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Abstract 

Background: This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute 
radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung).

Methods: A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standar-
dized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic var-
iants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared 
single-nucleotide variation (SNV—formerly SNP)–based heritability of rSTATacute in all patients and for each cancer type.

Results: Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE¼0.02) and was higher for pros-
tate (17%, SE¼ 0.07), head and neck (27%, SE¼ 0.09), and breast (16%, SE¼0.09) cancers. We identified 130 suggestive associated SNVs 
with rSTATacute (5.0� 10–8<P< 1.0�10–5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; 
effect size –0.17; P¼ 1.7� 10–7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are 
essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified ‘RNA splicing via endonucleolytic 
cleavage and ligation’ (P¼5.1�10–6, P¼ .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico 
gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not 
sun exposed P¼ .004 corrected; sun exposed P¼ .026 corrected).

Conclusions: There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. 
Future meta–genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the com-
mon causal variants for acute radiotoxicity across cancer types.

Approximately 50% of patients with cancer undergo radiation 
therapy (RT) (1). Some of these patients experience radiation- 
induced toxicities in nearby normal tissues that can occur during 
or shortly after RT (ie, acute radiation-induced toxicities) (2) or 
months to years later (ie, late radiation-induced toxicities). 
Although historical understanding of radiobiology separated tis-
sues into classes defined as early and late responding, the con-
temporary view is that most if not all tissues have both an acute 
and late phase, but the biologic mechanisms underlying early 
and late injury may differ. Next to radiation dose distributions, 
individual variability in radiation-induced toxicity (3) occurs in 
part because of host factors, including comorbidities, body habi-
tus, and underlying genetic susceptibility (4). Rare pathogenic 
variants in DNA damage genes (eg, ATM) result in monogenic 
syndromes with high risk of radiation-induced toxicities, but 

these do not explain the variation among most patients. 
Genome-wide association studies (GWASs) have identified com-
mon genetic susceptibility variants (eg, single-nucleotide varia-
tions [SNVs—formerly SNPs]) for late radiation-induced 
toxicities, but few studies have focused on acute radiation- 
induced toxicities (5-14).

Although some SNVs affect toxicity risk in a tissue-specific 
manner, others may be common across multiple tissues, with 
relative contributions differing for acute and late radiation- 
induced toxicity (15). Prior GWASs of late radiation-induced tox-
icities suggest that genetic susceptibility depends on molecular 
mechanisms specific to a given tissue type (5), but given that 
acute reactions across tissues depend on DNA damage and cell 
death, we hypothesized that there is shared susceptibility to 
acute radiation-induced toxicity across tissues. Therefore, we 
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aimed to carry out a GWAS meta-analysis of radiation-induced 
toxicities across tissues among 19 cohorts totaling 12 042 patients 
representing 4 cancers (prostate, head and neck, breast, and 
lung) from the Radiogenomic Consortium (https://epi.grants.can-
cer.gov/radiogenomics/). The large study population also enabled 
us to estimate for the first time SNV-based heritability (ie, the 
proportion of variation in acute radiation-induced toxicity 
explained by common genetic variants).

Methods
Study participants
The study design was a retrospective analysis of prospectively col-
lected cohorts totaling 12 042 patients who presented with cancer 
of the prostate, head and neck, breast, or lung. Patients received 
RT (alone or as part of a combination regimen) with curative 
intent and were followed for the development of acute toxicity 
(Table 1; Supplementary Table 1, available online). Each study 
obtained ethical approval from local review boards, and all partic-
ipants provided written informed consent. Supplementary Tables 
2 through 5 (available online) summarize the characteristics of 
the cohorts; a description is provided in the Supplementary 
Methods (available online).

Assessment of acute radiation-induced toxicity
The primary endpoint was acute radiation-induced toxicity, 
adjusted for demographic and clinical covariates. The grading 
schema and assessment schedules are given in Supplementary 
Table 1 (available online). To achieve a composite score describ-
ing overall acute radiation-induced toxicity, we used the standar-
dized total average toxicity (STAT) method described previously 
(16) and in the Supplementary Methods (available online). 
STAT is a scale- and grade-independent measure of radiation- 
induced toxicity developed to facilitate meta-analysis and data 
pooling.

