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Glossary

EPSG EPSG Geodetic Parameter Dataset is a public registry for spatial measurement
standards. See Irish Grid and Table 4 https://epsg.io/29903. 2, 18

GeoJSON Geographic extensions to the JSON data format. See https://geojson.
org. 6, 15, 22, 59

Imagelet Tiny perspective views of a scene from different viewpoints. See [64] and
Figure 23. 40–42

ImageNet Image database organised according to the WordNet hierarchy (currently only
the nouns), in which each node of the hierarchy is depicted by thousands of images.
See [30] and https://www.image-net.org. 41

Irish Grid The Irish Grid Reference System (EPSG:29903 - TM75) is a coordinate
reference system for Ireland which OSNI use for the data provided for this DSG.
See https://epsg.io/29903 and https://www.ordnancesurvey.co.uk/
documents/product-support/irish-grid.pdf. 2, 18

Keras ML framework built on TensorFlow 2. See [9] and https://keras.io/. 46, 61

KMeans Clustering algorithm for k groups closest by a distance measure. See [51]. 54,
55, 63

LabelImg Graphical image annotation tool. See [56], Table 2 and https://github.
com/tzutalin/labelImg. 18, 23

laspy Python library for managing LiDAR LAS and LAZ files. See [6] and https://
laspy.readthedocs.io. 32

LASTools Toolkit for processing LAS datafiles. See [20] and https://rapidlasso.
com/LAStools. 31, 33

LATTE Web tool for annotating LiDAR Point Cloud data. See [59] and
https://github.com/bernwang/latte. 28, 34, 36–38

LAZ Lossless compression format for LAS files. See LAS and [28]. 2, 35

Leica Pegasus Vehicle mounted mapping system comprising a LiDAR sensor, a 24 MP
(2 × 12 MP) 360° camera, up to 6 additional 12 MP CMOS cameras and various other
sensors (like GPS coordinates). See https://leica-geosystems.com/
en-gb/products/mobile-mapping-systems/capture-platforms/
leica-pegasus_two-ultimate. 4, 9, 12, 16, 18, 23
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Matplotlib Python library for creating static, animated, and interactive visualisations. See
[27] and https://matplotlib.org. 9, 30, 32

MeanShift Algorithm to locate maxima of a density function. See [51]. 54–56, 63

Octree Tree-like structure of exactly eight children for each internal node. See http:
//www.open3d.org/docs/latest/tutorial/geometry/octree.html. 33

Open3D Library for rendering 2D and 3D vector graphics. See [68] and http://www.
open3d.org/. 33, 34

OpenDataNI Portal for Northern Ireland public sector data, which is part of the Digital
Northern Ireland initiative. See https://www.opendatani.gov.uk. 15, 22, 59

OpenGL Cross-language, cross-platform API for rendering 2D and 3D vector graphics.
See https://www.opengl.org/. 9, 30, 33, 34

Oxford RobotCar Dataset Over 100 repetitions of a consistent route through Oxford,
UK, captured over more than a year. See [37, 3], Figure 12 and
https://robotcar-dataset.robots.ox.ac.uk. 27, 29

Plas.io Web interface for visualising geospatial data. See https://plas.io/. 34–36

Point Cloud Spatial data points commonly used for LiDAR Point Clouds in three
dimensions (X, Y, Z). 2–4, 6, 7, 9, 10, 12, 14, 18, 19, 23, 25, 28, 30–36, 38, 51–54,
57, 58, 60, 61, 63, 66

PointCNN Framework for feature learning from point clouds. See [32]. 14, 63, 64

PointNet Point Cloud data Voxel architecture for object classification, part segmentation
and scene semantic parsing. See [8] and https://github.com/charlesq34/
pointnet. 10, 14, 15, 60–63, 65

QGIS GIS (formerly Quantum GIS) application for viewing, editing, and analysing
geospatial data. See [45]. 9, 30, 31, 33, 52

Rand Index Similarity measurement between two data clusters. See [53]. 58

Sheet 75 Rural region of Northern Ireland along the Glenelly Valley, running from
Plumbridge to Sperrin. See Track and Figure 6. 4, 19, 21–23

Skymask Polar plot of a structures’ silhouette following Skyplot [38]. See [62]. 27, 28

Skyplot Illustration of GPS satellite trajectories over a given ground site. See [38]. 3

SphereNet Framework for applying ML to spherical images. See [11]. 14
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Streetscape.gl Toolkit to visualise autonomous vehicle XVIZ protocol data. See [57] and
https://github.com/aurora-opensource/streetscape.gl. 34, 38, 39

TensorFlow ML and AI platform. See [12] and https://www.tensorflow.org. 2,
14, 46, 61

Track Leica Pegasus data provided by OSNI for this DSG, denoted by B, C, D, E, F, H, I,
L, N, P and Q. See Sheet 75 (rural), NW200 (urban) and Figures 4, 5 and 6. 3, 7,
20–23, 27, 31, 32, 36, 45, 46, 49, 52, 57, 58

UrbanLoco Full sensor suite dataset for mapping and localisation. See [62] and https:
//github.com/weisongwen/UrbanLoco. 27, 28

VGG16 CNN Architecture for real time detection of objects in images developed by VGG.
16 refers to the number of layers. See [52]. 13, 14, 41, 65

Voxel Single sample or data point in a three-dimensional grid. 3, 51, 52

VoxelNet 3D Point Cloud feature extraction and bounding box prediction. See [69]. 14

Waymo Open Dataset Datasets originally constructed for developing self-driving cars.
See [54] and
https://github.com/waymo-research/waymo-open-dataset. 16, 17, 27

WebGL JavaScript API for rendering interactive 2D and 3D graphics within a web
browser. See https://www.khronos.org/webgl/. 9, 30, 34, 37, 38

Whitebox Geospatial analysis and data visualisation tool. See [35] and https://www.
whiteboxgeo.com/. 31

WordNet Lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms, each expressing a distinct concept. See https:
//wordnet.princeton.edu/. 2

XVIZ A protocol for real-time transfer and visualization of autonomy data. See https:
//avs.auto/#/xviz/. 4, 38

Acronyms

2D Two-dimensional. 9, 12, 15, 17–19, 22–27, 30, 31, 33, 40, 65

3D Three-dimensional. 9, 10, 12, 14–19, 27–29, 31, 33–38, 51, 58, 60, 63, 66, 67

AI Artificial Intelligence is machine approximation of human or animal intellect. 4, 7, 67,
68
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API Application Programmable Interface. 3, 4

ASPRS The American Society of Photogrammetry and Remote Sensing maintains the
LAS format OSNI provided for this DSG and is a member of the International
Society for Photogrammetry and Remote Sensing (https://www.isprs.org/).
See https://www.asprs.org. 6, 16, 19

cm centimetre. 18

CMOS Complementary Metal–Oxide–Semiconductor active pixel sensor. 2

CNN Convolutional Neural Network is a class of artificial Neural Network models
commonly used in computer vision tasks. See R-CNN. 4, 7, 13, 14

COCO Microsoft Common Objects in Context (also MS-COCO) is a large-scale object
detection, segmentation, and captioning dataset [34, 33]. See
https://cocodataset.org. 44, 46, 47

DBSCAN Density-Based Spatial Clustering of Applications with Noise is a data clustering
algorithm to group points that are closely packed together (points with many nearby
neighbours). See [49]. 55–58, 63

DEM Digital Elevation Model is a representation of the bare ground (bare earth)
topographic surface of the Earth excluding trees, buildings, and any other surface
objects. 15

DSG Data Study Group is a ’collaborative hackathon’ on research topics. See https:
//www.turing.ac.uk/collaborate-turing/data-study-groups. 2, 4, 5,
11, 12, 16, 17, 29, 33, 34, 65

DSM Digital Surface Model is a collection of points of bare earth including features such
as buildings and vegetation. 15

DTM Digital Terrain Model is a grid of regularly spaced points of earth surface height
excluding elements like buildings and plants. 15

GB Gigabyte means 1000 MB of data. 18, 19

GIS Geographic Information System tools process, analyse and present geographic
information. See https://www.ordnancesurvey.co.uk/
business-government/tools-support/gis/what-is-gis. 3, 27, 30, 31

GNSS Global Navigation Satellite System. See http://www.unoosa.org/oosa/en/
ourwork/icg/icg.html . 28

GPS Global Positioning System. 2, 3, 16, 18, 19, 27
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GPU Graphics Processing Unit is very efficient hardware designed to manipulate
computer graphics and process images. 29, 45, 47

GUI Graphical User Interface is a means for users to interact with electronic devices
through graphical icons. 9, 30, 35, 38

hr hour. 16, 18, 68

IMU Inertial Measurement Unit comprises a body’s specific force, angular rate, and
sometimes the orientation of the body via measurement devices including
accelerometers and gyroscopes. 16

IoU Intersection over Union is a measure of the accuracy of an object detector by finding
the overlap regions between the predicted and ground truth masks divided by the
union of the two. 7, 45, 48, 49

JADE The Joint Academic Data Science Endeavour is a Tier 2 facility supporting
research in ML. See https://www.jade.ac.uk/. 29, 45

JSON JavaScript Object Notation is a lightweight, human-readable data interchange
format. See GeoJSON and https://www.json.org. 2, 46, 47

KAIST The Korea Advanced Institute of Science and Technology is a national research
university located in Daedeok Innopolis, Daejeon, South Korea. See https://
www.kaist.ac.kr/. 27

KITTI The Vision Benchmark collaboration between the Karlsruhe Institute of
Technology and the Toyota Technological Institute of Chicago [16, 18] (KITTI) is a
suite of computer vision benchmark datasets collected by a camera mounted
vehicle http://www.cvlibs.net/datasets/kitti/. 16, 17, 38, 44

km kilometre. 16–18, 27

LAS LASer format is a LiDAR Point Cloud data file format maintained by ASPRS. See
https://www.asprs.org/divisions-committees/lidar-division/
laser-las-file-format-exchange-activities. 2, 5, 6, 19, 30, 32, 35

LiDAR Light Detection and Ranging (or Laser Imaging, Detection, and Ranging) is a
means of detecting the distance to a surface by timing the reflection of a laser back
to the point from which it was emitted. See https://oceanservice.noaa.gov/
facts/lidar.html. 2, 3, 6, 7, 9, 10, 12–19, 22, 25–31, 33–38, 51, 54–56, 59,
60, 63–66

LPS Land & Property Services manages land and property in Northern Ireland and
includes OSNI. See
https://www.finance-ni.gov.uk/land-property-services-lps. 12
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m metre. 16, 18

mAP Mean Average Precision is a measure of prediction accuracy where higher is better.
See [14] for an example of the metric applied in object detection and IoU. 46, 49

MB Megabyte is 1 million bytes of data. 5, 30

ML Machine Learning algorithms make predictions or decisions without being explicitly
programmed to do so. See AI. 2–4, 6, 9, 12, 14, 15, 29, 33, 63, 66–68

MP Megapixel is one million pixels (points with a numeric colour value). MP is often used
to indicate the number of pixels in an image from a camera or sensor. 2, 7, 16, 18

NEON National (U.S.) Ecological Observatory Network—part of the U.S. National
Science Foundation—is an observation facility providing data on U.S. ecosystems.
See [40] and https://www.neonscience.org/. 33–36

NW200 Northwest 200 is an urban section of Northern Ireland roads connecting
Portrush, Portstewart and Coleraine. See Track and Figure 5. 4, 19, 20, 22

