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Abstract
We propose a variational quantum eigensolver (VQE) algorithm that uses a fault-tolerant (FT)
gate-set, and is hence suitable for implementation on a future error-corrected quantum computer.
VQE quantum circuits are typically designed for near-term, noisy quantum devices and have
continuously parameterized rotation gates as the central building block. On the other hand, an FT
quantum computer (FTQC) can only implement a discrete set of logical gates, such as the so-called
Clifford+T gates. We show that the energy minimization of VQE can be performed with such an
FT discrete gate-set, where we use the Ross–Selinger algorithm to transpile the continuous rotation
gates to the error-correctable Clifford+T gate-set. We find that there is no loss of convergence
when compared to the one of parameterized circuits if an adaptive accuracy of the transpilation is
used in the VQE optimization. State preparation with VQE requires only a moderate number of
T-gates, depending on the system size and transpilation accuracy. We demonstrate these properties
on emulators for two prototypical spin models with up to 16 qubits. This is a promising result for
the integration of VQE and more generally variational algorithms in the emerging FT setting,
where they can form building blocks of the general quantum algorithms that will become
accessible in an FTQC.

1. Introduction

Quantum computing has seen significant progress in the last decade, leading to the development of quantum
processors with an increasing number of qubits. These noisy intermediate-scale quantum (NISQ) processors
are currently being investigated for a possible advantage over classical computers [1–4]. However, anticipated
general quantum algorithms with a proven exponential speed-up over their classical counterparts lie outside
of the reach of NISQ processors, because of the limited physical qubit numbers as well as the accumulation of
noise for deep circuits [5–7]. Such algorithms include Shor’s algorithm [8] and quantum phase estimation
(QPE) [9]. Therefore, for the full potential of quantum computing to be achieved, fault-tolerant quantum
computers (FTQCs) will be needed.

An essential part of developing an FTQC is the incorporation of quantum error correction (QEC) into
the processors, which will not only increase the coherence times of the resulting logical qubits but also
actively correct for errors in faulty operations as the information is being processed. To this end, there have
been recent prototype demonstrations of QEC on superconducting [10] and ion-trap devices [11].
Furthermore, recently error suppression with increasing code-size was demonstrated for the surface code
[12] despite an increased number of physical qubits and gate operations. While the gate error levels in
current hardware are not yet sufficiently low for large-scale error correction, with rapid progress in the field,
error-corrected quantum computers with a small number of logical qubits may emerge in the next few years.

The main difference between the quantum circuits achievable on near-term, so called NISQ computers,
and future error-corrected quantum computers are the range of quantum gates available at the logical level.
Typically, NISQ devices allow continuously parameterized single-qubit rotations, such as an arbitrary
z-rotation, Rz(θ), where θ ∈ [0,2π]. On the other hand, FTQCs only allow a fixed set of discrete rotation
angles, such as the π/4 rotation about the z-axis, also known as the T-gate. For this reason, any algorithm
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must first be compiled into a code-specific fault-tolerant (FT) gate-set before it can be run on the logical
qubits. FT gate synthesis has been investigated in depth, and a number of algorithms have been proposed
[13–17].

In this article we study the variational quantum eigensolver (VQE) algorithm [18] in the context of FT
quantum computation. VQE uses the variational principle to compute an upper bound for the ground state
energy of a Hamiltonian by using a parameterized quantum circuit that approximates the ground state of the
Hamiltonian after optimization of the parameters in the quantum circuit. Computing an approximation for
the ground state and energy of a Hamiltonian is generally the first step in probing the energetic properties of
physical systems, a problem that commonly arises in condensed matter physics and quantum chemistry [19].
As a result, VQE has potential practical applications in fields such as material science [20, 21] and drug
discovery [22, 23]. Furthermore, general cost functions can typically be represented as a Hamiltonian, where
a variational algorithm can then be used to obtain the ground state, which hence yields the optimized result
for the given cost function. Therefore, results obtained for VQE are generally applicable also in applications
in optimization, in particular using the quantum approximate optimization algorithm (QAOA) [24], and in
quantum machine learning [25, 26].

Due to its partial resilience to noise for moderate numbers of qubits and circuit depths, VQE has been
studied as a near-term algorithm and used to perform a number of proof of concept demonstrations on
noisy quantum hardware. However, the scaling to larger systems is hindered by the noise in the hardware,
since the noise mitigation methods used successfully in small experiments become very expensive to scale up
to larger circuits [19, 27]. As the system sizes increase, it is still an open question as to whether the VQE
algorithm by itself will be an efficient method to compute the ground state of a Hamiltonian, since a number
of challenges need to be solved, as outlined in [19].

