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EDITOR’S PERSPECTIVE

What We Already Know about This Topic

•	 Artificial intelligence and machine learning may offer a novel 
approach to better predict perioperative outcomes.

What This Article Tells Us That Is New

•	 This systematic review and meta-analysis identified 103 studies 
that employed artificial intelligence or machine learning to predict 
perioperative outcomes, but the overall quality was only modest 
with only 13% being externally validated. The authors conclude 
that the artificial intelligence and machine learning may hold great 
promise but are not ready for prime time.

Perioperative medicine is a multidisciplinary specialty 
that focuses on meeting the complex medical needs 

of patients at risk of complications from surgery. With the 
number of surgical operations worldwide expected to rise 
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ABSTRACT 
Background: The utilization of artificial intelligence and machine learning 
as diagnostic and predictive tools in perioperative medicine holds great prom-
ise. Indeed, many studies have been performed in recent years to explore the 
potential. The purpose of this systematic review is to assess the current state 
of machine learning in perioperative medicine, its utility in prediction of com-
plications and prognostication, and limitations related to bias and validation. 

Methods: A multidisciplinary team of clinicians and engineers conducted a 
systematic review using the Preferred Reporting Items for Systematic Review 
and Meta-Analysis (PRISMA) protocol. Multiple databases were searched, 
including Scopus, Cumulative Index to Nursing and Allied Health Literature 
(CINAHL), the Cochrane Library, PubMed, Medline, Embase, and Web of 
Science. The systematic review focused on study design, type of machine 
learning model used, validation techniques applied, and reported model per-
formance on prediction of complications and prognostication. This review 
further classified outcomes and machine learning applications using an ad 
hoc classification system. The Prediction model Risk Of Bias Assessment Tool 
(PROBAST) was used to assess risk of bias and applicability of the studies. 

Results: A total of 103 studies were identified. The models reported in the 
literature were primarily based on single-center validations (75%), with only 
13% being externally validated across multiple centers. Most of the mortality 
models demonstrated a limited ability to discriminate and classify effectively. 
The PROBAST assessment indicated a high risk of systematic errors in pre-
dicted outcomes and artificial intelligence or machine learning applications. 

Conclusions: The findings indicate that the development of this field is 
still in its early stages. This systematic review indicates that application of 
machine learning in perioperative medicine is still at an early stage. While 
many studies suggest potential utility, several key challenges must be first 
overcome before their introduction into clinical practice.
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to 500 million by the end of the 21st century,1,2 there is a 
growing need to accurately identify patients at risk and to 
manage potential complications. The incidence of postop-
erative mortality ranges from 1.7 to 5.7%3–6 and accounts 
for 7.7% of the global burden of death.9 Postoperative mor-
bidity represents a major issue, with 16% of patients devel-
oping serious complications.5,7,8 This can affect both quality 
and length of life, placing a significant burden on individu-
als, families, and the healthcare system.9–14

Over the last 10 yr, there has been an emergence of novel 
predictive tools for perioperative outcomes driven by arti-
ficial intelligence and machine learning techniques. These 
tools offer exciting opportunities for advancing periopera-
tive medicine. However, effective implementation requires a 
comprehensive understanding of both their advantages and 
potential risks. Machine learning, a subset of artificial intelli-
gence, relies on algorithms to make predictions or decisions 
without explicit programming. Machine learning can ana-
lyze large, intricate data sets, learn from the data, and improve 
its performance over time. By enabling more accurate risk 
prediction as well as personalized treatment plans, machine 
learning has the potential to enhance patient care and out-
comes. Nonetheless, well founded concerns currently exist 
regarding bias, interpretability, and reproducibility.

The distinction between classical statistics and machine 
learning can be blurred as they share common techniques 
including the development of risk scores.15 Existing risk strat-
ification tools such as POSSUM, SORT, and NELA have tra-
ditionally utilized logistic regression, a statistical technique also 
employed in machine learning for similar purposes.16 However, 
classical statistics may struggle with nonlinear relationships and 
large numbers of variables, whereas the advantage of machine 
learning lies in its diverse range of algorithms that can model 
complex relationships and perform variable selection.17

We herein report a systematic review that focuses on 
prognostic artificial intelligence and machine learning mod-
els in perioperative medicine, aiming to carefully appraise 
the literature and identify knowledge gaps. Bias was eval-
uated using the Prediction model Risk Of Bias Assessment 
Tool (PROBAST),18 and an ad hoc classification was devel-
oped to determine the readiness level of the machine learn-
ing algorithms reported. We narrowed the scope of this 
systematic review to include only those studies that explic-
itly utilized machine learning approaches. Risk stratification 

tools based solely on logistic regression, commonly used as 
clinical benchmarks, were not included. For an analysis of 
these scores, readers are directed to a separate review.16

Materials and Methods
This systematic review was structured according to the 
2020 Preferred Reporting Items for Systematic Review 
and Meta-Analysis (PRISMA) protocols statement.19 The 
protocol was registered with the International Prospective 
Register of Systematic Reviews (CRD42022345213).