OSNI Ordnance Survey of Northern Ireland. 2, 4–6, 8–13, 15–18, 22, 23, 25–28, 30, 31,
33–36, 38, 43, 44, 59, 65, 66, 68

pptk Point Processing Toolkit is a Python library for visualising and processing 2D and
3D Point Clouds. See [36]. 33, 34

PyPI The Python Package Index provides publicly available Python software. See
https://pypi.org. 32–34

R-CNN Region Based Convolutional Neural Network are a family of object detection
models which employ a “recognition using regions” paradigm. See [19] and CNN.
5, 14, 45–49, 65

RANSAC Random Sample Consensus is an iterative algorithm for robust fitting of models
of data containing outliers. It can be used to detect outliers in a dataset. See [15].
54, 58

RGB Red Green Blue is an active colour model commonly used in digital images. 41, 64

RPN Region Proposal Network is a fully convolutional network that simultaneously
predicts object bounds and objectness scores at each position. 48

SaNE Smart Annotation and Evaluation Tools for Point Cloud Data is a LiDAR annotation
tool. See [1] and https://github.com/hasanari/sane. 38

VGG Visual Geometry Group is a computer vision research group. See https://www.
robots.ox.ac.uk/˜vgg/. 4, 8, 47
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VIA VGG Image Annotator is a manual web interface annotation package for image,
audio and video. See [13] and
https://www.robots.ox.ac.uk/˜vgg/software/via. 47

VM Virtual Machine means virtual computing system, where all the aspects of a
computer—including hardware—are run virtually as software. OSNI data was
securely analysed for this project within VMs managed by the University of Leeds.
8, 29, 30, 33–35

YOLO You Only Look Once is a real time object detection algorithm. See [47]. 13, 14,
45, 46, 65
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Executive Summary

Challenge Overview The Ordnance Survey of Northern Ireland (OSNI) mission is to
provide high quality geospatial data. Historically this has been for 2D mapping, but
modern survey techniques and increasing user requirements have shifted focus toward
3D data. Since 2019, OSNI has operated a vehicle mounted Mobile Mapping System
(Leica Pegasus:Two Ultimate Mobile Mapping System) across Northern Ireland
capturing 3D Point Cloud data and spherical street view imagery.

The range of potential applications is significant, including urban planning, asset
identification and management, automating identification of road sign changes for
navigation and transport network datasets, identifying feature locations such as scenic
views, drainage, potholes and road surface quality, street furniture maintenance, 5G
network planning and managing autonomous vehicles. While availability and
accessibility of this kind of raw data is improving, there are significant technical
challenges in deriving insights from the richness of this dataset.

To address these challenges this project seeks to explore the potential of OSNI’s highly
detailed Light Detection and Ranging (LiDAR) and imagery data via Machine Learning
(ML) and data science methods, with a focus on developing pipelines to visualise, classify
and identify road features like drainage which could potentially help various government
authorities better monitor road infrastructure. There are many other potential applications
for the sort of data OSNI collects, and we hope some of the pipelines and visualisations
explored below can aid broader applicability. Below are the results from each of the
streams of work conducted.

LiDAR Data Visualisation An important element of working with LiDAR data is
visualisation. To that end some non-commercial tools that can be used to aid
understanding and presenting the data were explored. This included Graphical User
Interface (GUI) tools such as QGIS (Section 3.1), standard Python visualisation libraries
such as Matplotlib (Section 3.2) and the libraries associated with OpenGL (Section 3.3)
and WebGL (Section 3.4). We detail the installation, advantages and disadvantages of
each approach for use in applications OSNI might provide and maintain.

Spherical Image Pipeline In this section several approaches to detect drainages using
2D spherical images were explored, including

i transfer learning to classify whether a part of the image has drainage or not
(Section 4.1)

ii exploring a pre-trained road segmentation model in masking the road sections of street
images (Section 4.2)

iii training both a standard object detection model (Section 4.3), as well as an object
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instance segmentation model to identify and localise drainage from street images
(Section 4.4).

Despite the size of road drainage and limited ground truth labels, the results of the different
approaches were generally promising.

There are areas to improve for all four approaches, such as leveraging data continuity for
object tracking and the need for more ground truth labels to help improve accuracy and
model generalisation. A strength of this approach is it only requires image files (smaller
file sizes relative to LiDAR data) which has a wealth of established open source methods
and pipelines to process the data (elements of which we have refined, including a means
to project the spherical images to regular images). These methods can also be easily
adapted to retrieve geographical information at the street-level such as pot holes, trees
and building facades in the future.

LiDAR Pipeline In this section, we explored the 3D Point Cloud dataset through three
standard tasks:

i testing different approaches to Point Cloud sampling to reduce computation time
(Section 5.2).

ii exploring different unsupervised approaches to cluster Point Cloud data (Section 5.3).

iii examining a standard Point Cloud classifier (PointNet) to determine whether a Point
Cloud sample has a drainage or not (Section 5.4).

Given the data constraints (e.g. size and complexity), our initial results from training the 3D
Point Cloud classifier were encouraging. However, there are prospects for improvement,
particularly on the exploration and visualisation of Point Cloud clusters and the lack of
open and accurate ground truth labels. The strength of analysing this data is its richness
in potentially collecting novel 3D information from our environment.

Limitations A number of limitations constrained our study. The most prominent across
both streams of work is the lack of labelled data. Increasing the amount of annotated
data should improve the model accuracy and generalisation. Second is temporal: we did
not have enough time to take advantage of the richness, continuity and multi-modality of
the dataset, and there is good reason to believe that by fusing the Point Cloud and image
data a more accurate model could be developed.

Recommendations There is great potential for OSNI to use this data to aid government
departments in planning policies with wide application for the general public. Developing a
pipeline to measure a wide range of geospatial features is essential to that mission.

We have a number of recommendations to achieve this. The first is to further explore
linkages (eg. using meta-data) between the image and LiDAR datasets. This will aid the
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development of a process to fuse the two models. The second is to increase the quantity
and diversity of the training data by using advanced visualisation and annotation tools.
The third is to exploit the continuity of the data for object tracking and the vast unlabelled
imagery for semi-supervised and active learning. The fourth and final is to release data
and methods processed and developed within this Data Study Group (DSG) for the mutual
benefit of the growing research in this domain. For example: pre-trained models can be
used to retrieve useful information with minimal supervision, and the more researchers
apply and improve these methods the more they could in turn aid the community and
OSNI. All of these directions are possible avenues for future, publishable research.
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1 Introduction

1.1 Ordnance Survey Northern Ireland

Ordnance Survey of Northern Ireland (OSNI) is the official mapping agency for Northern
Ireland which produces highly accurate geographic mapping data. OSNI—a part of Land
& Property Services (LPS) within the Department of Finance of Northern Ireland—has
historically focused on 2D mapping but has recently shifted to more modern survey
techniques and increasing user requirements for 3D data [43]. OSNI also aim to offer a
Geospatial Survey Service to facilitate road health, such as identifying feature locations
for drainage, potholes and road surface quality for the Department for
Infrastructure.

1.2 Project Objectives

This project seeks to explore the potential of this highly detailed Light Detection and
Ranging (LiDAR) and imagery data via Machine Learning (ML) and data science
methods, with a focus on developing pipelines to classify and identify urban features like
drainage within street images and Point Cloud data. This project specifically focused on
the detection of street drainages which can be used by the public authority such as the
Department of Transport to better monitor its road infrastructure. In addition, the method
and its pipeline can be adapted to detect other urban features which would be a valuable
asset for a range of government departments. We hope some portions of the project can
be released publicly for general use. More specific questions that we hope to address
with this analysis include:

• Explore visualisation and annotation methods of LiDAR data.

• Evaluate the effectiveness of applying standard ML models on street images
(including spherical) and Point Cloud (LiDAR) data for the classification or
localisation of small road objects such as drainage.

• Explore multi-modal methods for detection of small objects like drains.

• Do spherical images perform better or worse than normal view imagery for object
detection?

1.3 Literature Review

To determine the best approach for this DSG challenge we conducted a concise literature
review. This familiarised us with the Leica Pegasus (via official manuals), street imagery
and LiDAR technology, as well as data science methods that are being applied on images
(including spherical ones) and LiDAR data. We also found promising work on fusing
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LiDAR and Spherical Image models that could potentially combine the datasets provided
by OSNI for future development.

Figure 1: VGG16 Architecture [52]. Figure from [60].

Figure 2: You Only Look Once (YOLO) Architecture and Figure from [47].

Standard images models Convolutional Neural Network (CNN) [30] is a type of
Neural Network model that is commonly used for computer vision tasks such as image
classification (to classify whether the image is a particular class or not), object detection
(to localise an object in an image), and semantic segmentation (to classify each pixels of
an image). To begin, we looked at standard computer vision models for these tasks
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including VGG16 [52] for image classification (Figure 1), YOLO [47], YOLOX1 [4, 17] for
object detection and Masked Region Based Convolutional Neural Network (R-CNN)2 [24]
for object instance segmentation (Figure 3).

Figure 3: MaskR-CNN example from [24]

Spherical Images models Standard CNN models are not necessarily well suited for
spherical images as the natural projection surface is a sphere which cannot be
unwrapped to a plane without introducing significant distortions (particularly in polar
regions). Various researchers tried to tackle this. For example, SphereNet [11] applied a
deep learning framework which encodes invariance against such distortions explicitly
into a convolutional neural network.

Standard LiDAR models There are several ML models in the literature that deal with
Point Cloud data, for example PointNet [8], VoxelNet [69] and PointCNN [32]. Due to time
constraints we focused on PointNet, a deep learning architecture illustrated in Figure 4,
for Point Cloud classification and segmentation. Please see [8] for further details. An
implementation of PointNet using TensorFlow 2.0 can be found in [21].

For a more comprehensive review regarding 3D LiDAR data, please see [22] which
highlights recent ML models and architecture as well as fundamental challenges that
arise from analysing this type of data.

1See https://github.com/Megvii-BaseDetection/YOLOX
2See https://github.com/facebookresearch/Detectron
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Figure 4: PointNet Architecture from [8]

Fusion of LiDAR and Spherical image data There has been growing interest in
examining the fusion of LiDAR and spherical image data for different ML tasks [2, 7, 23,
65]. Due to the time constraints of this DSG, we did not examine this area in great detail.
However, there are opportunities here as the data captured from the LiDAR equipment
have been synchronised. Further research is necessary to examine how the two types of
data can be fused and the architecture that can take advantage of this fusion. In our
study, we have explored projecting the 2D bounding boxes into 3D space as an example.
Please see Section 2.3 for more details.

Open access to other Geospatial and LiDAR data There are several open access
Geospatial and LiDAR datasets and in fact during the design and development phases
of the LiDAR pipeline, in addition to the data provided by OSNI, we briefly explored using
open access drainage data (GeoJSON) from OpenDataNI Portal3. Regarding the open
access to other typologies of LiDAR data (airborne, satellite) as well as other geospatial
products, currently there are some consolidated programmes in the U.K., EU and in the
U.S. maintained by the Environment Agency4, the European Environment Agency5 and
United States Geological Survey (USGS)6 respectively. It is possible to download
geospatial products such as a Digital Elevation Model (DEM), Digital Terrain Model
(DTM), Digital Surface Model (DSM) data that could facilitate the monitoring of large
urban and rural areas and integration with ground-based and mobile mapping
systems.