For such large scale systems there are a number of alternative algorithms requiring fault-tolerance, which
in principle allow to obtain desired states on a quantum computer with very high quality. These target states
are typically ground states of a Hamiltonian, which can either represent a physical system or a general cost
function in optimization and machine learning tasks. Such methods with known scalability include the QPE
algorithm and the so-called Rodeo algorithm [28]. However, all these methods rely on the necessary
condition that the initial state, upon which the method is applied, has already a sufficient overlap with the
target state. The problem is that as the systems scale up in size, the overlap can become exponentially small
[20], in which case the use of these methods becomes impossible. As a solution to potentially overcome this
problem we propose to integrate these methods with an FT implementation of VQE, which we call FT-VQE.
For large systems FT-VQE may not directly obtain the final target state with very high accuracy, but it will
likely allow to obtain sufficient overlap with the final target state to be used as initial state in the algorithms
above (for example QPE or Rodeo algorithms). We therefore expect FT-VQE to become an integral part of
such applications in fault-tolerant devices for this initial state preparation step. We note that FT-VQE would
not solve all the intrinsic scaling challenges of VQE, such as the difficulty in the classical optimization of the
circuit parameters for large systems [19, 29, 30]. However, in the FT setting, we expect VQE to be used
alongside algorithms with known scalability such as QPE [9].

The hurdle which must be overcome is that current VQE quantum circuits, designed for near-term
hardware, include continuously parameterized rotation gates. The rotation angles are optimized on a
classical computer, and the energies used in the optimization process for a given set of angles are obtained
from the quantum computer. It had not yet been investigated how well this classical optimization process can
be performed given the limitations of an FT discrete gate-set, where a continuous range of parameters can
only be achieved in the limit of large numbers of T-gates, and whether the necessary approximations in the
gates for circuits with finite T-gate depth would affect the convergence of the algorithm. In this article, we
address this question and show that by integrating the Ross–Selinger (RS) recompilation of a continuous
rotation to an FT gate-set into our algorithm, we can obtain systematic convergence of the VQE algorithm.
We find that there is no slowdown in convergence efficiency when compared to the conventional VQE
circuits with parameterized hardware gates if an adaptive RS recompilation accuracy is used.

The structure of the paper is as follows. Section 2 discusses the methods, introducing the FT Clifford+T
gate-set, the RS algorithm used for FT gate synthesis, and an FT implementation of the VQE algorithm.
Section 3 introduces the two spin models that we use to test the method, and then the results for both fixed
angles of a quantum circuit and for a full VQE loop performed using our implementation with an FT
gate-set. In section 4 we discuss the conclusions.
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2. Methods

2.1. FT gate-set
The universal FT gate-set used in this study is the Clifford+T gate-set. The Clifford set in this study consists
of Hadamard, phase-gate, and controlled-NOT gates, {H,S,CNOT}, which can generate any N-qubit
Clifford operation. With the addition of the T-gate, any unitary lying in SU(2N) can be approximated up to
any target accuracy by a sequence of Clifford+T gates [31].

The T-gate is expressed in matrix form as

T=

[
1 0
0 eiπ/4

]
. (1)

There are diverse ways of achieving FT logic gates depending on the underlying code. However, in many
codes, including the surface code [32] (currently the most promising quantum error correcting code due to
its high threshold and simple two-dimensional modular implementation), Clifford group gates can be
performed in a direct and fast method, while T-gates are more expensive.

In order to implement the T-gates in these codes, a non-unitary technique such as magic-state
distillation and injection is required. This procedure has a spatial and temporal overhead due to the
additional ancillary qubits and physical gates needed [33]. Therefore, an important metric in the analysis of
the performance of an FT quantum algorithm implemented with Clifford+T gates is the number of T-gates.

In our work, we are, therefore, interested in the two following metrics.

• T-count: T-count is defined as the total number of T-gates in the FT quantum circuit.
• T-depth: T-depth is defined as the total number of layers of T-gates, where within each layer parallel exe-
cution of the T-gates on different logical qubits is possible.

2.2. RS algorithm
The RS algorithm computes approximations of arbitrary single qubit z-rotations, Rz(θ) over the Clifford+T
gates. It achieves this by approximating Rz(θ) with another unitary U, where U has an exact decomposition
over Clifford+T gates up to the single-qubit global phase, ω = ei

π
4 [14]

Rz (θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
RS−→ U=

∏
m

Um ∈ {ω,H,S,T} . (2)

The algorithm then outputs the Clifford+T decomposition of the unitary U. The error in this approximation
is given as

||Rz (θ)−U||⩽ ϵ= 10−d (3)

where ||.|| is the operator norm bounded by ϵ, and d is the digit accuracy. The accuracy of the decomposition
can be systematically improved with increasing T-depth. Furthermore, the RS algorithm is efficient in the
number of T-gates, which in the typical case scales with respect to ϵ as 4 log2(

1
ϵ )+O(log(log( 1ϵ ))). This is in

contrast to the Solovay–Kitaev algorithm [13], which achieves T-counts of O(logc( 1ϵ )), where c is a constant,
making RS more favorable for c> 3.