Acute standardized total average toxicity (STATacute) was calcu-
lated using toxicity assessments collected within 90 days from the 
start of RT, which is a commonly used definition for acute 
radiation-induced toxicity in cooperative group trials (eg, Radiation 
Therapy Oncology Group). When more than 1 assessment was 
available within this time frame, the worst score was used. The 

individual toxicity endpoints used for calculating STATacute within 
each cancer type (Supplementary Tables 6-9, available online) 
reflect the different organs at risk within the treatment field. 
Patients with high baseline toxicity such that the grade could not 
worsen were excluded (Supplementary Table 10, available online).

Genotyping, quality control, and imputation
Whole blood or buffy coat was stored at –80 �C; then, DNA was 
isolated using standard procedures (ie, silica membrane spin col-
umns) and genotyped using genome-wide SNV arrays as part of a 
prior GWAS according to Supplementary Table 11 (available 
online). Germline DNA sequences are (near) constant across tis-
sues; thus the SNVs present in blood cells will be identical to 
those in all cells of the normal tissues susceptible to acute 
radiation-induced toxicity. The following standard preimputa-
tion quality control filters were removed: SNVs with a low call 
rate and low maximum allele frequency (MAF) and that did not 
meet Hardy-Weinberg equilibrium as well as samples with dis-
cordant sex, higher-than-expected pairwise identity by descent, 
and non-European ancestry determined by principal components 
analysis or multidimensional scaling. SNVs were imputed on the 
Michigan Imputation Server using the Haplotype Reference 
Consortium, release 1.1 2016 reference panel or IMPUTE2 soft-
ware and the 1000 Genome Phase 3 European reference panel. 
Postimputation filters removed SNVs with low MAF (<1%) or 
imputation quality (information metric< 0.3). Supplementary 
Table 11 (available online) summarizes the quality control steps 
and number of SNVs imputed for each cohort.

Covariables
Demographic and clinical factors are listed in Supplementary 
Tables 12 through 15 (available online). A backward stepwise 
selection procedure with a conservative P¼ .2 and STATacute as 
the dependent variable was used to identify the most influential 
covariates within the breast, prostate, and lung cancer cohorts. 
In head and neck cancer cohorts, a predefined list of covariates 
(Supplementary Table 13, available online) was used. Residuals 
from the final adjusted multivariable linear model defined 
rSTATacute, our primary endpoint, in each cohort. STATacute, 
which is unadjusted for demographic and clinical covariates, was 
our secondary endpoint.

Table 1. Characteristics of study cohortsa

Cohort No. Age, median (range), y Female, % STATacute, mean (SD)

Prostate 
n¼ 4213 

RAPPER-CHHiP 1487 68 (50-84) N/A 0.000 (0.782)
RAPPER-RT01 219 66 (50-79) N/A 0.000 (0.779)
RADIOGEN-PrCa 647 72 (47-86) N/A 0.000 (0.448)
GenePARE 225 65 (47-82) N/A –0.007 (0.681)
CCI-EBRT 151 68 (45-82) N/A 0.000 (0.301)
REQUITE-PrCa 1348 70 (46-88) N/A 0.004 (0.494)
UGhent-PrCa 136 65 (49-79) N/A 0.001 (0.419)

Head and neck cancer 
n¼ 4042 

UMCG-HANS 1279 65 (19-93) 32.7 0.005 (0.781)
DAHANCA 1183 60 (27-90) 21.0 –0.003 (0.802)
Ghent-HNC 273 60 (31-87) 16.5 –0.014 (0.821)
RAPPER-HNC 187 61 (39-85) 7.6 0.078 (0.779)
NIMRAD 270 73 (44-87) 21.0 –0.008 (0.719)
Head and Neck 5000 672 60 (25-94) 22 0.098 (0.881)
RADIOGEN-HNC 178 63 (35-92) 11.8 0.000 (0.588)