3OpenDataNI: https://www.opendatani.gov.uk/dataset/drainage-asset
4EA: https://data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/

national-lidar-programme
5EEA: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
6USGS: https://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html/
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Waymo Open Dataset [54] 7 KITTI [18] OSNI Data DSG

Tools
• Camera • 2 Colour Video Cameras Leica Pegasus:
• Waymo Driver sensors • 2 Greyscale Video Cameras • LiDAR sensor

• GPS/IMU navigation system • 1 spherical 24 MP camera
• 3D Velodyne laser scanner • 6 mounted 12 MP cameras

Object
Data

• Vehicles • Pedestrians • Road • City • Drainage
• Cyclists • Residential • Campus • Road Signs
• Person

Recording
Locations

• San Francisco • Phoenix • Karlsruhe (Germany) • Northern Ireland
• Mountain View (US)

Location
Diversity

• Downtown • Suburban • Urban • Rural • Urban
• Daylight • Night • Highway • Daylight • Rural
• Pedestrians • Cyclists • Daylight
• Diverse Weather • Constructions

Labelled
Data

• Vehicles • Pedestrians • Car • Van • Drainage
• Cyclists • Signs • Truck • Pedestrian • Road Signs

• Person (seated) • Cyclist • ASPRS LiDAR
• Tram • Misc Classification

Map
Visited
Areas

• Phoenix 40 km2 • 6 hrs of traffic8 • 1800 km
• San Francisco 36 km2

& Mountain View
• Total 76 km2

Avg. Dist.
Between
Images

No rate found during the DSG. • 20 m • 3 m

Table 1: Comparison of OSNI LiDAR DSG challenge dataset with Waymo Open Dataset [54] and KITTI dataset [18].
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Related works that provide open datasets for 2D images, 3D object detection and 3D
tracking include the Waymo Open Dataset9 [54] and the KITTI10. The Waymo Open
Dataset has approximately 12 million 2D bounding box labels (with tracking IDs on
camera data) and 12.6 million 3D bounding box labels (with tracking IDs on LiDAR data)
[54]. The main website associated with the KITTI provides various types of dataset from
raw data [18], to processed stereo data, visual odometry, and a road dataset that
demarcate lanes within street scenes [16]. Table 1 compares the different types of tools
used: object data, diversity type of location, where the recording located, number of
labelled data, kilometre (km) of visited area in the Waymo Open Dataset [54], KITTI [18]
and the OSNI data used in this challenge.

During the DSG we considered ways of using the standard architectures cited above for
both image and LiDAR data. For the future we recommend exploring the use of these
assets for both improving the performance of classification models and on exploring the
fusion of the two streams of data for multi-modal modelling.

7Formerly Google Autonomous Vehicle
8Specification not available in km.
9The Waymo Open Dataset is available at https://waymo.com/open/

10KITTI is available at http://www.cvlibs.net/datasets/kitti/

17

https://waymo.com/open/
http://www.cvlibs.net/datasets/kitti/


2 Data Overview

2.1 Dataset Description

Since 2019, OSNI has operated a vehicle mounted Leica Pegasus across 1800 km of
Northern Ireland roads. This multi-sensor recording platform is equipped with a GPS
satellite dish, four 12 MP cameras placed along the perimeter of the sensor, one 360◦

spherical camera at the top and a LiDAR laser scanner. The LiDAR laser sensor
determines the distance to the first object on its path by emitting a laser pulse into the
surrounding environment and measuring the time for the reflected light to return to the
receiver.

Repeating this process millions of times per second in a 360◦ range creates a precise, 3D
visualisation of the surrounding area known as a Point Cloud, with approximately 5 cm
point spacing (assuming driving at 40 km/hr). At the same time, the four cameras capture
images in a manner synchronous with the LiDAR sensor, meaning that they take images
when the LiDAR scanner is at the centre of their field of views. As such, the multi-modal
sensor captures consistent 3D Point Cloud data, 2D spherical street view imagery and
normal view imagery of roads and their surroundings, all of which are geo-referenced to
that framework allowing one to know the exact location of each feature. The collected
information is aimed to be integrated together through multi-modal techniques to deliver
high accuracy of measurements. Please see Table 1 for comparison with other LiDAR
datasets.

Image Classification Count

Drainage11
Bounding Box 467
No Drains 502

Total 969

Road Signs12 227
Unclassified 20662

Total Images 21631

Table 2: Number of images in the OSNI dataset, split by classification type (contains
drainage; does not contain drainage and unknown), and a dataset of road signs. Images
were also provided with (X, Y ) coordinates (Z not included) in the Irish Grid EPSG:29903
- TM75 coordinate system (see https://epsg.io/29903). Please see Table 4 for
more detail descriptions of the training data.

OSNI provided two datasets. First: approximately 76 GB of colourised data of spherical
images collected at 3 m intervals in JPEG format listed in Table 2. The 2D imagery is

11OSNI staff used LabelImg to draw bounding boxes around drains.
12These were not used in the analysis in this report.
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accompanied with additional location files, specifying the (X, Y ) location of each image
which can aid integrating the two data-sets. The second is approximately 91 GB of
colourised, 3D Point Cloud data. This data is provided in a format with columns listed in
Table 3.

Attribute Description

X Coordinate of observation X = (Xrecord ∗Xscale) +Xoffset

Y Coordinate of observation Y = (Yrecord ∗ Yscale) + Yoffset

Z Coordinate of observation Z = (Zrecord ∗ Zscale) + Zoffset

GPS GPS time point of observation

Intensity Amount of light energy recorded by the sensor
Blue Blue image channel value

Green Green image channel value
Red Red image channel value

Return Number Which sequential pulse received
Number of Returns Total number returned for an emitted pulse13

Scan Direction Flag Direction of the scanner mirror at the time of the output pulse
Edge of Flight line Last point on a given scan line before change of direction
Scan Angle Rank Scanner angle at time of output pulse (in [−90◦,+90◦])

Classification Type of point14 such as Ground, Building and Water
Point Source ID The file from which the point originated

User Data Optional additional data (not used)

Table 3: Columns in the LAS data Version 1.2 format [31] managed by the ASPRS.

The data provided has been collected while driving along as shown in Sheet 75 (rural)
of Figure 6 and in sheet Northwest 200 (NW200) (urbanised) of Figure 5. Given the way
the data were captured, they exhibit continuity in the sense that sequential images have
significant overlap and exhibit similar weather and traffic patterns. Examples of labelled
2D imagery and LiDAR data is shown in Figure 7.

13LiDAR works like ultrasound. Every time there is a change in the density of the material the pulse is
travelling through, part of it is transmitted and part of it is reflected back towards the sensor. The quantities
’return number’ and ’total pulse returns’ capture precisely this phenomenon.

14See page 10 of https://www.asprs.org/a/society/committees/standards/asprs_las_
format_v12.pdf for details.
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Track C

Figure 5: Visualisation of the path along which data has been collected in sheet NW200 (urban) with labelled Tracks.
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Figure 6: Visualisation of the path along which data has been collected in Sheet 75 (rural), with labelled Tracks (B–Q).
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Figure 7: A sample of the data provided: a 2D spherical image (left) and a segment of a
LiDAR dataset (right). The red box corresponds to a bounding box provided by OSNI as
part of the labelled data. The yellow dot corresponds to the location where the image on
the left was taken. Note that labels were only provided for a limited set of 2D imagery.

Training Test Split In order to achieve meaningful comparisons between the various
models we performed a spatial train and test split using the Tracks with labelled images.
The number of images in each Track can be seen in Table 4. The spatial location of the
Tracks can be seen in Figure 6 and Figure 5. In particular, the labelled data in Tracks B, D,
F, I, L, N, P from Sheet 75 and C from NW200 have been used for training purposes and
the data in Tracks E, H, Q (Sheet 75) have been designated for testing, corresponding
roughly to an 80-20 split.

In some experiments we sampled or used the data in slightly a different fashion for
reasons such as the constraint of computing time (for example see Section 4.4) and the
need to relabel the data (see Section 5.4). We chose this split, over for example a
temporal split, because of its simplicity and to reduce the possibility of sequential data
leading to data leakage from the training set into the test set. However, it should be
noted that this assumes that the distribution of images in the train and test set are the
same, which might not be completely accurate given variable weather conditions and
urbanisation levels.15

It should also be noted that for specific models explored in this report, some of the 2D
imagery had to be re-labelled due to both issues with the annotation file format as well
as the inaccuracy of the bounding boxes after projection to rectangular images. In
Section 2.3 we explored the transfer of the bounding boxes from the 2D labelled imagery
to the LiDAR data. Other approaches for labelling the LiDAR data included using
unsupervised models on the raw LiDAR, which turned out to be very difficult, and
importing the open source drainage data (GeoJSON) from OpenDataNI, which turned out
to be unreliable due to non-uniform misalignment with the OSNI data. At the end,

15There was a discussion of considering k-fold cross-validation due to the lack of data.
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Dataset Track Drainage No Drainage Train/Test Spilt Total Images

Northwest 200 C 274 151 Training 4805

Sheet 75

B 18 42 Training 518
C – – – 1630
D 0 42 Training 1852
E 12 0 Testing 1579
F 39 8 Training 2268
G – – – 1017
H 14 0 Testing 1043
I 8 0 Training 488
J – – – 917
K – – – 870
L 23 91 Training 990
N 7 0 Training 173
M – – – 423
O – – – 332
P 15 51 Training 1508
Q 57 117 Testing 1218

Table 4: The size of labelled datasets provided by OSNI with drainage labelling via
LabelImg [56]. Track letters refer to those indicated on in Figures 5 and 6. Tracks C,
J, K, M and O from Figure 6 were not labelled (as indicated by the ’–’ character).

manual labelling was used to create a more reliable labelled dataset for the Point Cloud
data.

2.2 Project Spherical Images to Regular Images

Despite the Leica Pegasus system being equipped with normal view cameras
(non-spherical), OSNI only provided spherical images. The reasoning for this was that it
was less time consuming to annotate spherical images. However, this introduced
distortion to the shape of the drainage, which could potentially affect the performance of
the models that we studied. An attempt to quantify this difference was carried out in
Section 4.1.

In order to avoid this, we pre-processed the 2D spherical imagery using the
Equirectangular-toolbox [39].

As shown in Figure 8, essentially the package takes as input the spherical imagery (which
one can think of as living on a 2-dimensional, unit-radius sphere) and a point P (which
corresponds to the point of the sphere from which one is looking from) and performs a
gnomonic projection on a plane tangential to P . An example of this operation is shown
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Figure 8: Gnomonic projection of 2D spherical image through point P Image from [5].

in Figure 9. The point P = (θ, φ) takes values θ ∈ [0, 1], φ ∈ [0, 1] where θ = 0 points
upwards and θ = 1 points downwards, while φ is the azimuthal angle corresponding to
rotating around the car.

Figure 9: Example of gnomonic projection of spherical image in Figure 7 with P = (0.75, 0)
(left) and P = (0.75, 0.5) (right).

Given that we are particularly interested in drains which are located close to the ground,
we have used θ = 0.75 for the majority of our data pre-processing. Furthermore, note
that this process provides a natural way for data augmentation by projecting from different
points around the car (using several values for φ). This process was used both for the
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spherical imagery and the bounding boxes provided. In the case of the bounding boxes,
this introduced some inaccuracies in the sense that the boxes got slightly bigger than they
should have been.

2.3 LiDAR and Imagery Merge

As mentioned above, the labelling provided by OSNI was only for the 2D spherical
imagery. In particular, no labelling was provided for the LiDAR data. In this subsection
we explore the possibility of transferring labels between imagery and LiDAR.