Rotations about other axes, such as Rx and Ry, can be achieved with the corresponding Rz rotation and
additional Clifford gates as

Rx (θ) =HRz (θ)H, Ry = SHRz (θ)HS
†. (4)

Therefore, the RS transpilation can be used to find the Clifford+T approximation of any SU(2) unitary.
The software implementation of the RS algorithm is available in an open-source software package [34].

Figure 1 shows practical numbers for the number of T gates in the RS decomposition of Rz(θ) rotations in
the range θ ∈ [0,π] at various d, obtained using this software package. It can be observed that for a given d,
the number of T gates required to realize different rotations is similar for all rotations. Note that multiples of
π/2 can be carried out by S gates and hence have a T-count of 0.

2.3. FT implementation of VQE
The VQE is a hybrid quantum–classical algorithm, where the ground state wave function of a HamiltonianH
is expressed on the quantum computer by executing a parametric quantum circuit, denoted as ansatz

3
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Figure 1. T-counts of Rz(θ) rotations for increasing RS digit accuracy, d (see equation (3)).

V(θ)|0⟩. V(θ) is a sequence of parametric gates, and θ is a vector of parameters that is optimized to find the
ground state. The energy of the parametric wave function,

E (θ) = ⟨0|V(θ)
†HV(θ)|0⟩, (5)

can be obtained on a quantum processor as expectation value.
If the quantum circuit can span the entire Hilbert space, the minimum value of E(θ) will correspond to

the ground state ofH. However, practical implementations typically use a circuit with limited parameters,
leading to an approximation of the ground state. The minimum value of E(θ) is found via classical
optimization.

2.3.1. Classical optimization
The task of finding the minimum value of E(θ) is challenging, because it is usually a non-convex function. In
this paper we focus on gradient-based minimization methods, specifically the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm [35–38]. In BFGS, the procedure assumes a continuous optimization landscape as
a function of the parameters. On the contrary, in FT quantum computation, one will necessarily be restricted
to a discrete gate-set, typically Clifford+T. Here, we therefore substitute the parametric gate-set
Rx(θ),Ry(θ),Rz(θ) by their RS decompositions (equations (2) and (4)).

Two strategies are usually used to obtain the gradient in VQE: the finite-difference rule and the
parameter-shift rule [39–41]. In this paper, we use both strategies and evaluate their relative performance.

Finite-difference rule: this method requires two evaluations of a given circuit with an infinitesimally
shifted parameter. The required derivatives can be approximately calculated as

∂θµE (θµ)≈
E
(
θµ +

1
2∆θµ

)
−E

(
θµ − 1

2∆θµ
)

∆θµ
. (6)

For ease of notation in the equation we only specify the shifted parameter θµ as argument in the
function; all other parameters in the vector θ are kept constant. For the FT-VQE algorithm, the finite-shift
rule requires two runs of the RS algorithm for calculating the Clifford+T decompositions of the shifted
angles, followed by two expectation value evaluations.

Parameter-shift rule: the parameter-shift rule is a method of computing the gradient of a parameterized
gate by running the same quantum circuit twice with a finite shift in the gate parameter [39–41]. It states that
if the generator G of the gate G(θµ) (with a single parameter θµ) has two unique eigenvalues denoted as e0
and e1, then the derivative of the circuit expectation with respect to the gate parameter θµ is given by the
difference in expectation value of two circuits. The two circuits are run with shifted parameters scaled by a
parameter r given as r= e1−e0

2 . The gradient is obtained as

4
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Figure 2. ZZ(θ) gate decomposed into CNOTs and a single-qubit Rz(θ) gate.

∂θµE (θµ) = r
[
E
(
θµ +

π

4r

)
−E

(
θµ −

π

4r

)]
(7)

where r is the scaling parameter and π
4r is a finite shift.

The main gate of interest in this work is Rz(θ) = e−i
θ
2 Z. The Z-gate has eigenvalues±1, hence the value of

r for Rz(θ) is r=
1
2 . The parameter-shift rule for Rz(θ) is, therefore, expressed as

∂θµE (θµ) =
1

2

[
E
(
θµ +

π

2

)
−E

(
θµ −

π

2

)]
. (8)

We note that the required parameter-shift can be exactly implemented with S gates together with the
appropriate multiple of the phase ω: Rz(π/2) = ω7S and Rz(−π/2) = ωSSS.

