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Introduction: Extracting regularities from ongoing stimulus streams to form 
predictions is crucial for adaptive behavior. Such regularities exist in terms of the 
content of the stimuli and their timing, both of which are known to interactively 
modulate sensory processing. In real-world stimulus streams such as music, 
regularities can occur at multiple levels, both in terms of contents (e.g., predictions 
relating to individual notes vs. their more complex groups) and timing (e.g., 
pertaining to timing between intervals vs. the overall beat of a musical phrase). 
However, it is unknown whether the brain integrates predictions in a manner 
that is mutually congruent (e.g., if “beat” timing predictions selectively interact 
with “what” predictions falling on pulses which define the beat), and whether 
integrating predictions in different timing conditions relies on dissociable neural 
correlates.

Methods: To address these questions, our study manipulated “what” and “when” 
predictions at different levels – (local) interval-defining and (global) beat-defining 
– within the same stimulus stream, while neural activity was recorded using 
electroencephalogram (EEG) in participants (N  =  20) performing a repetition 
detection task.

Results: Our results reveal that temporal predictions based on beat or interval timing 
modulated mismatch responses to violations of “what” predictions happening at 
the predicted time points, and that these modulations were shared between types 
of temporal predictions in terms of the spatiotemporal distribution of EEG signals. 
Effective connectivity analysis using dynamic causal modeling showed that the 
integration of “what” and “when” predictions selectively increased connectivity 
at relatively late cortical processing stages, between the superior temporal gyrus 
and the fronto-parietal network.

Discussion: Taken together, these results suggest that the brain integrates different 
predictions with a high degree of mutual congruence, but in a shared and 
distributed cortical network. This finding contrasts with recent studies indicating 
separable mechanisms for beat-based and memory-based predictive processing.
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Introduction

The ability to predict future events based on sensory information 
is an integral aspect of adaptive sensory processing. Real-world events 
are complex, consist of statistical regularities, and contain multiple 
features over which predictions can be formed (Dehaene et al., 2015). 
In the auditory domain, “what” and “when” predictions are present in 
virtually every stimulus stream, and their manipulation has been the 
foundation for numerous studies of predictive coding (Heilbron and 
Chait, 2018). “What” predictions are typically manipulated by 
introducing unexpected sensory deviants (oddballs), and comparing 
the neural responses to the unexpected vs. expected stimuli. In such 
oddball paradigms, the resulting classical mismatch response (MMR) 
is interpreted in predictive coding models as resultant error signal 
(Garrido et al., 2009a,b). As opposed to “what” predictions, which 
often rely on MMR-based explanations, “when” predictions can 
be  explained by neural entrainment – phase alignment of neural 
activity to an external temporal structure (Schroeder and Lakatos, 
2009; Haegens and Zion Golumbic, 2018; Auksztulewicz et al., 2019) 
– although this hypothesis is subject to an ongoing debate (Doelling 
and Assaneo, 2021). However, a fixed rhythmic pulse or beat is not 
required to form “when” predictions, as multiple temporal cues exist 
for the formation of such predictions (Morillon et al., 2016; Nobre and 
van Ede, 2018). Indeed, recent studies have demonstrated that while 
neural entrainment may be implicated in beat-based predictions, the 
relative timing between events can be seen as a mnemonic task relying 
on separable neural mechanisms (Breska and Deouell, 2017; Bouwer 
et al., 2020).

Several studies have investigated predictions through independent 
manipulation of timing and content predictability, suggesting 
interactive and partly dissociable neural correlates and putative 
underlying mechanisms (Kotz and Schwartze, 2010; Arnal and 
Giraud, 2012; Buzsaki and Friston, 2016; Auksztulewicz et al., 2018; 
Chung et al., 2022). In simple sound sequences, MMR amplitudes are 
typically modulated by “when” predictions, such that deviant-evoked 
activity is higher when deviants are presented in temporally 
predictable (e.g., rhythmic/isochronous) sequences (Yabe et al., 1997; 
Takegata and Morotomi, 1999; Todd et al., 2018; Lumaca et al., 2019; 
Jalewa et al., 2020). In the auditory domain, such interactions have 
been suggested to rely on partially dissociable networks mediating 
“what” and “when” predictions (Hsu et al., 2013), while also jointly 
modulating stimulus-evoked activity in the superior temporal gyrus 
(Auksztulewicz et al., 2018). More generally, it has been proposed that 
interactions between “what” and “when” predictions are inherent to 
the processing of musical sequences (Musacchia et al., 2014). In this 
context, it has been suggested that neural entrainment along the 
non-lemniscal (secondary) auditory pathway (sensitive to the 
rhythmic sequence structure) can modulate activity in the lemniscal 
(primary) pathway (encoding stimulus contents), including 
MMR processing.

However, it is unknown if interactions between “what” predictions 
(in the lemniscal pathway) and “when” predictions (in the 
non-lemniscal pathway) depend on different types of predictions 
present in complex naturalistic stimuli such as speech or music 
(Hasson et al., 2015). In the case of naturalistic music stimuli (Koelsch 
et al., 2019), lower-level “what” predictions can be formed about single 
notes within a sequence, while higher-level predictions can relate to 
the resulting melody contour, each occurring at their respective time 

scales. Similarly, “when” predictions can be  formed about specific 
temporal intervals vs. global beat patterns present in melodies. In 
principle, neural entrainment to a particular time scale might boost 
the processing of any stimuli presented in the expected time window 
(Auksztulewicz et al., 2019). Accordingly, it has been shown that beat-
based predictions are associated with obligatory resonance-like 
patterns of neural activity (Breska and Deouell, 2017) and a 
modulation of stimulus-evoked responses to both relevant and 
irrelevant stimuli (Breska and Deouell, 2016), while interval-based 
predictions have been proposed to be more flexible with regards to 
resource allocation (Breska and Deouell, 2017). However, if 
entrainment to slower (i.e., more global, beat-based) temporal scales 
is functionally related to chunking (Ding et al., 2016; Henin et al., 
2021), it may show a specific modulation of the processing of stimulus 
chunks, rather than single elements. Thus, based on current 
hypotheses of temporal predictions, it is unclear if “when” predictions 
modulate the processing of stimulus contents (and the respective 
“what” predictions) in a contextually specific way – e.g. if temporal 
predictions amplify the processing of any stimuli presented at a 
preferred time window, or only those stimuli whose contents can 
be predicted at the corresponding time scale.

Here, we present streams of tones and independently manipulate 
content-based and time-based characteristics of the stream in two 
contexts, while recording EEG in healthy volunteers. Temporal 
predictability was manipulated at faster, interval-based (~4 Hz) and 
slower, beat-based (~2 Hz) time scales, while acoustic deviants were 
introduced at lower levels (e.g., interval-defining elements) and higher 
levels (e.g., beat-defining elements), to evaluate the independent or 
interactive effect of “what” and “when” predictive processing across 
different levels. In the analysis, we focused on testing whether “what” 
and “when” predictions interactively modulate the ERP amplitude 
evoked by deviants only when they are mutually congruent with 
respect to the level of manipulation, or if they also have more general 
effects (e.g., beat-based “when” predictions modulating “what” 
predictions of single tones vs. longer segments). We also performed 
source reconstruction and effective connectivity analysis of the 
observed effects, to test whether different levels of predictions 
preferentially engage different cortical regions. This integrative 
approach builds upon previous studies that have separately explored 
the neural substrates of ‘what’ and ‘when’ predictions, and seeks to 
advance our understanding of how their underlying mechanisms may 
dynamically modulate the functional coupling between specific 
cortical regions.

Methods

EEG was recorded during an auditory repetition detection task in 
order to gage (1) the effects of “when” predictions at higher and lower 
temporal scales on tone-evoked responses and on neural entrainment, 
as well as (2) the modulatory effect of “when” predictions on the 
neural signatures of higher and lower-level “what” predictions 
(MMRs). The use of musical sequences (ascending or descending 
musical scales) was chosen to reduce the influence of speech-specific 
processing on neural activity (e.g., modulation by language 
comprehension, speech-specific semantic and syntactic processing, 
etc.) and provide a better comparison to similar work in animal 
models (Jalewa et al., 2020). In the analysis, we focused on interactions 

https://doi.org/10.3389/fnins.2023.1180066
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cappotto et al. 10.3389/fnins.2023.1180066

Frontiers in Neuroscience 03 frontiersin.org

between “what” and “when” predictions, specifically testing whether 
MMRs are modulated by temporal predictability in a contextually 
specific way (such that beat-based “when” predictions selectively 
modulate MMRs to violations of “what” predictions falling on beat). 
To explain the effects observed at the scalp level, we  used source 
reconstruction and model-driven data analysis techniques (dynamic 
causal modeling), which allowed us to infer the putative mechanisms 
of interactions between “what” and “when” predictions.

