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Though phonemic fluency tasks are traditionally indexed by the number of correct responses, the underlying disorder may shape the 
specific choice of words—both correct and erroneous. We report the first comprehensive qualitative analysis of incorrect and correct 
words generated on the phonemic (‘S’) fluency test, in a large sample of patients (n = 239) with focal, unilateral frontal or posterior 
lesions and healthy controls (n = 136). We conducted detailed qualitative analyses of the single words generated in the phonemic flu
ency task using categorical descriptions for different types of errors, low-frequency words and clustering/switching. We further ana
lysed patients’ and healthy controls’ entire sequences of words by employing stochastic block modelling of Generative Pretrained 
Transformer 3–based deep language representations. We conducted predictive modelling to investigate whether deep language repre
sentations of word sequences improved the accuracy of detecting the presence of frontal lesions using the phonemic fluency test. Our 
qualitative analyses of the single words generated revealed several novel findings. For the different types of errors analysed, we found a 
non-lateralized frontal effect for profanities, left frontal effects for proper nouns and permutations and a left posterior effect for per
severations. For correct words, we found a left frontal effect for low-frequency words. Our novel large language model–based ap
proach found five distinct communities whose varied word selection patterns reflected characteristic demographic and clinical 
features. Predictive modelling showed that a model based on Generative Pretrained Transformer 3–derived word sequence representa
tions predicted the presence of frontal lesions with greater fidelity than models of native features. Our study reveals a characteristic 
pattern of phonemic fluency responses produced by patients with frontal lesions. These findings demonstrate the significant inferential 
and diagnostic value of characterizing qualitative features of phonemic fluency performance with large language models and stochas
tic block modelling.
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Graphical Abstract

Introduction
Our understanding of the human brain is constrained by the 
need to reduce complex behaviour to that which is measur
able. One approach to achieving this is to measure cognitive 
abilities with a single metric, such as the score on a cognitive 
test. While this approach has obvious advantages, not least 
simplicity, it leaves a wealth of potentially informative as
pects of performance unexploited.

This issue is of central importance to studies of the effects 
of focal brain damage on cognitive performance, where the 
analysis of the ‘quality’, not just ‘quantity’, of responses pro
vides a unique form of evidence not available to other cogni
tive neuroscience methods.1,2 This methodology is held to be 
of critical theoretical value, providing a unique means of in
vestigating how cognitive functions are organized. It is also 
thought to be clinically useful, as a diagnostic marker of spe
cific neurocognitive dysfunction. Yet, relatively few focal 

lesion group studies have conducted a systematic analysis 
of the ‘quality’ of patients’ responses on some of the most 
widely used cognitive tests, such as the phonemic fluency 
test.

The phonemic fluency test is among one of the most well- 
established measures of frontal lobe function.3 On these 
tests, patients are required to generate a series of words be
ginning with the same phoneme within 60 s, without produ
cing proper nouns, permutations of previous words or 
repetitions. Like most frontal tasks, these tests are thought 
to draw upon different complex executive processes whose 
nature is still incompletely understood. Several studies ana
lysing overall S performance (total number of correct words 
generated) have shown that phonemic fluency is a task that 
shows specificity to frontal lesions, with frontal patients 
more impaired than posterior patients, and it is lateralized, 
with left frontal patients significantly more impaired than 
right frontal patients (e.g.4-6).
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However, very few studies (<10) have conducted, prelim
inary, investigations of the incorrect and correct words gen
erated in phonemic fluency tasks by patients and healthy 
controls (see Cipolotti et al.5 for a review). Usually, the over
all number of errors has been analysed7 and conflicting re
sults are reported. For example, some studies reported no 
difference between frontal patients and healthy controls,7

whilst others found significant differences.4,8 However, as 
qualitatively different types of error may result from disrup
tion to different executive processes, summing across error 
types may overlook potentially informative effects. Two re
cent studies have investigated two specific types of error: 
rule break, where the known task rules are violated, and per
severation, where the same words are given more than once. 
Both studies reported that rule break errors were associated 
with left frontal lesions and no specific brain localization was 
found for perseverations.9,10 However, rule breaks encom
pass several different types of errors, such as inappropriate 
words, proper nouns, permutations of previous words and 
words beginning with the wrong letter. We recently investi
gated only one type of rule break error, namely, the gener
ation of inappropriate words, and found that they were 
associated with frontal, rather than non-frontal, lesions.5

Troyer and colleagues11 analysed both errors and correct 
words and reported reduced switching between ‘clusters’ of 
phonemically similar words in patients with left dorsolateral 
or superior medial frontal lesions relative to healthy con
trols. However, other studies that have analysed clustering 
and switching scores have reported somewhat mixed results. 
For example, Stuss and colleagues8 reported no significant 
differences between patients with focal left, right or bilateral 
frontal lesions, left or right non-frontal lesions and healthy 
controls in terms of mean ‘cluster size’ (two or more words 
beginning with at least the same first two letters e.g. ‘snore, 
snail, show’ cluster size =1) or the percentage of clustered 
words relative to the total number of words produced. In 
contrast, Babulal and colleagues12 reported that, in compari
son with healthy controls, both frontal and posterior pa
tients produced significantly smaller clusters of words and 
switched between clusters significantly less frequently. 
Davidson and colleagues reported that a small sample of 
right frontal patients (n = 20) switched significantly less fre
quently than healthy controls but the groups did not signifi
cantly differ in terms of average cluster size.13 Thus, it 
remains unclear whether clustering and switching are mar
kers of frontal lobe dysfunction.