We remark that the two-qubit gate ZZ(θ) = ei
θ
2 Z⊗Z, which is required in the Hamiltonian variational

ansatz (HVA) used in the results section of this article, can be decomposed into CNOTs and a single-qubit
rotation as shown in figure 2. The gradient of the ZZ(θ) can therefore be calculated with equation (8).

Therefore, the parameter-shift rule for ZZ(θ)-like gates does not have an additional FT overhead, i.e. no
extra T-gates are needed for the required shifts because S gates can realize the desired shifts.

3. Results

To demonstrate the method, we apply the FT-VQE to two spin models, namely the transverse-field Ising
model (TFIM) and the XXZ model, using an HVA [42, 43]. Within the HVA each ansatz is model-specific.
For a general Hamiltonian,H, which is a linear sum of not-necessarily commuting termsH=

∑
i Hi, an

HVA is expressed as

|ψL⟩=
L∏

l=1

(∏
i

exp(−iθi,lHi)

)
|ψ0⟩ (9)

where L is the total number of layers (layer depth). |ψ0⟩ is the ground state of one of the individual termsHi

of the Hamiltonian [42, 43]. HVA is motivated by the QAOA [24], and the choice of |ψ0⟩ is similar, which is a
state that is easy to prepare in hardware. For our investigation, HVA is chosen because of its linear scaling in
the number of parameters with increasing number of layers.

TFIM. The TFIM Hamiltonian is a prototype model of quantum magnetism, and is given by

HTFIM =−
N∑

i=1

[
ẐiẐi+1+ gX̂i

]
, (10)

where we consider periodic boundary conditions (ẐN+1 = Ẑ1). The value of g affects the magnetic phase,
where g< 1 gives a ferromagnetic phase as ground state, g> 1 corresponds to a paramagnetic phase, and
g= 1 is a critical point. The system is gapless at g= 1 in the thermodynamic limit where N goes to infinity.
For our FT-VQE simulations, we consider the critical g= 1 point for a system of N = 16 qubits. The initial
state is taken as |ψ0⟩= |+⟩⊗16. For the HVA we use a layer depth of L= 8, leading to 16 parameters. The
corresponding quantum circuit ansatz is shown in figure 3. This system size and ansatz choice are based on
those of [43], where the entanglement and optimization properties of this system have been first investigated
using the HVA. In [43] it is shown that barren plateaus are expected at L= 8 with a random parameter
initialization. We, therefore, choose this setup as one of our test systems to evaluate the performance of
FT-VQE in presence of barren plateaus.

XXZ model. The XXZ model is another prototypical model of quantum magnetism. In the
one-dimensional case its Hamiltonian is given by

HXXZ =
N∑

i=1

X̂iX̂i+1+ ŶiŶi+1+∆ẐiẐi+1, (11)

5
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Figure 3. TFIM ansatz with 16 qubits with two parameters per layer, where β,γ are the variational parameters of all the gates in
each layer. Layers are repeated eight times leading to 16 free parameters in total.

Figure 4. XXZ model ansatz with 12 qubits and four parameters per layer, where θ,ϕ,β,γ are the variational parameters of all the
gates in each layer. Layers are repeated 36 times leading to 144 free parameters in total. It was numerically observed that at least 36
layers were needed for sufficient convergence with random initial parameters.

where again periodic boundary conditions are applied.∆ represents the spin anisotropy of the model. For
our FT-VQE simulations, we take∆= 1, at which there is a phase transition to the Néel ordered state. The
system size we consider is N = 12 qubits, and for the HVA we use a layer depth L= 36, leading to 144 free
parameters. The initial state is taken as |ψ0⟩=

⊗N=6
n=1 |Ψ−⟩, where |Ψ−⟩= 1√

2
(|01⟩− |10⟩) is a Bell state as

in [43]. The ansatz is shown in figure 4. In [43] it is shown that such ansatz achieves good VQE convergence
at L= 36, which is attributed to the system being in the over-parameterization limit for the XXZ model, and
hence avoids a barren plateau. Therefore, this second ansatz illustrated in figure 4 allows us to evaluate the
performance of FT-VQE for a system that has no barren plateaus, but a large number of variational
parameters and layers.

Finally, all the calculations performed in this paper have been done on the quantum emulator Qulacs
[44] as state vector emulations.

