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Abstract

Automatic location tracking of people has recently become a viable source for
mobility and movement data. Such data are used in a wide range of applications,
from city and transport planning to individual recommendations and schedule
optimization. For many of these uses, it is of high interest to know why a person
visited at a given location at a certain point in time. We use multiple personalized
graphs to model human mobility behavior and to embed a large variety of spatio-
temporal information and structure in the graphs’ weights and connections. Taking
these graphs as input for graph convolutional neural networks (GCNs) allows us to
build models that can exploit the structural information inherent in human mobility.
We use GPS travel survey data to build person specific mobility graphs and use
GCNs to predict the purpose of a user’s visit at a certain location. Our results show
that GCNs are suitable to exploit the structure embedded in the mobility graphs.

1 Introduction and Related Work

In recent years, human mobility analysis has become increasingly important since it is closely as-
sociated with opportunities (e.g., on-demand travel and shared mobility services, location-aware
recommender systems) and challenges (e.g., traffic congestion, air and noise pollution, decisions
on transportation infrastructure investments) in modern society. Advanced information and com-
munication technology presents a unique opportunity to better understand highly complex mobility
behavior [19]. Specifically, the prevailing availability of Global Navigation Satellite System (GNSS)
based movement trajectory data allows low cost collection of trajectory data from very large numbers
of participants over long periods of time. To take advantage of the available data, researchers both
from domain sciences and machine learning are developing methods for cleaning raw data, identifica-
tion of trips (i.e., movements) and activities (i.e., staypoints), and prediction of transport modes and
activity types [22; 4].

Previous studies have proposed a number of methods to identify activity types from various trajectory
datasets [4; 14; 13]. For instance, [16; 15] trained a random forest model on GPS trace data to
improve trip purpose identification and [21; 3] used Bayesian theory-based models to infer trip
purposes using taxi trajectory data. However, these studies often neglect high regularity of human
activity patterns while predicting activity types and mostly rely on extracted features of activities
(e.g., average stay duration, time of day, points of interest in vicinity, etc.). In this paper, we propose
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a new method based on graph convolutional neural networks (GCNs) [6] for the prediction of activity
types (i.e., trip purposes) from GPS trajectory data generated by personal smartphones. This allows
incorporating the high regularity of human mobility in terms of locations visited at specific times of
day and the frequency of observed direct trips between two locations [18]. For example, a person
might prefer to go grocery shopping at their favorite supermarket after work every Friday; and such
regularity in behaviour is potentially useful for inferring activity types from location data. To the best
of our our knowledge, this is the first application of GCNs for the task of predicting activity purposes
from trajectory data. Furthermore, we use a unique dataset that includes raw trajectories from 139
users over one year in Switzerland, in which the participants labeled each staypoint with the purpose
of their visit.

2 Data and Methods

2.1 Data

We use semantically enriched tracking data from the SBB Green Class pilot study1. Here, 139 Swiss
users were tracked over the course of one year with an app on their smartphone. The tracking app2

segmented the movement data into staypoints (a user does not move out of a certain area during a
given period) and movement trajectories and presented it to the users for validation and labeling.
The trajectories are labeled with the used mode of transport and the staypoints with an activity
purpose lp ∈ {home,work, errand, leisure,wait}. The study participants generate between 2 and 20
staypoints every day which results in between 2000 and 4000 staypoints per user over the course of
the tracking period.

2.2 Methods

Activity areas. From prior work on human mobility analysis, we know that humans tend to visit a
fixed set of spatial locations that evolves over time [1; 18]. To exploit the spatio-temporal patterns
and structure that lies within human mobility and the sequential visits of these places, we explicitly
model the human mobility behavior between these locations. Based on the point-cloud like staypoint
data, we create frequently visited places which we call activity areas using the DBSCAN clustering
algorithm [7; 8].

Graph network construction. To exploit the spatial information encoded in the relation between
activity areas and the spatio-temporal structure that lies within the sequential visit patterns, we
construct a set of person specific, undirected and connected graphs Gu,j = (Vu, Eu,j). We define
Gu,j as the jth mobility graph of user u with a user specific, finite (|Vu| = nu) set of nodes
Vu = {Vu,i}, i ∈ [1, 2, ..., nu], where nu is the number of nodes per user and Vu,i denotes a specific
node of that user. The nodes are connected with m sets of weighted edges Eu,j , j ∈ [1, 2, ...,m]. For
every graph Gu,j we define Wu,j ∈ Rnu×nu as its weighted adjacency matrix.

To construct the mobility graphs for one user, we define every activity area as a node Vu,i in his graphs
Gu,j (cf. Figure 1). The creation of a simplified graph by clustering (spatially) similar staypoints
to activity areas can be interpreted as a coarsening step comparable to the graph coarsening step
from [6]. To showcase the GCNs ability to learn on different graphs (with the same set of nodes), we
use two different definitions of spatio-temporal connectivity to create the edges between the nodes.
Specifically, we use the transition frequency between nodes and the spatial (Euclidean) distance
between all nodes as two different sets of weighted edges. The transition frequencies are calculated
by counting how often a user directly traveled between two activity areas. Other suitable definitions
for the edges between nodes could be based on the travel times (e.g., one graph per mode of transport),
angles, ticket prices or soft similarity measures such as cultural similarity.