A literature search was conducted using Scopus, 
Cumulative Index to Nursing and Allied Health Literature 
(CINAHL), the Cochrane Library, PubMed, Medline, 
Embase, and Web of Science and completed on August 
8, 2023. A primary search strategy was developed creat-
ing strings of research including the following keywords: 
“artificial intelligence,” “machine learning,” “preoperative,” 
“perioperative,” “surgery,” “anesthesia.” The detailed research 
query is described in the appendix. Search results were 
imported into EndNote 20 (Clarivate, United Kingdom). To 
assess the eligibility of the studies we used the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Of Diagnosis (TRIPOD) checklist (fig. 1).20

A multidisciplinary team of six reviewers assessed arti-
cles for eligibility, screening titles and abstracts to ensure 
relevance and identifying articles for full-text review. Each 
study was assessed by the reviewers independently. Two 
independent groups composed of two reviewers each (P.A., 
M.R.K. and D.A.H., W.P.) screened the full text to ensure 
each article was eligible following our inclusion and exclu-
sion criteria. Conflicts were resolved by reviewer consensus.

We included retrospective and prospective studies in 
adult patients (18 yr old or older) published in the English 
language between January 1, 2000, and August 8, 2023. 
Outcomes of interest comprised but were not limited to:

1.	 Mortality
•	 Perioperative mortality risk

2.	 Morbidity
•	 Anesthesia risk

•	 Risk of difficult/failed intubation
•	 Need for massive transfusion

•	 Intraoperative complications
•	 Bradycardia
•	 Hypotension
•	 Other potential complications

•	 Postoperative complications
•	 Sepsis
•	 Respiratory failure
•	 Cardiovascular failure
•	 Renal failure
•	 Ileus
•	 Soft tissue, skin, or wound infections
•	 Delirium
•	 Pain
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3.	 Process
•	 Need for intensive care unit admission
•	 Length of hospital stay
•	 Overnight hospital stay
•	 Readmission to hospital
Exclusion criteria included pediatric populations, 

non-English language articles, protocol studies, symposium 
papers, studies conducted on animal models, in vitro studies, 
non–perioperative-focused studies, and studies unrelated to 
machine learning or artificial intelligence.

Study quality was assessed using established methodol-
ogies. To assess study quality and the readiness level of the 
machine learning algorithms, the authors created agreed ad 
hoc criteria (table  1; supplementary table 1, https://links.
lww.com/ALN/D308). This is the recommended approach 
to assessing heterogenous nonrandomized clinical trials.21 
The grading describes the readiness level of each machine 
learning model for possible clinical application, the type of 
study conducted, and the degree of validation.

Five authors (P.A., M.R.K., D.A.H., W.P., and P.R.) 
independently assessed the quality of studies that met the 
inclusion criteria using the PROBAST to review all prog-
nostic artificial intelligence and machine learning models 

developed or validated in perioperative medicine (fig.  2 
and fig.  3). Cohen’s κ agreement between authors was 
calculated.22 This tool evaluates the risk of bias in stud-
ies across four domains: participants, predictors, outcome, 
and analytic technique. The applicability of each study 
to the search question was assessed by evaluating its rel-
evance to the specified population, predictors and out-
comes.18,23 A score was assigned to each study based on 
this tool.24 A PROBAST is being specifically developed to 
assess artificial intelligence and machine learning models 
(PROBAST–artificial intelligence)25 but was not available 
at the time of study.

The data were extracted into tables by the two groups 
of two reviewers and cross-referenced to identify possi-
ble errors. Variables were extracted and tabulated in Excel 
(Office 365, Microsoft, USA), summarizing study content 
and using standard terminology (supplementary table 1, 
https://links.lww.com/ALN/D308). The best area under 
the receiver operating characteristic curve (AUC) and met-
rics available for each described model were recorded. The 
AUC values were included as part of our study reporting 
and analysis rather than for the purpose of comparing per-
formance between different studies or models. The values 

Fig. 1.  Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 flow diagram for new systematic reviews, 
including searches of databases and registries.
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were expressed as mean or median, as appropriate. Summary 
data were used to produce the figures and tables describing 
the different studies.