6



Quantum Sci. Technol. 9 (2024) 015015 H Sayginel et al

Figure 5. Difference of the ground state energy between the solution obtained with the circuit using parameterized rotations
(Rz(θ)-circuit) and its fault-tolerant form with limited T-depth following Clifford+T compilation (FT(θ)-circuit). The
horizontal axis of the plots illustrates the Ross-Selinger digit accuracy, d in equation (3). (a) Difference in energy of the
Rz(θ)-circuit and the FT(θ)-circuit for the same rotation parameters, as function of digit precision d (b) T-count and T-depth,
showing that they increase approximately linearly with d.

3.1. State preparation accuracy analysis with limited T-depth
First, we perform the VQE minimization using the parameterized rotation gates. We denote this circuit as the
Rz(θ)-circuit due to the continuous parameterization of the rotation angles, and due to the decomposition of
each parameterized gate into single-qubit Rz(θ) rotations. We then fix the rotation gates at the optimized
values, perform the RS decomposition at different d for each rotation gate, and then replace all
parameterized Rz(θ) rotations with their RS decompositions. We denote this circuit as the FT(θ)-circuit. We
evaluate the energy difference between the Rz(θ)-circuit and FT(θ)-circuits for different digital accuracy d
(equation (3)). Figure 5 shows this comparison for both the TFIM and XXZ models, together with the
resulting T-count and T-depth. The energy difference decreases exponentially with d, until d is larger than
about six, above which the energy difference becomes approximately constant. We verified that this tail-off is
due to the finite numerical accuracy of the emulator software. In appendix we show that when performing
the numerical evaluations at higher precision the energy difference decays exponentially up to digit accuracy
of d= 16. Our results therefore show that one can systematically increase the accuracy of the energy of the
FT(θ)-circuit by increasing d up to the numerical accuracy. Importantly, the circuit depth only increases
linearly with d, as guaranteed by the RS decomposition.

For d= 4 the error in the energy expectation value is less than 10−4 for both the TFIM and XXZ models.
For the TFIM model the corresponding T-count is 10 232, and the T-depth is 974; for the XXZ model the
T-count is 50 976 and the T-depth is 8554. The energy difference becomes approximately constant for d
larger than six, where it reaches values of the order of 10−10 to 10−9. The T-count for d= 6 is 15 480, with a
T-depth of 1474, for the TFIM; for the XXZ model the T-count is 77 680, with a T-depth of 13 056. TFIM
with N = 16 qubits has a total number of 256 single-qubit Rz(θ) gates, whereas the XXZ model has a total of
1296 single-qubit Rz(θ) gates. The total T-count for both models at arbitrary d is approximately equal to the
number of Rz(θ) gates multiplied by the average number of T-gates per RS decomposition of a single Rz(θ)
gate, which can be extracted from figure 1. Note that in practice also the Rz(θ) gates have finite accuracy when
implemented in hardware, so that the hardware result will also deviate from the ideal exact circuit results.

The above T-count estimates are modest when compared with recent resource count estimates for other
FT algorithms. For example, for the problem of integer factoring, it is expected that at least 109 T-gates and
105 logical qubits will be needed [5]. In [45, 46] the required T-counts of various quantum simulation
problems are investigated, and estimates range between 107 and 1012 T-gates depending on the complexity of
the system. Particularly, in [46], authors estimate the T-counts of various spin systems. The Hamiltonian
studied in [46] is similar to our XXZ model with∆= 1 (a Heisenberg chain), and an additional
transverse-magnetic field. Their lower estimates are of the order of 107 T-gates for a spin-system with 14
qubits for an error level of 10−3. For the XXZ model of a similar size, our estimate with FT-VQE is 104–105

T-gates.

7
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Figure 6. Fault-tolerant VQE with (a) finite-differences with∆θµ = 0.1 and (b) parameter-shift rule methods for TFIM. Energy
differences were calculated with respect to the numerically exact ground state energy value for the TFIM calculated via matrix
diagonalization. The dashed lines in the plots illustrate the optimal expectation value of the Rz(θ)-circuit with continuously
parameterized rotation gates.

3.2. VQE using the RS decompositions
We now evaluate and optimize the convergence of the full VQE minimization using the circuit with the RS
decomposed rotation gates. As starting point for the minimization process we use random initial rotation
parameters, and compile these into their RS decomposition for a given d. We use gradient-based optimizers.
To obtain the gradients we use two different methods, and compare the respective convergence behavior. In
the first method we evaluate the energy for the parameters shifted by a small finite difference from their
previous values (see section 2.3 for details), and we compute the gradient from the resulting energy
difference. We choose∆θµ = 0.1 for this small shift, because the shift needs to be orders of magnitude larger
than the error made in the RS decomposition. In general, the precision of gradients that can be obtained
using FT(θ)-circuits depends on d. In the second method we use the parameter-shift rule outlined in
section 2.3 to obtain the gradients. Once the gradients are obtained, the optimizer updates the rotation
angles as part of the energy minimization process. The updated rotation parameters are again recompiled
into FT(θ)-circuits. This process is iterated until convergence of the VQE optimization. The optimizer used
for both methods is the BFGS algorithm [35–38]. The stopping criterion for the minimization is when the
difference energy between the new iteration and the previous one is less than 10−14. The same criterion is
taken for both the Rz(θ)-circuit and the FT(θ)-circuits.

