex.

Current Management Strategies for 
Hypothalamic Obesity
Overview of Current Management Strategies for 
Common Obesity
The complexity of managing a rare disorder such as HyOb 
must be understood in the context of the difficulties in treating 
common obesity in childhood. To date, no single lifestyle or 
medical intervention has been identified which is able to pro
duce sustained weight loss. Several systematic reviews have 
been conducted examining the efficacy of diet, physical activ
ity and behavioral (lifestyle) interventions, drug treatments, 
and surgical procedures on obesity in children and young 
people (Table 2). In terms of lifestyle interventions, 3 meta- 
analyses of randomized controlled trials (RCTs) have been 
conducted, stratified by age, all of which show marginal re
ductions in BMI over relatively short periods of follow-up ran
ging from a mean difference in long-term BMI SDS reduction 
of −0.01 in 6- to 11-year-olds (P = .56) to −0.25 in those 
under 6 years (P = .0013) (495-497). The interventions exam
ined were widely heterogeneous, and included dietary and life
style counseling, physical activity training programs, 
sponsored gym memberships, and behavioral therapy, tar
geted at individuals, families or groups. Interestingly, the ef
fects were more sustained in the pre-school and adolescent 
age groups but none of these studies examined outcomes in 
adulthood.

Drug treatments have also been trialed in the treatment of 
pediatric obesity, including sibutramine (a 5-HT and nor
adrenaline reuptake inhibitor), orlistat (a lipase inhibitor) 
and metformin (a biguanide capable of activating adenosine 
monophosphate-activated protein kinase (AMPK), which in
creases insulin sensitivity). Of these a meta-analysis demon
strated that sibutramine showed the biggest overall effect on 
BMI reduction (mean difference −1.70 kg/m2 (95% CI 
−2.89 to −0.51), P < .00001), but this drug has been with
drawn from both European and US markets due to adverse 
cardiovascular events (498, 501). The use of metformin out
side the setting of type 2 diabetes was shown in the same ana
lysis to lead to a significant reduction in BMI as well (mean 
difference −1.35 kg/m2 (95% CI −2.00 to −0.69), P < .0001) 
at up to nearly 2 years follow-up, but concordance is often 
hampered by gastrointestinal side effects.

Bariatric surgical interventions are now commonplace in 
the treatment of adult common obesity, but their use in the 
pediatric setting has not been subject to sufficient trials and 
may not be ethically justifiable. The most recent Cochrane 
meta-analysis only included 1 RCT of laparoscopic adjustable 
gastric banding (LAGB) in patients <18 years old, which re
corded a BMI SDS reduction of −1.08 (95% CI −1.31 to 
−0.86) in the LAGB group vs −0.23 (95% CI −0.05 to 
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0.39) in the control group receiving lifestyle intervention 
alone (ΔBMI −12.7 kg/m2 [95% CI −14.3 to −11.3] vs −1.3 
kg/m2 [95% CI −0.4 to −2.9]) (499, 500). Additionally, all 
participants in the former group had complete reversal of their 
metabolic syndrome at 24 months’ follow-up. A more recent 
review confirmed the efficacy of bariatric surgery in adoles
cents, with mean BMI reductions ranging from −15.0 kg/m2 

(95% CI −16.5 to −13.5) with gastric bypass surgery to 
−10.3 kg/m2 (95% CI −13.7 to 7.0) with gastric banding at 
3 years’ follow-up (502).

Bariatric surgery has long demonstrated excellent results for 
adult obesity, with a meta-analysis showing sustained weight 
loss (mean ΔBMI ranging from −7.4 to −33.31 kg/m2 vs −0.5 
to −4.73 kg/m2 with lifestyle and/or medical management) 
over a period of up to 10 years (503). Importantly, this was 
associated with a reduction in type 2 diabetes, hypertension, 
hyperlipidemia, the metabolic syndrome, and cardiovascular 
events (503, 504). Unlike lifestyle and medical interventions, 
bariatric surgery resets the energy balance via several endo
crine mechanisms, including an increase in insulin secretion 
and sensitivity (by increasing adiponectin and GLP-1 secretion 
and INSR expression), as well as an increase in anorexigenic 
pathway (by increasing GLP-1 and PYY secretion) with a con
comitant reduction in orexigenic pathway signaling (by redu
cing ghrelin secretion) (505, 506). This would be in keeping 
with evidence from several meta-analyses demonstrating its 
efficacy is positively correlated with the degree of surgical irre
versibility (mean difference in BMI at follow-up, laparoscopic 
gastric bypass vs LAGB −5.21 kg/m2 (95% CI −6.39 to 
−4.03) (503, 507, 508). Some studies, however, demonstrate 
a waning of efficacy over time, and this “rebound” may occur 
more quickly in adolescents (502).

Current Management Strategies for HyOb
Given the current relative lack of efficacious lifestyle interven
tions and medical treatments for common obesity, it is therefore 
not surprising that the vast majority of treatment options that 
have been trialed in HyOb demonstrate only a maintenance 
of BMI or insignificant, nonsustained weight loss (Table 3). 
Furthermore, the vast majority of these interventional studies 
have been limited to case reports, small case series, or uncon
trolled cohorts with relatively short durations of follow-up.

