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EFFECT OF VARIOUS DISASTER POLICIES ON POST-
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Abstract: Earthquake events can cause affected households to relocate. Post-earthquake 
relocation disrupts displaced households’ social ties as well as their access to affordable services. 
Simulation models that capture post-earthquake relocation decision-making can be useful tools 
for supporting the development of related disaster risk reduction policies that aim at mitigating 
disaster-induced relocation. Yet, existing versions of these models focus particularly on housing-
related factors (e.g., housing repair costs), which are not the sole driver of post-earthquake 
relocation. In this paper, we integrate data-driven approaches and local perspectives into an 
existing simulation-based framework to holistically capture various context-specific factors 
perceived as being important to household relocation decision-making. The enhanced framework 
is used to quantitatively assess the effectiveness of various disaster risk reduction policies - both 
‘soft’ (e.g., post-earthquake livelihood assistance funds) and ‘hard’ (e.g., upgrading existing 
infrastructure facilities to higher building codes) - in reducing post-earthquake household 
relocation, with an explicit focus on low-income households. We demonstrate it using a possible 
future (50-year) projection of “Tomorrowville”, a synthetic expanding urban extent that imitates a 
Global South setting. Our analyses suggest that livelihood assistance funds are more successful 
and pro-poor when it comes to mitigating positive post-earthquake relocation decision-making 
than hard policies focused on strengthening buildings (at least in the context of the examined 
case study). 

Introduction 

Devastating earthquake events can cause extensive damage to people's homes, workplaces, and 
the infrastructure systems and networks that they depend on. As a result, affected households 
may decide to relocate following earthquake events (He et al., 2018). Post-disaster relocation has 
long-lasting negative impacts on relocated households’ social ties and can deprive them of access 
to affordable housing, healthcare, education, and employment (Badri et al., 2006). Therefore, it 
is crucial for policy makers to devise strategic disaster risk reduction (DRR) policies for mitigating 
positive post-earthquake relocation decision-making. 

Simulation models that capture post-earthquake relocation decision-making can support the 
design of such DRR policies (Costa and Baker, 2022). Miles and Chang (2011) developed the 
ResilUS computational model to simulate community-based post-disaster housing recovery. 
ResilUS models households' decisions to leave or to stay, accounting predominantly for factors 
related to housing reconstruction (e.g., the debt incurred by housing repairs). Nejat and 

Damnjanovic proposed an agent-based model using game theory to predict homeowners' 
decision-making (i.e., stay and repair or sell and leave) based on the neighbourhood's average 
reconstruction value and the predicted future value of reconstruction. Costa et al. (2022a) 
proposed an agent-based model for assessing temporary displacement and permanent relocation 
decision-making of households, accounting for a multitude of factors predominantly related to the 
immediate built environment, e.g., availability of water and electricity, neighbourhood conditions, 
repair progress, and socioeconomic factors. 

Thus, most existing simulation models for household relocation decision-making focus particularly 
on housing-related factors. This means that they neglect or do not give sufficient attention to 
alternative factors that can motivate or discourage households from relocating, e.g., earthquake-
induced livelihood impact. Many of these models are also not validated with empirical data or are 
only partially calibrated using highly aggregated relocation patterns observed after historical 
earthquake events (Nejat and Damnjanovic, 2012; Costa et al., 2022a; Miles and Chang, 2011). 
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Therefore, further research to improve the understanding and modelling of households' post-
earthquake relocation decision-making is needed. 