To begin with, we matched the 2D labelled imagery files with the LiDAR files that included
the (X, Y ) location16 where the spherical image was taken—note that the altitude Z of the
location where the image was taken was not provided and thus the Z coordinate was not
used at all in this discussion.

Through a simple shift, we transferred the origin of the coordinate system to the location
where the image was taken and we considered a unit-radius sphere centred at that
location. Then, we converted the location of the bounding box on the spherical image to
angles (θ, φ), focusing only on the azimuthal angle φ because of the reason mentioned
above related to the Z direction. Having this at hand, we filtered all the Point Cloud data
keeping only those that lie within the azimuthal angle range of the bounding box (plus a
buffer). Given that the drains are not too far from where the image was taken, we also
filtered on the radial distance, mainly to improve visualisation.

In Figure 10, on the top we show a (labelled) spherical image containing a drain and on
the right we show the result of the procedure outlined above. In both images, ones can
easily see the car, the pavement and the tree, while the drain is not particularly easy to
identify.

The images above highlight issues regarding the detection of small size objects, and in
particular drainage, through Point Cloud data. We see that, in certain cases, it can be
particularly difficult to see the drains in the Point Cloud data as objects are both too small
and can be occluded during the scan. This issue seems to be particularly pronounced in
rural areas which requires further analysis to verify.

2.4 Limitations

As with all forms of LiDAR data, there are some general limitations in the OSNI dataset
and analysis thereof, and in this section we discuss the limitations our team members
have noted, and what can be done to alleviate them.

16Details of data included in LiDAR files—including coordinates—are listed in Table 3.
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Variation of Urbanisation and Location The dataset collected from OSNI are mostly
taken in both rural and low density urban locations. As such the model trained with OSNI
data might not generalise to highly urbanised locations such as Hong Kong and San

Figure 10: A labelled 2D spherical image including one bounding box (top) and a view of
the LiDAR data corresponding to the region around that bounding box. The dashed box
corresponds to where we expect to see the drain.
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Francisco as captured in the UrbanLoco [62] and the Waymo Open Dataset [54].

Collecting multi-modal data such as 2D spherical images and 3D LiDAR data represent
many challenges that are commonly found in robotics research. For example, research
from The Korea Advanced Institute of Science and Technology (KAIST) [29]17 found the
diversity and complexity of scenes captured from multi-modal sensors, the different types
of urban environment and the differences in the sensor’s measurements are potential
problems when processing LiDAR data for classification and segmentation. These issues
from [29] can be summarised as follows:

• Inaccurate and random GPS data.

• Seasonal changes in weather and luminosity (e.g rain, fog, sunlight).

• Diversity of road conditions and road type such as multi-lane roadway.

• Complexity of the built environment and diversity of urbanisation.

A solution to tackle issues such as the diversity of the built environment is to add auxiliary
labels into the dataset from other Geographic Information System (GIS) data or from the
images directly. An example of the latter is UrbanLoco [62] which proposed a method for
measuring urbanisation rate from street images using a Skymask [38, 62]. The example
of the urbanisation rate measurement can be seen in Figure 11. The red dot indicates
“the satellites blocked by high-rise structures” and green dot indicates “the satellites that
are with in the line of sight” [62]. By retrieving this additional label and adapting it into the
model, one can potentially improve the accuracy of the task.

Variation of Weather Generalising models to work well in different weather conditions
is important. In the OSNI dataset, most of the Tracks have been recorded on a sunny or
fair day during the daytime in Northern Ireland. Models trained using this data might not
generalise well to different weather and lighting conditions. Examples of diverse weather
condition and intensity of sunlight can be seen in the project for the Oxford RobotCar
Dataset [3].

The Oxford RobotCar Dataset [3, 37] contains images and LiDAR data for over 10 km in
central Oxford, UK18. The route was recorded more than 100 times covering
approximately 1010.46 km. The journey is from a human-driven vehicle, within the exact
same location with:

• Differences in luminosity and sunlight (e.g. sun, dusk, night),

• Differences in weather (e.g. clouds, rain, overcast, snow),

• Differences in road conditions (e.g. poor GPS, no GPS, roadworks, detour),
17The KAIST dataset from [29] is available at http://irap.kaist.ac.kr/dataset
18The Oxford RobotCar Dataset is available at https://robotcar-dataset.robots.ox.ac.uk/
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Figure 11: UrbanLoco [62] methods for measurements of urbanisation rate in a specific
area by using GNSS based localisations adopted from Skymask [38, 62]

in the period of May 2014 and December 2015. outlined the proportion of the dataset from
different conditions labelled on each journey. Collecting data in the future with varying
weather conditions can potentially improve the performance of the model.

Data Labelling A key issue we encountered is the lack of labels in the OSNI dataset,
especially in the LiDAR data. To alleviate this, we added additional manual labels in
various formats e.g. in Chapter 5 LiDAR pipeline (See Figure 40). Further, we discuss an
additional labelling tool for LiDAR (LATTE) and its extensions in Section 3.4.2.

We note that this is a wider problem. Manual data annotation via bounding boxes for
3D LiDAR dataset is a challenging task, whether it is for an open dataset or one’s own
data [59]. The authors of the LATTE tool [59] discuss some of these issues with data
annotation in 3D LiDAR data (see Figure 21) which can be summarised as follows:

• Point Cloud data has a low resolution, making annotators difficult to notice or
recognise the objects.

• Creating bounding boxes for 3D LiDAR dataset is time-consuming and complex.
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Figure 12: Various traversal conditions in the Oxford RobotCar Dataset taken from [3]

• 3D LiDAR is usually collected in a set of chronological sequence of frames.

Scalability and Computational Cost Running complex ML models can have
considerable computational costs, including the requirement for Graphics Processing
Unit (GPU) access to train the various models discussed in this document, several of
which were trained on the smaller GPUs available in the Virtual Machine (VM) from the
DSG, but some required the resources of the more powerful Joint Academic Data
Science Endeavour (JADE) II cluster19. This should be strongly considered when taking
this work forward.

19The JADE II cluster is a 2020 renewal of JADE which is one of the largest research GPU facilities in the
UK.
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3 LiDAR Data Visualisation

As mentioned in the above sections the labelling provided by OSNI was only available on
the spherical images and not on the LiDAR data. Thus, it was important for us to examine
these LiDAR files visually and assess the usability of these Point Clouds for the required
objective of finding drains or potholes. Further, in the future the tools in this section can
be used to explore each object in greater detail.

We tested multiple tools to achieve this task of Point Cloud visualisation and have
documented descriptively how well they worked for us below. Most of the LiDAR files are
large20 and computational performance was an issue when working with these tools.
Due to restrictions on the Microsoft Azure VM, we were not able to install and/or run
some of these tools on the VM (documented below). Other considerations for the choice
of tools included:

• The tools should satisfy our requirements of data security such that the data never
leaves the Virtual Machine.

• The tools should be easy to install and ideally should provide an interface to Python.

• The tools should work well with the size of the files we obtained.

We will structure this section as follows. First we will discuss a well supported GUI based
tool QGIS (Section 3.1), second we will discuss a common Python visualisation library
called Matplotlib (Section 3.2). Finally, we consider several tools using two additional
visualisation frameworks, OpenGL (Section 3.3) and WebGL (Section 3.4).

3.1 QGIS

QGIS [45] is an Open Source GIS tool that provides a desktop interface for working with
GIS data. It has several tool-kits and extensions available but in our case we only explored
its interaction with LAS files. The tool also allows us to overlay Open Street Map tiles [42]
and other GIS modalities (if available) such as raster and vector data with the Point Cloud
data. QGIS worked well with the files provided and allowed us to visualise the Point
Clouds in a 2D top view fashion as can be seen in Figure 13 and Figure 14.

Installation The tool can be easily setup by downloading and installing the latest release
or the long term release version from its official website21 and is compatible with a wide
array of operating systems.

20LAS files provided range from 18 Megabyte is 1 million bytes of data (MB) to 625 MB with a mode of
603 MB

21https://qgis.org/en/site/forusers/download.html
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Figure 13: Example QGIS Visualisation on Track B

Figure 14: Example QGIS Visualisation with Open Street Map tiles on Track B from OSNI
LiDAR Data

Limitations

• Some large files failed to display in the viewer, but the issue sometimes fixed itself
on reopening the programme.

• The tool provides predominately a 2D view of the Point Cloud. The 3D viewer is
difficult to use.

Despite its limitations, QGIS is a great tool for not only visualising Point Cloud data in a
GIS platform but for analysing, joining and interacting with different types of raster and
vector geospatial data. The open source platform Python interface makes it easier to
build plugins and tools. As a result, there are many helpful extensions for both opening
and processing LiDAR data. Examples for future testing include LASTools [20] and
Whitebox [35].
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3.2 Matplotlib

Matplotlib [27] is popular Python plotting library and it works well with LAS files imported
using laspy [6]. The main advantage of using Matplotlib is that it is a standard Python
library which requires minimal setup. However: a downside is that the plots are static. As
a result, it lacks some of the interactivity and sophistication of some of the other options
(Figure 15).

Installation Matplotlib can be installed in the same way as many Python packages via
The Python Package Index (PyPI), and is compatible with a wide array of operating
systems and Python versions.

Limitations

• Large files took a long time to visualise.

• Lack of interactivity and specialised tools to work with Point Cloud data.

Figure 15: Example Matplotlib Visualisation on Track B
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3.3 OpenGL

OpenGL [63] is an open source graphics platform for rendering 2D and 3D graphics. Due
to restrictions on the graphics drivers of the VM, OpenGL tools were not installed nor
extensively tested22. But these should work perfectly fine on a system without these
restrictions which is why we think these warrant a discussion even though we were not
able to run them on actual OSNI Data. In this section we will discuss two which make
use of OpenGL to render and view Point Cloud data: Open3D (Section 3.3.1) and Point
Processing Toolkit (pptk) (Section 3.3.2). For comparison the National (U.S.) Ecological
Observatory Network (NEON) [40] dataset was used23. Figure 16,17 are illustrative
examples of how a typical LiDAR dataset NEON can be visualised using different
visualisation libraries.

3.3.1 Open3D

Open3D [68] is another library which can be interfaced directly in Python which makes it
another great option for visualising Point Clouds and 3D meshes. It works using OpenGL
to render the points. In terms of performance it is slower than pptk discussed in
Section 3.3.2 but it does provide a lot more interactivity and tool sets for 3D ML and
more.

Installation Open3D is another Python library, so you can easily install it using a
package manager such as PyPI.

Limitations

• Performance above a certain threshold of points drops quickly when compared to
other tools discussed here.

• Requires OpenGL and could not be tested on a DSG VM.

Figure 16 is a visualisation of a different dataset from NEON run outside the DSG VMs
due to OpenGL and VM graphics restrictions.

3.3.2 pptk

pptk [36] is a Python library developed by Here Technologies Netherlands. The tool can
process millions of points using an Octree like data structure24 which makes it more

22Including OpenGL tools such as LASTools in QGIS.
23The dataset is available through an Early Analytics Course [61] developed by Earth Lab at the University

of Colorado Boulder. See https://www.earthdatascience.org/courses/earth-analytics/
24An Octree is a tree data structure where each internal node has eight children, commonly used in Point

Cloud spatial partitioning. See http://www.open3d.org/docs/latest/tutorial/geometry/
octree.html for more details.
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performant than other tools mentioned here (at least in terms of LiDAR data
visualisation). It also provides tools to annotate points in the data. An example of the
output using this tool can be found in Figure 17 using an alternative dataset.