Results

Study Selection

An initial search identified 9,856 articles that satisfied 
our criteria (fig.  1). After removal of duplicates, 3,297 
articles were retained; of these, 154 full-text articles 
were assessed for eligibility, of which 103 studies met 
the inclusion criteria. These studies are summarized in 
table  2 and supplementary table 1 (https://links.lww.
com/ALN/D308), including study design, patient popu-
lations, outcomes (or target variables), machine learning 
models applied, model performance and validations, and 
study limitations. Most of the studies were published in 
2021 or 2022. Studies predominantly originated from 
the United States (48), the People’s Republic of China 
(22), and South Korea (12).

Study Types

A total of 63 studies were retrospective single-center: 13 
were retrospective multicenter, and 11 employed retro-
spective analyses of national databases. Only 10 studies 
were prospective single-center, and 2 were prospective 
multicenter.40 One study utilized both a retrospective data-
base and enrolled patients for a prospective study,89 while 
another used a cross-sectional study design.58 Two studies 
were secondary analyses of previous research, and one arti-
cle described a specific model.41 There were 85 internal 
databases used to develop and evaluate the different models. 
External validation was performed in 12 studies.42,74,78,125 As 
reported in supplementary table 1 (https://links.lww.com/
ALN/D308), most studies utilized tabular data, whereas 
those that predicted real-time events employed time-series 
analysis. A single study employed an image database.72

Risk of Bias Assessment with the PROBAST

The results are summarized in supplementary table 
2 (https://links.lww.com/ALN/D309) and figure  3. 
Cohen’s κ agreement among authors averaged 0.71, indi-
cating substantial agreement. Most studies described the 
development of prognostic models. Of all the articles, 90% 
were rated as having a high or uncertain risk of bias. The 
predominant reasons for the high or unclear risk of bias 
in the analysis domain were the lack of timely and accu-
rate description of model metrics, insufficient or unclear 
number of events per predictor included in the model, 
and/or unclear assessment of overfitting correction and 
adaptation. In the participant domain, patient selection 
was often not clearly stated, nor was there a clear descrip-
tion of inclusion and exclusion criteria, leading to a high 
risk of bias in 75% of studies. The overall risk of bias was 

Table 1.  Ad Hoc Author Classification to Describe the 
Development Stage toward Clinical Application of the Models 
Described in the Studies

Classification Development Stage 
Number of 

Studies 

1 Model conceptualization 1
2 Retrospective study, model internal validation 76
3 Retrospective study, model external validation 13
4 Prospective study, nonrandomized 12
5 Prospective study, randomized 1

Fig. 2.  (Left) Graphical description representing the four feature categories used in perioperative medicine. (Right) Venn diagram of out-
comes predicted in perioperative medicine. Green, process-related outcomes; blue, morbidity-related outcomes; red, mortality-related out-
comes. ASA, American Society of Anesthesiologists.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/140/1/85/698657/20240100.0-00016.pdf by U

niversity C
ollege London (ucl) / England user on 01 M

ay 2024

https://links.lww.com/ALN/D308
https://links.lww.com/ALN/D308
https://links.lww.com/ALN/D308
https://links.lww.com/ALN/D308
https://links.lww.com/ALN/D309


	 Anesthesiology 2024; 140:85–101	 89

PROBAST Assessment of Machine Learning

Arina et al.

high, as almost 90% of the articles did not present exter-
nal validation. With respect to applicability, the predic-
tor domain had the highest level of possible bias. Several 
studies used particular features such as insurance codes to 
identify procedures or utilized medical intraoperative data 
such as continuous electroencephalography (EEG) mon-
itoring that are not routinely collected and may not be 
broadly available.