Participant sample

Participants (N = 20, median age 21, range 19–25, 10 females, 10 
males; 19 right-handed, 1 left-handed) volunteered to take part in the 
study at City University of Hong Kong upon written consent. The 
work was conducted in accordance with protocols approved by the 
Human Subjects Ethics Sub-Committee. All participants self-reported 
normal hearing and no current or past neurological or 
psychiatric disorders.

Stimulus design and behavioral paradigm

An experimental paradigm was designed in which auditory 
sequences were manipulated with respect to “what” and “when” 
predictions at two levels (“what” predictions of interval-defining 
elements vs. beat-defining elements; interval-based “when” predictions 
at ~4 Hz vs. beat-based “when” predictions at ~2 Hz), allowing for an 
analysis of their interactions at each level. To ensure that participants 
paid attention to stimulus sequences, a decoy task was employed that 
introduced occasional repetitions, with participants instructed to 
listen out for such repetitions and respond when they were detected 
(see below).

Auditory sequences were generated using Psychtoolbox for 
MATLAB (version 2021a) and delivered to participants fitted with 
Brainwavz B100 earphones via a TDT RZ6 multiprocessor at a 
playback sampling rate of 24,414 Hz. Participants were seated in a 
sound-attenuated EEG booth. Visual stimuli (fixation cross) and 
instructions were presented on a 24-inch computer monitor and 
delivered using the Psychophysics Toolbox for MATLAB. Participants 
were asked to minimize movements and eye blinks and instructed to 
perform a tone repetition detection task, by pressing a keyboard 
button using their right index finger as soon as possible upon hearing 
an immediate tone repetition.

Stimuli were presented in sequences of 7 ascending or descending 
scales. Each scale was composed of 8 tones equally spaced on a 
logarithmic scale to form one octave. Thus, across 7 scales a total of 56 
tones were presented per sequence (Figures 1A,B). A trial was defined 
as the presentation of a sequence of 7 scales. Within a trial, all scales 
were either ascending or descending. The ascending and descending 
trials were presented in a random order. Each participant heard a total 
of 240 sequences (trials). The initial tone of each scale was randomly 
drawn from a frequency range of 300–600 Hz. Each tone was 
generated by resynthesizing a virtual harp note F4 (played on 
virtualpiano.net), to match a fixed 166 ms duration and the 
fundamental frequency used at a given position in the scale. The tone 
manipulations were implemented in an open-source vocoder, 
STRAIGHT (Kawahara, 2006) for Matlab 2018b (MathWorks; RRID: 

SCR_001622). The beat was defined by manipulating the intensity 
ratio of odd/even tones to form duples, with the even (2nd, 4th, 6th 
and 8th) tones within a scale presented 10 dB quieter relative to the 
odd-position tones (Kotz et al., 2018). This amplitude relationship 
forming the duples was maintained in both control and experimental 
blocks, as discussed below.

Manipulation of temporal predictability formed three conditions: 
in the fully-predictable (isochronous) control condition, tones were 
presented with a fixed ISI (inter-stimulus interval) of 247 ms, resulting 
in all tones having predictable timing at both the interval-defining 
time scale (ID) and the beat-defining time scale (BD). In the beat-
based (predictable BD, unpredictable ID) condition, the beat/pulse 
was predictable (corresponding to a fixed pair onset asynchrony, i.e., 
a fixed 494 ms interval between the onsets of the odd, beat-defining 
tones) but interval timing was unpredictable (corresponding to a 
random onset of the even, pair-final tones, relative to the pair-initial 
tones). In this condition, the exact ISI of the pair-final tones was set 
by randomly drawing one value from the following 4 ISIs, relative to 
the standard 247 ms ISI: 33.3% shorter; 16.6% shorter; 16.6% longer; 
33.3% longer. Finally, in the interval-based (predictable ID, 
unpredictable BD) condition, the timing between notes in a duple was 
predictable (corresponding to a fixed 247 ms ISI of the pair-final tones, 
relative to the pair-initial tones) but the overall beat/pulse was 
unpredictable (corresponding to a random onset of the odd, pair-
initial tones, relative to the expected 494 ms interval). In this 
condition, the exact ISI of the pair-initial tones was set by randomly 
drawing one value from the same 4 ISIs as above, and shifting the 
onset of the pair-initial tone by this value, relative to the expected 
494 ms interval relative to the previous pair onset. A fixed inter-trial 
interval of 1 s was employed between the offset of the last tone of a 
56-tone sequence and the onset of the first tone in the next sequence. 
The three timing conditions were administered in 12 blocks of 20 
trials (4 blocks per condition). Blocks were pseudo-random in order, 
allowing no immediate repetitions of the same timing condition.

Content predictability was manipulated by altering the 
fundamental frequency of a subset of tones within the scales. The ID 
deviants were introduced by replacing the final tone of a scale with an 
outlier frequency (i.e., a tone whose fundamental frequency was 20% 
lower/higher than the range of the entire scale). The BD deviants were 
introduced by replacing the penultimate tone of a scale (i.e., the initial 
tone of the final pair) in the same manner. Such manipulations 
allowed us to test for differences in responses evoked by ID deviants 
(pair-final tone) vs. non-ID deviants (penultimate/pair-initial tone) in 
interval-based sequences, and BD deviants (penultimate/pair-initial 
tone) vs. non-BD deviants (pair-final tone) in beat-based sequences.

To facilitate the extraction of statistical regularities in the 
sequences, in each trial, the first two scales were left unaltered. Two 
deviant tones were randomly placed within the subsequent 5 scales. 
Additionally, in 50% of the trials, a scale containing an immediate tone 
repetition was included in the last 5 scales. In subsequent EEG 
analysis, neural responses evoked by ID and BD deviants were 
compared with neural responses evoked by the respective standard 
tones, designated as the final and penultimate tones in two unaltered 
scales out of the final 5.

In total, 64.3% of the scales were left unaltered, 14.3% contained 
an ID deviant, 14.3% contained a BD deviant, and 7.1% contained a 
tone repetition. The global deviant probability equaled 3.57% of all 
tones, amounting to 80 deviant tones per deviant type (ID, BD) per 
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temporal condition (isochronous, interval-based, beat-based). To 
ensure that the EEG analysis was not confounded by differences in 
baseline duration between temporal conditions (e.g., ID deviants 
preceded by shorter/longer ISIs in the beat-based condition than in 
the other two conditions), the ISIs preceding all deviant tones and 
designated standard tones were replaced by a fixed 247 ms 
ISI. Therefore, the temporal predictability manipulation was limited 
to tones surrounding the analyzed tones, and no significant effects 
were found on the exact timing of either deviants or standards.

Prior to experimental blocks, participants were exposed to a 
training session consisting of isochronous sequences containing a tone 
repetition, to familiarize themselves with the task and stimuli. 

Participants performed training trials until they could detect tone 
repetition in 3 consecutive trials with reaction times shorter than 2 s. 
Then, during the actual experiment, participants received feedback on 
their mean accuracy and reaction time after each block of 20 trials. 
The data segments (scales) containing tone repetition were 
subsequently discarded from EEG analysis.