Breast 
n¼ 2966 

RAPPER-breast 907 59 (26-83) 100 0.006 (0.993)
REQUITE-breast 2059 58 (23-90) 100 0.007 (0.786)

Lung 
n¼ 821 

RADIOGEN-Lung 154 65 (41-89) 13.6 –0.006 (0.546)
REQUITE-Lung 467 70 (39-91) 31.0 0.002 (0.545)
CONVERT 200 64 (29-82) 48.0 –0.015 (0.524)

a STAT¼ standardized total average toxicity; N/A¼not applicable.
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GWAS analysis
SNV associations with rSTATacute and STATacute were independ-

ently analyzed in each cohort by linear regression, assuming an 

additive model that includes the first 10 principal components to 

control for population stratification. SNVs were represented by 

the number of effect alleles or imputed genotype dosage. 

Statistical analyses were carried out using PLINK/1.90b3.44 (17) 

and SNPTEST (18), and GWAS results were checked using the 

GWASinspector (19) package in R (R Foundation for Statistical 

Computing, Vienna, Austria).

Meta-analysis
GWAS results were meta-analyzed across all cohorts and sepa-

rately by cancer type by 2 independent centers using the inverse 

variance-weighted, fixed-effects method as implemented in 

PLINK/1.90b3.44 (17) and METAL, version 2011-03-25 (20). The 

Cochran Q test for heterogeneity was performed. SNVs were con-

sidered significant genome-wide if they had a P< 5.0� 10−8 for 

association with outcome, heterogeneity P> .05, and were avail-

able in at least 50% of samples. All tests of statistical significance 

were 2-sided.

Linkage disequilibrium score regression, SNV- 
based heritability, and genetic correlation
Linkage disequilibrium (LD) score regression (21) used summary 

statistics (�1.1 million SNVs; v2 statistics from the GWAS meta- 

analysis) on the LD scores across the genome. An LD score regres-

sion intercept close to 1 suggests no confounding bias, whereas 

an inflated intercept (>1) may indicate population stratification, 

confounding, or model misspecifications. We filtered the 

included variants to the subset included in HapMap3 and 

excluded variants with duplicated rs-numbers, ambiguity, and 

MAF< 0.01. We used the default European LD score file based on 

the European 1000 genome reference panel. Cross-trait LD score 

regression estimated genetic correlation (22) for acute radiation- 

induced toxicities between the 4 cancer types in 1-by-1 compari-

sons. The slope of the regression estimated the genetic 

covariance between 2 radiation-induced toxicity endpoints.

Gene set and in silico tissue expression analysis
MAGMA (23) gene set association analysis was implemented in 

FUMA (24). The gene-wide P value was calculated by combining 

the P value of all SNVs inside genes after accounting for LD and 

outliers. We allowed for a window of 10 kilobase pairs upstream 

and downstream of each gene to capture SNVs in nearby regula-

tory regions. Next, we calculated competitive gene set P values 

on the gene-wide P value after accounting for gene size, gene set 

density, and LD between genes. We defined a gene set as statisti-

cally significant if its joint P value was below the threshold corre-

sponding to a false discovery rate<0.05.
In silico tissue expression analysis was based on the MAGMA 

gene property in FUMA. The normalized gene expressions (reads 

per kb per million) of 53 normal tissue types were obtained from 

Genotype-Tissue Expression, version 8 (25). To obtain differen-

tially expressed gene sets for 53 tissue types, we used the nor-

malized expression (zero mean of log2 (reads per kilobase pair 

per millionþ 1)). Two-sided t tests were performed per gene per 

tissue compared with all other tissues. Genes with Bonferroni 

P< .05 adjusted and absolute log-fold change �0.58 were defined 

as a differentially expressed gene set in a given tissue.