Machine Learning Model Development Stage

Using our ad hoc classification (table 1 and fig. 4) to assess 
study quality and to quantify the development and imple-
mentation of machine learning models in perioperative 
medicine (supplementary table 2, https://links.lww.com/
ALN/D309; figure 4), one study (1%) was classified as stage 

1 or pre–model conceptualization;41 76 (74%) were clas-
sified as stage 2 or model developed using a retrospective 
data set with internal validation; 13 (13%) were classified 
as stage 3, or models developed using retrospective study 
but with external validation;58,78,125 and 12 (11%) as stage 
4, a model trained over prospective studies with internal 
validation. Only one (1%) study achieved a stage 5 grading. 
This was a prospective study with randomized control trial 
characteristics; however, it was conducted unblinded and 
limited to only 68 patients.90

Model Validation Methods

All studies performed internal validation (supplemen-
tary table 1, https://links.lww.com/ALN/D308), albeit 
using different approaches. A total of 10 studies did not 
state the method of validation, while 36 performed mul-
tiple-fold cross-validation. The remainder used a hold-out 
method, typically using a training:test ratio of 70%:30% 
or 80%:20%. External validation utilizes databases that are 
completely independent from the one used to create the 
model. However, only 14 (13%) studies applied external 
validation,26,27,42,52,58,74,78,80,83,98,112,114,126 while the remaining 
87% used only internal validation.

Machine Learning Algorithms

Most studies reported their model performance using stan-
dardized classification metrics, namely sensitivity, specific-
ity, accuracy, Brier score, area under precision recall, and F1 
score.127 All models reported AUC (or C-statistic), a mea-
sure of the ability of a classifier to distinguish between two 
classes.128 For regression, the metrics reported were mean 
squared error and mean absolute error. Supplementary table 
1 (https://links.lww.com/ALN/D308) shows all evalua-
tion metrics of the models and the best performing model 
reported for each study.

Outcomes

There was a high level of heterogeneity in the application 
of artificial intelligence and machine learning to perioper-
ative medicine, as shown by the wide range of outcomes 
studied. The main outcomes are categorized by type of sur-
gery (table 2). The type of outcome and features used are 
shown in figure 2, and the details of the machine learning 
models are reported in supplementary table 1 (https://links.
lww.com/ALN/D308).

Morbidity

Morbidity outcomes include deviations from normal 
patient trajectories in the postoperative period, e.g., devel-
opment of kidney failure or delirium. Given the substantial 
volume of studies in this area, the outcomes were further 
categorized based on the typology of the potential clinical 
tool and the type of data used:

Table 2.  Summary of Outcomes and Events in Elective, 
Emergency, and Cardiac Surgeries

Surgery Outcomes and Events 

Elective noncardiac surgery  
 � Mortality 30 days and/or 1 yr26–38

In surgical patients with perioperative  
SARS–CoV-239

 � Morbidity Multiple postoperative complications26,27,29,40–51

Acute and chronic pain52–57

Acute kidney failure52,58–63

ASA score prediction64

Delirium and cognitive decline65–70

Cerebral/myocardial infarction71

Difficult intubation prediciton72

Ileus73

Infection risk74–76

Myocardial injury77

Nausea and vomiting78

Obstructive apnoea screening79

Perioperative transfusion80,81

Postoperative atrial fibrillation82

Respiratory failure and depression43,83–86

Sepsis83,87

 � Intraoperative events EEG interpretation88

Hypotension prediction89–95

Hypoxemia97

 � Process Length of stay in hospital and ICU98––105

Duration of surgery106

Unplanned overnight admission107–109

Emergency noncardiac surgery
 � Mortality 30 days110,111

 � Morbidity Postoperative complications110,112

Respiratory failure113

 � Process Hospital readmision114

Cardiac surgery
 � Mortality 30 days, 1 yr, or 5 yr115,116

 � Morbidity Liver failure117

Major bleeding118,119

Kidney failure120–122

Postoperative complications123

 � Intraoperative events Hypotension124

ASA, American Society of Anesthesiologists; EEG, electroencephalography; ICU, 
intensive care unit.
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•	 Prognostication models: designed to predict the risk 
of adverse events, complications, or other negative 
outcomes in patients, based on tabular data.

•	 Real-time prediction models: designed to aid clini-
cians in making decisions during surgery or other 
medical interventions during clinical operations, usu-
ally based on time-series data.

There were 89 studies describing different types of mor-
bidities. Fuller details of model performances are shown in 
supplementary table 1 (https://links.lww.com/ALN/D308).