Installation pptk can be installed via PyPI.

Limitations

• The 3D viewer is not as interactive as Open3D.

• Requires OpenGL and could not be tested on a DSG VM.

3.4 WebGL

While there is an abundance of tools that use OpenGL for visualising Point Clouds, in
terms of running on the VM, the saving grace came in the form of WebGL [44] which only
requires a WebGL enabled browser to work, which was available on the VM and could
be easily installed. The main consideration in assessing these tools was keeping OSNI
data within the DSG VMs. This was achieved by installing, running and accessing these
tools locally within VMs. In the following section we discuss some important WebGL tools
for LiDAR Data Visualisation namely, Plas.io (Section 3.4.1), LATTE (Section 3.4.2) and
Streetscape.gl (Section 3.4.3).

Figure 16: Example Point Cloud Visualisation using Open3D on the NEON Dataset.
Illustrative example of using a different visualisation library to visualise a typical point
cloud data.
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Figure 17: Example Point Cloud Visualisation using pptk on the NEON Dataset.
Illustrative example of using a different visualisation library to visualise a typical point
cloud data.

3.4.1 Plas.io

Plas.io [58] is a web based viewer available at https://plas.io. The tool supports
LAS and LAZ files and displays them in an interactive 3D layout with features such as
density reduction to improve Point Cloud loading and rendering performance. For
comparison we include an example of the output on an external dataset in Figure 18 and
on the OSNI dataset in Figure 19.

Installation Plas.io is available as a web app, but to ensure that the data does not leave
the VM, we installed and ran a Plas.io server on one of the available VMs.

Limitations

• Can only work with LAS and LAZ files.

• The viewer is only accessible through the GUI and cannot be scripted via languages
like Python.

• It is not actively maintained, and requires older versions of packages.

Plas.io was one of the only tools that worked on the VM and allowed us to visualise the
LiDAR data in a 3D interactive manner. Although we cannot directly use Python with
Plas.io, LAS files generated via Python can be used in Plas.io to visualise Point Cloud
data generated by Python.
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Figure 18: Example Point Cloud Visualisation using Plas.io on the NEON Dataset

Figure 19: Example Point Cloud Visualisation using Plas.io on Track B from OSNI LiDAR
Data

3.4.2 LATTE

LATTE is an open source project developed by Wang et. al. [59] at Berkeley AI Research,
UC Berkeley. This tool allow users to manually annotate 3D LiDAR Point Cloud dataset.
LATTE proposed a “one-click annotation” tool to help annotators to draw bounding boxes
for 3D LiDAR data.
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Figure 20 represents how LATTE works in drawing 3D bounding boxes of the raw data.
For more information on how to annotate the data please see [59] and its official
documentation.25

Figure 20: An example of 3D LiDAR annotation by LATTE [59].

Installation The setup for the installation for LATTE goes as follows:

1. Go to LATTE GitHub project at https://github.com/bernwang/latte

2. Setup the environment from LATTE GitHub repositories in the local folder

3. Go to the local folder that clone the GitHub repositories and call the app.py file
from terminal

4. Open http://127.0.0.1:5000/ on your local browser. LATTE works in a
browser that support WebGL. It is noted that Firefox has some compatibility issues.

25The LATTE project can be accessed at https://github.com/bernwang/latte
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Figure 21: Challenges of 3D LiDAR data annotation Point Clouds [59]

We tried LATTE on Microsoft Edge browser and LATTE performed well. Please
turn off the network of the Edge browser: Setting> More Tools> Developer
Tools> Network> Offline

The LATTE tool has been adopted and extended by other researchers in an open source
project called Smart Annotation and Evaluation Tools for Point Cloud Data (SaNE)26 [1].
SaNE is a semiautomatic 3D LiDAR data annotation tool for labelling Point Cloud data.
In SaNE [1] they reported that: (1) they have speed up annotation process for drawing
3D bounding boxes - both for skilled and crowd sourcing human-annotators (i.e. from
Amazon Mechanical Turk), and (2) reduce computational cost (compare to LATTE).

3.4.3 Streetscape.gl

Although we had minimal time testing Streetscape.gl [57], we thought it is an impressive
and powerful WebGL based 3D interactive tool developed by Uber 27.

Streetscape.gl provides a declarative GUI for high quality multi-modality visualisations
which are especially useful in autonomous driving applications and could be useful for
visualising OSNI dataset. The tool requires data in the XVIZ format which is a protocol
for real time transfer and visualisation of the data.

As mentioned from the above, we did not explore with this tool, but it has been included
here as a future prospect. The site also provides a demo28 for the toolkit on a sample
of the KITTI [18] dataset. Some illustrations of the tool from the demo are shown in
Figure 22.

26The GitHub page for SaNE is https://github.com/hasanari/sane
27Please see https://github.com/visgl for other tools developed by Uber
28The demo is available at https://avs.auto/demo/index.html
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Figure 22: An screenshot from the Streetscape.gl [57] demo.
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4 Spherical Imagery Pipeline

In this section we will focus on analysing the spherical imagery data and detecting
drainages. We will outline several different approaches that were undertaken when
analysing the 2D spherical imagery, which we will explore in the following sections,
namely, classifying by fine-tuning (modifying) a standard image classification model
(Section 4.1); exploring road segmentation models (Section 4.2); using a realtime object
detection model (Section 4.3) finally using a object instance segmentation model
(Section 4.4).

4.1 Simple Classification Model with VGG16

We start with a simple approach where we construct a binary classifier on whether the
image has a drain or not. Rather than classifying the entire image, we will focus instead
on classifying sections of the images here we called Imagelets. For this approach we
begin by taking a 2D spherical image from the training set using the spatial data-split
(as specified in Section 2), cropping parts of the image (given that the top part simply
corresponds to the sky and the bottom is the car) and then segmenting it into a grid
of Imagelets as shown in Figure 23 (left). If the centre of the bounding box provided lies
within the specific grid cell, we label that Imagelet as containing a drain, otherwise marked
as no drain. We repeat this for all the images in the dataset. Using this process, we end
up with a highly imbalanced set of images. In order to alleviate this issue:

• We perform data augmentation for the images containing a drain. This include a left
to right flip as well as extra cuts as show in Figure 23 (right) by shifting the cell by
100 pixels in 4 directions, ensuring that the centre of the drain is still included in the
extra cuts.

• We then carry out a random sampling of the images that do not contain a drain, in
order to have a 1:1 ratio of no-drain:drain images.

Figure 23: Example of image pre-processing for the simple classification model using an
8× 2 grid. The red dot corresponds to the centre of one of the bounding boxes indicating
the existence of a drain.
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Given this set of images, we proceed to train our binary classifier. The model considered
here is VGG16, pre-trained on ImageNet [30]. VGG16 is a standard convolutional neural
network model proposed by [52] and its architecture is shown in Figure 24. The model
takes an Red Green Blue (RGB) image of a fixed size as input which is then passed
through a stack of convolutional blocks and fully connected layers. The fully connected
layers are replaced here by a single dense layer that outputs the probabilities on whether
the Imagelets contains a drain or not. Please see [52] for more information of the
architecture.29

Figure 24: VGG16 architecture [52]. Figure taken from [60].

The advantage of using a pre-trained model is that it allows us to take advantage of the
features that the model has learned previously, significantly reducing the training time and
improving performance given the small labelled dataset.

In these experiments we have tuned our models on a validation set that was taken from the
training set through an 80:20 split. Using the validation set we fine-tuned the parameters
of our model (learning rate= 0.0005, momentum=0.5, epochs of training=7) as well as the
size of the grid to be 15× 3. Training for each epoch with the stochastic gradient descent
optimiser takes approximately 30 seconds. Figure 25 shows the train and validation loss
and accuracy during training.

On the test set, we neither performed augmentation nor downsampling and thus the
classes are very imbalanced. To mitigate this issue when computing the confusion
matrix30 we consider an object being detected only if the model gave a probability larger
than p = 0.96 for the spherical image, which corresponds roughly to the ratio of

29Note that we only added a single dense layers on top of the pre-trained model because we have limited
training samples.

30The confusion matrix visualise the performance of the model where each row represents the counts of
each labelled class and each column represents the counts of the predicted class.
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Figure 25: Train and validation loss and accuracy for the binary classifier.

no-drains/(drains+no-drains) in the train-validation set before augmentation and
downsampling.

The final model achieved an accuracy of 0.977 accuracy which is marginally better than
the naive classification of all images corresponding to no drains that has an accuracy
of 0.965. The confusion matrices for both the validation and test set are summarised in
Table 4.1 using the varying probability thresholds.31

The simple binary classifier on Imagelets achieved positive preliminary results.
Performance on the test set can potentially improve by restricting the section of the
image considered in our model even further in the dataset: currently we only cut out the
sky and part of the car. This process can be combined with the masks generated from
Section 4.2.

Using Grad-CAM [46, 50],32 a popular visual explanation method for computer vision
models, we visualise the areas of an image that triggers a class activation. We
summarise our results in Figure 26 where the first row corresponds to true positives
while the second row to false positives. We see that the algorithm appears to detect
objects with striped structure or sharp intensity change, despite not being drains. The
third row shows false negatives: we see that the activations are localised in the correct
locations but do not carry enough weight to make a prediction. From the visual
experimentation, it appears that the model is able to identify the drainage objects.

For comparison, we repeat the experiment on rectangular images, created from the
spherical ones through gnomonic projections from P = (0.75, 0), (0.75, 0.25), (0.75, 0.5),

31Adjusting the probability isn’t a standard protocol. As such we recommend viewing this as preliminary
results. We recommend future research to use the same probability threshold on the training-validation-test
set for consistency.

32We select the third convolutional layer as the activation layer because it appears to localise better.
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Figure 26: Activation for true positives (first row), false positives (second row) and false
negatives (third row). Note that the normalisation of the activations differs across the
images.

Spherical Images Rectangular Images

Val. confusion matrix
[
507 55
65 504

]
p>0.5

[
438 184
107 464

]
p>0.5

Test confusion matrix
[
3589 18
66 62

]
p>0.96

[
3752 27
201 4

]
p>0.85

Table 5: Validation and Test confusion matrices of Spherical and Rectangular images.

(0.75, 0.75) and without excluding any regions from the plot. In this case we use a 4 × 3
grid in an attempt to maintain the same number of cropped images per spherical
one.

The confusion matrices for the validation and the test set are reported in Table 4.1. We
see that the analysis for the rectangular images achieves a lower accuracy than for the
spherical ones, but we suspect this is because the number of cropped images was fine-
tuned based on the spherical image analysis.

Overall, given the simplicity of the approach, training speed and low computational needs,
the model performed well enough. It would be interesting to proceed further with a more
in-depth comparison between rectangular or spherical images in order to make a concrete
recommendation for OSNI to facilitate future data mining and knowledge discovery.

4.2 Road Segmentation Model

The task of manual annotation can be time-consuming, tedious and difficult.
Nevertheless, large amounts of labelled images are necessary for training deep learning
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models and achieving good performance. Since we are dealing with high volume of
spherical street images, the amount of compute and labelling effort also increases
substantially.

Figure 27: Outline of steps in KittiSeg road segmentation pipeline: (1) Spherical raw
image, (2) conversion to rectangular image, (3) drainage location highlighted, and (4) the
output of the KittiSeg road segmentation.

