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Abstract
We present a simple regularisation of adversar-
ial perturbations based upon the perceptual loss.
While the resulting perturbations remain imper-
ceptible to the human eye, they differ from ex-
isting adversarial perturbations in that they are
semi-sparse alterations that highlight objects and
regions of interest while leaving the background
unaltered. We demonstrate the merits of our ap-
proach by evaluating on a standard explainability
benchmark for object localisation. As a semanti-
cally meaningful adverse perturbations, it forms a
bridge between counterfactual explanations and
adversarial perturbations in the space of images.

We address the gap between counterfactual explana-
tions (Wachter et al., 2017) and adversarial perturbations
(Szegedy et al., 2013), and attempt to understand why a
minimal changes in image data that results in a change in
classifier response does not result in semantically mean-
ingful alteration. One might hope that the smallest edit to
change the classifier response of an image labeled as bird
should alter the bird pixels, but in practice adversarial pertur-
bations make non-local changes that break the classifier. We
show how penalising changes in the mid-level classifier re-
sponse with a perceptual loss stop this breakage and instead
results in semantically meaningful changes that highlight
the extent of objects in images (see Fig. 2).

The close relationship between adversarial perturbations
and counterfactual explanations follows from the definitions
in philosophy and folk psychology of a counterfactual ex-
planation as answering the question “What would need to
be different for another outcome to have occurred?” With
full causal models of images being outside our grasp, such
questions are commonly answered using the Closest Possi-
ble World of Lewis (1973), rather than Structured Causal
Models of Pearl (2000). Under Lewis’s framework, an ex-
planation for why an image is classified as ‘dog’ can be
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Figure 1. Object localisation. From left to right: Original image;
Magnitude of the perceptual perturbations; Dominant connected
component and the resulting bounding box from automatic object
detection. Our method ignores the flowers and highlights the
cabbage butterfly as the most relevant.

found by searching for the most similar possible world (i.e.
image) which is assigned a different label.

One argument for why adversarial perturbations are imper-
ceptible, rather than corresponding to semantically meaning-
ful counterfactual explanations, attributes the effectiveness
of adversarial perturbations to exploding gradients. This
is the phenomenon where changes in functional response
grow exponentially with the depth of the network, relative
to a change of input of fixed magnitude. These exploding
gradients are an issue known to afflict the learning of Recur-
rent Neural Networks (Pascanu et al., 2012), and the deep
networks common to computer vision. This phenomenon
occurs because, by construction, neural networks form a
product of (convolutional) matrix operations interlaced with
non-linearities; and for directions/locations in which these
non-linearities act approximately linearly, the eigenvalues
of the Jacobian can grow exponentially with depth (Pascanu
et al., 2012). While this is well-studied in the context of
training networks the same phenomena occurs when gen-
erating adversarial perturbations. Thus, a carefully chosen
small perturbation can have an extremely large effect in the
response of a deep or recurrent classifier.

To stop adversarial perturbations from exploiting exploding
gradients, we propose a simple novel regularisation that
bounds the exponential growth of the classifier response by
regularising the perceptual distance (Johnson et al., 2016)
between the original image and its adversarial perturbation.

1. Prior work
Many approaches to adversarial perturbations have been
proposed. These can loosely be divided into white-box ap-
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Figure 2. A representative image showing the effects of regularisation over different VGG19_bn layers. As we extend the regularisation to
cover higher layers we find the perturbation becomes more compact and better localised upon the object.

proaches e.g. (Carlini & Wagner, 2017; Moosavi-Dezfooli
et al., 2016) that assume access to the classification model
and black-box methods which do not e.g. (Liu et al., 2017).
It is often formulated as trying to find the closest point to
an image, under the `∞, `1 or `2 norm, that is predicted a
different label.

Adversarial Perturbations and Counterfactuals Con-
ceptually, counterfactual explanations are no different to
searching for an adversarial perturbation sampled from the
space of possible images. Several approaches have been
proposed that either naïvely ignore the requirement that
the world is possible (Wachter et al., 2017), use prototypes
(Van Looveren & Klaise, 2019), or auto-encoders (Dhurand-
har et al., 2018) to characterise the manifold of plausible
images, or require large edits that replace regions of the
image, either with the output of GANs (Chang et al., 2019)
or with patches from other images (Goyal et al., 2019).

Adversarial Perturbations and Gradient Methods The
majority of computer vision explainability methods tend to
be gradient-based and assign an importance weight to either:
every pixel; every super-pixel; or to a set of mid-level neu-
rons. These gradient methods and adversarial perturbations
are strongly related. In fact, with most modern networks
being piecewise linear, if the found adversarial perturbation
and the original image lie on the same linear piece, the dif-
ference between the original image and closest adversarial
perturbation under the `2 norm will be a scaled multiple of
the gradient. As such, `2 adversarial perturbations can be
thought of as a slightly robustified method of estimating the
gradient, that takes into account some local non-linearities.

Of the pure gradient-based approaches, Simonyan et al.
(2013) calculated the output gradient with respect to the
input image to create a saliency map giving fine-grained,
but potentially less interpretable results. Other gradient ap-
proaches include SmoothGrad (Smilkov et al., 2017) and In-
tegrated Gradients (Sundararajan et al., 2017). CAM based
approaches, such as GradCAM (Selvaraju et al., 2016), com-
bine the gradients and the activation maps in the last convolu-
tional layer of the network to create heatmaps that highlight
the salient regions. Perturbation-based methods estimate the

local sensitivity over a larger range than gradient methods.
Zeiler & Fergus (2014) applied constant-value occlusion
masks to different input patches repeatedly to find sensitive
regions. Recent work on Extremal Perturbation (Fong &
Vedaldi, 2017) estimated a mask to occlude that should have
a maximal effect on the network’s output.