A further potentially rich, yet relatively unexplored, 
source of information comes from analysis of the correct 
words generated. Preliminary findings suggest that extremely 
infrequent/unknown words (e.g. ‘salacious’) are more com
monly generated by frontal patients.5 This is potentially of 
significant theoretical interest, as it may provide important 
insights into the frontal mechanisms involved in language 
generation.

Hence, despite the critical theoretical importance of de
tailed qualitative analysis of words generated on phonemic 
fluency tasks, there is a surprising paucity of studies on errors 

and correct words. As far as we are aware, no focal lesion 
study has yet conducted a comprehensive analysis of the dif
ferent types of rule break error and correct words generated.

Notably, these types of qualitative analyses mostly inves
tigate the single words generated in the phonemic fluency 
task using categorical descriptions for different types of er
rors and/or correct words. However, this fails to consider an
other important qualitative aspect, namely that in phonemic 
fluency tasks the participants generate sequences of words. 
These are likely to be influenced by several factors other 
than those subject to categorical description and are difficult 
to capture with the conventional qualitative methods de
scribed above. Word sequences are extraordinary rich, vary
ing across several dimensions, including lexical, phonemic 
and semantic variables. Moreover, they are likely to be influ
enced by high-level ‘active thinking’ processes, such as strat
egy formation, inhibition and selection of responses.2 To 
analyse these complex aspects requires models of flexibility 
only plausibly achievable with machine learning. This ap
proach uses algorithms to find patterns in complex data 
sets, such as those relating to language, that are not intuitive
ly discernible and not adequately captured by qualitative 
analysis focusing on different categorical descriptions of sin
gle words generated in the phonemic fluency. This presents 
an opportunity to model phonemic fluency production at a 
remarkable level of complexity and more comprehensively 
than has previously been possible.

However, the application of machine learning to phonem
ic fluency production is fraught with danger. Increasing 
model flexibility inevitably raises the minimum scale of 
data needed to assure a generalizable fit. Applying machine 
learning within the small-scale data regimes typical of neuro
psychological investigations risks overfitting to the training 
data. This concern has limited recent attempts, focused on 
patients with non-focal neurological damage, such as demen
tia,14-18 to comparatively simple, often manually derived 
characterizations of individual words taken in isolation. To 
the best of our knowledge, entire word sequences have so 
far been left unmodelled in patients with focal lesions.

The aim of this paper is to produce the first comprehensive 
qualitative analysis in the largest data set of words generated 
by patients with focal, unilateral, frontal (n = 143) or poster
ior lesions (n = 96) and healthy controls to date (n = 136). 
We conduct qualitative analyses investigating single words 
generated using categorical descriptions for different types 
of rule break error, perseverations, word frequency of the 
correct words generated and clustering/switching. In add
ition, we introduce a novel machine learning approach, 
relying on rich yet compact representations of language— 
including ‘sequences’ of words, not just words in isolation. 
Our approach exploits highly expressive, large language 
models (LLMs) trained on large-scale natural language cor
pora ‘outside’ our specific phonemic fluency task. Here, we 
use Generative Pretrained Transformer 3 (GPT-3), at the 
time of the study the most powerful LLM, with a capacity 
to embed not just words but long sequences of words and 
sensitivity to long-range interactions between words. Such 
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‘transfer learning’ allows us to model a much richer set of 
language characteristics than the limited scale of available 
test data ordinarily permits. The unit of analysis here be
comes not the individual word but the entirety of the gener
ated sequence. We can thus combine the model flexibility 
large-scale data permits with the data economy the neuro
psychological domain demands, yielding models that can 
both capture the richness of language and remain tractable 
in the setting of small-scale data.

We compare our qualitative analyses of single words 
based on categorical descriptions of errors, word frequency 
and clustering/switching to our novel transfer learning ap
proach. Such comparison aims to predict the presence or ab
sence of frontal lesions from generated words, quantifying 
the additional information contained in language representa
tions over fluency scores, and to illuminate further the me
chanisms underlying phonemic fluency performance.

Materials and methods
Participants
Patients with focal, unilateral frontal or posterior brain le
sions, who attended the Neuropsychology Department of 
the National Hospital for Neurology and Neurosurgery 
(Queen Square, London, UK), were retrospectively evaluated 
for eligibility. Inclusion criteria were (i) presence of a stroke 
or brain tumour; (ii) ≥70% of the total lesion in the frontal 
or posterior areas (see Neuroimaging section); (iii) age be
tween 18 and 80 years; (iv) no gross language impairments, 
i.e. no dysphasic patients were included in this study [no 
agrammatism,  >5th %ile on the Graded Difficulty 
Naming Test (GNT);19 for the few patients where GNT 
data were not available, performance on the Oldfield 
Naming test, a score of >24/30 was considered intact],20,21

nor perceptual impairments (>5th cut-off on the 
Incomplete Letters test);22 (v) absence of psychiatric disor
ders, history of alcohol or substance abuse or previous 
neurological disorders; (vi) native English speaking; and 
(vii) availability of data on individual words generated dur
ing S fluency.

