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Abstract

Depression is a common mental health condition that often occurs in association with
other chronic illnesses, and varies considerably in severity. Electronic Health Records (EHRs)
contain rich information about a patient’s medical history and can be used to train, test and
maintain predictive models to support and improve patient care. This work evaluated the
feasibility of implementing an environment for predicting mental health crisis among people
living with depression based on both structured and unstructured EHRs. A large EHR from
a mental health provider, Mersey Care, was pseudonymised and ingested into the Natural
Language Processing (NLP) platform CogStack, allowing text content in binary clinical notes
to be extracted. All unstructured clinical notes and summaries were semantically annotated
by MedCAT and BioYODIE NLP services. Cases of crisis in patients with depression were
then identified. Random forest models, gradient boosting trees, and Long Short-Term Memory
(LSTM) networks, with varying feature arrangement, were trained to predict the occurrence of
crisis. The results showed that all the prediction models can use a combination of structured
and unstructured EHR information to predict crisis in patients with depression with good
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and useful accuracy. The LSTM network that was trained on a modified dataset with only
1000 most-important features from the random forest model with temporality showed the best
performance with a mean AUC of 0.901 and a standard deviation of 0.006 using a training
dataset and a mean AUC of 0.810 and 0.01 using a hold-out test dataset. Comparing the
results from the technical evaluation with the views of psychiatrists shows that there are now
opportunities to refine and integrate such prediction models into pragmatic point-of-care clinical
decision support tools for supporting mental healthcare delivery.

Keywords: Depression, Digital Health, Artificial Intelligence, Natural Language Processing,
Mental Health Crisis

1 Introduction

Depression can cause extensive periods of disability [1]. This mental illness continues to be one of
the most common conditions amongst mental health patients in England [2,3]. Depression occurs in
association with other chronic conditions, lifetime adversity, and in various grades of severity [2,4].
Such cases cause a strain in mental health services that cost England alone an estimated average
of 12 billion pounds a year to treat patients [5]. There are few diagnostic tests for mental health
conditions, in contrast to physical health illnesses, and therefore clinicians increasingly rely on clin-
ical notes during diagnosis and treatment of mental health patients [6,7]. Frontline clinical mental
health practitioners come from a range of professional backgrounds including psychiatrists, psychol-
ogists, mental health nurses, social workers, allied health professionals, and physician associates.
Good mental health care depends on staff from such a diverse range of disciplines recording a careful
patient history in clinical notes, which is used collectively with other clinical records and expert
knowledge to formulate an appropriate care plan for the patient [8]. Each professional discipline
can record and store their prose records in separate places using disparate systems, and sometimes
with subtly different wording for similar concepts. When a clinician conducts an assessment they
have to assimilate previously recorded clinical records before adding their own and creating a care
plan [9].

Digital health promises to improve the way healthcare is delivered by providers, through the use
of information and communications technologies to monitor and improve the health and wellbeing of
patients [10]. Recent advances, including those in Artificial Intelligence (AI) and Natural Language
Processing (NLP), make it possible to bring together clinical notes from different professionals and
avail meaningful insights from the Electronic Health Record (EHR) [11, 12]. This work assessed
the feasibility of applying NLP and AI in the management of depression to recognise patterns of
patient behaviour that require intervention, thus providing a foundation for aiding the healthcare
professional with indicators of important features from past care.

2 Background

This section discusses related work focusing on application of clinical NLP to EHRs to support
predictive analytics for mental health.
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2.1 Electronic Health Records for Mental Health

EHRs continue to gain traction across the globe as more evidence becomes available showing that
they can improve healthcare whilst reducing costs [13,14]. This is also true for the UK, as evidenced
in the National Health Service (NHS) Long Term Plan [15], where health institutions are being
encouraged to incorporate more health and medical technologies including EHRs to support “digital
first” care [16]. Specifically for mental health, the UK Government’s strategy recommends increased
use of digital health to improve care and access to services [17]. Although digital health systems in
the UK are more diverse and fragmented, most mental health NHS trusts have achieved near-full
digitisation of clinical information and have a greater capacity to share information [18].

2.2 Clinical Natural Language Processing

Natural Language processing can be used to surface structured patient data from routinely-collected
clinical notes, from EHRs, which are a rich source of health information [19, 20]. Applying NLP
techniques to identify and extract relevant information, from clinical text, can be challenging due to
the inherent nature of written text that can contain typographical errors and linguistic nuances [21].
However, NLP applications can apply a wide range of text analytics methods to support the identi-
fication of contextualised mentions of biomedical concepts in clinical text [22, 23]. Such NLP tools
and methods can support mental health research and care delivery in clinical practice [24].