Behavioral analysis

Analysis was performed on the accuracy and reaction time data 
corresponding to participant responses during the decoy repetition 

FIGURE 1

Experimental paradigm and behavioral results. (A) Participants listened to sequences of ascending (as represented on the figure) or descending scales 
of acoustic tones. Sequences were composed of tone pairs, where odd tones (gray circles) were louder than even tones (white circles). Participants 
performed a tone repetition detection task (orange circles: behavioral targets; presented in a subset of trials). Additionally, sequences could include ID 
deviants tones (magenta circles), in which one of the pair-final tones had an outlier fundamental frequency (F0), and BD deviants (cyan circles), in 
which one of the stressed, pair-initial, tones had an outlier F0. (B) Sequences were blocked into three temporal conditions: an isochronous condition 
(upper panel), in which ISI between tones was fixed at 0.247  s; a interval-based condition (middle panel), in which the ISI between odd and even tones 
within pairs was fixed at 0.247  s but the ISI between odd tones (pair-initial tones) was jittered; and a beat-based condition (lower panel), in which ISI 
between odd tones (pair-initial tones) was fixed at 0.494  s but the ISI between odd and even tones within pairs was jittered. (C) Behavioral results. Left 
panel: accuracy, right panel: reaction times. Horizontal red bars denote medians across participants; horizontal thick black bars denote means across 
participants. Asterisks denote p  <  0.05.
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detection task. Reaction times longer than 2 s were excluded from 
analysis. Mean reaction times (from correct trials only) were 
log-transformed to approximate a normal distribution. Accuracy and 
mean reaction times were entered into separate repeated-measures 
ANOVAs with a within-subjects factor Time (isochronous, interval-
based, beat-based). Post-hoc comparisons were implemented using 
paired t-tests in MATLAB and corrected over three comparisons for 
accuracy and three comparisons for reaction times using false 
discovery rate of 0.05.

Neural data acquisition and pre-processing

EEG signals were collected using a 64-channel ANT Neuro EEGo 
Sports amplifier at a sampling rate of 1,024 Hz with no online filters. 
The recorded data were pre-processed using the SPM12 Toolbox 
(version 7,219; Wellcome Trust Center for Neuroimaging, University 
College London; RRID: SCR_007037) for MATLAB (version R2018b). 
Continuous data were high-pass filtered at 0.1 Hz and notch filtered 
between 48 Hz and 52 Hz before being down-sampled to 300 Hz and 
subsequently low-pass filtered at 90 Hz. All filters were 5th order zero-
phase Butterworth. Eyeblink artifacts were detected using channel Fpz 
and removed by subtracting the two top spatiotemporal principal 
components of eyeblink-evoked responses from all EEG channels (Ille 
et al., 2002). Cleaned signals were re-referenced to the average of all 
channels, as is recommended for source reconstruction and dynamic 
causal modeling (Litvak et al., 2011). The pre-processed data were 
analyzed separately in the frequency domain (phase coherence 
analysis) and in the time domain (event-related potentials; ERPs).

Phase coherence analysis

To test whether tone sequences are associated with dissociable 
spectral peaks in the neural responses at the element rate (4.048 Hz) 
and at the pair-rate (2.024 Hz), we analyzed the data in the frequency 
domain. Continuous data were segmented into epochs ranging from 
the onset to the offset of each trial (tone sequence). For each 
participant, channel, and sequence, we  calculated the Fourier 
spectrum of EEG signals measured during that sequence. Based on 
previous literature, we then calculated the inter-trial phase coherence 
(ITPC), separately for each temporal condition (isochronous, interval-
based, beat-based) according to the following equation (Ding and 
Simon, 2013) in order to infer phase consistency in each condition:

 
ITPC Nf

N
f

N
f= 



 + 












Σ Σcos sin / ,φ φ

2 2

where φf corresponds to the Fourier phase at a given frequency f, 
and N corresponds to the number of sequences (80 per condition). 
We used ITPC also in the aperiodic condition, as it has been shown 
that consistent slow ramping EEG activity can yield significant ITPC 
values even in aperiodic (interval-based) sequences (Breska and Ivry, 
2020). The same method was used to estimate the stimulus frequency 
spectrum by calculating the ITPC based on the raw stimulus waveform.

In the initial analysis, ITPC estimates were averaged across EEG 
channels. To test for the presence of statistically significant spectral 

peaks, ITPC values at the element-rate (4.048 Hz) and pair-rate 
(2.024 Hz) were compared against the mean of ITPC values at their 
respective neighboring frequencies (element-rate: 3.974 and 4.124 Hz; 
pair-rate: 1.949 and 2.099 Hz) using paired t-tests.

Furthermore, to test whether element-rate and pair-rate spectral 
peaks observed at single EEG channels show modulations due to 
temporal predictability, spatial topography maps of single-channel 
ITPC estimates were converted to 2D images, smoothed with a 5 × 
5 mm full-width-at-half-maximum (FWHM) Gaussian kernel 
(matching the expected spatial scale of EEG scalp data), and entered 
into repeated-measures ANOVAs (separately for element-rate and 
pair-rate estimates) with a within-subjects factor Time (isochronous, 
interval-based, beat-based), implemented in SPM12 as a general linear 
model (GLM). To account for multiple comparisons and for ITPC 
correlations across neighboring channels, statistical parametric maps 
were thresholded at p < 0.001 and corrected for multiple comparisons 
over space at a cluster-level pFWE < 0.05 under random field theory 
assumptions (Kilner et al., 2005). Repeated-measures parametric tests 
were chosen following previous literature using ITPC (Sokoliuk et al., 
2021), under the assumption that differences in ITPC values between 
conditions are normally distributed. Exact cluster-level p-values are 
only reported for significant clusters, as in statistical parametric 
mapping the cluster-level p-values depend on uncorrected 
thresholding and are only computed for the surviving data points. 
Post-hoc tests were implemented at a Bonferroni-corrected FWE 
threshold (0.05/3 pairwise comparisons per rate).

Finally, to test whether spectral signatures of temporal 
predictability are modulated by experience with stimuli, we split the 
data into two halves (two consecutive bins of 40 trials), separately for 
each condition. Element-rate and pair-rate ITPC estimates were 
averaged across EEG channels and compared separately for each of 
the two halves using repeated-measures ANOVAs with a within-
subjects factor Time (isochronous, interval-based, beat-based). 
Post-hoc comparisons were implemented using paired t-tests and 
corrected over 4 comparisons (element/pair-rate; first/s half) using 
false discovery rate of 0.05.

Event-related potentials

For the time-domain analysis, data were segmented into epochs 
ranging from-50 ms before to 247 ms after deviant/standard tone 
onset, baseline-corrected from-25 ms to 25 ms to prevent epoch 
contamination due to the temporally structured presentation 
(Fitzgerald et  al., 2021), and denoised using the “Dynamic 
Separation of Sources” (DSS) algorithm (de Cheveigné and Simon, 
2008), reducing the influence of noisy channels. Condition-specific 
ERPs (corresponding to ID/BD deviants and the respective 
standards, presented in each of the three temporal conditions) were 
calculated using robust averaging across trials (reducing the 
influence of outlier trials), as implemented in the SPM12 toolbox, 
and low-pass filtered at 48 Hz (5th order zero-phase Butterworth). 
The resulting ERPs were analyzed univariately to gage the effects of 
“what” and “when” predictions on evoked responses. ERP data were 
converted to 3D images (2D: spatial topography; 1D: time), and the 
resulting images were spatially smoothed using a 5 × 5 mm FWHM 
Gaussian kernel. The smoothed images were entered into a general 
linear model (GLM) implementing a 3 × 3 repeated-measures 
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ANOVA with a within-subject factors Contents (standard, deviant 
ID, deviant BD) and Time (isochronous, interval-based, beat-based). 
Parametric tests based on a GLM are an established method of 
analyzing ERP data (Litvak et al., 2011). Beyond testing for the two 
main effects and a general 3 × 3 interaction, we  also designed a 
planned contrast quantifying the congruence effect (i.e., whether 
“when” predictions specifically modulate the amplitude of mismatch 
signals evoked by deviants presented at a time scale congruent with 
“when” predictions – specifically, deviant ID in the interval-based 
condition and deviant BD in the beat-based conditions). To this end, 
we  tested for a 2 × 2 interaction between Contents (deviant ID, 
deviant BD) and Time (interval-based, beat-based). To account for 
multiple comparisons as well as for ERP amplitude correlations 
across neighboring channels and time points, statistical parametric 
maps were thresholded at p  < 0.001 and corrected for multiple 
comparisons over space and time at a cluster-level pFWE < 0.05 under 
random field theory assumptions (Kilner et al., 2005). Post-hoc tests 
were implemented at a Bonferroni-corrected FWE threshold (0.05/3 
pairwise comparisons).