We aim to address this challenge using a data-driven modelling approach that holistically 
integrates various context-specific factors, allowing for a rich prediction of household-level post-
earthquake relocation decision-making. Data-driven approaches (e.g., logistic regression, 
random forest) have been previously used in the literature to develop models for assessing or 
identifying factors related to post-disaster household behaviour (Loos et al., 2023; Costa et al., 
2022b; Myers et al., 2008). However, these studies either: (1) did not explicitly focus on relocation; 
or (2) considered data at more aggregated resolutions (i.e., neighbourhood-level) than individual 
households; and (3) focused on hurricane rather than earthquake disasters. The data-driven 
model is integrated into an existing framework for policy-related risk-sensitive decision support 
on future urban development (Wang et al., 2023). This adapted framework can then be used to 
quantify the effectiveness of various DRR policies in mitigating positive post-earthquake 
relocation decision-making, with an explicit focus on the extent to which low-income households 
are disproportionately impacted. We demonstrate the enhanced framework using the 
“Tomorrowville” virtual urban testbed. 

Simulation-based framework 

We adapt the framework proposed in Wang et al. (2023) to explicitly account for post-earthquake 
household decision-making, as shown in Figure 1. The adapted framework encompasses seven 
modules: (1) Policy Bundles; (2) Urban Planning; (3) Local Perspectives; (4) Seismic Hazard; (5) 
Physical Infrastructure Impact; (6) Social Impact; and (7) Computed Impact Metrics. Modules (1), 
(2), (4), (5), (6), and (7) are modified versions of the same modules within the original framework. 
Consideration of post-earthquake household relocation decision-making is facilitated by the 
Contextual Social Knowledge component, consisting of the Local Perspectives module and the 
Data-driven Model, which concurrently sits within the Social Impact module. Policy makers first 
design DRR policies (in the Policy Bundles module) and apply these policies to an urban plan 
associated with a specific time instance (in the Urban Planning module), both of which collectively 
produce a Visioning Scenario. The information stored in the Visioning Scenario and Contextual 
Social Knowledge informs the calculations in modules (4) to (6), which collectively comprise the 
Computational Model. Modules (4) to (6) produce seismic hazard calculations, physical 
infrastructure impacts, and social impacts, respectively. The form (i.e., inclusion of appropriate 
predictors) and parameterization or the selection of an appropriate Data-driven Model is guided 
by the Local Perspectives module, which provides relevant context-specific information on 
household relocation decision-making. The Data-driven model is used within the Social Impact 
module to predict whether households decide to relocate or stay. The results of these predictions 
are then translated into a Poverty Bias Indicator (𝑃𝐵𝐼), which measures the extent to which low-
income households are disproportionately affected in terms of earthquake-induced relocation. 
Each iteration of the framework produces an assessment of impacts for one specific Visioning 
Scenario. The optimal Visioning Scenario is the one that produces the lowest 𝑃𝐵𝐼. We use Monte 
Carlo sampling to capture uncertainties within modules (4) to (6), in line with Cremen et al. (2022). 
Modules introduced in Wang et al. (2023) are only briefly discussed. Described in detail are the 
newly introduced Local Perspectives module, the enriched Social Impact module, and the 
Computed Impact Metrics that depend on the Social Impact module.  

Brief descriptions of existing modules 

The Urban Planning module contains an urban plan that provides detailed information on land 
use, buildings, households and individuals associated with a specific urban area at a prescribed 
time (Mentese et al., 2023). Within the context of the proposed adapted framework, the Policy 
Bundles module encompasses one or more DRR policies that aim at mitigating positive post-
earthquake relocation decision-making. These policies could be ‘soft’ (e.g., post-earthquake 
livelihood assistance funds), as well as ‘hard’ (e.g., upgrading existing infrastructure facilities to 
higher building codes). The Seismic Hazard module stores the seismic source and rupture 
features of a specific earthquake event and estimates the resulting ground motion intensity 
measures (IMs) at the locations of buildings. The Physical Infrastructure Impact module uses the 
ground motion fields (GMFs) output from the Seismic Hazard module in combination with fragility 
and/or vulnerability relationships to estimate physical damage and/or asset loss associated with 
buildings. The reader is referred to Sections 2.1 to 2.4 in Wang et al. (2023) for more details on 
these modules.  
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Figure 1. Simulation-based framework for quantitatively assessing the effectiveness of DRR 
policies in mitigating positive post-earthquake relocation decision-making. 