A total of 239 patients with unilateral, focal lesions met 
the inclusion criteria for the study. This included patients 
with unilateral frontal lesions (left, n = 63; right, n = 80), 
of which 116 have been previously reported,5,9 and posterior 
lesions (left, n = 33; right, n = 63; see Table 1). The grouping 
together of focal patients with different aetiologies for the 
purposes of examining cognitive variables is a common ap
proach (see Cipolotti et al.9 for further discussion) and, im
portantly, is one that we have previously shown is 
methodologically justifiable.23,24

We also recruited a group of 136 healthy controls, with no 
neurological or psychiatric history, for comparison with 
frontal and posterior groups on cognitive variables. The 
healthy control group was closely matched to the patient 
sample for age, gender, years of education and estimated T
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premorbid level of function based on the National Adult 
Reading Test (NART).25 Unfortunately, ethnicity was not 
recorded for participants in the healthy control group but, gi
ven that the sample primarily comprised of the friends and 
family of the patient sample, it is reasonable to expect that 
they were relatively well matched. The study was approved 
by the National Hospital for Neurology and Neurosurgery 
and Institute of Neurology Joint Research Ethics 
Committee and conducted in accordance with the 
Declaration of Helsinki.

Neuroimaging
Patients’ lesions were classified based on MRI or CT scans 
obtained as part of their clinical investigation. Source im
aging data were available for 187 patients (MRI: n = 181, 
CT: n = 6; frontal: n = 108, posterior: n = 79). MRI scans 
were acquired on either a 3T or 1.5T Siemen scanner, 
and CT scans were acquired using spiral CT systems. 
Lesions were traced and independently classified using 
MIPAV (https://mipav.cit.nih.gov/) by J.M. and E.C. and 
checked by P.N., who was blind to the study results. The 

lesion masks were segmented and non-linearly normalized 
to Montreal Neurological Institute (MNI) stereotaxic 
space at 2 × 2 ×2 mm resolution using SPM-12 software 
(Wellcome Department of Imaging Neuroscience, 
London, England: http://www.fil.ion.ucl.ac.uk; see26 for 
details). Patients with frontal lesions were identified as 
those with a lesion in any part of the brain anterior to the 
central sulcus and superior to the lateral fissure. Patients 
with posterior lesion were identified as those with a lesion 
affecting any brain area posterior to the central sulcus and 
inferior to the lateral fissure (see Robinson et al.6 for a simi
lar method). Patients were classified using templates based 
on Brodmann area maps provided with MRIcron (http:// 
www.sph.sc.edu/comd/rorden/mricron). The distribution 
of patients’ lesions is presented in Fig. 1. For all remaining 
patients (N = 88) whose scans could not be accessed, MRI 
or CT scans had previously been reviewed by a radiologist 
as part of routine clinical care. These patients were classi
fied as having frontal or posterior lesions where the radio
logical report stated that there was evidence of a focal 
lesion affecting only frontal or posterior areas, respective
ly, as defined above.

Figure 1 Lesion distribution volume map for the (A) frontal group and (B) posterior group. Results are displayed on transversal slices 
(numbers indicate MNI coordinates) of the ch2better.nii.gz template in MRIcroGL (https://www.nitrc.org). The colour code indicates in how many 
patients a given voxel was lesioned. The images are displayed in neurological convention (left is left).
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Behavioural investigations
Premorbid optimal level of functioning was estimated using 
the NART, and naming was assessed using the GNT. All 
tests were scored in the published standard manner. Due to 
the retrospective nature of our study, GNT test data were un
available for 29% of the sample. Phonemic fluency was as
sessed by the S fluency test, which required patients to 
generate as many words as possible starting with the letter 
S within 60 s. Patients were told not to produce proper 
nouns, change the ending of words (e.g. ‘eat, eating, eaten’) 
or repeat words.

Errors
Errors were counted when participants broke one of the task 
rules, ‘rule break errors’, or repeated a word, ‘perseverations’. 
Specific types of rule break errors were also classified, namely, 
inappropriate words (e.g. ‘s**t’), proper nouns (e.g. 
‘Samantha’) and permutations of previous words (e.g. ‘say, 
saying’; see Supplementary Material for a more detailed de
scription of how inappropriate words were classified). It 
should be noted that, although not explicitly stated as a 
rule, producing inappropriate words in the context of a neuro
psychological assessment can be considered a type of error. 
Hence, following our previous methodology, we classified in
appropriate words as rule break errors.5,9 Too few words be
ginning with the wrong letter were produced for meaningful 
analysis of this type or rule break error. We calculated the per
centage of errors produced relative to the total number of 
words generated for all errors (i.e. number of errors/number 
of words × 100; see Cipolotti et al.5 for a similar method).