Brain-behavior correlations

To test whether the neural effects of “what” and/or “when” 
predictive processing correlate with each other, as well as with 
behavioral benefits of “when” predictions in the repetition detection 
task, we performed a correlation analysis across participants. Thus, 
for each participant, we calculated a single behavioral index (the 
difference between accuracy scores obtained in the interval-based 
vs. beat-based condition; chosen given a significant difference 
between these two conditions, see Results) and three statistically 
significant neural indices. The second neural index – the “ITPC 
effect” – quantified the difference between the pair-rate ITPC values 
obtained for interval-based vs. beat-based conditions in the second 
half of the experiment (where a significant difference was found; see 
Results Figure  3D). The second neural index – the “congruence 
effect” – quantified the difference between deviant-evoked ERP 
amplitudes measured in the temporally congruent condition 
(deviant ID presented in interval-based; deviant BD presented in 
beat-based trials) and incongruent conditions (deviant BD presented 
in interval-based; deviant ID presented in the beat-based trials), 
averaged across electrodes in the significant cluster where 
we observed a significant congruence effect (i.e., a 2 × 2 interaction 
between “what” and “when” predictions; see Results and Figure 2C). 
The third neural index – the “mismatch effect” – quantified the 
difference between the absolute deviant-evoked and standard-
evoked ERP amplitudes (averaged across significant channels and 
temporal conditions; Figures  2A,B), since we  hypothesized that 
performance in the repetition detection task might be related to 
overall deviance detection, we  also included an index of “what” 
predictions. We  then fitted a linear regression model with three 
predictors (i.e., the three neural indices) regressed against the 
behavioral accuracy index, and identified outlier participants using 
a threshold of Cook’s distance exceeding 5 times the mean. 
Correlations between all measures were quantified using Pearson’s r 
and corrected for multiple comparisons using Bonferroni correction, 
implementing a conservative correction given no a priori 
assumptions about the correlation coefficients.

Source reconstruction

Source reconstruction was performed under group constraints 
(Litvak and Friston, 2008) which allows for an estimation of source 
activity at a single-participant level under the assumption that activity 
is reconstructed in the same subset of sources for each participant (i.e., 
reducing the influence of outliers). Sources were estimated using an 
empirical Bayesian beamformer (Wipf and Nagarajan, 2009; 
Belardinelli et al., 2012; Little et al., 2018) based on the entire post-
stimulus time window (0–247 ms). Since in the ERP analysis (see 
Results) we identified two principal findings – namely a difference 
between ERPs evoked by deviants and standards, and an interaction 
between deviant type and temporal condition – we  focused on 
comparing source estimates corresponding to these effects. In the 
analysis of the difference between deviants and standards, source 
estimates were extracted for the 173–223 ms time window, converted 
into 3D images consisting of 3 spatial dimensions and smoothed with 
a 10 × 10 × 10 mm FWHM Gaussian kernel (Guitart-Masip et al., 
2013). Smoothed images were then entered into a GLM implementing 
a 3 × 3 repeated-measures ANOVA with within-subjects factors of 
Content (standard, deviant ID, deviant BD) and Time (isochronous, 
interval-based, beat-based). Parametric tests based on a GLM are an 
established method of analyzing EEG source reconstruction maps 
(Litvak et al., 2011). In the analysis of the interaction between deviant 
type and temporal condition, source estimates were extracted for the 
130–180 ms and processed as above. Smoothed images were then 
entered into a GLM implementing a 2 × 2 repeated-measures ANOVA 
with within-subjects factors of Content (deviant ID, deviant BD) and 
Time (interval-based, beat-based). To account for multiple 
comparisons as well as for source estimate correlations across 
neighboring voxels, statistical parametric maps were thresholded and 
corrected for multiple comparisons over space at a cluster-level 
pFWE < 0.05 under random field theory assumptions (Kilner et  al., 
2005). Source labels were assigned using the Neuromorphometrics 
probabilistic atlas, as implemented in SPM12.

Dynamic causal modeling

Dynamic causal modeling (DCM) was used to estimate source-
level connectivity parameters associated with general mismatch 
processing (deviant vs. standard) and with the contextual interaction 
between “what” and “when” predictions (deviant ID presented in the 
interval-based condition, and deviant BD presented in the beat-based 
condition, vs. deviant ID presented in the beat-based condition, and 
deviant BD presented in the interval-based condition). DCM is a type 
of an effective connectivity analysis based on a generative model, 
which maps the data measured at the sensor level (here: EEG 
channels) to source-level activity. The generative model comprises a 
number of sources which represent distinct cortical regions, forming 
a sparse interconnected network. Activity in each source is explained 
by a set of neural populations, based on a canonical microcircuit 
(Bastos et al., 2012), and modeled using coupled differential equations 
that describe the changes in postsynaptic voltage and current in each 
population. Here, we  used a microcircuit consisting of four 
populations (superficial and deep pyramidal cells, spiny stellate cells, 
and inhibitory interneurons), each having a distinct connectivity 
profile of ascending, descending, and lateral extrinsic connectivity 
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(linking different sources) and intrinsic connectivity (linking different 
populations within each source). The exact form of the canonical 
microcircuit and the connectivity profile was identical as in previous 
literature on the topic (Auksztulewicz and Friston, 2015; 
Auksztulewicz et al., 2018; Rosch et al., 2019; Fitzgerald et al., 2021; 
Todorovic and Auksztulewicz, 2021). Importantly for our study, a 
subset of intrinsic connections corresponds to self-connectivity 
parameters, describing the neural gain of each region. Both extrinsic 
connectivity and gain parameters were allowed to undergo condition-
specific changes, modeling differences between experimental 
conditions (deviants vs. standards, and the hierarchical interaction 
between “what” and “when” predictions). All ascending and lateral 
connections are modeled to be  excitatory, while all intrinsic and 
descending connections are modeled to be inhibitory.

Here, we  used DCM to reproduce the single-participant, 
condition-specific ERPs in the 0–247 ms range. Based on the source 
reconstruction (see Results) and previous literature (Garrido et al., 
2009a,b), we included six sources in the cortical network: bilateral 
primary auditory cortex (A1; Montreal Neurological Institute 

coordinates: left, [−42–22 7]; right, [46–14 8]), bilateral superior 
temporal gyrus (STG; left, [−60–20 -8]; right, [59–25 8]), right inferior 
frontal gyrus (IFG; [40 26–6]), and left superior parietal lobule (SPL; 
[−26–40 46]). To quantify model fits, we  used the free-energy 
approximation to model evidence, penalized by model complexity. 
The analysis was conducted in a hierarchical manner-first, model 
parameters (including extrinsic and intrinsic connections, as well as 
their condition-specific changes) were optimized at the single 
participants’ level, and then the significant parameters were inferred 
at the group level.

At the first level, models were fitted to single participants’ ERP 
data over two factors: “what” predictions (all deviants vs. standards) 
and the contextual interaction between “what” and “when” predictions 
(deviant ID presented in the interval-based condition, and deviant BD 
presented in the beat-based condition, vs. deviant ID presented in the 
beat-based condition, and deviant BD presented in the interval-based 
condition). At this level, all extrinsic and intrinsic connections were 
allowed to be  modulated by both factors, corresponding to a 
“full” model.