Contextual social knowledge 

We integrate Contextual Social Knowledge to allow for context-specific and (local) people-centred 
characterization of post-earthquake household relocation decision-making. 

The Local Perspectives module contains information on what local stakeholders (e.g., community 
representatives and disaster planning authorities) perceive as being important to the post-
earthquake relocation decision-making of households within specific contexts. This information is 
used either to guide the form (i.e., the inclusion of appropriate predictors) and parameterization 
of the Data-driven Model or as criteria for selecting the appropriate Data-driven Model among a 
list of pre-existing ones. For example, if stakeholders consider earthquake impact on livelihood to 
be an influential factor in post-earthquake relocation decision-making of local households, then 
the Data-driven Model (whether pre-existing or not) should include earthquake impact on 
livelihood as a predictor. 

The Data-driven Model makes predictions related to post-earthquake household relocation 
decision-making. It is developed by applying statistical learning methods (e.g., logistic regression, 
random forests) to data containing post-earthquake household relocation information and other 
appropriate context-specific details it depends on (e.g., age of head of household, household 
income group). The Data-driven Model is therefore inherently location-specific, allowing for more 
accurate characterization of post-earthquake household relocation decision-making compared to 
generic, heuristic models. 

Social impact 

The Social Impact module uses outputs from the Physical Infrastructure Impact module and 
leverages the Data-driven Model to assess post-earthquake relocation decision-making of each 
household, considering the policies within the Policy Bundles module. The post-earthquake 

relocation decision for the ℎℎ𝑡ℎ household in the 𝑗𝑡ℎ Monte Carlo sample, 𝐼ℎℎ,𝑗, is binary. 𝐼ℎℎ,𝑗 = 1 

means the ℎℎ𝑡ℎ household decides to relocate and 𝐼ℎℎ,𝑗 = 0 means otherwise. 
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Computed impact metrics 

The Computed Impact Metrics module uses the 𝐼ℎℎ,𝑗 outputs from the Social Impact module to 

determine collective relocation decisions made by low-income households (𝐼𝑙𝑜𝑤,𝑗 ) as well as 

households across all income groups (𝐼𝑎𝑙𝑙,𝑗). 𝐼𝑥,𝑗 for the  𝑗th Monte Carlo sample is computed as:  

 
𝐼𝑥,𝑗 =

∑ 𝐼ℎℎ,𝑥,𝑗

𝑛𝑥
 (1) 

where 𝑥 refers to low- (low), middle- (mid), high- (high), or all- (all) income households, 𝐼ℎℎ,𝑥,𝑗 is 

the ℎℎth household's relocation decision within group 𝑥 and 𝑛𝑥 is the total number of households 

associated with 𝑥.  The module then translates 𝐼𝑙𝑜𝑤,𝑗 and 𝐼𝑎𝑙𝑙,𝑗 into a single-valued Poverty Bias 

Indicator 𝑃𝐵𝐼, which measures the extent to which low-income households disproportionately 
decide in favour of relocation. That is: 

 
𝑃𝐵𝐼𝑗 =

𝐼𝑙𝑜𝑤,𝑗

𝐼𝑎𝑙𝑙,𝑗
− 1 (2) 

A negative value of 𝑃𝐵𝐼𝑗 implies that the policies within the Policy Bundles module (and thus the 

associated Visioning Scenario) are pro-poor, i.e., the specific earthquake scenario considered 
does not result in a disproportionate number of positive relocation decisions among low-income 
households. See Section 2.6 in Want et al. (2023) for more details on 𝑃𝐵𝐼. 