Word frequency
We extracted word frequency values using wordfreq Python 
library. Wordfreq is based on a large corpus of both spoken 
and written word from Wikipedia, movie and television sub
titles, books, Twitter, and other sources.27 To ensure that 
these ratings were an accurate reflection of word frequency 
in spoken language, we conducted an additional validation 
procedure for the purposes of this study (see Supplementary 
Materials). We classified low-frequency words as those with 
a word frequency value that fell at least two standard devia
tions below the mean of the entire sample. We compared 
groups in terms of the percentage of low-frequency words pro
duced relative to the total number of correct words generated 
(i.e. number of low-frequency words/number of correct 
words × 100; see Cipolotti et al.5 for a similar method). To en
able direct comparison of the word frequencies obtained by 
human rating and those obtained by the wordfreq library, 
the wordfreq raw values were transformed by multiplying 
by 109 and then decimal logged; words absent from the dic
tionary were coded as ‘not a number’.

Clustering and switching
Using the method of analysis developed by Troyer and col
leagues,11 we further characterized responses by classifying 
sequentially produced words into clusters based on their 

phonological similarity (e.g. ‘sing, sling’). We calculated 
mean cluster size11 and relative number of switches (i.e. 
number of switches/(total number of words produced −1)   
× 100).28

Full sequence analysis
Large language model representations and graph 
modelling
We used the GPT-3 Babbage engine (‘text-similarity- 
babbage-001’)29 to extract 2048-dimensional representa
tions of each participant’s generated word sequence. These 
representations are determined by the many properties of a 
word sequence—from the phonological to the semantic— 
that reflect natural language use, richly captured in a 
2048-dimensional space. To enable comparison between 
the sequences of different patients, we derived the pairwise 
cosine similarities between the representations as a weighted 
adjacency matrix, formulating their relation as a graph 
where each participant sequence is a node and the pairwise 
similarity is an edge between two nodes.

A Bayesian hierarchical nested stochastic block model 
(SBM)30 was then used to infer characteristic ‘communities’ 
of participants defined by the differences and similarities in 
their responses as captured by the graph formulation of their 
relations. SBMs seek to express a graph succinctly in terms of 
the similarities and differences between the connectivity pat
terns within it, enabling formal inference of structured pat
terns of relations. We included age and NART scores as 
covariates but not GNT scores, owing to the absence of sig
nificant loading on the GNT factor in the preceding analyses. 
Edges were colour-mapped to the average word frequency of 
each participant’s set of generated words. Importantly, be
cause the purpose of this analysis was to investigate whether 
this unsupervised approach could independently identify 
characteristic patterns in the quality of patients’ responses, 
categorical descriptions (e.g. manually scored rule break er
rors) or any other features were not added to the model.

Predictive modelling
We quantified the relative contribution of baseline variables 
(age, NART and fluency score), error variables and GPT-3 
representations to predicting frontal involvement, by per
forming Bayesian logistic regression implemented in 
BayesReg 1.9131 running on MATLAB version (R2021b). 
We estimated a series of models with the frontal versus 
healthy control and posterior groups as the binary target. 
Three models were compared: first, a ‘baseline’ model of 
age, NART and fluency score; second, an ‘errors’ model of 
the foregoing features plus rule break error proportions, pro
portion of low-frequency words, number of switches, pro
portion of switches and mean cluster size; and third, a ‘full’ 
model of all features (baseline and errors) plus GPT-3 repre
sentations of the patients’ word sequences. Given the rela
tively small sample size available for prediction, we used 
the most compact GPT-3 language representation, 
‘text-similarity-ada-001’ (1024 dimensions), further reduced 

6 | BRAIN COMMUNICATIONS 2023: Page 6 of 13                                                                                                                  J. Mole et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/6/fcad318/7453337 by U

niversity C
ollege London user on 06 D

ecem
ber 2023

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad318#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad318#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad318#supplementary-data


to 256 latent variables by random projection. All models 
were estimated with Markov chain Monte Carlo (MCMC) 
employing a single chain over 100 000 samples following 
100 000 burn-in with thinning of 10. The ‘baseline’ and ‘er
rors’ models were configured with a ridge prior; the ‘full’ 
model was configured with a horseshoe prior to promote 
sparsity. The effective sample size exceeded 99% for all vari
ables across all reported models. Models were compared by 
their pseudo R2 value and, to correct for differences in the 
number of parameters, by the Watanabe–Akaike informa
tion criterion (WAIC).32

Statistical analysis
All statistical analyses were conducted using SPSS version 
25, except analyses of language representations, which 
were conducted in Python 3.5. Skewness and kurtosis were 
assessed by inspecting boxplots, and homogeneity of var
iances was assessed using Levene’s test.

We compared frontal, posterior and healthy control 
groups on demographic variables, using ANOVA and 
Fisher’s exact test, and on neuropsychological test perform
ance, overall S fluency performance and S fluency errors, 
word frequency and clustering/switching scores using ana
lysis of covariance (ANCOVA), controlling for age and 
NART scores. Following significant differences, we used 
post hoc tests with Bonferroni correction (alpha 0.05/3 =  
0.016) to compare frontal versus posterior, frontal versus 
healthy control and posterior versus healthy control groups.