Named entity recognition + linking (NER+L) for biomedical text allows the detection of con-
cepts in clinical text without providing manual annotations [25, 26]. There are a growing number
of biomedical NER+L tools. Metamap provides tooling for mapping biomedical text to the Unified
Medical Language System (UMLS) [27] although it has limited support for handling ambiguous
concepts and spelling mistakes [26, 28]. BioYODIE provides improved disambiguation capabilities
when compared to Metamap, but requires supervised training with a labelled corpus [29]. SemEHR
additional capabilities to those of BioYODIE by applying manual rules for improved performance
though its manual-rule application can be quite labour-intensive and time-consuming [23]. cTAKES
is built on top of existing open-source technologies: the Unstructured Information Management Ar-
chitecture framework and the NLP toolkit, OpenNLP [30, 31]. However, cTakes does not handle
mispellings and biomedical concept disambiguation without separate plugins [26,30]. SciSpacy pro-
vides a supervised model for NER with limited linking capabilities for scientific and biomedical
text [32]. Bioportal annotator provides a fixed algorithm that is accessible via a web-hosted API
with limited capabilities for customisation and support of non-english corpus [33]. MedCAT ad-
dresses many of the shortcomings in biomedical NER+L tools by supporting unsupervised training
and clinician-driven concept contextualization [26].

2.3 Artificial Intelligence in Health Informatics

EHRs are a rich but underused source of health information that provide an opportunity for pre-
dictive modelling, thereby providing valuable insights for better patient management and care [19].
EHR data has been used to assess the feasibility of applying machine learning techniques to manage
caseload priorities and to intervene so that the risk of crises can be mitigated [34]. But building a
predictive model using clinical records is not a trivial task. Long-term time dependencies between
clinical events such as diagnosis and treatment, in addition to inadequate interpretation of results,
complicates the machine learning process and hinders model integration in the clinical setting [35].
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Figure 1: The architecture of a reference implementation of the AI prediction environment

Machine learning has been applied widely to support human health and wellbeing in areas such as:
bioinformatics, medical imaging, pervasive sensing, medical informatics and public health [35].

3 Methods

This section details the materials and methods that were used in this work. Fig. 1 shows the overall
architectural framework of a reference implementation for this work.

3.1 Scope and Context

This work was a collaboration of the Mersey Care NHS Foundation Trust, King’s College London
(KCL), University of Liverpool (UoL), and AIMES. Mersey Care is the largest mental health NHS
Foundation Trust in the UK that provides specialist inpatient and community mental health services
to more than 11 million people across 85 sites. AIMES is a spin-out company from the UoL
that focuses on health data solutions. KCL and UoL are research institutions that carry out
informatics research. The broader aim of this collaborative is to apply NLP and AI techniques
to predict the onset of crisis amongst mental health patients and evaluate the impact of related
healthcare interventions for mental health service users. This particular study focused on evaluating
the technical feasibility of predicting crisis to support the management of patients suffering from
depression. The performance of algorithms used in this work are explicitly compared with those
advocated in recent related work [34].

3.2 Electronic Health Record Curation

EHR data covering a period of about 11 years, from 2007 up to 2018, were obtained from Mersey
Care. The EHRs at Mersey Care are stored in two separate EHR systems. The first system, ePEX,
is a legacy EHR system that contains ten years worth of historical data. Whereas the second
system, Rio, is the successor EHR system to ePEX and is currently in use at Mersey Care. The
care records covered both structured and unstructured data, where unstructured clinical notes were
stored in various binary formats such as portable document format (PDF) and Microsoft Word
document (MS Word).
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Source system adapters were created to extract, pseudonymise and transform the health data
into a standard format from the source EHR systems. Pseudonimisation allows personal details
to be removed and substituted, thereby providing a mechanism that can maintain privacy, at the
same time allowing linkage of the health data to other key information [36]. This was key for the
AI environment so that it met information governance requirements that were set by the Mersey
Care NHS Trust. The source system adapters allowed the standardised EHRs to be imported into
a common data model, CareXML, that uses an NHS-compliant data dictionary to facilitate storage
of integrated care records.

3.3 Natural Language Processing with CogStack

Both structured and unstructured data from the CareXML integrated care records were ingested
into an indexed and searchable repository using the CogStack platform. CogStack provides a
patient-centric view of the EHR that is availed through a number of document processing services,
such as binary-to-text conversion, and NLP services that are based on open standards. The services
within CogStack are orchestrated by a fault-tolerant batch processing framework to process and
combine the structured and unstructured data from relational services into a configurable, search-
able and patient-centric view of the EHR that is accessible through ElasticSearch [37]. Specifically,
three EHR data pipelines were used in this process.

The first pipeline ingested structured data into its own searchable index. The second pipeline
carried out binary-to-text conversion of the unstructured EHR data, and ingested the extracted
data into a separate searchable index.

The third pipeline generated semantic annotations from the previously extracted unstructured
text. This process was achieved by applying NER+L services with the UMLS over the unstructured
EHR data. CogStack NLP services allow mentions that correspond to concepts in a given set of a
controlled vocabulary, such as the UMLS, to be found [21].

3.4 Building and Evaluating the Prediction Models

A methodical approach was taken to define crisis and select suitable training data.