We now analyze the convergence behavior of this FT-VQE method by evaluating the energy difference
between the energy at each minimization step and the energy obtained by direct numerical diagonalization
of the Hamiltonian matrix, which is exact up to numerical precision. This data is obtained from the
TensorFlow Quantum dataset available at [47]. Figure 6 shows the results for the TFIM model, for both the
finite-difference based gradient (figure 6(a)) and for the gradient obtained using the parameter-shift rule
(figure 6(b)). We also show the convergence behavior for the Rz(θ)-circuit (gray solid line) as reference. Both
in figures 6(a) and (b) we observe that the convergence behavior of the Rz(θ)-circuit and FT(θ)-circuits is
similar. Up to about 150–300 optimization steps the energy decreases very slowly, and then rather abruptly
the decrease of energy becomes much larger until it converges. This initial slow convergence is caused by
small gradients in large parts of the energy landscape, which are commonly referred to as barren plateaus. It
can be seen upon close inspection that the light purple d= 3 plot gets stuck in the barren plateau, where the
energy error remains high at a value of the order of 10−1. The gradient in the barren plateau is characterized
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Figure 7. Fault-tolerant VQE with parameter-shift rule method for the XXZ model. Energy differences were calculated with
respect to the numerically exact ground state energy computed using matrix diagonalization. The dashed line illustrates the
optimal expectation value of the Rz(θ)-circuit with continuously parameterized rotation gates.

by its small magnitude, which leads to correspondingly small updates in the optimization process. In this
case, a higher d is needed to update the angle with enough accuracy. For d⩾ 5, sufficiently high accuracy has
been reached allowing the convergence of the VQE. For d⩾ 5 the convergence behavior in presence of barren
plateaus is similar for both the Rz(θ)-circuit and FT(θ)-circuits.

We note that the finite-differences method escapes the barren plateau at around 150 steps, while for the
parameter-shift rule this happens above 300 steps. We attribute this behavior to large shift of∆θµ = 0.1 in
the angles for the gradient calculation. The rather large∆θµ can lead to random errors of that order in the
gradient. A stochastic component during optimization resulting from such random errors in finite precision
gradients can speed up the convergence by bringing the system out of a barren plateau. These random errors
can also help the system escape out of a local minimum and hence improve convergence. The Rz(θ)-circuit
converges to an error of 10−12 with the finite-shift rule and to 10−14 with the parameter-shift rule. On the
other hand, the FT(θ)-circuits converge to a similar error level of 10−10− 10−9 with both finite-differences
and parameter-shift rule for d⩾ 7. FT(θ)-circuits use RS decompositions, and as a result involve many more
multiplications of matrices as compared to the Rz(θ)-circuits. The higher number of multiplications
amplifies the numerical precision errors in Qulacs matrix multiplications. This is consistent with the results
of figure 5, and with the numerical precision analysis presented in appendix.

As explained in section 2.3, in the finite-shift rule one has to recompute the RS decompositions for the
shifted angles, whereas in the parameter-shift rule the required angle shifts can be realized with S-gates.
Therefore, in this setting the parameter-shift rule has less classical overhead for the computation of the
gradient. Furthermore, since the required shifts are multiples of the S-gate, the gradient calculations do not
contribute to the T-count. Finally, due to its resilience to noise, as outlined in [25], overall we expect that the
parameter-shift rule is more efficient for FT-VQE.

Figure 7 shows the convergence behavior for the XXZ model, where we only use the parameter-shift
method. One can see that there are no barren plateaus, differently to what was found for the TFIM system.
One possible reason for this can be the larger number of variational parameters in the XXZ model ansatz.
Such over-parameterization can help avoid barren plateaus, as discussed in [43]. The system converges rather
rapidly to errors below 10−2 and 10−3, which can be typical accuracy thresholds for practical applications.
While for d= 3 the system only converges down to 10−1, for d= 5 one reaches an accuracy of below 10−3,
and hence d= 5 can be the appropriate digit precision of the RS decomposition for practical applications. If
one further increases d and allows for more optimization steps, the energy difference keeps decreasing down
to values of 10−6 and below. Importantly, the FT(θ)-circuit convergence at these high d values is very similar
to the one for the Rz(θ)-circuit. Note that even the Rz(θ)-circuit ansatz has an inherent accuracy limit
compared to the ground energy calculated from matrix diagonalization, which is the reason for the small but
finite remaining energy difference.