FIGURE 2

Event-related potentials. (A,B) Main effect of content-based predictions (deviant vs. standard) in anterior (A) and posterior (B) clusters. Left panels: time 
courses of ERPs averaged over the spatial topography clusters shown in the right panels. Shaded area denotes SEM across participants. Black 
horizontal bar denotes pFWE  <  0.05. Middle panels: mean voltage values for standards (blue) and deviants (red). Right panels: spatial distribution of the 
main effect. Color bar: F value. (C) Contextual interaction between content-based predictions (deviant ID vs. deviant BD) and temporal predictions 
(beat-based vs. interval-based). Left panels: time courses of ERPs averaged over the spatial topography clusters shown in the right panels. Black 
horizontal bar denotes pFWE  <  0.05. Middle panels: mean voltage values for the six deviant conditions. Right panels: spatial distribution of the interaction 
effect. Color bar: F value.
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Since model inversion in DCM is susceptible to local maxima due 
to the inherently nonlinear nature of the models, the analysis at the 
second (group) level implemented parametric empirical Bayes (Friston 
et al., 2015). Therefore, group-level effects were inferred by (re) fitting 
the same “full” models to single participants’ data, under the 
assumption that model parameters should be normally distributed in 
the participant sample, and updating the posterior distribution of the 
parameter estimates. This effectively reduces the influence of outlier 
participants. We used Bayesian model reduction (Friston and Penny, 
2011) to compare the “full” models against a range of “reduced” 
models, in which some parameters were not permitted to be modulated 
by the experimental factors. Specifically, we  designed a space of 
alternative models, such that each model allowed for a different subset 
of connections to contribute to the observed ERPs. The model space 
examined each combination of modulations of (1) ascending 
connections (e.g., from A1 to STG), (2) descending connections (e.g., 
from STG to A1), (3) lateral connections (e.g., from left to right STG), 
and (4) intrinsic connections (i.e., gain parameters). This resulted in 
256 models (16 models for each of the two factors). The free-energy 
approximation to log-model evidence was used to score each model. 
Since no single winning model was selected (see Results), Bayesian 
model averaging was used to obtain weighted averages of posterior 
parameter estimates, weighted by the log-evidence of each model. This 
procedure yielded Bayesian confidence intervals for each parameter, 
quantifying the uncertainty of parameter estimates. Parameters with 
99.9% confidence intervals falling either side of zero (corresponding to 
p < 0.001) were selected as statistically significant.

Results

Behavioral results

Performance across all trials revealed significant differences in 
accuracy across conditions (main effect of Time: F2,38 = 7.3530, p = 0.002), 

corresponding to significantly lower accuracy in the beat-based 
condition (mean ± SEM: 63.88% ± 3.65%) than in the isochronous 
(mean ± SEM: 67.75% ± 4.64%; t19 = −2.5272, p = 0.0205, FDR-corrected) 
and interval-based conditions (mean ± SEM: 69.12% ± 3.55%; 
t19 = −5.984, p < 0.001, FDR-corrected) (Figure 1C). Reaction times also 
significantly differed across conditions (F2,38 = 3.5543, p = 0.0385), with 
post-hoc analysis revealing that reaction times were significantly faster 
in the isochronous condition (mean ± SEM: 511 ± 74 ms) than in the 
beat-based condition (mean ± SEM: 653 ± 79 ms; t19 = 2.4089, p = 0.0263, 
uncorrected; not significant after FDR correction). The difference 
between the isochronous condition and the interval-based condition 
(mean ± SEM: 649 ± 83 ms) showed a nominal but not significant 
difference (t19 = 2.0132, p = 0.0585, uncorrected). No significant difference 
was observed between the beat-based condition and the interval-based 
condition (p = 0.9013).

Phase coherence analysis

The stimulus spectrum of inter-trial phase coherence (ITPC) 
differed between experimental conditions, such that (1) a prominent 
4.048 Hz peak was found for isochronous sequences; (2) a prominent 
but relatively weaker 4.048 Hz was accompanied by a minor 2.024 Hz 
peak for beat-based sequences; (3) no evident peaks were found for 
the interval-based sequences (Figure 3A). In the EEG spectrum of 
ITPC (averaged across conditions and channels; Figure 3B), both 
element-rate peak (4.048 Hz) and pair-rate peak (2.024 Hz) were 
observed, relative to neighboring frequency points (element-rate: 
t19 = 6.8489, p < 0.001; pair-rate: t19 = 3.6274, p = 0.0018). The element-
rate ITPC estimates were higher in the isochronous and beat-based 
conditions than in the interval-based conditions, and this effect was 
observed at most of the EEG channels (Fmax  = 46.30, Zmax  = 6.43, 
pFWE < 0.001; pairwise comparisons: isochronous vs. interval-based, 
Tmax = 8.02, Zmax = 6.10, pFWE < 0.001; beat-based vs. interval-based, 
Tmax = 9.62, Zmax = 6.81, pFWE < 0.001; isochronous vs. beat-based, all 

FIGURE 3

Spectral signatures of temporal predictability. (A) Inter-trial phase coherence (ITPC) in the stimulus spectrum. Black: isochronous, cyan: beat-based, 
magenta: interval-based. Pair-rate (2.024  Hz) and element-rate (4.048  Hz) peaks are indicated by dashed vertical lines. (B) ITPC based on EEG activity 
(averaged across channels). Legend as in Panel A. Shaded areas indicate SEM across participants. (C) EEG topography maps of main effects of 
Condition (isochronous vs. interval-based vs. beat-based) on the pair-rate peak ITPC (left panel) and element-rate peak ITPC (right panel). Statistical F 
values are represented on the color scale. Unmasked area corresponds to significant clusters (pFWE  <  0.05). (D) Pair-rate (left panel) and element-rate 
(right panel) peak ITPC values plotted separately for the 1st half and 2nd half of the trials. Error bars denote SEM across participants.
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pFWE > 0.05; Figure 3C all pairwise tests compared across multiple 
comparisons by adjusting FWE threshold to 0.05/3). On the other 
hand, the pair-rate ITPC estimates were higher in the beat-based 
condition than in the other two conditions, and this effect was 
observed over right lateral channels (Fmax  = 7.45, Zmax  = 2.90, 
pFWE  = 0.031; pairwise comparisons: beat-based vs. isochronous, 
Tmax = 3.81, Zmax = 3.48, pFWE = 0.004; beat-based vs. interval-based, 
Tmax = 3.83, Zmax = 3.50, pFWE = 0.001; isochronous vs. interval-based, 
all pFWE > 0.05; all pairwise tests compared across multiple comparisons 
by adjusting FWE threshold to 0.05/3). Interestingly, the pair-rate 
differences between conditions built up during the experiment: they 
were not significant during the first half of the experiment 
(F2,59 = 1.0433, p = 0.3622), and were only observed during the second 
half of the experiment (F2,59 = 3.8798, p = 0.0293, FDR-corrected). This 
was not the case for the element-rate differences between conditions, 
which were stable during the experiment (first half: F2,59 = 26.1701, 
p < 0.001; second half: F2,59 = 26.9480, p < 0.001; both FDR-corrected).

Since the pair-rate ITPC estimates showed a laterality-sensitive 
result, and our participant sample included one left-handed 
participant, we repeated this analysis after flipping this participant’s 
ITPC topography maps. This control analysis yielded a virtually 
identical pattern of results, showing a right-lateralized cluster 
(Fmax = 6.59, Zmax = 2.70, pFWE = 0.048). Therefore, we have decided to 
include the original topography maps (without flipping) for the left-
handed participant in all subsequent analyzes.

The emergence of pair-rate differences in ITPC over the course of 
the experiment was reflected in behavior. Specifically, RTs decreased 
for the second half of the experiment, relative to the first half, only for 
the beat-based condition (Wilcoxon’s signed rank test: Z19 = −2.0926, 
p = 0.0364) but not for the isochronous condition (Z19 = −1.6902, 
p = 0.0910) or the interval-based condition (Z19 = −0.8213, p = 0.4115). 
No differences in accuracy were observed for any of the three 
conditions across the first and second halves of the experiment (beat-
based: Z19 = 1.8254, p = 0.0679; isochronous: Z19 = −0.8551, p = 0.3925; 
interval-based: Z19 = 0.6955, p = 0.4867).

Event-related potentials

To test for effects of “what” and “when” predictions on ERP 
amplitudes, we analyzed the data in the time domain. ERP amplitudes 
differed significantly between deviant and standard tones, pooled over 
temporal conditions (Figure  2A, posterior cluster: 173–223 ms, 
Fmax  = 53.94, Zmax  = 6.68, pFWE  < 0.001; Figure  2B, anterior cluster: 
177–220 ms; Fmax = 37.57; Zmax = 5.67; pFWE < 0.001), corresponding to 
a typical anterior–posterior MMN topography after common-average 
referencing (Mahajan et al., 2017). When analyzing specific deviant 
types (ID and BD deviants vs. their respective standards), significant 
differences between deviants and standards were observed in both 
cases (deviants ID vs. standards: posterior cluster, 173–223 ms, 
Fmax = 41.50, Zmax = 5.94, pFWE < 0.001; anterior cluster, 177–227 ms; 
Fmax  = 35.56; Zmax  = 5.52; pFWE  < 0.001; deviants BD vs. standards: 
posterior cluster, 170–220 ms, Fmax = 45.63, Zmax = 6.20, pFWE < 0.001; 
anterior cluster, 177–213 ms; Fmax = 30.17; Zmax = 5.11; pFWE < 0.001). 
No significant differences were observed between the two deviant 
types, pooling over temporal conditions (pFWE > 0.05). Thus, the main 
effect of “what” predictions differentiated between deviants and 
standards, but not between deviant types.