3.4.1 Definition of Crisis

Crisis in the context of mental health is subjective as it is not a formal term. As a result and with
guidance from clinicians from Mersey Care, an objective definition of crisis was agreed upon for the
purposes of this study. A mental health ‘crisis’ was defined as an event that was recorded in the
EHR that led to one of the following:

1. A visit to the accident and emergency (A&E) department at the hospital;

2. Contact with the crisis resolution and intensive home treatment (CRHT) team;

3. Hospitalisation.

Any occurrence of at least one of these events was used as a proxy for mental health crisis. This
definition of crisis is in line with the pragmatic service-oriented definition of crisis by the Joint
Commissioning Panel for Mental Health [38].
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Figure 2: A sample MedCAT annotation entry

3.4.2 Cohorting

In order to identify a representative cohort of patients with depression, a search of depression-
related diagnoses was carried out on unstructured clinical notes. This approach was taken because
diagnoses were often not explicitly recorded in the structured EHR. A list of semantic annotations
for depressive disorders were identified and their related patient notes and documents from the
EHR were selected. All the annotations that had a negation flag, and their related EHR data, were
removed from the dataset. Only those patients from the dataset that had affirmed annotations of
depressive disorders regardless of comorbidity, were included in the cohort.

3.4.3 Training and Hold-out Test Data

Patient profiles were characterised with the following types of features:

1. Medically-relevant semantic annotations that were generated from patient notes by the Med-
CAT [26] NLP service (Fig. 2 shows a sample MedCAT annotation entry),

2. Event type of each patient note,

3. Demographic information for each patient.

All patients in the cohort were assigned to one of two groups depending on whether their clinical
history included at least one ‘crisis’ event or not.

For patients in the ‘crisis cohort’, a six-month (24 weeks) period was selected preceding a crisis
event. A two-week-buffer period was created before each crisis event to prevent possible inclusion of
clinical notes related to oncoming crisis, such as hospitalisation notes in advance of a hospitalisation
event. As for patients in the ‘no crisis cohort’, an equivalent period to the ‘crisis cohort’ was chosen
at random, but not less than six months before a patient was registered into the EHR system.

The semantic annotations for the patient notes and clinical documents in the six-month period
were then counted and collected as features. The features were extended by adding counts of
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‘patient note types’ and ‘contact types’ from the selected period. A ‘patient note type’ refers to a
recorded kind of contact with the mental health service, such as a telephone call or a community
nurse visit. The dataset that was extended with ‘patient note type’ in its feature set was tagged as
a ‘standard dataset’. A ‘contact type’ refers to a kind of intervention with the mental health service
that can include instances where crisis is predicted by a clinician and measures are being taken.
For example, forensic psychological services contacts for offenders seeking mental health services
or inpatient contacts for supporting routine engagement with inpatients. The dataset that was
extended with ‘contact type’ in its feature set was tagged as an ’extended dataset’. Furthermore,
structured EHR data was added as features to both the standard and extended datasets by including
age, gender, ethnic background and presence of disability. Individual records in the dataset were
labelled with a binary classification that indicated the presence or absence of a crisis event after
the selected time period.

The dataset was divided into two, a training dataset and a hold-out test dataset, using times-
tamps from the EHRs. The cross-validation training set included data that was recorded in the
EHR between Jan 2007 and June 2017 (85% of the overall dataset). The hold-out test set included
the data recorded in the EHR after June 2017 (15% of the overall dataset) with the aim of assessing
the performance that would have resulted from deploying the predictive models (after they were
trained).

3.4.4 Model Training and Evaluation

An iterative approach was taken to progressively construct and evaluate prediction models. Through
that process, random forests (RFs), gradient boosting (GB) trees (which were also considered
in [34]), and Long Short-Term Memory (LSTM) networks were trained to predict crisis from the
clinical text and structured EHR features. We considered six scenarios with varying kinds of feature
arrangement and prediction algorithms.

Random forests and gradient boosting trees classify data using a number of decision trees as
their predictive analytics method and they have been widely used with good performance [39–42].
Specifically, a random classifier adds an additional layer of randomness to bagging by splitting
each node using the best among a subset of predictors that have been randomly chosen at that
node [40]. In the first scenario, with a random forest, a model M1 was trained by the standard
dataset which consisted of around 41641 features which was depending on different fold in the 10-
fold cross-validation. This random forest utilised 1000 estimators with a tree depth of up to eight.
Thereafter, feature importance was assessed using the mean reduction in the Gini index [43]. All
predictors that were assigned zero importance were filtered out from the dataset. In the second
scenario, with a separate random forest, a model M2 was trained to investigate the influence of
using temporal information in the training data. In this scenario, temporal-indexed features were
added to the training dataset. As random forests are not designed to process temporal data, the
input data was adapted to include week-long time windows. Each 6-month time period preceding a
crisis event was separated into 4×6 = 24 subsets. This resulted in a training dataset that comprised
a stacked vector of all the features in all the time windows. Specifically, a 24×D-dimensional vector
where D is the number of features. The second random forest model was simplified to ensure it did
not demand prohibitive and expensive compute which was achieved by using the D = 1000 most-
important features that were identified by the random forest model M1. Such that the resultant
number of features was 24× 1000 = 24000.