We then repeated the analyses described above but this 
time compared left frontal, right frontal, left posterior, right 
posterior and healthy control groups. Significant results were 
followed by Bonferroni-corrected pairwise comparisons 
using alpha 0.05/4 = 0.0125 to compare each patient group 
against the healthy control group (i.e. left frontal versus 
healthy control, right frontal versus healthy control, left pos
terior versus healthy control, right posterior versus healthy 
control groups). Pairwise comparisons were then undertaken 
to compare left versus right frontal, left versus right posterior 
and left frontal versus left posterior groups.

Statistical comparisons between communities identified 
on SBM were between the index community and all other 
communities (one-versus-rest) using Bonferroni-corrected 
(alpha/40) Mann–Whitney U tests.

Results
Demographics and background tests
Frontal, posterior and healthy control groups were well 
matched for age, ethnicity, gender and years of education 
(all P > 0.05; see Table 1). When the analysis was broken 
down by laterality, both left frontal and left posterior groups 
were found to have a significantly higher proportion of males 
than the healthy control group [χ2 (1, n = 199) = 7.42, P <  
0.01, ϕ = 0.19; χ2 (1, n = 169) = 8.68, P < 0.01, ϕ = 0.23; 

respectively]. In terms of aetiology, there was a significantly 
higher proportion of stroke patients in the posterior than the 
frontal group [χ2 (1, n = 143) = 3.98, P < 0.05, ϕ = 0.17] but 
there was no significant difference between the groups in 
terms of the proportion of tumour patients. When this ana
lysis was broken down by laterality, the only significant ef
fects were that there was a higher proportion of stroke 
patients in the left posterior versus left frontal group and a 
higher proportion of tumour patients in the left frontal 
versus left posterior group [χ2 (1, n = 96) = 5.56, P < 0.05, 
ϕ = 0.24; χ2 (1, n = 96) = 4.66, P < 0.05, ϕ = 0.22; respective
ly]. However, there were no significant differences in the pro
portion of stroke or tumour patients between the left and 
right frontal or left and right posterior groups. The frontal 
and posterior groups did not significantly differ in terms of 
lesion volume. Although the left posterior group had signifi
cantly smaller lesion volume than the right posterior group 
[t(73) = −2.51, P = 0.02], importantly, there were no other 
significant differences between groups in terms of lesion 
volume.

There was no significant difference between tumour and 
stroke patients for overall S performance or mean time be
tween resection/stroke and neuropsychological assessment 
[t(235) = −0.72, P = 0.47; t(173) = 1.01, P = 0.32, respect
ively]. The median time between stroke/tumour resection 
and assessment was 24 days [interquartile range (IQR) =  
109]. There were no significant differences between any 
groups in terms of scores on the NART or GNT (all P >  
0.05).

Overall S performance
There was a left frontal effect for the total number of correct 
words produced on the S fluency test. Hence, the frontal 
group produced significantly fewer correct words than 
both posterior and healthy control groups [F(2337) =  
19.960; P < 0.001, ηp2 = 0.11; post hoc tests both: P <  
0.001]. Analysis of lateralized effects showed that both the 
left and right frontal groups produced significantly fewer 
correct words than the healthy control group (both: P <  
0.001). Importantly, the left frontal group produced signifi
cantly fewer words than the right frontal and left posterior 
groups (P < 0.01; P < 0.001; respectively).

Errors
The list of generated words on the S fluency test was analysed 
for rule break errors (specifically inappropriate words, prop
er nouns and permutations of previous words) and perse
verations. We found a significant left frontal effect for rule 
break errors (Table 2). Thus, the frontal group produced a 
significantly higher percentage of rule break errors than 
both posterior and healthy control groups [ANCOVA: 
F(2337) = 11.65; P < 0.001, ηp2 = 0.07; post hoc tests; P <  
0.01; P < 0.001, respectively] and breaking down the ana
lysis by laterality revealed that both left and right frontal 
groups produced a significantly greater percentage of rule 
break errors than healthy controls (P < 0.001; P < 0.01, 
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respectively), with the left frontal group also producing a sig
nificantly greater percentage of rule break errors than the 
right frontal and left posterior groups (P < 0.05; P < 0.01, 
respectively).

Analysis of individual types of rule break error revealed a 
frontal effect for inappropriate words, with the frontal group 
producing a significantly greater percentage of inappropriate 
words than healthy controls [F(2337) = 4.41, ηp2 = 0.03; 
P < 0.05; post hoc test: P < 0.05] but with no significant la
teralized effects. There was a left frontal effect for proper 
nouns. Hence, the frontal group produced a significantly 
greater percentage of proper nouns than healthy controls 
[F(2337) = 4.22, ηp2 = 0.02; P < 0.05; post hoc test: P <  
0.05] and analysis of lateralized effects showed that the left 
frontal group produced a significantly greater percentage 
of proper nouns than the left posterior and healthy control 
groups (P < 0.05; P < 0.001, respectively). There was also a 
left frontal effect for permutations: we found no significant 
difference between frontal, posterior and healthy control 
groups; however, when laterality was included in the ana
lysis, we found that the left frontal group generated a signifi
cantly greater percentage of permutations than right frontal, 
left posterior and healthy control groups [F(4335) = 2.86, 
ηp2 = 0.03; P < 0.05; pairwise comparisons: P < 0.05; P <  
0.05; P < 0.01, respectively]. In contrast, there was a left pos
terior effect for perseverations. Thus, the posterior group 
produced a significantly higher percentage of perseverations 
than the frontal group [F(2337) = 4.00, P < 0.05, ηp2 = 0.02; 
post hoc test: P < 0.05]. Moreover, the left posterior group 
produced a significantly greater percentage of perseverations 
than the left frontal, right posterior, and healthy control 
groups (P < 0.05; P < 0.05; P < 0.01, respectively).