In the analysis of the main effect of “when” predictions (pooled 
over deviants and standards), no significant differences between the 
three temporal conditions were revealed (all pFWE > 0.05). Similarly, in 
the analysis of the interaction effect of “what” and “when” predictions 
(pooled over deviant types), no significant effects were revealed. 
Specifically, neither deviants nor standards showed significant ERP 
amplitude differences when presented in different temporal contexts 
(all pFWE > 0.05). Thus, no significant effects were found when testing 
for the effects of the overall temporal structure of the sound sequences 
on the element-evoked responses (averaged across deviants and 
standards) or the mismatch responses (differences between deviants 
and standards).

However, an analysis of the interaction between “what” and 
“when” predictions based on deviants presented in congruent 
temporal contexts (e.g., deviant ID in the interval-based condition) 
and those presented in non-temporally congruent contexts (e.g., 
deviant ID in the beat-based condition) revealed a significant 
interaction between deviant type and temporal condition (Figure 2B; 
left central-posterior cluster: 130–180 ms, Fmax = 20.63, Zmax = 4.24, 
pFWE = 0.044). Post-hoc analysis revealed that MMR amplitudes in 
interval-based conditions were significantly larger for deviant ID 
(mean ± SEM: −0.1640 ± 0.0942 μV) than for deviant BD (mean ± SEM: 
0.0091 ± 0.1010 μV; t19 = 2.2843, p = 0.0340, two-tailed, uncorrected), 
although this pairwise difference did not survive correction for 
multiple comparisons across two tests. In the beat-based condition, 
MMR amplitude was observed to be nominally larger for deviant BD 
(mean ± SEM: −0.1725 ± 0.0851 μV) than for deviant ID (mean ± SEM: 
−0.0155 ± 0.1233 μV), although the effect did not reach significance 
(t19  = 1.9024, p  = 0.0724, two-tailed, uncorrected). No significant 
interaction effects were revealed when comparing deviant types 
between the isochronous condition and either the beat-based or the 
interval-based conditions. Thus, we observed an increase in deviant 
ERP amplitude when deviants were presented in a temporally 
congruent context, although pairwise differences split between the 
two temporal conditions did not yield robust effects.

In a control analysis, to ensure that the observed effects are 
specific to deviant tones, we analyzed the interaction for standard 
tones (rather than deviant tones). This analysis revealed no significant 
clusters (all pFWE > 0.05 at the cluster level), suggesting that for standard 
tones, stimulus properties such as loudness and sequence position per 
se do not interact with temporal expectations, and thus the observed 
congruency effect is specific to deviant stimuli.

Brain-behavior correlation analysis

Three neural predictors – the “congruence index” (quantifying the 
interactive effects of “what” and “when” predictions on ERPs), the 
“ITPC index” (quantifying the effect of “when” predictions on ITPC), 
and the “mismatch index” (quantifying the effect of “what” predictions 
on ERPs) – were tested as potential correlates of the behavioral 
benefits in the repetition detection task accuracy. We identified two 
outlier participants based on a linear regression model. Having 
excluded these two participants, we  did not find any significant 
correlations between the neural indices and the behavioral index 
(Pearson’s r; all p > 0.2). However, we did find a significant correlation 
between the congruence index and the ITPC index (r  = 0.6439; 
p = 0.0039; corrected), such that the magnitude of the ERP difference 
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between deviants presented in the temporally congruent vs. 
incongruent conditions positively correlated with the magnitude of 
the ITPC difference between interval-based and beat-based conditions.

Source reconstruction

To identify the most plausible sources underlying the observed 
ERP differences between deviants and standards, as well as the 
contextual interaction between deviant types and temporal conditions, 
we carried out a source reconstruction analysis (Figure 4). Overall, 
source reconstruction explained 76.43 ± 3.08% (mean ± SEM across 
participants) of sensor-level variance, consistent with previous 
literature (Abreu et al., 2022).

The difference between source estimates associated with deviants 
and standards was localized to a large network of regions (Figure 4A; 
see Table 1 for full results), including bilateral auditory cortex (AC) 
and superior temporal gyri (STG) and the right inferior frontal gyrus 
(IFG). On the other hand, the interaction effect between deviant types 
and temporal conditions (Figure  4B) was localized to a spatially 
confined cluster in the left superior parietal lobule (SPL; see Table 1). 
A post-hoc analysis revealed that, in this cluster, deviant ID responses 
presented in the interval-based condition were associated with weaker 
source estimates than deviant BD responses presented in the interval-
based condition (Tmax = 3.67, Zmax = 3.46, pFWE = 0.009, small-volume 

corrected). Similarly, deviant BD responses presented in the beat-
based condition were associated with weaker source estimates than 
element deviant responses presented in the beat-based condition 
(Tmax = 5.79, Zmax = 5.11, pFWE = 0.003, small-volume corrected). Thus, 
while the deviant processing could be linked to a wide network of 
auditory and frontal regions, deviants presented in the corresponding 
temporal predictability conditions (e.g., element deviants in the 
interval-based context) were associated with a relative decrease of left 
parietal activity.

Dynamic causal modeling

To infer the most likely effective connectivity patterns underlying 
the observed ERP results, we  used the six main cortical regions 
identified in the source reconstruction results as regions of interest 
(ROIs) to build a generative model of the ERP data. A fully 
interconnected model, fitted to each participants’ ERP data, explained 
on average 71.03% of the ERP variance (SEM across participants 
2.81%), comparable to previous literature (Garrido et al., 2009a,b; 
Adams et al., 2022).

Bayesian model reduction was used to obtain connectivity and 
gain parameters of a range of reduced models, in which only a subset 
of parameters were allowed to be modulated by the two conditions 
(deviant vs. standard; interaction deviant ID/BD x interval-based/

FIGURE 4

Source reconstruction. (A) Regions showing a significant main effect of content-based predictions (deviant vs. standard). Inset shows average source 
estimates per condition. Error bars denote SEM across participants. (B) Regions showing a significant contextual interaction effect between content-
based predictions (deviant ID vs. deviant BD) and temporal predictions (interval-based vs. beat-based). Figure legend as in (A).
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beat-based). Using this procedure, we did not identify a single winning 
model (difference between the free-energy approximation to 
log-model evidence between the nominally winning model and the 
next-best model – i.e., log Bayes factor – was 0.8029, corresponding 
to model probability of 41.79%). Therefore, we implemented Bayesian 
model average to integrate model parameter estimates from the entire 
model space, taking into account the uncertainty about the 
winning model.

The posterior parameter estimates of the Bayesian model average 
are plotted in Figure 5 and reported in Table 2. The results revealed 
that deviant processing (as opposed to standard processing) 
significantly increased nearly all connectivity estimates (probability of 
increase >99.9% for all parameters), corresponding to an increase in 
excitatory ascending connectivity and in inhibitory descending and 
intrinsic (gain) connectivity – with the exception of the intrinsic self-
inhibition in the left SPL region, which was significantly decreased 
following deviant processing, as well as the bidirectional connectivity 
between the left SPL and right IFG, which was not affected by 
deviant processing.

The interaction between deviant type (deviant ID vs. deviant BD) 
and temporal predictability (beat-based vs. interval-based) modulated 
a more nuanced connectivity pattern. At the hierarchically lower level 
(between A1 and STG), deviants processed in a temporally congruent 
condition (i.e., deviant ID in the interval-based condition, and deviant 
BD in the beat-based condition) decreased excitatory ascending 
connectivity from A1 to STG and inhibitory self-connectivity in A1. 
Conversely, at the hierarchically higher level (between STG and the 
fronto-parietal regions), deviants processed in a temporally congruent 
condition increased excitatory ascending connectivity from STG to 
SPL/IFC and inhibitory self-connectivity in the STG. Furthermore, 
deviants processed in a temporally congruent condition (1) increased 
lateral connectivity between the left and right STG, (2) decreased 
cross-hemispheric ascending connectivity between the STG regions 
and the fronto-parietal regions, and (3) increased self-inhibition in the 
left SPL region.