Prognostication Models. These studies created models to 
stratify patients into different risk levels during the periop-
erative period using tabular data exported by electronic 

health record systems or obtained from national data-
bases such as the American College of Surgeons–National 
Surgical Quality Improvement Program database.129 The 
main features used to run these models were demographic 
and socioeconomic data, diagnosis, medical history, scores 
such as American Society of Anesthesiologists (ASA) status 
or Charlson Comorbidity index, type of anesthesia, type of 
surgery, duration of surgery, training level of the surgeon, 
and clamp time.130

•	 Anesthetic and surgical risks: Several models were 
developed to predict anesthetic risk,64 risk of postin-
duction hypotension,124 identifying patients at risk 
of obstructive sleep apnea,79 or risk of postoperative 
re-intubation.43,84 Tavolara et al.72 used an online data-
base comprising thousands of celebrity faces to train 
a neural network model to predict the risk of difficult 
intubation using a standardized picture of the patient.

•	 Development of postoperative complications: Most 
studies focused on the prediction of postoperative 
acute complications26–28,42,44–49,59,99,110,112,113,118,123 such 
as pain and opioid use,53–57 postoperative atrial fibril-
lation (new-onset atrial fibrillation),82 postoperative 
risk of stroke or myocardial infarction,50,71,77 and delir-
ium or cognitive decline.65–70 Other models focused 
on the risk of developing pneumonia or respiratory 
failure,83,85,125 acute kidney injury,43,52,58,60–63,120–122 liver 
failure117 or development of sepsis or surgical site 
infection.74–76,87,99,131 Suhre et al.78 analyzed the associ-
ation between perioperative nausea and vomiting and 
cannabis use using a long-term survey.

•	 Transfusion need and blood pressure prediction: 
Three studies developed models to predict the risk 
of perioperative transfusion in general surgery80,81 
and cardiac surgery.119 Tan et al.51 developed a model 
to predict early phase postoperative hypertension 

Fig. 3.  Prediction model Risk Of Bias ASsessment Tool 
(PROBAST) assessment.

Fig. 4.  Graphical representation of the number of articles divided by the clinical development stage according to our ad hoc classification 
method.
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after carotid endarterectomy. Hatib et al.89 used pre-
processed data from continuous arterial monitoring 
obtained during surgery to assess the risk of intraop-
erative hypotension.71,78

•	 Noteworthy studies: Bihorac et al.29 and Feng et al.41 
created MysurgicalRisk, an ensemble model inte-
grated with their hospital electronic health record 
system. This system, using more than 285 features, 
performed well and currently represents the best 
example of dynamic integration of different types 
of features such as clinical and socioeconomic data. 
The system was modeled around a specific electronic 
health record system and could potentially be adapted 
to other electronic health records. The second, from 
Xie et al.,73 used blood metabolomic profiling to pre-
dict the risk of postoperative gastrointestinal failure.

Real-time Predictive Models. This category of studies 
encompasses models specifically designed to predict acute 
perioperative events in real time, delivering timely alerts to 
clinicians either during surgery or in the immediate post-
operative period with the goal of promptly addressing or 
even preventing the issue.

•	 Intraoperative monitoring: Other than one study 
focusing on prediction of bradycardia, the remainder 
utilized time-series analysis of intraoperative data to 
enable real-time trending of vital signs. Intraoperative 
depth of anesthesia using real-time EEG data,88 acute 
events such as intraoperative hypotension,90–94,132,133 
postoperative hypertension,51 bradycardia,95 hypox-
emia97 and blood product use during caesarean sec-
tion81 were modeled. As an example, Cartailler et al.88 
analyzed continuous EEG readings using a model 
that recognized abnormal wave patterns to identify 
suppression bursts.89

•	 Postoperative complications: Two studies analyzed 
time-series data from wearable devices after surgery 
to anticipate complications in high-risk patients40 or 
respiratory failure in patients receiving opioids.86

Mortality

Twenty-one studies developed models for prognostic strati-
fication of high-risk patients. Mortality outcomes included 
models predicting any death, regardless of cause, occurring 
within a fixed time period after surgery, either inside or 
outside hospital (usually 30 days or 1 yr), divided by the 
type of surgery.