The results show that the small values of d can achieve convergence to moderate errors in the energy, and
that with increasing d one can systematically improve the accuracy of the final energy up to a numerical
accuracy limit determined by the precision of the software. Furthermore the results also show that when
barren plateaus are encountered, random errors in the gradients can help the system escape from the barren
plateau. For example, in figure 6(b) the d= 5 FT(θ)-circuit escapes the barren plateau at significantly lower
optimization step number when compared to larger d. We also note that a priori it is not known which d will
allow the system to reach a target accuracy. We therefore propose an adaptive algorithm, where a small d is
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used to start the minimization process, which is then progressively increased during the convergence until a
target accuracy is reached. We implement this adaptive approach in our software, where we minimize the
energy for a given d until the criterion |E(θt+1)−E(θt)|= 1× 10−14 is reached. Once this is the case, we
proceed by increasing the accuracy d by one. We show the results for the TFIM model in figure 6(b), and for
the XXZ model in figure 7 (black curves). We set the initial d to d= 3, and then allow d to increase up to a
maximum of d= 8 within the adaptive algorithm. Each ‘×’ marker represents the point where d is
incremented. The results show that the adaptive approach leads to efficient convergence, while allowing to
minimize the T-depth of the circuit. We therefore expect a generally improved performance of adaptive
FT-VQE when compared to FT-VQE at fixed d.

We note that while our work considered an HVA, the methods used are applicable to any variation of
VQE. Since the Clifford+Rz(θ) gate-set is universal, any quantum circuit can be decomposed first into this
form, and then into the Clifford+T set via RS decomposition. In practice, this technique will be efficient for
a large number of parametric quantum circuits, where the performance of FT-VQE will mostly depend on
the performance of the underlying variational algorithm with continuously parameterized circuits. For
example, the ADAPT-VQE ansatz [48] can be used as an alternative to the fixed HVA.

3.3. Proposed early hardware demonstration
The current state-of-the-art quantum hardware with its significant noise levels is not yet suitable for
executing extended circuits with many gates, which are required to perform the FT-VQE computations
presented in our work. The earliest experimental demonstration of FT-VQE on partially FT quantum
hardware, as a proof-of-principle rather than for practical purposes, can be done using one or two-qubit
Hamiltonians. For the one-qubit case, a general single-qubit unitary U ∈ SU(2) comprising three single
qubit rotations can be used. Assuming an adaptive RS accuracy of d= 3− 7, figure 1 suggests that between
25 and 75 T-gates for each of the single-qubit rotations should be sufficient. Therefore, this demonstration
would require between 75 and 225 T-gates at each VQE iteration. For a demonstration with two qubits, one
may consider a general two-qubit unitary U ∈ SU(4) from [49]. This circuit requires three CNOTs and 15
single-qubit rotations. Assuming again an adaptive RS accuracy of d= 3− 7, we estimate 375–1125 T-gates
to be needed at each VQE iteration for successful convergence.

4. Conclusions

Our results demonstrate that variational quantum algorithms, such as VQE, show promise for practical
applications on error-corrected quantum computers with limited T-depth. Our findings suggest that VQE is
viable for running on an FTQC. We expect that FT-VQE alone cannot achieve quantum advantage, but that
it will be a required component of a number of quantum algorithms that combine different methods. For
example, VQE can be the first step of an algorithm to compute the ground state, where VQE is used to
prepare a state with finite overlap with the ground state, which is then used as a starting state for other
algorithms such as QPE.

We presented the FT-VQE algorithm, which we demonstrated on a quantum emulator for 12 and 16
qubits for two prototypical spin systems. Our study shows that FT-VQE convergence behavior is analogous
to standard VQE, especially when we use our proposed adaptive setting of the RS circuit re-compilation
accuracy. The presented data show that the discretization of arbitrarily parameterized rotation angles with a
finite T-gate depth does not negatively affect the convergence of the VQE algorithm, and also that the
required T-gate depth for such good convergence is moderate. The main limitation of FT-VQE when
compared to traditional VQE is that the circuit depth is significantly increased due to the restriction to the
Clifford+T gate-set, the main advantage is that it allows for FT execution, where noise will not accumulate
despite the increased circuit depth.