Feature extraction. For each node (activity area) Vu,i, i ∈ (1, 2, ..., nu), we extract 30 features3

based on the aggregated information of the associated staypoints. Similarly, we assign labels to

1https://www.sbb.ch/de/abos-billette/abonnemente/greenclass/
ueber-sbb-green-class/pilotprojekte.html

2https://motion-tag.com/en/mobility/
3Mean stay duration, maximal duration, minimal duration, total number of staypoints within Vu,i, mean

longitude and latitude, average distance to public transport stops (train, tram, bus), distribution of arrival and

2
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Figure 1: To create activity areas (Ai) from individual staypoints, we employ a DBSCAN clustering
algorithm. Activity areas can be connected (wi,j) in various ways, e.g., with their weights corre-
sponding to the number of times a user directly traveled between two activity areas. The labels of the
activity areas correspond to the distribution of the underlying staypoints.

the nodes based on the aggregated staypoints. This process is visualized in Figure 1 on the right.
Staypoints associated with the same node can have different labels; we therefore assign a distribution
over all classes to each node. The probability of label lp at node i (short for Vu,i) is defined as
pi,lp = ni,lp/ni, where ni is the number of all staypoints and ni,lp is the number of staypoints with
label lp at the node i. As the node labels are unbalanced, we introduce sample weights based on the
inverse label weights wlp = nL/(|L| · nlp) (where nL is the cumulative weight of all labels and nlp
is the cumulative weight for a single label lp ∈ L). These are later used to compute a weighted cross
entropy loss as the cost function. Out of the 136 users we select a subset of 82 users with similar
labeling behavior (number of staypoints per class is over 100). During the experiment, we randomly
select 41 out of the 82 users for training, 5 users for validation and 36 completely unseen users for
testing. Additionally, we standardize all training features by removing their mean and scaling them to
unit variance and apply the standardization estimated on the training data to the test data.

Activity purpose imputation. The breakthrough success of convolutional neural networks (CNN)
in many areas like image, speech, text or video processing [12; 10; 9] is based on their ability to
exploit the structure that lies within the data by using self-learned instead of handcrafted features. In
recent publications, the concept of graph convolutional neural networks (GCN) emerged to generalize
this ability to arbitrary graph structures and manifolds [2; 6]. Applications of GCNs on traffic
forecasting [5] and human action classification [20] showed the potential of GCNs to use information
embedded in the graph structure and to exploit spatio-temporal structure for their task.

We follow the approach of [6] to approximate graph convolutions formulated in the Fourier domain
using a truncated expansion in terms of Chebyshev polynomials. As it was done in [11], we only use
the first order approximation. For readability we now consider only the mobility graphs of a single
user and omit the index u, however all graph related parameters stay user specific. This results in the
following propagation rule for graph convolution layers:
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where l is the layer index, H l
Gj

is the input from the previous layer with H0
Gj

= Xj (corresponding
to the input feature matrix of graph Gj), Dj is the degree matrix corresponding to the weighted
adjacency matrix Wj . Dj is used to normalize the weighted adjacency matrix. M (l) denotes the
weight matrix for the lth neural network layer and σ(·) is the ReLu activation function. Note that
the network parameters M (l) are independent of a specific graph Gj (or user). Figure 2 shows the
network used in this work. We employ two graph convolutional layers on each of the two graphs (G1

and G2, one graph for every set of edges), whose outputs are then combined using a weighted sum:
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Finally, a fully connected layer creates the label predictions Y = H(S)M (Y ) + b(Y ) (where b(Y )

denotes a bias term).

departure time at staypoints (classified into night, early morning, late morning, early afternoon, late afternoon,
early evening, late evening), and the distribution over weekdays and weekends (Mon-Sun).
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Figure 2: The computation graph used within this work: The transition and distance graphs are each
convoluted twice (layer sizes of 400 and 200). Their outputs are then combined using a weighted
sum (layer size 50). Finally, a fully connected layer produces the output label distributions.

3 Results

Table 1: EMD comparison of dif-
ferent models.

Learning Method EMD

GCN 0.076
MLP 0.097
RDF 0.146
RDF (regression) 0.146
Average Label Distr. 0.200

The here presented model predicts a distribution of labels for
each activity area Vu,i. To measure the performance of our model
we employ the earth mover’s distance (EMD; also referred to as
the Wasserstein metric) [17]. In essence, this metric reports the
minimal shift of probability masses required to reach a given target
distribution from a predicted one. Table 1 shows the results for
the here introduced GCN, for a multi-layer perceptron (MLP),
a random forest (RDF) classifier, a multi-output random forest
regressor and as a baseline, the average label distribution for each
node4. All classifiers are able to outperform the trivial baseline
and both neural network implementations outperform the random
forests which might be because the random forests can not take
advantage of the additional information provided by the soft class labels.

The GCN performs better than the MLP implementation, even though both are trained and tuned
similarly. This indicates that the GCN is able to take advantage of the additional information
embedded in the graphs (connections and weights) and use them to exploit local structure.

4 Conclusion and Future Work

In this work, we presented a GCN-based approach for imputing human activity purposes from GPS
trajectory data. Our results show that we can use multiple personalized graphs to model human
mobility behavior and to embed a large variety of spatio-temporal information and structure in their
weights and connections. We could also show that we can exploit this structure using GCNs.

For our future work on the exploitation of spatio-temporal structure using graph based modeling in
combination with GCNs, we plan to experiment with different graph building methods and compare
them to the clustering approach applied in this work. For example, the here presented study merely
considers the features of staypoints for predicting activity types. Taking into account other contextual
information (e.g., points of interest or the road network) could significantly influence the predictive
powers of a GCN model. Finally, we would like to analyze the impact of using more complex GCN
models (e.g., use a kth-order approximation instead of a first order approximation for the graph
convolution).

4MLP: implementation in tensorflow, cross-entropy-loss, parameters: 3 layers (400,200,50), dropout:
p=(0.8,0.5) between layers; RDF classif.: implementation only supports one-hotted label training, param-
eters: trees=500, balanced+scikit learn default; RDF reg.: output normalized that classes add up to 1, parameters:
trees=500+scikit learn default. All classifiers except for the GCN only use the node features.
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