Word frequency
We analysed the frequency of word usage generated on the S 
fluency test by reference to a large text corpus from 
Wikipedia, movie and television subtitles, books, Twitter 
and other sources.33 Notably, we found that the frontal 
group produced a significantly greater percentage of low- 
frequency words than both posterior and healthy control 
groups [F(2311) = 4.83, P < 0.01, ηp2 = 0.03; post hoc tests: 
both P < 0.05]. Furthermore, the left frontal group produced 
a significantly greater percentage of low-frequency words 
than left posterior and healthy control groups [F(4309) =  
3.30, P < 0.05, ηp2 = 0.04; pairwise comparisons: P < 0.05; 
P < 0.001, respectively].

Clustering and switching
We classified sequentially produced words into clusters 
based on their mean cluster size and relative number of 
switches (calculated to reduce confounding by total words 
produced29). We found no significant effects for either vari
able (see Supplementary Material, Supplementary Table 3).

We repeated all the analyses described above (i.e. for 
demographics, background neuropsychological tests, overall 
S performance, errors, word frequency and clustering and 
switching) including only the 187 patients for whom scans T
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could be accessed. Importantly, the pattern of results was 
overall unchanged (see Supplementary Tables 1 and 2).

Word sequence analysis
Transfer learning and graph modelling
Aiming to capture complex patterns conveyed in the full se
quence of correct and incorrect words generated in the phon
emic fluency task, we used the GPT-3 Babbage engine 
(‘text-similarity-babbage-001’) to extract 2048-dimensional 
representations of each participant’s generated word se
quences. We then used a generative model of the modular 
structure of graphs—a Bayesian hierarchical nested 
SBM30—in an unsupervised manner (blinded to frontal, pos
terior and healthy control labels) to infer characteristic 

‘communities’ of participants defined by the differences 
and similarities in their responses. Age and NART scores 
were added as covariates to this model, and the edges were 
colour-mapped to the average word frequency of each parti
cipant’s set of generated words.

GPT-3 representations of the word sequences generated 
by frontal, posterior and healthy control groups—analysed 
by their pairwise cosine similarities, with age and NART as 
covariates—were clearly separable into five distinct commu
nities, derived from statistical evidence that within- 
community relationships are more densely connected than 
those outside-community, by an SBM model blinded to 
frontal, posterior and healthy control group membership 
(Fig. 2). Community separation into ‘blocks’ is performed 
by the nested hierarchical SBM, which employs an 

Figure 2 Nested SBM of word sequences produced by healthy controls (*), posterior patients (*****) and frontal patients 
(*********) on the phonemic fluency task, embedded by the GPT-3 Babbage engine. Graphs encode nodes—here uttered sequences 
—connected by edges describing the relationship between pairs of nodes; here, the edges are pairwise cosine similarity of representations, with 
age and NART score as edge covariates. Edge colour is the average rarity of words in the sequence, with increasingly rare scores displayed in 
darker colour. Word clouds of the most characteristic words generated by each community, quantified by term frequency–inverse document 
frequency—a measure of the relative prominence of a term in a set of documents—are displayed next to their graph community, with more 
important words appearing in larger size.
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agglomerative multilevel MCMC algorithm to infer the best 
partition. These communities reflect similarities and differ
ences in uttered sequences as captured by the GPT-3 repre
sentations derived ‘without’ knowledge of the participant’s 
clinical state.

Each of the five communities exhibited significant charac
teristic differences when compared with the other communi
ties (one-versus-rest) by Bonferroni-corrected Mann– 
Whitney U tests (Table 3). Communities I (75%) and II 
(43.7%) had the largest percentages of frontal patients. 
Community I had a significantly larger percentage of left 
frontal patients than any other community. Both communities 
exhibited significantly lower overall S performance. Analysis 
of the most characteristic words produced was obtained by in
dexing term frequency–inverse document frequency. This is 
an established measure of the relative prominence of a term 
in a set of documents. This analysis revealed that the most 
characteristic words in community I were two different types 
of rule breaks, inappropriate words and proper nouns, and for 
the correct words, lower frequency words (Fig. 2); 
Community II did not show these characteristic words.

Community III included a similar percentage of healthy 
controls and posterior patients and fewer frontal patients. 
It exhibited significantly higher overall S performance, with 
the highest scores on fluency (almost three times higher 
than Community I) and NART. Community IV was domi
nated by a significantly younger population, with the largest 
percentage of healthy controls, whose fluency scores were al
most two times higher than Community I. Community V 
contained significantly older, predominantly posterior pa
tients and healthy controls and two times higher fluency 
scores than Community I. Strikingly, there was no distinct 
community separation of posterior patients.