This work highlights the potential of FT-VQE as a powerful tool for practical quantum applications, with
particular relevance in quantum chemistry simulations and optimization problems. These findings
contribute to the ongoing development of quantum computing technologies and underscore the importance
of continued research in this area.
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After the completion of this work, we became aware of [50], which investigates state preparation with the
unitary coupled cluster ansatz in circuits with limited T-depth. This work is complementary to the analysis of
convergence behavior of the HVA decomposition investigated here.

Appendix. Numerical precision of the classical emulation

To evaluate the numerical precision of the fault-tolerant variational quantum eigensolver (FT-VQE) circuits
we first evaluate the precision of the Ross–Selinger (RS) circuit synthesis for a single rotation gate, and then
evaluate how the implementation of a sequence of gates in the used emulators affects the overall numerical
precision.

A.1. RS error analysis
We carry out error analysis for the RS algorithm in order to assess whether the z-rotation realized by the
approximate Clifford+T unitary U is close to the expected rotation θ, and whether the error is compatible
with the operator norm given in equation 3. Furthermore, the non-zero off-axis rotation realized by the
unitary U is also calculated. For this purpose, we consider the Euler angle decomposition of a general SU(2)
matrix in the ZXZ convention, given by

U(θ1,ϕ,θ2) = e
−i θ12 Ze−i

φ
2 Xe−i

θ2
2 Z

=
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2 ) cos

(
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)
−iei(
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(
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2

)
−ie−i(

θ1−θ2
2 ) sin

(
φ
2

)
ei(

θ1+θ2
2 ) cos

(
φ
2

) ] . (A1)

We calculate the z-rotation angles θ1 and θ2 and the off-axis x-rotation φ.
In the ideal case, θ in equation 3 should be θ ≈ θ1+ θ2, whereas the off-axis rotation should be φ≈ 0.

Figure 8 shows the results for the computed angles. Note that we take the expression of U for different angles
directly from the RS software, so that the only error in consideration is from the RS approximation of the
Rz(θ) rotation. We compute the absolute difference of the Euler angles of U from their expected value. In
figure 8 it can be seen that both the z-rotations and the undesired x-rotations have similar levels of errors,
which can be systematically reduced by increasing d.

A.2. Circuit emulation at finite numerical precision
RS decompositions lead to a large number of Clifford+T gates. When using an emulator, these are
implemented as classical matrix multiplications. Due to the large number of matrix multiplications, finite
numerical precision errors accumulate and become observable. This behavior can be seen in figures 5(a)
and 6(a), (b). To analyze accumulation of precision errors, and to explain why the error levels off when d is
increased above some threshold in the FT-circuit emulator runs, we implement an emulator in Mathematica,
which allows to perform the computations at arbitrary numerical precision.

Since the arbitrary precision calculations are computationally expensive for large number of qubits, we
use a scaled-down version of the transverse-field Ising model (TFIM). We find that for N = 4 qubits we can
observe the same leveling off of the error with increasing d as for the larger systems. We therefore use this
scaled-down system as our test system. In analogy to figure 5, we first calculate the expectation value of the
Rz(θ)-circuits with optimized parameters. Then, we perform the RS circuit recompilation for the
Rz(θ)-circuits at various d, and compute the expectation values. The results are presented in figure 9. The
axes of figures 9 and 5(a) are the same.

We take two different layer depths of the TFIM four-qubit ansatz in order to investigate the effect of
increasing number of matrix multiplications at various numerical precision values, which we indicate by p.
In the L= 2 ansatz, there are a total of 16 parameterized gates, with four distinct parameters, whereas for
L= 8 there are 64 parameterized gates, with 16 distinct parameters. At the limited p= 7 precision, a similar
pattern as that of figure 5(a) is observed, where the error plateaus despite increasing d. Importantly, when we
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Figure 8. Error analysis of the Ross–Selinger Clifford+T circuit synthesis for Rz(θ), and for θ ∈ [0,2π]: (a) difference between the
actual and expected z-rotation angle; (b) the off-axis x-rotation, which should ideally be 0. The obtained numerical errors are in
line with the expected value set for each digit accuracy d.

Figure 9. Classical emulation of Ross–Selinger FT-circuit synthesized for increasing accuracy d, performed at different levels of
numerical precision of the emulator. The model used is TFIM with N= 4 qubits. p represents the finite numerical precision used
in the emulator operations, and L is the layer depth of the TFIM-Q4 ansatz. In the L= 2 ansatz, there are a total of 16 paramete-
rized gates with four distinct parameters, whereas in L= 8, there are 64 parameterized gates with 16 distinct parameters.

increase the precision of our Mathematica emulator to p= 16 and p= 20, the leveling off threshold of the
error systematically decreases. For p= 20 no leveling off is observed. This confirms that the leveling off of the
error in the emulator runs for the FT-circuits is due to the inherent numerical precision of the emulator.
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