Results
Patient characteristics
Table 1 and Supplementary Tables 2 through 5 (available online) 
summarize the patient and clinical characteristics of the cohorts 
and the treatments received. Figure 1 shows the combined distri-
bution of STATacute and rSTATacute scores for the 4 cancer types, 
and Supplementary Figure 1 shows the distributions for each 
participating cohort. Supplementary Tables 12 through 15 (avail-
able online) list the covariates used in statistical analyses to 
derive rSTATacute. Table 1 and Supplementary Figure 1 (available 
online) describe the distribution of STATacute and rSTATacute per 
cohort.

Meta-GWAS of acute radiation-induced toxicity
The additive effect of more than 6 million SNVs on rSTATacute 

(n¼10 398) and STATacute (n¼ 11 115) was estimated. The 
quantile-quantile plots showed no genomic inflation, suggesting 
that population structure was adequately controlled using 10 
principal components (PCs) and included only individuals of 
European ancestry (Figure 2). No SNV reached genome-wide sig-
nificance, but 130 SNVs with a 5.0�10−8< P< 1.0� 10−5 spanning 
25 genomic regions had a suggestive association with rSTATacute. 
The strongest association, with an effect size of −0.174 
(P¼ 1.7� 10−7) per copy of the A allele was for rs142667902. The 
nearest gene to this SNV is DPPA4 (Figure 3), which encodes a 
protein involved in the maintenance of pluripotency in stem 
cells. From association analysis with STATacute, the number of 
suggestive SNVs decreased to 66 across 27 genomic regions, with 
rs113548225 displaying the strongest association, at an effect size 
of 0.157 (P¼ 2.2� 10−7) per copy of the A allele. Supplementary 
Tables 16 and 17 (available online) contain the suggestively asso-
ciated SNVs and Supplementary Figure 2 (available online) dis-
plays Manhattan and quintile-quintile plots.

We found no genome-wide significant SNVs associated with 
rSTATacute or STATacute for the individual cancer sites. The sug-
gestive findings are summarized in Supplementary Tables 18 
through 25 (available online) and Supplementary Figures 2 and 3 
(available online).

SNV-based heritability and genetic correlation
The LD score regression intercept close to 1 for all regression 
models (Table 2) confirmed negligible inflation attributable to 
relatedness and that observed associations were due to the poly-
genic architecture of ration-induced toxicities. SNV-based herit-
ability (SE) estimates for rSTATacute were 12% (0.07%) for prostate 
cancer, 16% (0.09%) for breast cancer, and 15% (0.09%) for head 
and neck cancer. The joint estimated SNV-based heritability (SE) 
for rSTATacute was 7% (0.09%). SNV-based heritability (SE) for 
STATacute was estimated as 17% (0.07%) for prostate cancer, 27% 
(0.09%) for head and neck cancer, and 16% (0.09%) for breast can-
cer. The joint SNV-based heritability (SE) for STATacute was 10% 
(0.02%). SNV-based heritability estimates for STATacute and 
rSTATacute in lung cancer were imprecise because of small sam-
ple size (SE� 0.40), precluding statistical inference. A 1-to-1 
cross-cancer type joint analysis of both rSTATacute and STATacute 

showed no statistically significant genetic correlations between 
pairs of cancer types (Supplementary Table 26, available online).

Gene set analysis
The gene set P value was computed using the gene-based P value 
for 4728 curated gene sets (including canonical pathways) and 
6166 gene ontology terms obtained from MsigDB, version 5.2. We 
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used Ensembl gene models for 19 079 genes and a Bonferroni- 
corrected P value threshold of 2.6� 10−6. MAGMA identified pro-
tein glycosylation in Golgi as statistically significantly associated 
with rSTATacute in head and neck cancer (P¼ 2.4�10−6, P¼ .037 
corrected). The next top-ranking pathway was RNA splicing via 
endonucleolytic cleavage and ligation (P¼ 5.1� 10−6, P¼ .079 cor-
rected, overall rSTATacute). Detailed results of the top 10 gene 

sets per cancer type are shown in Supplementary Tables 27 

through 31 (available online).