Predictive modelling
To quantify the relative contribution of baseline variables 
(age, NART and fluency score), error variables and GPT-3 
representations of word sequences to predicting frontal in
volvement, we performed Bayesian logistic regression. We 
estimated a series of models with patients with frontal lesions 
as the binary target versus patients with posterior lesions and 
healthy controls. Since the models vary in the number of in
puts, and therefore parameters, we quantified both the 

fidelity of the model, by pseudo R2, and its goodness of fit ad
justed for the number of free parameters, by the WAIC (low
er values are better).32

The ‘baseline’ model, including age, NART and fluency 
score, achieved a pseudo R2 of 0.0816 and WAIC of 
200.1, indicating a poor fit. The ‘errors’ model, including 
age, NART, fluency score, rule break errors, low-frequency 
words, number of switches, proportion of switches and 
mean cluster size, achieved a pseudo R2 of 0.1507 and 
WAIC of 190.33, a substantially better fit, even accounting 
for the greater number of parameters, as shown by the lower 
WAIC. The ‘full’ model, which included all predictors, age, 
NART, fluency score, rule break errors, low-frequency 
words, number of switches, proportion of switches, mean 
cluster size and word sequences, achieved a pseudo R2 of 
0.3302 and WAIC of 188.2846, a further substantial in
crease in the goodness of fit. Rerunning the ‘errors’ model 
with more strongly sparsity promoting priors (lasso, or 
horseshoe) did not yield a better WAIC than the ‘full’ model 
(minimum 189.7). The addition of GPT-3 representations 
thus produced the best predictive model, taking into account 
the expansion in the number of model parameters.

Discussion
To the best of our knowledge, this is the largest and most 
comprehensive investigation of qualitative aspects of phon
emic fluency performance. We conducted a detailed analysis 
of errors, low-frequency words and clustering/switching in a 
very large sample of patients with focal, unilateral frontal or 
posterior lesions and healthy controls. We further analysed 
patients’ and healthy controls’ responses by adopting a novel 
approach based on generative modelling of representations 
derived from ‘transfer learning’ with deep language models 
trained on large-scale data. In this approach, we used the re
cently developed GPT-3 Babbage engine to analyse word se
quences and fitted unsupervised generative hierarchical 
graph models to reveal characteristic patterns of perform
ance arising as ‘communities’ within the graph. We then con
ducted predictive modelling to investigate whether deep 
language representations of word sequences significantly im
proved the accuracy of detecting frontal dysfunction using 
the phonemic fluency test.

Table 3 Demographics and overall S fluency performance for each community

Group n Age (SD) NART (SD)
Fluency score 

(SD) HC (%)
Frontal 

(%)
Posterior 

(%)
Left frontal 

(%)
Right frontal 

(%)

I 40 51.9 (16.3) 103.0 (12.2) 7.5 (3.9) *** 7.5*** 77.5*** 15 42.5 *** 35
II 52 50.8 (14.9) 107.0 (11.5) 11.3 (2.2) *** 28.8 48.1 23.1 21.2 26.9
III 77 48.9 (13.0) 112.4 (9.2) ** 19.4 (4.3) *** 37.7 27.3 35.1 9.1 18.2
IV 58 29.7 (7.3) *** 105.6 (9.9) 16.8 (3.1) 55.2 32.8 12.1 17.2 15.5
V 99 56.0 (9.3) *** 108.5 (11.2) 16.0 (3.3) 46.5 22.2* 31.3 6.1 16.2

Statistical comparisons are provided by Bonferroni-corrected Mann–Whitney U tests between the index community and all other communities (one-versus-rest). For each community, 
% reflects the percentage of the community which are in a localization group. Scores with significant P values are in bold. 
HC, healthy control; n, number; NART, National Adult Reading Test; SD, standard deviation. 
**P < 0.01; ***P < 0.001.
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Our error analysis revealed, for the first time, significant 
effects for specific types of rule break error. Thus, there 
was a significant non-lateralized frontal effect for inappro
priate words (e.g. ‘s**t’). We speculate that this may be re
lated to an impairment in self-monitoring processes, 
necessary to judge the social appropriateness of phonemic 
output. We found a left frontal effect for proper nouns 
(e.g. ‘Samantha’). Thus, the frontal group produced a signifi
cantly greater percentage of proper nouns than healthy con
trols and, when the analysis was broken down by laterality, 
the left frontal group was found to produce a significantly 
greater percentage of proper nouns than left posterior and 
healthy control groups. We also found a left frontal effect 
for permutations (e.g. ‘say, saying’). For these errors, the 
analysis was only significant when laterality was included. 
This showed that the left frontal group produced a signifi
cantly greater percentage of permutations than not only 
left posterior and healthy control but also right frontal 
groups. Notably, permutation errors almost always occurred 
immediately after the responses from which they were de
rived (e.g. ‘see, seeing’), suggesting that these errors were 
somewhat perseverative in nature. Given that the task in
structions explicitly state that proper nouns and permuta
tions are forbidden, these errors may reflect a failure to 
adopt and sustain the task instructions.