A gradient boosting tree is an ensemble model of weak predictors which work in an additive
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stage-wise manner to improve on the deficiencies of previous predictors [42,44]. The third scenario,
with a gradient boosting tree, entailed a model M3 considering the 1000 most-important features
from model M1. The number of estimators was set to 100 due to a smaller set of features. In the
fourth scenario, with a separate gradient boosting tree, a model M4 again considered the temporal
information which extended the features to 24000, with an increased number of estimators to 1000.

LSTM networks are a type of recurrent neural network (RNN) that are capable of learning long-
term dependencies [45]. An RNN is a powerful sequence model that allows previous outputs to be
used as inputs at each timestep where its hidden state is updated in order to make a prediction [46].
Rather than considering 1-dimensional data vector for each training and testing example as is
considered by the tree-based models, the LSTM network considers temporal information that links
data in multiple dimensional vectors. LSTM networks have been applied successfully in various
domains with notable impacts in areas that include language modelling, speech-to-text transcription
and machine translation [47]. For the LSTM networks’ training datasets, the data setup is the same
with the tree-based models, except that the input is multiple dimensional vectors depending on the
time windows. This resulted in an input to the LSTM networks that took a form of a sequence of
24 D-dimensional data points where D is the number of features. Recall that a ‘contact type’ can
be regarded as an event that modulates a patient’s state as it is a type of intervention where crisis
is predicted and measures are already being taken. One can use this information to approximate
knowledge that contacts are, at the time of prediction, pre-planned to occur during the two-week-
buffer period that precedes the time when a crisis is to be predicted. Note that we do not use the
notes associated with these contacts since, at the time of prediction, the notes would not exist.
Experiments that included and excluded all contact type information during the one-week-buffer
period were therefore carried out in order to evaluate the extent to which knowledge of the pre-
planned interventions alters the prediction of crisis. Of the two LSTM networks that were trained,
one model, M5, used the standard training dataset (which was used for all the tree-based models)
whilst the other model, M6, considered interventions for comparison. The two LSTM networks
were also simplified by using the D = 1000 most important features identified by M1 as inferred
from performance on the first fold of the training set, which is to make them less computationally
expensive in order to reduce training time as long as not influencing the performance obviously. The
architecture of the LSTM networks are shown in figure 3. To train both models, we used identical
parameters: the batch size is 36 and the number of epochs is 10. Both numbers were empirically
estimated using a validation set whose size is 5% of the training data. The details of all the six
models are summarised in table 1.

The random forests, gradient boosting trees, and LSTM networks that were trained were eval-
uated by calculating their accuracy, sensitivity, specificity, precision, recall and the area under the
curve (AUC) for both receiver operating characteristic (ROC) and precision-recall curves. A 10-fold
cross-validation was performed on each model with the training dataset to evaluate its robustness.
Each model was further tested using the hold-out test dataset (with no other use of the hold-out
dataset) as part of the performance evaluation: the aim was to provide a final performance estimate
of the likely performance of the model after its training and validation had been completed. We
emphasise that, to avoid a ‘double-dip’ risk (eg stemming from the validation set for all other folds
intersecting with the training set for the first fold and this first fold being used to select the features
used by M1 ), all hyper-parameter optimisation only used data in the training set and did not use
the hold-out test set.

The scikit-learn and Tensorflow 2.0 software libraries were used for model training and evalu-
ation. Both scikit-learn and Tensorflow python libraries integrate a wide range of state-of-the-art

8



Figure 3: The architectural building blocks of the LSTM networks

Table 1: The setup of the scenarios for the models
Model Description Algorithm Number of

features
Number
of estima-
tors/trees

M1 Random forest with standard dataset Random forest around 41641 1000

M2 Random forest with time windows Random forest 24000 1000

M3 Gradient boosting tree with standard
dataset

Gradient boosting tree 1000 100

M4 Gradient boosting tree with time win-
dows

Gradient boosting tree 24000 1000

M5 LSTM network with time windows LSTM network 24000 N/A

M6 LSTM network with time windows and
interventions

LSTM network 24000 N/A

machine learning algorithms [48, 49]. ‘Prediction explanations’ were constructed and added as
value importance measures, using SHapley Additive exPlanation (SHAP) [50] values and Gini im-
portance [43], to aid the performance evaluation of the different algorithms. SHAP value estimation
methods provide an intuitive and unified measure of feature importance [50,51]. In each prediction
model, Shapley coefficients were calculated for every data point. Additionally, Gini coefficients
were extracted from the random forests. This allowed feature importance to be analysed. Features
that corresponded to coefficients with higher absolute values were considered more important. Fur-
thermore, those features were considered to have had greater contribution to their corresponding
classification results.