•	 Cardiac surgery30,115,116,130

•	 Major elective surgery: Mortality was assessed postop-
eratively27–36,100 in the surgical intensive care unit35 or 
in the hospital.28,29,32,36,100 One study predicted 30-day 
mortality risk related to myocardial injury in noncar-
diac surgery patients,37 while another developed a nat-
ural language processing model using deep learning to 

analyze medical records and obtain diagnoses directly 
from notes written by a physician.27–35,38,100

•	 Emergency surgery26,37,38,110–112

•	 Mortality in surgical COVID-19 patients: The 
COVIDSurg collaborative international panel con-
ducted an international prospective study to develop 
and validate models that predict postoperative mor-
tality risk in patients with perioperative SARS–
CoV-2 infection.39

Mortality in perioperative medicine is defined as a rare 
event (probability less than 5%). Consequently, databases 
used for mortality may exhibit severe outcome imbalances. 
Of the 21 studies predicting mortality, 19 were missing 
other metrics or reported either low sensitivity or low 
precision. These models had a low F1 score (a measure of 
model accuracy), indicating a high number of false positives. 
Using a Random Forest model, Yun et al.35 did report clin-
ically useful results with an F1 score of 0.84 and sensitivity 
of 0.90. Castela Forte et al.115 developed a Super Learner 
Algorithm (Ensemble model) to predict 5-yr mortality after 
cardiac surgery, reaching the following values: AUC of 0.81, 
specificity of 0.70, and sensitivity of 0.69.

Process

Process outcomes models relate to logistical aspects such 
as postoperative destination and length of stay. These mod-
els are usually linked with other types of outcome such 
as mortality. Thirteen articles focused on predicting non-
clinical outcomes, all using models that stratified high-risk 
patients.

•	 Unplanned hospital stay: Most studies predicted 
unplanned hospital stays after ambulatory or day sur-
gery,101,107–109 such as an unplanned overnight stay in 
the hospital.107–109

•	 Need for intensive care unit stay for more than 
24 h99,100,102–104

•	 Readmission and discharge timing: Several studies 
predicted the risk of hospital readmission within 30 
days of surgery,114 when patients would be ready for 
hospital discharge98,102 or length of stay after orthope-
dic surgery.99,103–105

•	 Surgical duration prediction: Gabriel et al.106 devel-
oped a XGB regressor to predict case duration in spi-
nal surgery. These studies used tabular data containing 
previously mentioned features, with the addition of 
frailty scores.

Benchmarks

Forty-four articles used different strategies as comparators 
of their machine learning model performance (supplemen-
tary table 1, https://links.lww.com/ALN/D308). Three 
main types of benchmarks were identified, comparing 
models against results obtained from:
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(1) � Multivariate logistic regression30,31,36,43,48,54,55,60,62,65,67, 

69,75,76,78,80,95,106,107,110

(2) � Previously validated scores such as perioperative medi-
cine-related scores (e.g., ASA status, POSSUM, Charlson 
Comorbidity Index, or National Surgical Quality 
Improvement Program calculator scores)30,32,49,61,100,104 or 
other scores58,62 (e.g., Bariclot tool, STOP-BANG score, 
Mallampati test, various frailty indexes, and the acute 
kidney injury score)34,49,58,72,79,82,86,114,121

(3) � Clinical assessment42,52,88

Overall, the machine learning models described in these 
articles outperformed their technical or clinical compara-
tor, with an average increase in AUC and accuracy between 
0.2-0.3, except for that of Chen et al.38 where the ASA score 
alone, despite a lower AUC, had higher accuracy compared 
to neural network and logistic regression models.

Discussion
This systematic review demonstrates the current breadth 
of applications of artificial intelligence and machine learn-
ing models in perioperative medicine for both prediction 
of perioperative complications and prognostication. Most 
approaches remain in the early stages of development but 
are generating promising preliminary results. The substan-
tial increase in machine learning research for perioperative 
medicine applications is evidenced by the more than 100 
articles published in the past decade, incorporating several 
million patients, with over two-thirds appearing in the last 
2 yr. The United States and China, the leading countries in 
artificial intelligence development, contributed the highest 
number of publications, followed by South Korea. These 
findings are consistent with the current use of artificial 
intelligence in other medical fields such as radiology. We 
would expect applications to continue to grow rapidly in 
step with nonmedical usage.134,135

Our primary finding, derived from the PROBAST 
assessment (fig. 3), was that a large proportion of published 
studies exhibit a high or unclear risk of bias. This suggests 
that the study design or execution may lead to mislead-
ing results. Indeed, most studies were based on retrospec-
tive data and used only internal validation. Most studies 
also presented some form of bias in their selection criteria 
of the population or the structure of data extraction. This 
may significantly affect the broader validation of the models 
generated by these studies. Bias in population selection can 
arise from a variety of factors such as inadequate represen-
tation of diverse patient groups, variations in disease prev-
alence or treatment methods across different geographical 
regions, and limitations in data availability. Similarly, issues 
with the structure of data extraction can result in incom-
plete or inconsistent data sets, which can, in turn, affect the 
accuracy and reliability of the models generated.