Our analysis of correct responses revealed that the frontal 
group produced a significantly greater percentage of low- 
frequency words than both posterior and healthy control 
groups, with the left frontal group producing a significantly 
greater percentage of low-frequency words than left poster
ior and healthy control groups. Low-frequency words have 
fewer associated words than high-frequency words and, 
hence, elicit less competition with one another. In line with 
previous suggestions, we hypothesize that the production 
of low-frequency words may have allowed patients with 
left frontal lesions to overcome an impairment in the process 
of selection.5,33

In addition to the frontal lobe findings, it is interesting 
that we also found a left posterior effect for a specific type 
of error—recurrent perseverations—namely, repetitions fol
lowing at least one intervening response (e.g. ‘sun, sea, 
sun’).34 Recurrent perseverations in naming tasks have 
been hypothesized to be associated with decreased acetylcho
line due to left posterior lesions. Our study provides further 
evidence of an association between left posterior lesions and 
recurrent perseverations, on a test of phonemic fluency.35,36

Our novel transfer learning approach uses LLM-derived 
embeddings to enable the analysis of a richer set of character
istics of phonemic fluency responses, incorporating not merely 
individual words but entire word sequences. Bayesian stochas
tic block modelling of the relations between embeddings re
veals distinct communities of patients with similar word 
sequences. This unsupervised approach formalizes the task 
of clustering embedded responses based on their similarities 
and differences within a principled graph framework of their 
relations, employing Bayesian inference to maximize robust
ness and statistical efficiency. It permits formal inference to 

the presence or absence of community structure by model com
parison founded on the models’ minimum description length. 
Two distinct communities (I and II) enriched in patients with 
frontal lesions emerged, both exhibiting significantly lower 
overall S performance. Crucially, the most characteristic words 
in Community I tended to be inappropriate words, proper 
nouns and low-frequency words. This is notable, given that 
this community was dominated by patients with left frontal le
sions. Note that the comparatively modest number of patients 
in each group precludes high-resolution anatomical analysis or 
finer behavioural subdivision. Overall, these results strongly 
converged with those obtained by our single word analysis 
of errors and low-frequency words.

In our predictive modelling analysis, we investigated 
whether analysis of word sequences significantly improved 
the accuracy of detecting frontal lobe dysfunction. To this 
end, we constructed three models and compared their ability 
to detect the presence or absence of frontal lesions. The first 
of these, a ‘baseline’ model (including age, NART and over
all S performance), was found to significantly predict frontal 
damage. The second, an ‘errors’ model, included the vari
ables in the baseline model but also included rule break er
rors, low-frequency words and clustering/switching. This 
model predicted frontal lobe damage more accurately than 
the baseline model. The third ‘full’ model included all pre
ceding variables but also included GPT-3 representations 
of the word sequences. Strikingly, this model was a far 
more accurate predictor of frontal damage than either of 
the first two models. Of note, the full model explained ap
proximately four times the variance accounted for by the 
baseline model and over twice the variance accounted for 
by the errors model. These findings offer a compelling dem
onstration that our transfer learning approach can be used to 
leverage latent, yet diagnostically valuable, characteristics of 
phonemic fluency responses not exploited by traditional 
methods of analysis. Combined with a fluency test adminis
tered in digital form—for example, with automated tran
scription of the patient’s responses—our model could 
enable immediate behavioural phenotyping, providing 
priors for subsequent anatomical localization. It could also 
enable finer phenotypic stratification of patients, facilitating 
more accurate monitoring of disease evolution at the individ
ual level and more robust inference of prognosis and inter
ventional effects at the group level.

The implications of our findings extend beyond the ana
lysis of performance on the phonemic fluency test and are 
of relevance to focal lesion studies more generally. The qual
ity of responses produced by patients with focal brain lesions 
is held to be unique as a source of evidence.1,2 Our findings 
demonstrate, however, that the wealth of potentially valu
able information that focal lesion studies provide is not ad
equately captured using traditional methods of analysis. 
The current investigation was necessarily limited in scope 
to analysis of performance on one task, and in the interest 
of producing a cohesive and focused study, we opted to ana
lyse only the impact of word frequency on language produc
tion. Future studies including concreteness of words may 
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provide interesting insights into the lateralization of the me
chanisms involved in language production and could enrich 
diagnosis via the machine learning model.

Nonetheless, our novel methodological approach offers a 
promising proof of concept and that may be applied to ana
lysis of performance on tests used to investigate other cogni
tive domains. One notable example is human intelligence, 
where current understanding is limited by the necessity to re
duce complex behaviour to that which is measurable using 
simplistic measures of performance.

In conclusion, our findings demonstrate the significant in
ferential and diagnostic value of characterizing qualitative 
features of phonemic fluency performance using deep lan
guage modelling. We have introduced a novel transfer learn
ing and graph modelling methodology that offers a 
promising approach to the analysis of qualitative aspects of 
performance on cognitive tests.
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Supplementary material is available at Brain Communications 
online.
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