A qualitative audit was carried out by two actively-practising psychiatrists to establish clinical
plausibility of the prediction models. A positive prediction was defined as P (A) > 0.5, where
A = crisis and crisis did or did not happen within two weeks. Forty cases with a prediction result
from the LSTM network model were selected for the audit using stratified random sampling: 10
each of true-positives, true-negatives, false-positives, and false-negatives. The psychiatrists were
asked asked to complete a semi-structured questionnaire for each case. First, they were presented
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Figure 4: Distribution of recorded ethnicity in the EHR

Figure 5: Distribution of marital status categories

with data prior to the trigger date and asked to formulate their clinical view as if they were in clinic,
focusing on diagnosis and risk of imminent admission, without the knowledge of the AI prediction
output. Thereafter, with knowledge of the LSTM model predictions, and the clinical data for the
two weeks following, the psychiatrists compared their recorded views to the model prediction output
and what actually transpired.

3.5 Legal and Ethical Considerations

This work subscribes to the ‘code of conduct for data-driven health and care technology’ in order to
account for ethical challenges associated with the use of data-driven technologies in the NHS and
the wider health and care system [52]. In addition, the ‘standards for commissioning or developing
personal health records’, that include confidential information and security standards, were applied
throughout this work [53]. The use of data and the application of privacy and confidentiality
measures were approved by the Mersey Care Trust ethics committee and its patient support group
under protocol number 254711.

4 Results

This section presents the key results that were obtained from the study.

4.1 Characteristics of the Ingested EHRs

94605 patients were ingested and processed. Of the ingested patients, 50.8% were female whilst
49.2% were male. There were varying sizes of ethnic and marital status categories amongst patients,
including those whose patients chose to not identify themselves or were not known in the EHR as
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shown in Fig. 4–5. The number of days that the patients were tracked in the EHR was variable with
a mean of 1120, a standard deviation of 1190, and a median of 662. Table 2 details the distribution
of the duration of the period that individual patients were managed in the EHR system at Mersey
Care.

The ingested EHR data included a large amount of unstructured text, where 28.7 million were
note entries and 4.4 million were binary documents containing clinical notes. The unstructured
text entries that were directly captured in the source EHR system generated 464.6 million and
1 billion worth of MedCAT and BioYODIE annotations respectively. Whereas, the uploaded bi-
nary attachments generated 902.7 million and 2.7 billion MedCAT and BioYODIE annotations
respectively.

There were 41419 patients that were identified as having depressive disorders. Those patients’
medical concept annotations were from 41967 unique medical concepts and 338 unique concept
categories of the UMLS. The three most-frequent medical concept annotations from the health
record were: ‘Contacts’ that occurred in 29650 (71.58%) individuals’ notes and belonging to the
category ‘Health care activity’, ‘Time’ which occurred in 29647 (71.57%) individuals’ notes and
belonged to the category ‘Temporal concept’, and ‘Reviewed’ which occurred in 28333 (68.41%)
individuals’ notes and belonged to ‘Qualitative concept’ category of the UMLS. There were 11579
annotations that occurred in only one individual’s notes which was 27.59% of all the annotations.
A few random examples of such annotations included: ‘Santonin’, ‘Munsee race’ and ‘Embezzler’.

There were 326 kinds of interventions or contact types, in addition to the aforementioned medical
concept annotations. The three most-frequent interventions from the health record were: ‘Telephone
contacts’ which occurred in 23235 (56.09%) individuals’ notes, ‘Clinic’ which occurred in 13959
(33.70%) individuals’ notes, and ‘Home visit’ which occurs in 13287 (32.07%) individuals’ notes.
There were 85 interventions that occurred in only one individual’s notes.

A total of 1447 and 39972 records were included in the ‘crisis cohort’ and ‘no crisis cohort’
respectively. Due to the highly imbalanced sample between the ‘crisis cohort’ and ‘no crisis cohort’,
a higher weight for the ‘crisis cohort’ was configured based on the ratio of the sizes.

Table 2: Length of period individual patients were tracked in the EHR

Duration Days Years

Mean 1120 3.1

Standard deviation 1190 3.3

Minimum 0 0

25% 75 0.2

50% 662 1.8

75% 1903 5.2

Maximum 4107 11.2

4.2 Performance of the Prediction Models

The average ROC curves and precision-recall curves for 10-fold cross validations of the six prediction
models with varying kinds of feature arrangement using the training dataset are shown in Fig. 6
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Figure 6: The average ROC curves for 10-fold cross-validations of the prediction models with varying
kinds of feature arrangement using the training dataset. The Mean and standard deviation of AUC
are shown in the legend.

Figure 7: The average precision and recall curves for 10-fold cross-validations of the prediction
models with varying kinds of feature arrangement using the training dataset. The Mean and
standard deviation of AUC are shown in the legend.

and Fig. 7, respectively. Similarly, the average ROC curves and precision-recall curves using the
hold-out test dataset are shown in Fig. 8 and Fig. 9, respectively. Recall the models summarised in
table 1. The crisis prediction by all proposed models and their related features was more effective
than chance: the ROC curves were all above the diagonal line as shown in Fig. 6 and Fig. 8. Using
the training dataset, the random forest model M1 performed with an average AUC of 0.843 and
a standard deviation 0.02 across the 10 validation folds. Model M2, a random forest considering
a time window, performed less well with an average AUC of 0.798 and a standard deviation 0.02
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Figure 8: The average ROC curves of the prediction models with varying kinds of feature arrange-
ment using the hold-out test dataset. The Mean and standard deviation of AUC are shown in
the legend.