The first interventional trial for HyOb in humans was based 
on the theory of hyperinsulinemia being the primary driver of 
weight gain, where a young adult with a craniopharyngioma, 
panhypopituitarism and HyOb underwent a truncal vagot
omy, which led to a degree of sustained weight loss, but 
with the side effect of delayed gastric emptying (509). More 
than 10 years later, similar studies of medical treatment for 
hyperinsulinemia using octreotide (a SS analogue) in children 
with HyOb resulted in a minimal reduction in BMI in some 
patients (mean BMI reduction of −0.2 kg/m2 in an RCT set
ting), but with the side effects of diarrhea, abdominal discom
fort, cholelithiasis, diabetes mellitus, and impairment of the 
GH and TSH hypothalamo-pituitary axes (322, 512, 515). 
A similar strategy, using a combination of diazoxide (to re
duce hyperinsulinemia) and metformin (to increase insulin 
sensitivity) also achieved relatively minimal results, but with 
the side effects of oedema and liver dysfunction (523). It is im
portant to note that none of these groups reported further suc
cess in larger cohorts with longer durations of follow-up 

beyond 6 months. Dysregulation of other appetite-regulating 
hormones is also a potential side effect of some of these ther
apies, thereby making their effects more unpredictable (gut 
hormones with pancreatic vagotomy; GH, TSH, CCK, gluca
gon, GLP-1, PPY, ghrelin, and gastrin with octreotide).

Numerous other medical therapies have been tried in 
HyOb, none of which have yet demonstrated long-term sus
tainable weight loss. Of note, several authors have trialed 
GLP-1 agonists (exenatide and liraglutide) in individual or 
small groups of patients with apparently impressive results 
(maximum BMI reduction −10.2 kg/m2 at 2.5-year follow- 
up), but a RCT is sorely needed to confirm these findings, par
ticularly as tolerability is variable due to nausea and vomiting 
being common side effects (525, 526, 530, 531, 533). Other 
medications such as CCK-8 (510), liothyronine (513), fluoxet
ine and fenfluramine (511), dextroamphetamine (514, 539), 
sibutramine (517), caffeine with ephedrine (518), and belora
nib (537) have been tried, with no major breakthroughs, or 
unacceptable side effects (both sibutramine and beloranib 
have been withdrawn from use). Most recently, 2 phase 2 tri
als have shown promising results for hypothalamic obesity. A 
randomized controlled trial using a combination of tesofen
sine (a monoamine reuptake inhibitor with a better pharma
cokinetic profile than sibutramine) and metoprolol resulted 
in an additional −6.3% mean weight loss over 6 months 
(540). Currently an open label single arm phase 2 trial of set
melanotide is in progress, having reported positive interim 
results with a −17.2% mean BMI reduction in 4 months 
(n = 11) (541). Contrastingly, modification of lifestyle behav
iors alone achieved a slowing of weight gain rather than 
weight loss per se (521).

As with common obesity, the most impressive weight reduc
tions have been achieved with bariatric surgery (maximum 
BMI reduction −22 kg/m2 at 4 years) (520). However, the ef
fects of bariatric surgery are more unpredictable, and it is ap
parent that patients with HyOb can be more resistant, 
particularly to less radical procedures such as LAGB or sleeve 
gastrectomies (522, 527, 535). Experience with bariatric sur
gery in HyOb has also been more limited and not subject to 
the same durations of follow-up as in common obesity—the 
most longstanding procedure, LAGB, has shown no effect 
on weight, or indeed, even weight gain, over a period of 9 years 
(522, 527). Additionally, on top of the cardiorespiratory risks 
of administering general anesthesia in obesity, patients with 
HyOb usually have substantial comorbidities such as hypo
pituitarism (particularly adrenal insufficiency and central dia
betes insipidus). Several groups have reported an association 
with changing requirements of hormone supplementation as 
well as impaired absorption of crucial medications such as 
desmopressin postoperatively (527, 535, 536). Lastly, there 
are significant risks of a significantly increased postoperative 
food intake (due to hyperphagia) in the presence of a reduced 
gastric capacity.

Conclusions
Against a background of a rising prevalence in childhood 
obesity, there is an accruing cohort of patients with various 
congenital and acquired hypothalamic conditions who are at 
risk of developing HyOb. To date, our understanding of the 
pathophysiology of both common obesity and HyOb remains 
incomplete, but the advent of newer molecular genetic 
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techniques has permitted the discovery of the complex and 
often redundant network of peptides governing energy 
homeostasis between the gastrointestinal tract, adipose tissue 
and hypothalamus. These discoveries have consequently led to 
the development of targeted molecular therapies for specific 
monogenic HyOb syndromes. However, none of these treat
ments have so far been proven efficacious in the treatment 
of other congenital and acquired syndromic forms of HyOb 
as it is likely that more than 1 component of the appetite- 
and weight-regulating neurocircuitry may be affected. 
Ultimately, in this more heterogenous group of disorders, a 
clearer understanding of these pathways and how this influen
ces the individualized treatment options in a particular patient 
is still much needed.
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