Discussion

In the present study, we found that “when” predictions modulate 
MMR to violations of “what” predictions in a contextually specific 
fashion, such that more local (interval-based) “when” predictions 
modulated responses to deviant ID elements, while more global (beat-
based) “when” predictions modulated responses to deviant BD 

elements, indicating a congruence effect in the processing of “what” 
and “when” predictions across different predictive contexts in the 
auditory system. While “what” and “when” predictions showed 
interactive effects for both contexts, BD-deviants in beat-based 
sequences and ID-deviants in interval-based sequences were 
associated with similar spatiotemporal patterns of EEG evoked activity 
modulations, and linked in the DCM analysis to a shared widespread 
connectivity increase at relatively late stages of cortical processing 
(between the STG and the fronto-parietal network). Interestingly, our 
findings contrast with related studies that have implicated separable 
neural mechanisms in the processing of beat-based and pattern/
mnemonic-based “when” predictions (Breska and Deouell, 2017; 
Bouwer et  al., 2020, 2023). Our results instead suggest that the 
interactions of “what” and “when” predictions, while contextually 
specific, are mediated by a shared and distributed cortical network 
independent of the type of “when” predictions.

Deviant responses to “what” prediction violations within melodic 
sequences and tone contours are well documented, having been used 
to explore a variety of phenomena in the auditory system (see Yu et al., 
2015 for a partial review). Deviant tones within familiar musical scales 
have been found to elicit higher MMR amplitudes compared to those 
of unfamiliar scales are tones presented without a scale structure 
(Brattico et al., 2001), as well as higher deviant responses to out-of-
scale notes in unfamiliar melodies (Brattico et  al., 2006). Deviant 
responses to manipulated musical characteristics within melodic 
sequences (e.g., timing, pitch, transposition, melodic contour) have 
similarly been demonstrated in musician and non-musician groups 
(Vuust et al., 2011; Tervaniemi et al., 2014). In the predictive coding 
framework, such evoked responses can be understood in the context 
of prediction error, wherein bottom-up error signaling triggers the 
adjustment of higher-level models of the stimulus train formed as a 
result of perceptual learning during repeated stimulus presentation 
(Garrido et al., 2009a,b). Such hierarchical relationships have been 
quantified using DCM (Auksztulewicz and Friston, 2016), and are 
consistent with our analysis of the evoked responses observed herein. 
The resultant model shows increased connectivity throughout the 
network, consistent with increased error signaling (ascending 
connections), predictive template updates (descending connections), 
and gain connectivity evident in a decrease in gain following 
predictions errors. Our source reconstruction was equally consistent 
with existing literature revealing bilateral activity in the primary 
auditory cortex (A1) and higher-order auditory regions in the superior 
temporal gyrus (STG), as well as the right inferior frontal gyrus (IFG) 
(Garrido et al., 2008; Giroud et al., 2020).

TABLE 1 Source reconstruction results.

Effect Cluster label Peak MNI 
coords

Fmax Zmax Voxel 
extent

pFWE

Deviant vs. standard Right transverse temporal gyrus/auditory cortex (AC) 48 -20 12 53.99 4.83 20,508 < 0.001

Right superior temporal gyrus (STG) 44 -48 12 40.15 4.42

Right inferior frontal gyrus (IFG) 40 26 -6 34.52 4.20

Left transverse temporal gyrus/auditory cortex (AC) -38 -28 12 34.31 4.20 2,177 0.003

Left superior temporal gyrus (STG) -60 -20 -8 31.19 4.06

(“ID” vs. “BD” deviant) 

x (interval-based vs. 

beat-based)

Left superior parietal lobule (lSPL) -26 -40 46 49.37 5.82 3,073 0.003

Summary of significant clusters showing differences between conditions.
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TABLE 2 Dynamic causal modeling results.

Connection type Connection 
label

Effect of content-based predictions 
(deviant vs. standard) [log mean; log 
variance]

Effect of contextual interaction 
(congruent vs. incongruent) [log 
mean; log variance]

Intrinsic (gain) lA1- > lA1 50% self-inhibition increase [0.4106; 0.002] 26% self-inhibition decrease [−0.2996; 0.0013]

rA1- > rA1 9% self-inhibition increase [0.0873; 0.0019] 13% self-inhibition decrease [−0.1360; 0.0013]

lSTG- > lSTG 44% self-inhibition increase [0.3726; 0.0086] 9% self-inhibition increase [0.0851; 0.0040]

rSTG- > rSTG 35% self-inhibition increase [0.2950; 0.0095] 33% self-inhibition increase [0.2878; 0.0050]

lSPL- > lSPL 42% self-inhibition decrease [−0.5492; 0.0259] 12% self-inhibition increase [0.1196; 0.0227]

rIFG- > rIFG 11% self-inhibition increase [0.1054; 0.0203] n.s. [−0.0358; 0.0172]

Extrinsic (ascending) lA1- > lSTG 21% excitation increase [0.1910; 0.0011] 16% excitation decrease [−0.1694; 0.001]

rA1- > rSTG 13% excitation increase [0.123; 0.001] 10% excitation decrease [−0.1021; 0.001]

lSTG- > lSPL 33% excitation increase [0.2884; 0.0082] 20% excitation increase [0.1855; 0.0028]

rSTG- > rIFG 34% excitation increase [0.2971; 0.0074] 33% excitation increase [0.2820; 0.0032]

lSTG- > rIFG 41% excitation increase [0.3524; 0.0079] 13% excitation decrease [−0.1451; 0.004]

rSTG- > lSPL 34% excitation increase [0.2960; 0.007] 10% excitation decrease [−0.1098; 0.0029]

Extrinsic (descending) lSTG- > lA1 140% inhibition increase [0.8746; 0.0136] n.s. [−0.0001; <0.001]

rSTG- > rA1 151% inhibition increase [0.9183; 0.013] n.s. [<0.001; <0.001]

lSPL- > lSTG 111% inhibition increase [0.7471; 0.009] n.s. [<0.001; <0.001]

rIFG- > rSTG 10% inhibition increase [0.0929; 0.008] n.s. [<0.001; <0.001]

rIFG- > lSTG 24% inhibition increase [0.2234; 0.0116] n.s. [<0.001; <0.001]

lSPL- > rSTG 166% inhibition increase [0.9732; 0.0086] n.s. [<0.001; <0.001]

Extrinsic (lateral) lSTG- > rSTG 88% excitation increase [0.6278; 0.0182] 60% excitation increase [0.4618; 0.013]

rSTG- > lSTG 13% excitation increase [0.1176; 0.029] 20% excitation increase [0.1899; 0.0208]

lSPL- > rIFG n.s. [−0.1022; 0.0411] n.s. [0.0559; 0.0299]

rIFG- > lSPL n.s. [−0.0607; 0.0306] n.s. [−0.028; 0.0225]

Summary of significant condition-specific effects on connectivity estimates. Log mean and variance estimates are reported for completeness. To convert between log means and the more 
intuitive percentage increase/decrease, log means should be exponentiated and compared to a baseline of 1: e.g., exp (0.4106) = 1.5077 = ca. 51% increase in connection weight.