Figure 9: The average precision and recall curves of the prediction models with varying kinds of
feature arrangement using the hold-out test dataset. The Mean and standard deviation of AUC
are shown in the legend.

across the folds. The gradient boosting tree, Model M3, showed a large increase in performance,
when compared with models M1 and M2, with an average AUC of 0.871 and a standard deviation
of 0.016. Model M4, another gradient boosting tree, showed a downgrade in performance with an
average AUC of 0.773 and a standard deviation of 0.022. The two LSTM-based models performed
the best. When standard features with time windows were considered in model M5, the average
AUC was 0.895 with standard deviation of 0.014. When the intervention features were included in
model M6, the average AUC increased to 0.901 with a standard deviation of 0.006.
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Table 3: Selected classification metrics when the thresholds were configured to maximise the F1-
score from the cross-validation set. For the hold-out test set, the thresholds were those derived
from cross-validation set.

Model
Sensitivity/Recall Specificity Precision F1 score

A B A B A B A B

M1 0.316 0.140 0.991 0.993 0.605 0.345 0.415 0.199

M2 0.316 0.188 0.975 0.966 0.338 0.129 0.326 0.153

M3 0.367 0.441 0.987 0.921 0.549 0.130 0.441 0.200

M4 0.382 0.273 0.953 0.940 0.247 0.107 0.301 0.155

M5 0.492 0.266 0.981 0.984 0.508 0.304 0.500 0.284

M6 0.553 0.293 0.973 0.975 0.444 0.234 0.493 0.260

Dataset descriptions: A – Training dataset; B – Hold-out test dataset;

Table 3 presents some classification metrics that include precision, recall, specificity, and F1
score. When the training dataset was used, both LSTM networks had the top-two high F1 scores,
0.5 and 0.49 for models M5 and M6, respectively. The gradient boosting trees had F1 scores 0.441
and 0.301 for models M3 and M4, respectively. The F1 scores of the random forests were 0.415
and 0.326, for models M1 and M2, respectively. When the hold-out test dataset was used, the
performance difference between the random forests and gradient boosting trees was marginal with
F1 scores of 0.199 and 0.2 for models M1 and M3, respectively. However, the LSTM networks’
performance improved by approximately 0.06 when compared to the random forests and gradi-
ent boosting trees. In addition, the results showed that there was no advantage in considering
interventions when models M5 and M6 were compared.

With regards to model performance, similar conclusions can be drawn from the precision-recall
curves shown in Fig. 7 and Fig. 9. The tree-based algorithms, in models M1 to M4, showed a
downgrade in performance when dimensionality is increased from inclusion of time windows. The
LSTM networks performed the best, followed by the gradient boosting trees which were better than
the random forests.

When the hold-out test dataset was used, it can be observed that the the average AUCs for each
of the models was downgraded by approximately 0.1 when compared to using the training dataset.
We note that this is the case for all models and attribute this to the temporally disjoint nature of
the hold-out test set. We also note that the standard deviations of the performance metrics also
increased on the gradient boosting trees and LSTM networks relative to their values on the training
set. However, the random forests did not show significant evidence of such differences. Nevertheless,
the standard deviations were still very small such that they did not change the ranking of the models’
performance.

4.3 Feature Importance

To illustrate the role that individual features played in the prediction models as described in Sec-
tion 3.4.4, a subset of the features restricted to the union of eight most-important features (denoted
by letters of the alphabet) for each of the models M1 to M6 are presented. The extracted features
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in relation to their importance in predicting a crisis outcome in all the six models are summarised
in Table 4. It should be noted that the exact order of the extracted features is arguably less
important given that many of the features make a significant contribution to the final prediction
outcome. The important features that are shown in Table 4 include those semantic annotations
related to engagement with the healthcare system (e.g. ‘Hospital Admission’), health conditions
(e.g. ‘Dementia’), and pharmaceutical products (e.g. ‘Bromides’).

The ranks of the 19 features shown in Table 4 varied widely across the six models. Nevertheless,
most of the features used the prediction models are among the top-100 features across all the models.
The feature importance ranking in the LSTM networks M5 and M6 were similar. However, the
ranking in the gradient boosting trees M3 and M4 were very different. Whereas the ranking in
the random forests M1 and M2, had mild differences as most of their features were amongst the
top-100 important features across the two models.

Although models M1 and M3 are both tree-based, the feature-importance ranking of the two
models were different. Of the 19 features listed in Table 4 for model M1, all of those features
were among the top-100 features across the six prediction models. Whereas, model M3 only had
13 of its listed features amongst the top-100 features across the models. Surprisingly, the feature-
importance ranking between model M1 and model M5 were quite similar despite their different
model architectures. Such that all of the listed features in model M5 were among the top-100
features which is the same to the listed features for model M1.