This presents a major challenge. One approach to tackle this is to apply pre-trained
models for this specific type of images. Nowadays, there are a lot of public domain
datasets such as Microsoft Common Objects in Context (COCO), PASCAL Visual Object
Classes (VOC) [14] or KITTI [18]. These datasets are already annotated and contain
thousands of images with different labels for different tasks, such as semantic
segmentation, object detection or scene classification. By using pre-trained models
many features could be retrieved without annotating a single image. The classes for e.g.
road, road signs, sky, cars or person can be found in many pre-trained semantic
segmentation models. To showcase the advantages of pre-trained models we applied
road segmentation using the KittiSeg model [55] on OSNI data to classify the pixels
corresponding to the road class.

44



A second advantage of using a pre-trained model is the possibility to use its outputs, in
this case a mask, as part of an end-to-end model to improve accuracy. Mask detection
algorithms can focus on areas where certain features might appear. For example:
potholes or drains can be found within or close to the area of the road pixels.

A further advantage is it can reduce annotation time. Output from the pre-trained models
can be presented to annotators for correction. This will reduce the effort for expensive
feature annotation. In Figure 27 the pipeline for road segmentation using the KittiSeg
model [55] can be seen, the architecture of KittiSeg is based on a Fully Convolutional
Network, which is a common architecture for image semantic segmentation.33

This approach can be extended to other semantic classes such as sky, trees or other
general features, which can be found in the public domain datasets and pre-trained
models.

4.3 YOLO Model

The third approach we tested is You Only Look Once (YOLO), a real-time object detection
algorithm proposed by Redmond et al. [47]. Unlike R-CNN-based models, which use
multiple modules for region and class predictions, YOLO integrates these predictions into
a single end-to-end neural network model. One major advantage of YOLO-based models
is its speed which makes it more suitable for real-time applications.34

The training was completed using 570 training images from the spatial training set (as
specified in Section 2).35 The model was trained for 200 epochs where each epoch took
approximately ≈ 2 minutes while the inference time per image is ≈ 0.015 seconds.

Track Test Intersection over Union (IoU)

Track E 0.55
Track H 0.35
Track Q 0.31

All test 0.33

Table 6: Preliminary results on test set using YOLO with rectangular images from E, H
and Q.

An example output of the YOLO detection model can be seen in Figure 28. Preliminary
results are evaluated by Intersection over Union (IoU), a standard object detection metric,
which are reported in Table 6. Due to the size of the drains, the out of sample results
are not so bad. However, there is room for improvement, for example we can include a

33Please see [55] for more information on the implementation of KittiSeg.
34We relied on the implementation from Ge et al. for training the YOLO model. [17].
35The model was trained using 4 Nvidia V100 GPUs on the JADE II computing cluster.
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Figure 28: Example of Drainage Detection using the YOLO model. The left image
includes ground truth annotations in purple and the right image is output from the
detection model with the detected drainage locations.

greater number of images as training data through more varied environments or test other
object detection models.

4.4 Mask R-CNN Model

The fourth approach we tested is the Mask Region Based Convolutional Neural Network
(R-CNN) [24]36 model which is a framework for object instance segmentation that extends
Faster R-CNN [48] by adding a branch for predicting an object mask in parallel with the
existing branch for bounding box recognition. This approach was used to efficiently detect
very small drainage while simultaneously generating a high-quality segmentation mask
for each of them. The training was completed on 620 training images and 70 validation
images that were taken randomly from the spatial training set as specified in Section 2.
Following this, we evaluated the model through two different test sets where we reported
the standard object detection metric Mean Average Precision [66] (mAP).

• 20 random images not in the train and the validation data.

• 10 random images each from Tracks E, H, Q (our spatial test set as specified in
Section 2).

As the model required a specific data format, we reannotated the street view image data
(Figure 29) into the COCO JavaScript Object Notation (JSON) annotation format using the

36Matterport’s implementation of MaskR-CNN can be found at https://github.com/matterport/
Mask_RCNN. Note: as of July 23, 2021, Matterport’s version is only compatible with TensorFlow 1.15.3 and
Keras 2.2.4.
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VGG Image Annotator (VIA) tool [13]37.

The spherical images were processed into normal view images following the projection
protocol in Section 2.2 and then resized to a uniform size of (400, 800) before annotation
to make training and inference faster.

Figure 29: Polygon annotations

We will now describe in greater detail the MaskR-CNN architecture and the training
procedures. The MaskR-CNN implementation here uses a ResNet50 [25] as the
backbone structure, consisting of a bottom-up pathway to extract features from raw
inputs, a top-bottom pathway to generate feature maps and lateral connections for
intermediate operations between the two levels. This backbone structure is connected to
three important stages of MaskR-CNN. In the first stage it generates proposals about the
regions where there might be an object. In the second it predicts the corresponding
class of the object and refines the anchors and bounding boxes. The third generates a
pixel level mask of the object based on stage 1 proposals. The step by step prediction of
the drainage is illustrated in Figure 30.

Training of the MaskR-CNN [24] model was performed in two stages on a Nvidia Tesla
M60 GPU using the pre-trained weights from the COCO dataset. First we train the
randomly initialised layers, freezing the backbone layers (pre-trained weight from COCO)
for 10 epochs and later fine tune all the layers for the next 10 epochs. The learning rate

37The VIA tool for polygon annotations can be downloaded from https://www.robots.ox.ac.uk/

˜vgg/software/via The VIA tool does not require any setup or installation and it runs as an offline
application in a single self-contained HTML page. It also supports manual annotation of other data modalities
including audio and video. To have annotations compatible with MaskR-CNN, we exported them to the
COCO JSON format. We also took advantage of polygon annotation support to make small object detection
of drainage more accurate.
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Figure 30: MaskR-CNN model pipeline. Top: proposal of regions, Middle: classification
on the proposed region, Bottom: generating segmentation masks of the region and model
inspections.

used for training was 0.001 and the number of classes was 2 (background and
drainage).

In stage 1 of Figure 30 the Region Proposal Network (RPN) runs a lightweight binary
classifier on boxes or anchors and returns scores for object or no-object. The IoU of the
ground truth object (drainage) is compared with these anchors that cover the full input
image at different scales for refinement. Since these anchors don’t cover the drainage
accurately the RPN regresses a refinement to shift and resize the anchors to the correct
boundaries of the drainage based on IoU. Anchors with IoU<0.3 and 0.3<IoU<0.7 are
classified as negative and neutral anchors respectively and are both excluded.

Stage 2 of Figure 30 takes the region proposals from stage 1 and classifies them to
generate class probabilities and filter low confidence detection and duplicates using Non-
Maximum Suppression38. Outputs from different layers are visualised to better understand
the model and to catch odd patterns. Stage 3 takes the refined bounding boxes and class

38A technique that optimises bounding boxes [41].
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IDs and to generate segmentation masks for every instance.

Figure 31: An image with a drainage on the left and the same image with the predicted
bounding box in red on the right.

The results of the model prediction on unseen data are visualised in Figure 31. Figure 32
shows an example of some predictions made by the model and their scores. The IoU
scores show a strong overlap between the ground truth bounding box and the predicted
bounding box.

Figure 32: The Ground Truth bounding box in green and the predicted bounding box in
red.

The mean IoU score computed across the first test set (20 randomly selected roads in
the test set) was 0.81 while the mAP score over the same was found to be 0.67. The
mAP for the second test set (40 randomly selected images selected from E, H and Q) are
summarised in Table 7. Given the size of the objects and the size of the data, this result
shows generally encouraging results both visually and empirically.

Track Test mAP

Track E 0.68
Track H 0.64
Track Q 0.58

Table 7: Preliminary results on test set using MaskR-CNN with rectangular images from
E, H and Q.
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4.5 Summary

The results from the spherical imagery section on drainage classification and detection
using different approaches are both positive and encouraging. There is room for
improvements for all four approaches where increasing sample data can likely improve
accuracy and model generalisation. Procedures such as incorporating pre-trained
models (e.g. road segmentation models) into the pipeline can potentially improve the
results. Finally, these approaches can be adapted to other urban objects detection such
as potholes, benches and road quality.
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5 LiDAR Pipeline

Our goal with processing the LiDAR data is to both explore the Point Cloud data and to
develop a pipeline that can identify key features of the urban environment such as road
drainages, road signs, potholes or street benches. There are four common tasks within
a typical 3D Point Cloud workflow namely Point Cloud sampling (down-sampling to speed
up computations), Point Cloud segmentation (classify each point), Point Cloud clustering
(clustering points for knowledge discovery) and Point Cloud classification and fitting (fitting
a classifier on a labelled dataset).

In this exploratory study, we will first describe the 3D Point Cloud attributes (eg. the Class
labels) (Section 5.1), test different Point Cloud sampling strategies (Section 5.2), explore
different Point Cloud clustering algorithms (Section 5.3) and finally running a Point Cloud
drainage classifier with our dataset (Section 5.4). Due to the time constraint, we did not
conduct any experiments on Point Cloud segmentation.

5.1 Point Cloud Attributes

We begin with describing the attributes of the 3D Point Cloud data. As shown in Table 3,
the LiDAR 3D Point Cloud data provides several key attributes including X, Y, Z, Intensity,
Classification, Red, Green and Blue. To explore the usefulness of the data, we visualised
the ‘Classification’ attribute.

Figure 5.1 shows a segmentation of the inherited ‘Classification’ attribute. The result
shows the attribute appears to contains a large number of ’unclassified’ labels and a large
number of overlapping classes on the road. This suggests this class attribute contained
within the LiDAR dataset might not be reliable. As a result there is a need to further
explore and analyse the Point Cloud data rather than relying on its existing attributes.

5.2 Point Cloud Sampling

The second task we explore is Point Cloud sampling. A major problem with 3D Point
Clouds is that the data density might be more than necessary for a given application.
This often leads to expensive computational cost in subsequent data processing or
visualisation. To make the dense Point Clouds more manageable, data density can be
reduced. Hu et al. [26] categorised existing point sampling approaches into heuristic and
learning-based approaches. Since there is no standard sampling strategy, we will test
two simple but efficient sub-sampling methods, namely grid sampling and decimated
sampling.

Grid sampling Grid sampling is based on the division of the 3D space in regular cubic
cells called Voxels. For each cell of the grid, only one representative point is kept. We
perform Voxel grid sub-sampling on a Point Cloud sample. We tested this method on
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Figure 33: Segmentation based on the ‘Classification’ attribute contains a large number
of unclassified pixels and overlapping pixels as visualised in QGIS.

a sample Track with the Voxel size set to 16. This reduces the number of points on an
example file from 18, 195, 934 to 11, 521, 396 points (Figure 35).

Decimated sampling Alternatively there is decimated sampling which sequentially
retains every nth sample as seen in Figure 34. We tested this method on a sample Track
with a factor set to 1600. This reduces the number of points from 18, 195, 934 to 90, 980
on a sample file. The comparison of the above methods is presented in Figure 35. We
found that the computational time of the above methods varies greatly. We selected
decimated sampling as a pre-processing operation to reduce compute time for the Point
Cloud clustering task.
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Figure 34: Decimated sampling example. [67]

Figure 35: Point sub-sampling method comparison on a sample of the dataset. (Left)
The original Point Cloud. (Centre) The decimated sampled Point Cloud. (Right) The grid
sampled Point Cloud.
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5.3 Point Cloud Clustering

The third task we explored in this dataset is Point Cloud clustering. Clustering analysis
is an unsupervised learning method that separates the data points into several specific
bunches or groups, where data points within the same groups have similar properties and
data points in different groups have different properties.