In silico tissue expression analysis
The genes related to overall rSTATacute reached statistically 

significant up-regulated expression in skin not sun exposed 

(P¼ 7.2� 10−5, P¼ .004 corrected) and skin sun exposed 

Figure 1. Histograms of STATacute and rSTATacute distribution per cancer type and curve of normal log distribution. STAT¼ standardized total average 
toxicity.

Figure 2. Manhattan (left) and Q-Q (right) plots of the overall meta-analysis for STATacute and rSTATacute. Mirror. Manhattan plot: The GWAS for 
STATacute and rSTATacute are displayed in the top and bottom panels, respectively. The x-axis represents genomic locations, while the y-axis indicates 
–log10 P values for SNV associations with the outcome. Each SNV is a dot. Q-Q plot: Observed –log10 P values are on the y-axis, and expected –log10 

P values are on the x-axis. Every SNV is represented as a dot, with the red line signifying the null hypothesis of no genuine association. Notable 
deviations from the expected P value distribution appear primarily at the tail, complemented by the k coefficients, indicating effective control of 
population stratification. GWAS¼ genome-wide association study; Q-Q¼quintile-quintile; SNV¼ single-nucleotide variant; STAT¼ standardized total 
average toxicity.
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(P¼4.8�10−4, P¼ .026 corrected) tissues (Figure 4). No tissue 
reached a significant P value in the individual cancer types, but 

the genes associated with acute toxicity in patients with breast 

and lung cancer had maximum expression in their corresponding 
tissues (breast mammary and lung tissues); for those with head 

and neck cancer, esophagus mucosa ranked as the second-most 
expressed tissue (Supplementary Figure 4, available online).

Discussion
We identified 130 suggestive SNVs underlying shared genetic sus-

ceptibility to acute radiation-induced toxicity and showed that 
acute radiation-induced toxicity is likely to have a moderate 

SNV-based heritability of 10%. Higher heritability estimates 
within cancer types confirmed that the genetic susceptibility of 

acute radiation-induced toxicity is partially tissue type specific. 

Gene set analysis identified pathways not previously associated 
with acute radiation-induced toxicities that should be explored 

functionally and as potential targets for interventions to reduce 

radiation injury.

The top SNV associated with rSTATacute was rs142667902, near-
est to DPPA4, which encodes a nuclear factor involved in the main-
tenance of pluripotency in stem cells (26). The pathogenesis of 
acute radiation-induced toxicity involves the turnover and transit 
time for pluripotent stem cells to repopulate damaged tissue; thus, 
a role of DPPA4 in radiation-induced toxicity is plausible. Gene set 
analysis identified RNA splicing via endonucleolytic cleavage and ligation 
associated with acute radiation-induced toxicity. Exposure to ioniz-
ing radiation can disrupt the coupling of RNA splicing with gene 
transcription involved in DNA repair, cell-cycle control, and apopto-
sis. This emerging trend sheds light on the complex cellular 
response to DNA damage (27). Interestingly, gene expression analy-
sis estimated statistically significantly up-regulated expression in 
skin not sun exposed and sun exposed for genes related to overall 
rSTATacute. A simple interpretation is that skin is the shared organ 
at risk for all cancer types affected acutely by RT. In line with Fess�e 
et al. (28), our results suggest that skin and damage to the skin 
resulting from sun exposure (nonionizing radiation) may be inter-
esting to explore further for the understanding the mechanism 
involved in the response of tissues to DNA damage.

Figure 3. Locus zoom plot for the top locus associated with rSTATacute. The purple diamond shows the top single-nucleotide variant and variants in 
red are in linkage disequilibrium with the top single-nucleotide variant. The y-axis shows observed −log10 P values, and the x-axis shows the position 
across the genome, with genes mapped there. STAT¼ standardized total average toxicity

Table 2. Single-nucleotide variant–based heritability of STATacute and rSTATacute overall and per cancer typea

Minimum,  
No.