FIGURE 5

Dynamic causal modeling. Posterior model parameters. Separate panels show different condition-specific effects. Black arrows: excitatory 
connections; red arrows: inhibitory connections; solid lines: condition-specific increase; dashed lines: condition-specific decrease. Significant 
parameters (p  <  0.001) shown in black/red, remaining connections (constant excitation/inhibition) shown in gray.
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In the context of “when” predictions, the results of our frequency 
domain analysis show that the EEG spectrum largely follows that of the 
stimulus spectrum, with several notable differences likely reflecting 
perceptual processing of sequences (Henry et  al., 2017). While the 
EEG-based ITPC response at element-rate was stronger near central 
electrodes, consistent with previous EEG studies (Ding et al., 2017), the 
pair-rate effect was predominantly present in the right hemisphere, 
suggesting that the contextual structure of non-linguistic sequences can 
be entrained by parallel neural activity in different regions at distinct time 
scales – consistent with existing research (Giroud et  al., 2020). 
Interestingly, the ITPC differences between conditions (interval-based vs. 
beat-based) emerged during the experiment in pair-rate peaks, but not in 
element-rate peaks, suggesting that rapid learning could modulate neural 
entrainment to auditory sequences with different regularities at the pair-
rate level. Similarly, a previous study (Moser et al., 2021) found significant 
differences in non-linguistic triplet-rate ITPC peaks between structured 
and random conditions, occurring during early exposure. This ITPC 
difference suggests a fine shift in sequence encoding, with different 
regularities from single elements to integrated chunks. Notably, we also 
found correlations between the ITPC difference conditions and the 
congruence effect of ERP amplitude, indicating a set of neural correlates 
similarly sensitive to neural entrainment and the interaction of 
“what”/“when” predictions.

In addition to their dissociable main effects on neural activity, 
“what” and “when” predictions modulated element-evoked response 
amplitude interactively and in a contextually specific manner, such 
that interval-based “when” predictions amplified MMRs to “what” 
prediction violations falling on the interval-final time points (ID 
elements), while beat-based “when” predictions amplified MMRs to 
“what” prediction violations falling on the beat (BD deviants). These 
findings extend the result of previous studies, which showed that 
“when” predictions modulate MMR amplitude (Yabe et  al., 1997; 
Takegata and Morotomi, 1999; Todd et al., 2018; Lumaca et al., 2019; 
Jalewa et  al., 2020), by showing that these modulatory effects are 
congruent with respect to the expected time points, independent of 
the type of “when” predictions (interval-based vs. beat-based). 
Dynamic causal modeling of our ERP data showed partially 
dissociable connectivity patterns between the main effect of “what” 
predictions (i.e., all deviants vs. all standards), which increased 
recurrent connectivity throughout the network (Garrido et al., 2008; 
Auksztulewicz and Friston, 2015; Fitzgerald et  al., 2021), and 
“what”/"when” interactive effects, which had a more nuanced pattern 
of effects on neural activity. Specifically, congruent “what” and “when” 
predictions decreased recurrent connectivity at lower parts of the 
network (between A1 and the STG), while at the same time increasing 
recurrent connectivity at higher parts of the network (between STG 
and the fronto-parietal regions). Previous DCM work has shown 
similar dissociations between processing deviants based on violations 
of relatively simple predictions vs. complex contextual information, 
indicating the higher-order regions as sensitive to complex prediction 
violations (Fitzgerald et al., 2021). Additionally, in the current results, 
the main effect of “what” predictions and the contextually specific 
integration of “what” and “when” predictions had opposing effects on 
the neural gain estimates for the left SPL region, which displayed 
decreased self-inhibition (increased gain) following deviant processing 
but increased self-inhibition (decreased gain) following prediction 
integration. These results mirror our source reconstruction, wherein 
deviants presented in congruent temporal conditions were associated 
with decreased left parietal activity, and imply the left parietal cortex 

– recently shown to mediate the integration of “what” and “when” 
information in speech processing (Orpella et al., 2020) – in the more 
general process of integrating “what” and “when” predictions also for 
non-speech stimuli. While this inhibitory effect of prediction 
integration observed at the source level may seem at odds with the 
results at the sensor level, where deviant-evoked ERPs in congruent 
conditions had an increased amplitude, it should be noted that these 
ERP components had a negative polarity (Figure 2C). Negative EEG 
deflections can arise due to superficial excitatory inputs or deep 
inhibitory inputs (Kirschstein and Köhling, 2009), raising the 
possibility that sensor-level and source-level results may be jointly 
explained by inhibition in deep layers in the parietal cortex. It is also 
worth noting that while “when” predictions did not elicit a significant 
main effect on ERP amplitude, it is possible this finding may have 
resulted from design constraints, as all conditions contained only 
“what” (repetition detection) tasks, suggestive of previous studies on 
the role of attention in parallel temporal and mnemonic predictive 
processing (Lakatos et al., 2013; Wollman and Morillon, 2018).

While in the EEG literature on MMN and other mismatch responses, 
different ERP components such as N100, P200 and N200 have 
traditionally been interpreted in functional terms as signatures of 
dissociable mechanisms (for reviews, see, e.g., Joos et al., 2014; Fitzgerald 
and Todd, 2020), our study uses computational modeling to explain 
MMR over the entire ERP time course in terms of underlying connectivity 
and gain effects (e.g., Garrido et al., 2008; Boly et al., 2011; Auksztulewicz 
and Friston, 2015; Todd et al., 2023). As such, the relative difference in 
latencies between the interactive effect of “what” and “when” congruence 
(130–180 ms relative to tone onset) and the main effect of “what” 
predictions (173–223 ms) can be directly interpreted by referring to DCM 
results, as likely originating from different patterns of connectivity in the 
network encompassing auditory and frontoparietal sources. The 
congruency effect was linked to a connectivity pattern limited to 
feedforward and intrinsic (gain) connections, supporting the idea that 
prediction error signaling increases when processing in temporally 
congruent conditions. Conversely, the main effect of “what” predictions 
was linked to both feedforward and feedback connections, consistent with 
previous studies showing a preferential engagement of feedback 
connectivity for later ERP latencies (Garrido et al., 2007). Therefore, the 
relatively later latency of the the ERP difference of deviants vs. standard 
may be  primarily linked to the added contribution of top-down 
connections throughout the network.

Previous studies have shown that the processing of musical 
information requires predictive mechanisms for timing of content of 
auditory events, and that such predictions can have modulatory effects at 
different cortical levels when presented within the framework of melodic 
expectation (Royal et al., 2016; Di Liberto et al., 2020). Musical stimuli 
presents us with an intriguing opportunity to investigate predictive coding 
mechanisms, as the statistical regularities within musical frameworks are 
well defined and intrinsically learned. In particular, such structures allow 
us to disassociate “what” and “when” predictions while keeping other 
elements of a stimulus stream intact across manipulations and trials. 
Because the presence of musical syntax violations require knowledge 
acquired through long-term repeated exposure to music, long-term 
memory recall is also involved in establishing those regularities. Recent 
studies have probed beat-based and memory-based predictive processing 
through a variety of paradigms. Previous work has demonstrated that the 
rhythmic and mnemonic predictions cannot be fully accounted for with 
general entrainment models (Breska and Deouell, 2017) and that the 
processing of beat-based and memory-based auditory predictions may 
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rely on different underlying mechanisms (Bouwer et al., 2020, 2023). Of 
note, the latter studies used a single percussive sound as their sole stimuli 
in designing rhythmic and mnemonic blocks, whereas our design taps 
into both rhythmic and semantic predictions within the context of 
western musical scales, suggesting that the hierarchical structure and 
complexity of stimulus streams may play a role in mediating the type of 
predictive mechanisms that occur in the brain. The role of memory in 
syntactical prediction violation is indeed an avenue ripe for further 
investigation, and future studies may wish to extend our paradigm to 
further probe the observed late-series ITPC pair-rate differences in that 
context. Furthermore, as “what” and “when” predictions are also 
ubiquitous in other stimulus domains – most prominently in speech 
perception (Emmendorfer et al., 2020) – future research should test 
whether similar contextual specificity of “what” and “when” predictions 
as observed here also govern speech processing.

Significance statement

Predictions of stimulus features, present in different statistically-
regular contexts in the environment, are crucial to forming adaptive 
behavior. However, it is unknown if the brain integrates predictions 
selectively according to such contextual differences. By recording 
human electroencephalography during experimental manipulations 
of time-based and content-based predictions, we found that those 
predictions interactively modulated neural activity in a contextually 
congruent manner, such that interval-based (vs. beat-based) temporal 
predictions modulated content-based predictions errors of interval-
defining elements (vs. beat-defining elements). These modulations 
were shared between contextual levels in terms of the spatiotemporal 
distribution of neural activity. This suggests that the brain integrates 
different predictions with a high degree of contextual specificity, but 
in a shared and distributed cortical network.
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