As the raw LiDAR contained no training data, we intend to utilise standard clustering
algorithms to identify local clusters with the hope the natural clusters correspond to
features related to road side drainages or other urban features. We tested three
algorithms, namely: KMeans, DBSCAN and MeanShift. In this case, we only used the x
and y coordinates of the data for the clustering experiment. Before processing the
LiDAR Point Cloud data, we first standarise the data to ensure that the mean for each
feature was 0, and the variance was 1.

Before clustering, we also utilise the Random Sample Consensus (RANSAC) [15]
algorithm to remove outliers from the decimated Point Cloud.39 Further research is
necessary to test the efficacy of the algorithm on outliers removal.

KMeans KMeans [51] is one of the simplest and most commonly used unsupervised
clustering algorithms which aims to partition the Point Cloud data into k predefined
clusters in which each sample belongs to the nearest cluster mean. We decided to use it
as a baseline method. The model processed the LiDAR data to find cluster centres
which are representative of various regions in the Point Cloud. Figure 36 shows the
clustering result when k is set to 50. The results appears to separate the data into spatial
segments of the road which doesn’t relate specifically to road drainages. Further
research and visualisations are necessary for clarification.

39RANSAC is an iterative method that estimates parameters of a mathematical model to identify inliers
and outliers from the data.
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Figure 36: Plot of the KMeans model where k = 50 clusters. Points are coloured according
to their cluster membership. These points have been rescaled so therefore the axis cannot
be directly interpreted.

MeanShift MeanShift [10] is the second model that we tested. Similar to
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) it is an
agglomerative algorithm that creates clusters iteratively, and does not require an input
cluster parameter. It processed the LiDAR data by assigning each point to a cluster
based on its distance from the centroid point. Each iteration the points get shifted to the
nearest cluster. The results show this was qualitatively the worst performing model,
producing unconvincing clusters. The algorithm identified two clusters while taking
258.20 seconds to execute. Figure 37 shows the plotted results from the MeanShift
model.
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Figure 37: Plotted results of MeanShift model. Points are coloured according to their
cluster membership. These points have been re-scaled so therefore the axis cannot be
directly interpreted.

DBSCAN Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
the third and last algorithm we tested which is another commonly used clustering
algorithm to identify denser regions as clusters from the LiDAR data. We obtain 41
clusters by setting the Epsilon parameter as 0.1 and the minimum of samples within a
cluster to 6. The results are shown in Figure 38. Comparisons varying the different
parameters can be seen in Figure 39. The visual comparison shows some distinctive
local clusters but more examination is require to see whether it corresponds to areas of
the street which contains a road drain or other road features.
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Figure 38: Plot of DBSCAN model with 41 output clusters (ε = 0.1, min-samples = 6).
Points are coloured according to their cluster membership. These points have been re-
scaled so therefore the axis cannot be directly interpreted.

Figure 39: Visual comparison of different parameters in DBSCAN clustering. Points are
coloured according to their cluster membership. Source Point Cloud from Track D. These
points have been rescaled so therefore the axis cannot be directly interpreted.
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Furthermore, we tested a number of evaluation metrics for this unsupervised method
that can also be use for future exploration. The first metric is the noise point ratio which
measures the proportion of noise in the data as found from the RANSAC algorithm where
lower is better. The second metric is the adjusted-Rand Index index40 which measures the
extent the unsupervised cluster corresponds to existing ground truth class assignments
where higher is better. This metric is less reliable as the ground truth classification labels
is not reliable. The third metric is the silhouette score which can be used to evaluate the
degree of dispersion between clusters after clustering where again higher is better.

From Table 8, we can see that the clustering labels of DBSCAN have generally low
adjusted-Rand Index score and low silhouette scores. This can be attributed to both the
poorly labelled data and that the cluster assignments corresponds to other objects in the
urban scene. Since this is a preliminary exploration of clustering methods on raw Point
Cloud data, further exploration, visualisations and tests are necessary. For example
visualising the clusters labels in a 3D visualisation interactive interface can potentially
offer some insights on the potential meaning of these clusters.

DBSCAN Evaluation Results

Parameters Results

ε
min-

sample
Cluster
number Noisy point ratio Adjusted Rand

Index score
Silhouette

score

0.05 6 69 0.299 0.0225 0.0295
0.1 9 30 0.143 0.014 0.0407
0.15 12 13 0.075 0.001 0.0099
0.2 6 5 0.012 0.001 0.2015
0.25 9 2 0.012 0.001 0.2688

Table 8: Evaluation on the DBSCAN clustering on Track D with 7 classes are shown. The
highest score is highlighted in bold size.

5.4 Point Cloud Classification

In the fourth and final section, we will be constructing a classifier to detect drainage on
the Point Cloud dataset, in similar fashion to the image based classifiers we constructed
in Section 4.

40We used the following implementation https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.adjusted_rand_score.html#sklearn.metrics.adjusted_
rand_score
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Creating training data for supervised model To train a supervised model that could
predict the occurrence of features, we needed to create a labelled dataset that identified
the features of interest. We firstly investigated what was available on OpenDataNI which
listed a number of open geospatial data in the GeoJSON files. Using the open ‘drainage’
GeoJSON we tried to create a spatial join with these polygons and the LiDAR points to
identify drainage with one of our LiDAR files, with the prospect of using this output in our
model.

Figure 40: Image detailing the projection problem with OpenDataNI GeoJSON data. As
seen in the lower two panels there is little or no overlap between the drains and the
annotation.

We encountered a problem with this approach demonstrated in Figure 40. The GeoJSON
polygons did not overlap with visually identifiable drains in the in the OSNI LiDAR data.
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This was not a projection issue as the coordinate reference systems were the same, and
the offset was not uniform. Therefore, this could not be fixed with a simple transform. The
underlying problem is likely to be either an issue regarding the calibration of the LiDAR
camera or inaccurate labelling of the open data.

To overcome this problem we manually labelled the visually identifiable drainage
features, as shown in Figure 41. With such a large dataset and time constraints, we
created 200 polygons41 each for drainage and non-drainage to train the supervised
model. This approach has limitations as we were only able to inspect and label a
relatively small portion of the overall dataset. Also, real drain locations may not have
been fully identified due to obstruction (from vegetation etc) or were unidentifiable due to
sparsity (or absence) of points in particular regions of the Point Cloud. This reduces the
overall accuracy and usefulness of our model.

Figure 41: Manually labelled polygons for input training data

PointNet PointNet [8], which enables end-to-end learning for scattered and un-ordered
point data, is one of the earliest and most popular neural network architectures for Point
Cloud classification. It was specifically designed to process large 3D Point Clouds,
making it ideal for our task. The model is a neural network which takes input training
data to detect, classify and segment the Point Cloud. It consists of a sequence of two

41The assumed radius is 1m which needs to be tested in future research.
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transformation networks which feed into a final feedforward neural network layer
(multilayer perceptron)42 that outputs a classification score in this case for two
classes.

Figure 42: PointNet process diagram from Qi et al.[8]

PointNet allowed us to build a drainage classifer, but as with all neural networks it is
sensitive to scaling and the choice of parameters. We utilised a PointNet implementation
in TensorFlow via Keras,43 split the annotated Point Cloud samples into a 80-20 train and
test set,44 and trained the classification model for 200 epochs.45

Figure 43 shows encouraging test set results with the PointNet model and Figure 44
visualises the performance of our model. Overall we obtained a test accuracy of 0.925
(with some variability between epochs although predominantly above 0.8), with a loss of
304.818 and a train accuracy of 0.978, with a loss of 0.756. The difference in the train and
test results46 are indicative of potential overfitting which could be attributed to the limited
sample size. Given these constraints, this model still performed well as shown in test set
accuracy and can be further improved through the use of a larger training set and more
hyper-parameter tuning.

42Feedforward networks are artificial neural networks that have no cycles, and multilayer perceptrons are
a class of these types of networks.

43See https://colab.research.google.com/github/keras-team/keras-io/blob/
master/examples/vision/ipynb/pointnet.ipynb

44It is important to note that due to the relabelling process, this particular stream of work did not follow
the spatial data split as mentioned in Section 2.

45We randomly sampled the Point Cloud data to 800 points, excluded data with fewer than 800 points,
and set the random seed to 8.

46The unstable results is consistent with the original implementations.
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Figure 43: Plotted results of PointNet model

Figure 44: Performance results of PointNet model
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Figure 45: Confusion Matrix evaluation of PointNet model

The confusion matrix in Figure 45 summarises the performance of the model. Overall
the model classified drainage (Positive) and non drainage (Negative) well with 32 True-
Negatives (0,0), 4 False-Positives (0,1), 2 False-Negatives (1,0), and 42 True-Positives
(1,1).

5.5 Summary

Utilising ML to process large 3D Point Clouds like LiDAR data is an active area of
research. We have tested a number of tasks in the LiDAR pipeline including different
types of Point Cloud sampling (e.g. grid sampling and decimated sampling), different
Point Cloud clustering algorithm (e.g. KMeans, MeanShift and DBSCAN) and Point
Cloud classification (e.g. PointNet).

One of the limitations of the study is we were not able to identify an effective unsupervised
algorithm that helps with the drainage classification task. As such, further exploration and
interactive visualisation can be utilised to derive insights from these clusters output.

We have also adapted an implementation of PointNet to tackle the drainage classification
problem, where we found encouraging results. The pipeline can be replicated to identify
different road features and other geographic information from the LiDAR data in the
future. The main problems that we encountered is a lack of training data and the
unstable test set results. The models performance could potentially be improved by
increasing the sample of training data with more exploration on hyper parameter tuning
and LiDAR model architecture testing.

One avenue of work which we started to investigate but did not have enough time to
complete is using the PointCNN [32] architecture, which introduces a feature learning
framework for Point Cloud classification and segmentation. The key component of
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PointCNN is a X -transformation which weights and permutes the input features before
applying a typical convolution on the transformed features. In future work, we would like
to suggest applying the PointCNN model for LiDAR data classification and segmentation.
It is also worth noting that additional attributes like intensity, RGB, number of returns, etc.
can potentially be used to help improve the performance of the model.
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6 Discussion and Future Work

In this OSNI Data Study Group challenge, we have explored several approaches, both
supervised and unsupervised, to address the issue of drainage detection. We first
conducted a review of both the detection literature as seen in Section 1.3 and a review of
the different visualisation tools for this data in Section 3.

Next, we have developed two pipelines: one for images and one for LiDAR data, and in
both cases we found encouraging results. Particularly promising is the fact that it was
possible to identify an object as small as a drain using either image data (VGG16,
MaskR-CNN, YOLO) and LiDAR data (PointNet). A limitation of the study due to the time
constraint is we were not able to use the same test set or same metric. As such it makes
the comparison between the models difficult. This can be further expanded in future
research.

It should be noted that some of these models, in order to scale up, took advantage of high
performance computing services and thus OSNI may need to invest in computational
resources if they want to further pursue these directions.

Future work and research avenues The range of potential applications is significant,
including asset identification and management, automating identification of road sign
changes for transport network and navigation data-sets, identifying feature locations
such as scenic views, vegetation, drains, potholes and road surface quality, street
furniture maintenance, managing autonomous vehicles, 5G mobile network planning,
etc.

In terms of the pipelines developed, the following approaches might be beneficial:

• Increase the amount of labelled data to avoid over-fitting and to make the model
more generalisable.