Single-nucleotide  
variants, No.

k Genomic  
control Mean v2

Intercept  
(SE)

h2  
(SE)

STATacute Overall 7410 1 087 229 1.022 1.022 1.013 (0.006) 0.102 (0.026)
Prostate cancer 2681 1 152 958 1.007 1.013 1.020 (0.006) 0.171 (0.069)
Breast cancer 1890 1 067 908 1.004 1.009 1.007 (0.006) 0.161 (0.096)
Head and neck cancer 2292 1 148 120 1.019 1.018 1.005 (0.005) 0.268 (0.088)
Lung cancer 547 709 968 1.011 1.013 1.019 (0.007) 0.831 (0.399)

rSTATacute Overall 6739 1 079 330 1.007 1.014 1.012 (0.006) 0.070 (0.028)
Prostate cancer 2389 1 152 836 1.005 1.009 1.016 (0.006) 0.125 (0.076)
Breast cancer 1786 1 067 908 1.007 1.009 1.012 (0.006) 0.158 (0.097)
Head and neck cancer 2256 1 140 063 1.013 1.009 1.005 (0.006) 0.152 (0.091)
Lung cancer 500 709 969 1.005 1.008 1.023 (0.007) 0.526 (0.424)

ah2¼ single-nucleotide variation–based heritability; intercept¼protects against bias from population stratification and cryptic relatedness; STAT¼ standardized 
total average toxicity.
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We found 95 suggestive SNVs located in 21 genomic regions 
associated with acute toxicity in patients with prostate cancer. 
The top SNV (rs72954279) was near to a pseudogene OACYLP. A 
transancestry meta-GWAS identified rs35283980 mapped to 
OACYLP associated with susceptibility to prostate cancer (29), 
though no studies have been published investigating a role in 
normal tissue radiation-induced toxicity. The top gene set in 
prostate cancer was “adrenergic receptor activity.” Adrenergic 
receptors are found throughout the body in many cell types. The 
bladder is particularly rich in these receptors, which are func-
tionally important regulators of the activities of muscles. 
Pharmacomechanical and molecular approaches have revealed 
roles for the b(3)-adrenoceptor in the urinary bladder and gastro-
intestinal tract smooth muscle, both organs susceptible to acute 
radiation-induced toxicity during prostate cancer treatment (30). 
Pullikuth et al. showed that adrenergic receptor signaling regu-
lates tumor response to ionizing radiation (31), and our finding 
suggests that it would be worthwhile to investigate a role in nor-
mal tissue responses. Given that activity of the receptor would 
affect multiple tissue types, it is a good candidate for further 
study.

There were 83 suggestive SNVs in 21 genomic regions associ-
ated with acute radiation-induced toxicity in patients with head 
and neck cancer. The top SNV, rs137992872, mapped to TCF20, 
encoding a widely expressed transcriptional co-regulator. Our 
analyses suggested that protein glycosylation in Golgi is a potential 
mechanism involved in susceptibility to acute radiation-induced 
toxicity in head and neck cancer. Approximately half of all pro-
teins undergo glycosylation, and this modification has a substan-
tial impact on diverse cellular processes in all tissue types. 
Published studies linked up-regulation of glycosylation genes 
with radioresistance (32,33). Inhibition of glycosylation has also 
been shown to enhance sensitivity to cisplatin (a DNA damaging 
agent) in head and neck cancer cells (34). Toth et al (32) found 
that plasma protein glycosylation changes in response to partial 
body irradiation, and the effects last during follow-up.

Of 26 SNVs in 14 genomic regions possibly associated with 
acute radiation-induced toxicity among breast cancer cohorts, 
the top SNV was rs16882722, mapped near the tumor suppressor 
UNC5D, a netrin receptor involved in apoptosis (33). Moelans 
et al. observed an association between DUSP26 and UNC5D loss 
and chemo-RT resistance, which predicted worse survival in 
patients with breast cancer (35). The top gene set associated with 
radiation-induced toxicity in breast cancer was natural killer cell 
lectin-like receptor binding. Natural killer cells are innate immune 
cells that can respond to inflammatory signals such as interfer-
ons and interleukins present at the site of normal tissue injury; 
they can potentiate vascular damage (36,37), and our findings 
suggest that it would be worthwhile to investigate their role in 
the pathogenesis of radiation-induced toxicity in breast cancer.