It is also worth noting that feature G: - Gamma-glutamyl transferase - Enzyme, an important
marker of liver damage, was misclassified as Guatemala - Geographic Area in the clinical notes by
the NLP service. This was due to a commonly used abbreviation in the clinical notes not having a
corresponding synonym entry in the UMLS metathesaurus. This should not be a major problem as
the NLP services can be trained iteratively to annotate task-specific language patterns correctly.

4.4 Qualitative Audit

The qualitative clinical assessment showed that depression mostly occurs with other conditions such
as schizophrenia, alcohol and substance abuse, and dementia (n > 50%). In the 10 cases who were
true positives, the prediction scores had very high values (mean 0.98) and conversely very low values
(mean 0.13) for the 10 true negatives. Of the 10 true positives, the clinicians agreed completely
with the prediction model output in four, felt the primary diagnosis was not depression for two,
and in four agreed with the depression diagnosis but did not think a crisis was imminent (i.e. the
prediction model was suggesting they might have missed something). Of the 20 false positive and
negatives the prediction model output were less clear (means of 0.73 and 0.25) and there was a
wider range of diagnoses. Only two of these had a strong prediction of crisis (P (A) > 0.9, where
A = crisis): one was a person with severe learning disability (different care options) and the other
a man in prison being attended by prison psychiatrists. There were no cases where an alert would
have been deleterious to care.

5 Discussion

The prediction models use annotated EHR data of a particular patient from any six-month period.
The patient record data was used to predict the probability of a patient experiencing crisis in the
immediate weeks following the selected six-month period. The ROC curves for the 10-fold cross-
validation of all the prediction models show that the models can predict, with good performance,
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Table 4: The union of 6 most-important features that were summarised by models 1 - 6 and their
ranks in the corrsponding model

Model
Textual Features

A B C D E F G H I J K L M N O P Q R S

M1 n/a 9 18 5 14 3 1 83 15 2 16 8 12 4 6 10 54 13 27

M2 n/a 2 12 7 14 24 1 62 5 4 6 3 16 34 15 48 112 9 82

M3 n/a 45 185 208 10 1 3 125 91 12 66 321 25 2 575 4 6 56 5

M4 n/a 13 30 4 37 3 1 23 5 10 8 11 6 2 95 38 25 18 12

M5 n/a 25 4 22 9 2 7 5 17 3 15 6 14 24 18 29 27 1 73

M6 1 2 3 4 5 6 9 11 12 13 16 19 22 28 29 39 41 57 123

Textual feature descriptions:
A: Telephone Contact (intervention); B: Bromides - Inorganic Chemical; C: Mental health - Mental Process;
D: Health - Idea or Concept; E: Agree - Finding; F: Hospital Admission - Health Care Activity;
G: Gamma-glutamyl transferase - Enzyme; H: International Unit - Quantitative Convept;
I: Contacts - Health Care Activity; J: Structure of left thigh - Body Part, Organ, or Organ Component;
K: Psyche structure - Mental Process; L: liter - Quantitative Concept; M: Alchohols - Pharmacologic Substance;
N: Detox - Immunologic Factor; O: Greater Than - Quantitative Concept; P: Coordinator - Professional or Occupational
Group;
Q: Memory - Mental Process; R: Attending (action) - Functional Concept; S: Dementia - Mental or Behavioral Dysfunction;
Notes: Rank entry “n/a” in the table means that the feature is not considered in the model.
Top 6 features are highlighted in red.

the likelihood of a patient experiencing crisis related to depression. Specifically, the mean AUCs,
which all have a relatively small standard deviation, show good performance and robustness across
the mainstream predictive models.

Although the current reduced feature set of an average of 41641 across the folds for the first
random forest M1 performs as well as it does, it is in no way exhaustive or sufficient. Furthermore,
it is in no way an optimal set as this feature set was simply comprised of features that had a decrease
in Gini index by having a zero score in importance. Therefore, further work is required to work
closely with a variety of clinical workers to derive an optimal set of features. This would involve
the explaining, refining and reduction of features for a pragmatic and usable prediction model that
can be easily integrated into a point-of-care clinical decision support tool.

But it can be observed that the LSTM networks were particularly effective at improving pre-
diction performance when the specificity was low. Whereas when the specificity was high, the
performance of model M3, a gradient boosting tree, improved and was marginally better than
the LSTM networks at very high sensitivity. This could be attributed to the difference in feature
arrangement of the two algorithms. However, the overall performance of the LSTM networks was
better than that of the gradient boosting trees as evidence on both ROC curves and precision-recall
curves.

It should be noted that using the temporal-indexed features with the random forest M2 did not
impact the AUC positively. This can be observed in the average AUC decrease of 0.045 in model
M2 when compared to M1. The reason that the performance was inferior can be attributed to
the following factors: 1) the time-indexed features do not typically offer an edge in performance to
tree-based algorithms, 2) random forests can hardly deal with very high dimensional features, and
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3) only 1000-most important features were considered in model M2. Similarly, models M3 and M4
showed a similar kind of performance as they were tree-based models that considered 1000-most
important features.