• Incorporating road segmentation into the drainage classification/detection pipeline
which by leveraging this extra source of information could improve accuracy.

• Take advantage of the continuity of the images to track their locations in previous
and later images. This would allow the drainage to be tracked along the road.

• Take advantage of semi-supervised approaches and active learning in order to
exploit the huge amount of unlabelled imagery.

• Combine the two pipelines—2D imagery and LiDAR data—into a single multi-modal
model, leveraging the advantages of both types of data.

• Utilise modern toolsets to visualise and annotate the multi-modal data.

• Incorporate transfer learning pipeline for LiDAR data. This would likely have
improved the veracity and performance of our model.
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• Test newer LiDAR models for processing Point Cloud datasets.

To summarise, this Data Study Group showed that there are many different opportunities
for OSNI to discover new knowledge from this rich and complex source of data (eg.
spherical imagery and 3D Point Clouds captured from street-level LiDAR equipment).
The adaptation and the deployment of methods in data science and ML offers great
potential to automatically retrieve information from our environment. This information can
potentially offer benefits to OSNI and beyond including many different governmental
departments in urban, transport and environmental planning.
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[16] J. Fritsch, T. Kühnl, and A. Geiger. A new performance measure and evaluation
benchmark for road detection algorithms. In 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC 2013). 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013), pages 1693–1700,
Oct. 2013. DOI: 10.1109/ITSC.2013.6728473. ISSN: 2153-0017.

[17] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun. YOLOX: Exceeding YOLO Series in 2021.
en. arXiv preprint arXiv:2107.08430, July 2021. URL: https://arxiv.org/abs/
2107.08430v1 (visited on 07/22/2021).

[18] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: the KITTI
dataset. The International Journal of Robotics Research, 32(11):1231–1237,
Sept. 1, 2013. ISSN: 0278-3649. DOI: 10 . 1177 / 0278364913491297. URL:
https://doi.org/10.1177/0278364913491297 (visited on 07/20/2021).
Publisher: SAGE Publications Ltd STM.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014. URL: https://openaccess.thecvf.com/content_cvpr_2014/
html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
(visited on 09/21/2021).

[20] R. GmbH. Lastools. URL: https://rapidlasso.com/lastools/ (visited on
06/23/2021).

[21] D. Griffiths. Keras documentation: point cloud classification with PointNet. URL:
https://keras.io/examples/vision/pointnet/ (visited on 07/19/2021).

[22] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep learning for 3d
point clouds: a survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence:1–1, 2020. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2020.3005434.
Conference Name: IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[23] X. Han, H. Wang, J. Lu, and C. Zhao. Road detection based on the fusion of lidar
and image data. International Journal of Advanced Robotic Systems,
14(6):1729881417738102, 2017. DOI: 10 . 1177 / 1729881417738102. eprint:
https : / / doi . org / 10 . 1177 / 1729881417738102. URL:
https://doi.org/10.1177/1729881417738102.

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pages 2961–2969, 2017.

70

https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/ITSC.2013.6728473
https://arxiv.org/abs/2107.08430v1
https://arxiv.org/abs/2107.08430v1
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html
https://rapidlasso.com/lastools/
https://keras.io/examples/vision/pointnet/
https://doi.org/10.1109/TPAMI.2020.3005434
https://doi.org/10.1177/1729881417738102
https://doi.org/10.1177/1729881417738102
https://doi.org/10.1177/1729881417738102


[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[26] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham.
Randla-net: efficient semantic segmentation of large-scale point clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11108–11117, 2020.

[27] J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. DOI: 10.1109/MCSE.2007.55.

[28] M. Isenburg. LASzip: lossless compression of LiDAR data. Photogrammetric
engineering and remote sensing, 79(2):209–217, 2013.

[29] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim. Complex urban dataset with multi-
level sensors from highly diverse urban environments. The International Journal of
Robotics Research, 38(6):642–657, 2019. DOI: 10.1177/0278364919843996.
eprint: https://doi.org/10.1177/0278364919843996. URL: https://
doi.org/10.1177/0278364919843996.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[31] LAS Specification. (1.2). Approved by ASPRS Board 09/02/2008. Apr. 2008. URL:
https://www.asprs.org/a/society/committees/standards/asprs_
las_format_v12.pdf.

[32] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: convolution on
x-transformed points. Advances in neural information processing systems,
31:820–830, 2018.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft coco: common objects in context. In D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham.
Springer International Publishing, 2014. ISBN: 978-3-319-10602-1.

[34] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in
context. CoRR, abs/1405.0312, 2014. arXiv: 1405 . 0312. URL:
http://arxiv.org/abs/1405.0312.

[35] J. Lindsay. The whitebox geospatial analysis tools project and open-access gis. In
Proceedings of the GIS Research UK 22nd Annual Conference, The University of
Glasgow, pages 16–18, 2014.

[36] V. Lu. Pptk. URL: https : / / github . com / heremaps / pptk (visited on
06/23/2021).

71

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1177/0278364919843996
https://doi.org/10.1177/0278364919843996
https://doi.org/10.1177/0278364919843996
https://doi.org/10.1177/0278364919843996
https://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
https://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://github.com/heremaps/pptk


[37] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 Year, 1000km: The Oxford
RobotCar Dataset. The International Journal of Robotics Research (IJRR),
36(1):3–15, 2017. DOI: 10 . 1177 / 0278364916679498. eprint:
http : / / ijr . sagepub . com / content / early / 2016 / 11 / 28 /
0278364916679498 . full . pdf + html. URL:
http://dx.doi.org/10.1177/0278364916679498.

[38] J. Marshall. Creating and viewing skyplots. GPS Solutions 2002 6:1, 6(1):118–120,
Nov. 2002. DOI: 10 . 1007 / S10291 - 002 - 0017 - 3. URL:
https://link.springer.com/article/10.1007/s10291-002-0017-3.

[39] N. Mutha. Equirectangular toolbox, 2017. URL:
https://github.com/NitishMutha/equirectangular-toolbox. [Online;
accessed July-2021].

[40] National Ecological Observatory Network (NEON). Discrete return lidar point cloud
(dp1.30003.001). en, 2021. DOI: 10.48443/6E8K-3343. URL: https://data.
neonscience.org/data-products/DP1.30003.001/RELEASE-2021.

[41] A. Neubeck and L. Van Gool. Efficient Non-Maximum Suppression. In 18th
International Conference on Pattern Recognition (ICPR’06), volume 3,
pages 850–855, Aug. 2006. DOI: 10.1109/ICPR.2006.479.

[42] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org, 2017.

[43] OSNI. Spatial NI - background. URL: https://www.spatialni.gov.uk/
about-background.html (visited on 07/14/2021). [Online; accessed July-2021].

[44] T. Parisi. WebGL: Up and Running. O’Reilly Media, Inc., 1st edition, 2012. ISBN:
144932357X.

[45] QGIS Development Team. QGIS Geographic Information System. Open Source
Geospatial Foundation. 2009. URL: http://qgis.osgeo.org.

[46] S.-A. Rebuffi, R. Fong, X. Ji, and A. Vedaldi. There and back again: revisiting
backpropagation saliency methods. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: unified, real-
time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 779–788, 2016. DOI: 10.1109/CVPR.2016.91.

[48] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. CoRR, abs/1506.01497, 2015. arXiv:
1506.01497. URL: http://arxiv.org/abs/1506.01497.

[49] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Trans. Database Syst.,
42(3), July 2017. ISSN: 0362-5915. DOI: 10 . 1145 / 3068335. URL:
https://doi.org/10.1145/3068335.

72

https://doi.org/10.1177/0278364916679498
http://ijr.sagepub.com/content/early/2016/11/28/0278364916679498.full.pdf+html
http://ijr.sagepub.com/content/early/2016/11/28/0278364916679498.full.pdf+html
http://dx.doi.org/10.1177/0278364916679498
https://doi.org/10.1007/S10291-002-0017-3
https://link.springer.com/article/10.1007/s10291-002-0017-3
https://github.com/NitishMutha/equirectangular-toolbox
https://doi.org/10.48443/6E8K-3343
https://data.neonscience.org/data-products/DP1.30003.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.30003.001/RELEASE-2021
https://doi.org/10.1109/ICPR.2006.479
 https://www.openstreetmap.org 
https://www.spatialni.gov.uk/about-background.html
https://www.spatialni.gov.uk/about-background.html
http://qgis.osgeo.org
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335


[50] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: visual explanations from deep networks via gradient-based localization. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 618–626,
2017. DOI: 10.1109/ICCV.2017.74.

[51] B.-Q. Shi, J. Liang, and Q. Liu. Adaptive simplification of point cloud using
k-means clustering. en. Computer-Aided Design, 43(8):910–922, Aug. 2011. ISSN:
0010-4485. DOI: 10.1016/j.cad.2011.04.001.

[52] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition, Sept. 2014. arXiv: 1409.1556 [cs.CV].

[53] D. Steinley. Properties of the Hubert-Arable Adjusted Rand Index. Psychological
Methods, 9(3):386–396, 2004. ISSN: 1939-1463. DOI: 10.1037/1082-989X.9.
3.386.

[54] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev,
S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and
D. Anguelov. Scalability in perception for autonomous driving: waymo open
dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2446–2454, Dec. 2019. URL:
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_
Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_
Dataset_CVPR_2020_paper.html (visited on 07/15/2021).

[55] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun. Multinet:
real-time joint semantic reasoning for autonomous driving. arXiv preprint
arXiv:1612.07695, 2016.

[56] Tzutalin. LabelImg, Sept. 20, 2021. URL: https://github.com/tzutalin/
labelImg (visited on 09/20/2021).

[57] Uber. Streetscape.gl. URL: https : / / avs . auto / index . html (visited on
06/23/2021).

[58] U. Verma. Plas.io. URL: https://github.com/verma/plasio (visited on
06/23/2021).

[59] B. Wang, V. Wu, B. Wu, and K. Keutzer. LATTE: Accelerating LiDAR Point Cloud
Annotation via Sensor Fusion, One-Click Annotation, and Tracking. 2019 IEEE
Intelligent Transportation Systems Conference, ITSC 2019:265–272, Oct. 2019.
DOI: 10.1109/ITSC.2019.8916980.

[60] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu. What your images
reveal: exploiting visual contents for point-of-interest recommendation. In
Proceedings of the 26th international conference on world wide web,
pages 391–400, 2017.

73

https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/j.cad.2011.04.001
https://arxiv.org/abs/1409.1556
https://doi.org/10.1037/1082-989X.9.3.386
https://doi.org/10.1037/1082-989X.9.3.386
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://avs.auto/index.html
https://github.com/verma/plasio
https://doi.org/10.1109/ITSC.2019.8916980


[61] L. Wasser. earthlab/earth-analytics-r-course: Earth Analytics Course in the R
Programming Language, version r-earth-analytics, Aug. 2018. DOI:
10 . 5281 / zenodo . 1326873. URL:
https://doi.org/10.5281/zenodo.1326873.

[62] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan, M. Tomizuka,
and L.-T. Hsu. UrbanLoco: a full sensor suite dataset for mapping and localization in
urban scenes. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 2310–2316, May 2020. DOI: 10.1109/ICRA40945.2020.9196526. ISSN:
2577-087X.

[63] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL programming guide: the
official guide to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing
Co., Inc., 1999.

[64] R. Yang, X. Huang, and S. Chen. Efficient rendering of integral images. In ACM
SIGGRAPH 2005 Posters, 44–es. 2005.
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