Some studies, particularly those examining mortality, 
only reported partial metrics for their models. This lack of 

comprehensive reporting can lead to overestimated per-
formance metrics and excessive faith in the model’s pre-
dictions. Another significant source of bias in the analyzed 
articles stems from an absence of detailed descriptions 
regarding calibration. This omission hampers the ability to 
assess the clinical value of the models, as calibration is essen-
tial in determining how accurately the predicted probabil-
ities align with observed outcomes. Together, these factors 
affect the models’ relevance and reliability in a clinical set-
ting. Our analysis highlights important areas for improve-
ment in future research.

Our second major finding, from the ad hoc classification, 
was the heavy reliance on internal validation that was pri-
marily conducted using limited data sets obtained from sin-
gle centers. Most studies lacked external validation; this was 
a significant contributor to the high risk of bias identified. 
Studies with the lowest risk of bias were those that utilized 
data collected from multicenter studies or were derived 
from national databases.105 In terms of confirming gener-
alizability and clinical implementation of machine learning 
models, external validation should be mandatory, ide-
ally performed in different hospitals,136 and using separate 
cohorts of patients to evaluate model performance.136 The 
sharp trajectory of machine learning publications relates to 
the increasing availability of electronic medical data sets that 
can be interrogated for patterns and outcomes. Machine 
learning techniques hold great potential in extracting valu-
able insights from medical data and aiding decision-making. 
However, machine learning models trained on such lim-
ited data may not adequately capture the heterogeneity and 
complexity of real-world scenarios. Robustness needs to be 
confirmed before their widespread adoption, especially as 
models are generated from data that are not necessarily col-
lected in other institutions. Populations may also differ in 
crucial respects.

Third, we identified challenges with models predicting 
perioperative mortality. Mortality rates are now low in elec-
tive surgery. Data sets are thus highly imbalanced and can 
skew predictive models toward exhibiting high false-pos-
itive rates. There are several implications arising from 
such performance issues, as the overestimation of mortal-
ity risk could lead to an unnecessary psychologic burden 
on the patient and a management dilemma for clinicians. 
Exploring different types of features, such as physiologic 
variables derived from preoperative tests such as cardiopul-
monary exercise testing, or adopting classical approaches 
may hold the key to improving the accuracy and reliability 
of mortality prediction models in perioperative medicine. 
Recent work has suggested that instead of providing incre-
mental value for predicting uncommon outcomes in large 
data sets, machine learning methods generally do not out-
perform classical statistical learning methods, which have 
been found to perform well in low-dimensional settings 
with large data sets.137

These findings demonstrate that use of artificial intel-
ligence and machine learning in perioperative medicine 
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is still in the early stages of development compared to 
other specialties such as radiology and ophthalmology, 
e.g., for cancer screening and retinopathy.138,139 Whereas 
the use of machine learning in these specialties are pri-
marily used as diagnostic aids, its use in perioperative 
medicine encompasses a broad range of applications 
including prognostication, analyzing vital signs for clin-
ical decision support, and predicting complications. The 
analytical tools and technologies developed for radiol-
ogy image processing and analysis are generally more 
robust, well established, and validated. The size, breadth, 
and quality of large databases in perioperative medicine 
are limited but improving, and confirmatory external 
validation is largely lacking. Validated and generalizable 
machine learning models will provide perioperative 
medicine clinicians with valuable insights including a 
wealth of data for inferential research and assistance in 
decision-making, both for clinical management support 
and for identifying the appropriate level of postopera-
tive care.

A noticeable trend is the emergence of machine 
learning models integrated into the hospital electronic 
healthcare record system such as that described by 
Bihorac et al.29 These systems utilize machine learn-
ing algorithms and deep learning models to analyze 
patient data throughout their hospital stay, essentially 
tracking their clinical journey. The goals are to pro-
vide clinicians with objective contemporaneous data 
to support clinical decisions and to empower patients 
to make informed decisions. Although promising, their 
widespread clinical implementation is still distant. 
Development and deployment of real-time decision 
support system models are outside the scope of this 
review but also hold great potential if outcome ben-
efits can be formally and prospectively demonstrated 
through earlier recognition of deterioration and/or 
guided management. For example, it is still unclear 
whether interventions that reduce the incidence and 
duration of intraoperative hypotension will ultimately 
improve patient outcomes.140

Recommendations

While artificial intelligence and machine learning hold 
great potential in revolutionizing perioperative medicine 
and improving outcomes, current limitations must be first 
addressed, such as the issues addressed above regarding bias, 
external validation, generalizability, and achieving model 
stability. Other reviews on medical applications of artificial 
intelligence and machine learning provide more detailed 
insights.141–146

Progress has been made in understanding the limitations 
of human cognition, but significant gaps still remain.147 
We therefore recommend adopting a human-centered 
design approach in conjunction with a continuous artificial 

intelligence development cycle with the aim of enhancing 
clinician performance.