2. Methodology
We consider a classifier C(·) that takes an image x as input,
and returns a k dimensional confidence vector. The classifier
C(·) assigns the label i = argmaxj Cj(x) to the image x.

Given image x classified as label i we consider the scalar
multi-class margin:

Mi(x
′) = Ci(x

′)−max
j 6=i

Cj(x
′) (1)

and note thatMi(x
′) ≤ 0 if and only if C(·) does not assign

label i to image x. As such an adversarial perturbation x′

can be found by minimising:

(Mi(x
′)− T )2 (2)

where T is a small target value greater than zero. It is well-
known (Sorensen, 1982) that minimising a loss of the form:

(Mi(x
′)− T )2 + λ||x′ − x||22 (3)

is equivalent to finding a minimiser of Eq. (2) subject to the
requirement that x′ lies in the ball defined by ||x− x′||22 ≤ ρ
for some ρ. As such minimising this objective for an ap-
propriate value of λ and T is a good strategy for finding
adversarial perturbations of image x with small `2 norm.

Writing C(l)(x) for the classifier response of in the lth layer
of the neural net, we consider the related loss:

(Mi(x
′)− T )2+λ′

∑
l∈L

||C(l)(x)′−C(l)(x)||22+λ||x′−x||22

(4)defined over a set of layers of the neural net L.

The second term of this objective is the perceptual loss
of Johnson et al. (2016), and minimising this objective
is equivalent to finding a minimiser of Eq. (3) subject
to the requirement that x′ lies in the ball defined by∑

l∈L ||C(l)(x)− C(l)(x)′||22 ≤ ρ′ for some ρ′.
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Figure 3. Perceptual Perturbations on ImageNet as explanations.
Illustration of perceptual perturbations on typical images taken
from ImageNet (Russakovsky et al., 2015). See discussion in
Section 3.

Method Error
GradCAM (Selvaraju et al., 2016) 0.47

guided-GradCAM (Selvaraju et al., 2016) 0.46
SmoothGrad (Smilkov et al., 2017) 0.46

IntegratedGrad (Sundararajan et al., 2017) 0.44
Excitation (Zhang et al., 2017) 0.45
Extremal (Fong et al., 2019) 0.53

GuidedBP (Springenberg et al., 2014) 0.46
RISE (Petsiuk et al., 2018) 0.57

DFool (Moosavi-Dezfooli et al., 2016) 0.57
Us Unguided 0.43
Us Guided 0.41

Table 1. Object localisation error for the best thresholding strategy
for each method. Our methods achieve the lowest error.

3. Perceptual Perturbations as Explanations
We give a qualitative analysis of the perceptual perturbations,
as shown in Fig. 3. The found perturbations do a good job
of localising on a single object class, even in the presence
of highly textured or cluttered images (dragonfly on fern;
coral reef). Some error in localisation seems to arise from
supporting classes being adjacent to the object - for example,
human legs behind the lawnmower are found to be salient.

We evaluate the quality of our perceptual perturbations as
explanations by using the weak localisation protocol of Fong
& Vedaldi (2017), and test our approach on the first 1000
ImageNet (Russakovsky et al., 2015) validation images.

We take the per-pixel L2 norm of our perturbation as its
salience. We then construct a set of bounding boxes for the
most dominant region using three simple thresholding strate-
gies based on: thresholding the raw values, thresholding
scaled by the image mean, and thresholding a fixed percent
of the image. We apply the same strategies, varying thresh-
olds for all methods and report the per method best score.
For each threshold, we extract the largest connected com-
ponent and draw a bounding box around it. The object is
assumed to be successfully localised when the Intersection
Over Union measure (IOU) between this box and the ground
truth is above 0.5. Following GradCAM’s guided version
(Selvaraju et al., 2016), which makes use of image gradients,
we consider a guided variant of our own consisting of an
element-wise multiplication between our perturbations and
the normalised gradient of the Ci(x) with respect to the
image x.

Through a sensitivity study, we identify a sequential set of
ReLU layers to regularise over in a VGG19_bn network
using the raw value threshold. For the unguided variant of
our method, we regularise the ReLU layers from layer 5 to
10 and for the guided variant of our method, we regularise
the ReLU layers from layer 2 to 13. For our two perceptual
methods, we set λ′ = 10000, λ = 1 in Eq. (4) when testing
all three strategies. Qualitative evidence confirms that regu-
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Figure 4. Comparison of explainability methods on ImageNet validation images.

larising sequentially more and higher layers tend to improve
object localisation in the image (e.g. see Fig. 2).

We compare our perceptual method and its guided variant
with a wide range of alternative approaches (see Table 1 for
results and citations). We perform better than all other meth-
ods on weak object localisation, where the guided variant
and the unguided variant of our method achieve the lowest
error and second-lowest error rates respectively. Further,
our guided approach also outperforms all others in every
thresholding strategy (results not shown).

A qualitative evaluation can be seen in Fig. 4. Our method
highlights the interior textures of the target object in the
image. This differs from the gradient-based approaches
which capture finer edge details and the activation-based
GradCam which highlight the entire object coarsely.

4. Conclusion
We have presented a novel regularisation based on the per-
ceptual loss for the generation of adversarial perturbations.
This regularisation penalises adversarial perturbations that
exploit exploding gradients, forcing larger and more mean-
ingful perturbations to be generated. The fact that such
perturbations still exist under these constraints and remain
imperceptible to humans is another piece of the puzzle in
understanding the interrelationship between adversarial per-
turbations, neural networks, and human vision. We have
shown how these perturbations can be interpreted as expla-
nations and obtained state-of-the-art results on a standard
explainability benchmark.
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