We found 30 SNVs in 10 genomic regions suggestive of an 
association with acute radiation-induced toxicity in patients with 
lung cancer. The nearest gene to the top SNV (rs1471101) was 
MLLT3. Ayako et al. found a joint effect of the MLLT1 and MLLT3 
genes on the ATM-signaling pathway and a role in repressing 
genotoxic stresses because of DNA double-strand breaks and 
maintaining genome integrity (38). Furthermore, our analysis 
showed the highest expression of genes in lung tissue among all 
53 tissues tested and that the top gene set in radiation-induced 
toxicity in lung cancer was Debiasi apoptosis by reovirus infection dn. 
Our findings suggest that comparing the mechanisms of 
reovirus-induced apoptosis with radiation-induced apoptosis 
could identify similarities in tissue damage pathogenesis.

Our observations highlight the complexity of radiation- 
induced toxicity and suggest new avenues to increase under-
standing of the pathogenesis of acute radiation-induced toxicity 
in a tissue-specific manner. The bioinformatic analyses can point 
to potential mechanisms but should be used for hypothesis gen-
erating and must be followed up with subsequent functional vali-
dation studies. Validation studies and subsequent functional 
characterization of radiation-induced toxicity–associated SNVs 
in cell lines and animal models will be important next steps to 

Figure 4. Tissue expression analysis in 53 tissue types for genes related to overall rSTATacute. Tissue expression analysis testing the positive 
relationship between all annotated genes using the full distribution of single-nucleotide variant P values and the average expression of genes per tissue 
type based on Genotype-Tissue Expression RNA sequencing data. DEG¼differentially expressed gene set; STAT¼ standardized total average toxicity.
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understand the molecular mechanisms involved and, poten-
tially, identify targetable pathways for intervention.

Our first estimate of shared SNV-based heritability of acute 
radiation-induced toxicity across 4 cancer types was 10%. The 
estimates were higher for prostate (17%), breast (16%), and head 
and neck (27%) cancers. These SNV-based heritability estimates 
are comparable with those for complex traits such as coronary 
artery disease (5%) (39), autism spectrum disorder (12%) (40), and 
schizophrenia (26%) (41). SNV-based heritability estimates 
depend on study size; thus, our estimates will improve with 
larger studies (42). Also, narrow-sense heritability used here 
misses heritability because of rare variants with large effects 
that are not tagged by common SNVs and to nonadditive genetic 
variation or epigenetic factors (43). Therefore, it is likely that the 
level of heritability of acute radiation-induced toxicity will be 
higher than that reported in our study.

No SNV achieved the stringent threshold for genome-wide sig-
nificance, which is a challenge in GWAS (44). The rigorous correc-
tion for many statistical tests reduces false positives but may 
mask real associations. A second limitation is the lack of ances-
tral diversity in our cohorts because of limited statistical power 
to perform a multiethnic GWAS; this limits the generalizability of 
our findings to non-European and admixed populations. Future 
studies should be conducted on extended sample sizes, with par-
ticular effort devoted to building cohorts in non-European 
patient populations and more precisely defining phenotypes for 
radiation-induced toxicities. Although we examined common 
SNVs with a MAF greater than 1%, investigating the rare variants 
would provide significant insights.

Many common variants are potentially associated with acute 
radiation-induced toxicities across tumor sites, and it is worth-
while to carry out larger studies that have the statistical power to 
identify the causal variants. Our large meta-GWAS provides the 
first evidence for the heritability of common genetic variants 
associated with acute radiation-induced toxicity, which is higher 
within than across tissues. Further investigation to verify and 
expand our findings is merited to identify multiple genome-wide 
significant loci, with pooled clinically relevant effect sizes that 
can be used in clinical practice.

Data availability
This study was done using cohorts involved in the 
Radiogenomics Consortium. Summary statistics for GWAS 
results will be available to download from the GWAS Catalog.
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