The results further indicate that the LSTM network’s improvement in performance comes from
the LSTM algorithm and not only benefit from the temporal-indexed features. Considering the
pre-planned interventions that occurred in the time window resulted in a small further increase
in the performance of the LSTM with an average AUC increase by approximately 0.006. This
modest improvement implies that the LSTM is able to anticipate the impact of the pre-planned
interventions. This could be caused by how pre-planned interventions and their related motivating
observations are stored in the EHR. It is noted that the pre-planned interventions, as features, are
mostly among the top 1000 important features and they are effective on reducing the standard
deviation associated with the AUC.

Testing the models using the hold-out test dataset does not affect their relative performance
significantly. The LSTM networks still yield the best results. Although there is a noticeable
improvement in performance when gradient boosting trees are used in place of random forests, the
performance is still under par. The overall performance of the models when tested using the hold-
out test dataset is downgraded when compared to the tests carried out using the training dataset.
This result is not surprising as implicit patterns in data set can change over time, giving room for
new and emerging features.

The small qualitative assessment, comparing clinical professionals to the model prediction out-
put, showed that when the prediction score was high (P (A) ≥ 0.9, where A = crisis) and there
was a depressive diagnosis, an admission did follow. Importantly in half of this small sample, the
clinician using the same data did not anticipate this outcome. Clinicians observed that if the alert
had been offered to the clinician as they saw the patient, it may have caused clinicians to reconsider
what actions might be appropriate to mitigate that risk. There were two false-negative cases with
high prediction scores – and both were unusual and required care on different clinical pathways
that were already in place. Noting that the electronic health record was filtered to the depression
pathways, future iterations of the digital health solution will have more clinical data to assist in
the management of other mental health conditions. Nevertheless, if the present solution was used
to alert clinicians when there is prediction score was high (P (A) ≥ 0.9, where A = crisis), it could
be a useful aide for the busy short-of-time clinician and there no cases where that alert could have
been deleterious. This is not to criticise the clinicians but rather to recognise how difficult it can be
to assimilate the full detail of a person’s record in the few minutes at the start of a consultation. If
such alerts led the clinician to rethink the management plan for even one case per week, that could
have a significant contribution to more efficient care. And it should be noted that there would be
no downside to the care pathway since the clinician can always overrule any suggestions if they
think it appropriate.

The CogStack component of the AI environment provides a flexible framework for adding
Extract-Transform-Load (ETL) services to manipulate EHR data. This allows a variety of text
analytics tools and services, such as NLP applications, to be easily added or removed in order to
support scaling, extension, and refinement of functionality. Although the current NLP pipeline
in the AI environment can successfully generate semantic annotations from both MedCAT and
BioYODIE NLP applications, the current prediction model is based on a feature set from struc-
tured EHR data and semantic annotations from the MedCAT application only. The MedCAT and
BioYODIE applications can perform differently or provide diferent contextual information, such as
negation and temporality, given an identical source text data. Hence, additional work is required
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to create a prediction model that uses BioYODIE semantic annotations for its feature set. This
will allow for a thorough and comprehensive comparison, between MedCAT- and BioYODIE-based
prediction models, to be performed with the aim of using the best performing of the two methods
for clinical decision support.

The current prediction models use random forest algorithms, gradient boosting trees, or LSTM
networks, which are supervised machine learning approaches that have been widely used with good
performance. Noting the increased number of features and the complexity of the EHR data, al-
ternative machine learning approaches that are based on supervised and/or unsupervised machine
learning methods can be applied and compared with each other in order to select the best per-
forming prediction model. Other approaches such as deep learning can provide state-of-the-art and
sophisticated training methods, where in some applications, an unsupervised approach can be used
to extract the most relevant features, and then use them for classification by exploiting a super-
vised learning step with dramatic results [35, 54]. The extreme complexity and sparse observation
of mental, and common comorbidities, means that EHR data will contain only limited amounts of
predictive information, therefore external statistical structure from prior knowledge needs careful
incorporation, where causal, counterfactual machine learning advances need to be considered [55].
Therefore, further work should be carried out to compare prediction performance from the various
learning approaches.

6 Conclusion

This work presents a state-of-the-art framework and a reference implementation of a digital health
environment that can enable text and predictive analytics. A data pipeline with connectors for
SSAs was implemented, providing an extensible mechanism for adding multiple EHR sources to the
environment. The pipeline was further extended with NLP services that included text extraction
and semantic annotation applications. Mental health records covering a period of 11 years were
ingested into the AI environment and annotated using the UMLS corpus. Thereafter, two random
forest models, two gradient boosting trees, and two LSTM networks were trained on the EHR
data and its related semantic annotations. The results demonstrate that it is feasible to ingest
a large mental health record, apply text analytics operations, and build a predictive model in a
secure environment with good performance. This work will be extended to support optimisation
the current prediction models, and their evaluation against other models that are based on other
approaches such as deep learning methods. Furthermore, the best performing model, with the help
of a variety of clinical workers, will be further refined and integrated into a usable point-of-care
clinical decision support tool for deployment and validation in a real clinical setting with a view to
provide a ‘blind test’ of the algorithms.
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