To enhance the quality of databases and, subsequently, 
the models from which they are derived, we propose a mul-
timodal approach that integrates diverse data from various 
sources, e.g., physiologic, biochemical, genetic, and imag-
ing. Many machine learning models are data hungry; to 
avoid overfitting, integration of diverse data can be a key 
strategy in developing more robust and reliable models.148 
The creation and integration of machine learning mod-
els into electronic healthcare records can address biases and 
limitations. However, careful design and quality control are 
necessary to ensure data utility beyond billing or workflow 
measurement.

Study Limitations

It was not possible to objectively assess the data sets of the 
publications, so we relied upon limitations reported by the 
authors. Our insights into limitations are also limited by  
the quality and completeness of the articles. It was not pos-
sible to access underlying code or data sets in most pub-
lications assessed, nor was it possible to assess validation 
methods. Last, despite conducting a thorough systematic 
review, some articles may have been inadvertently over-
looked. Nonetheless, the consistency and strength of our 
findings demonstrate that the trends we have identified are 
likely to be reflected elsewhere.

Conclusions and Future Prospectives

The growing complexity and volume of data in periopera-
tive medicine underscore the theoretical potential of artifi-
cial intelligence and machine learning in this field. Possible 
applications could range from risk assessment to real-time 
treatment guidance. While the development of these tech-
nologies could potentially enhance patient care and health-
care resource utilization, the realization of these benefits 
requires careful consideration of the current limitations and 
challenges in the field. The potential for early, accurate diag-
nosis of organ dysfunction or other complications leading 
to timely or even pre-emptive treatment is an intriguing 
prospect but must be approached with rigorous validation 
and proper scrutiny to ensure improved outcomes and 
resource efficiency.

Significant challenges exist, as highlighted by our 
review, which revealed important biases and limitations in 
the current application of machine learning. Until these 
challenges are overcome, they will impede broad imple-
mentation. An overarching strategy is needed to guide the 
development and application of machine learning. The 
United Kingdom Department of Health and Social Care 
issued a code of conduct in 2018, while the U.S. Food and 
Drug Administration has developed a regulatory frame-
work and action plan. The primary aim of these initiatives 
is to establish a reliable structure that ensures secure and 
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efficient integration of artificial intelligence and machine 
learning technologies in the healthcare domain.96,149–151 
These documents cover aspects such as patient consent 
for data usage, appropriate handling of data, the need for 
algorithmic transparency, and accountability. Ethical and 
legal barriers necessitate structured design and deployment. 
Since these technologies are intended to assist patients, 
their future development will necessitate collaboration 
with policymakers, bioethicists, lawyers, academics, clini-
cians, patients, and society at large.
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Appendix

The following research query was conducted: ((((“arti-
ficial intelligence”[All Fields]) OR (“machine learning” 
[All Fields])) AND (“perioperative” [All Fields])) OR 
(“surgery” [All Fields])) OR (“anaesthesia” [All Fields])) 
OR (“preoperative” [All Fields])))). In addition to the 
systematic review, manual searches were performed using 
the main research query and one or more of the follow-
ing terms: AND pneumonia OR chest infection, AND 

myocardial infarction OR heart failure, AND sepsis, AND 
acute kidney injury, AND delirium OR stroke, AND infec-
tion, AND intubation, AND length of stay, AND bleeding, 
AND ileus, AND pain, AND complication, AND wound 
infection, AND skin and soft tissue infection, AND read-
mission, AND urinary tract infection, AND hypotension, 
AND transfusion, AND surgical duration, AND post 
operative venue, AND neural networks, AND extreme 
gradient boosting, AND random forest, AND support 
vector machine, AND NPL, AND generative AI.

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/140/1/85/698657/20240100.0-00016.pdf by U

niversity C
ollege London (ucl) / England user on 01 M

ay 2024

https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device