Case-study descriptions 

We showcase the enhanced framework using the “Tomorrowville” virtual testbed. Tomorrowville 
imitates a Global South urban setting by means of its socioeconomic and physical characteristics 
(See Mentese et al., 2023, for details). We leverage the adapted framework to assess the 
effectiveness of four DRR policies in mitigating positive post-earthquake relocation decision-
making, with an explicit focus on Tomorrowville's low-income households. We concentrate our 
analysis on Tomorrowville's uncertain future state, using a 50-year projection of its urban 
configuration (known as TV50_total), as shown on the left panel of Figure 2. We consider a 𝑀7.0 
earthquake scenario on a hypothetical fault near Tomorrowville, as shown on the right panel of 
Figure 2. 

Urban planning 

TV50_total includes 4,810 existing buildings in today's Tomorrowville (TV0) and 5,346 new 
buildings anticipated to be built within the next 50 years (TV50_b2). TV50_total contains 8,713 
residential buildings and 1,443 non-residential (e.g., commercial, industrial) buildings. New 
buildings to be built in TV50_b2 are much more earthquake resistant on average than those that 
exist in TV0 (see Wang et al., 2023, for details). There are three types of residential polygons 
(low-, middle-, and high-income polygons) where households within the same polygon belong to 
the same income group. TV50_total includes 6,766, 3,059, and 7,985 low-, middle-, and high-
income households, respectively. 

Policy bundles 

We consider four DRR policies (see Table 1). Policy No.1, which provides livelihood assistance 
funds to households who have at least one member made unemployed by the earthquake, is a 
‘soft’ (and compensatory) policy. The other policies, which involve upgrading the most vulnerable 
TV0 workplace and residential buildings to higher building codes, are ‘hard’ (corrective). Policy 
No.4 is also income-based, designed to explicitly facilitate pro-poor outcomes. 

Seismic hazard 

We consider a 𝑀 7.0 earthquake scenario on a hypothetical vertical strike-slip fault near 
Tomorrowville, which is identical to that considered in Wang et al. (2023), where more details can 
be found. We use Monte Carlo sampling to simulate 500 sets of GMFs for different IMs. 

Physical infrastructure impact 

We use fragility relationships associated with each building type (see Gentile et al., 2022, for 
details) to compute the damage state (𝐷𝑆) of each building for the simulated IM values. The exact 
fragility relationships used are influenced by the three hard policies included in the Policy Bundles 
module. The 𝐷𝑆  damage classification is converted to a damage level 𝐷𝐿  categorization to 

comply with the format of the Data-Driven Model (details to follow). 𝐷𝑆 = 0 (“no damage”) is 
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mapped to 𝐷𝐿 = 1 , representing “no damage”. 𝐷𝑆 = 1  (“slight damage”), 𝐷𝑆 = 2  (“moderate 
damage”), and 𝐷𝑆 = 3  (“extensive damage”) are mapped to 𝐷𝐿 = 2 , representing “partial 

damage”. 𝐷𝑆 = 4 (“complete damage”) is mapped to 𝐷𝐿 = 3, representing “full damage” (FEMA, 
2022; The Asia Foundation, 2019). 

 

Figure 2. The left panel shows the buildings projected to be present in Tomorrowville in 50 
years, as well as the associated land use polygons (TV50_total). TV50_total includes 8,713 

residential buildings and 1,443 non-residential buildings. GMFs are simulated on a 200 m × 200 
m grid (marked in red in the left panel) across Tomorrowville polygons. The right panel shows 

the hypothetical 𝑀7.0 earthquake scenario considered for this case study. The underlying 
seismic source is a vertical strike-slip fault that ruptures 24 km, as shown in red. 

Policy Description 

1 Provide livelihood assistance funds to households with at 
least one member made unemployed by the earthquake. 

2 Replace non-RC workplace buildings with high-code RC 
buildings. 

3 Replace non-RC residential buildings with high-code RC 
buildings. 

4 Replace non-RC low-income residential buildings with high-
code RC building 

Table 1. Policies considered for this case study. 

Local perspectives 

We consult hypothetical local stakeholders of Tomorrowville (i.e., community representatives and 
emergency response authorities) on the factors considered to be important for local households' 
relocation decision-making after potential future earthquake disasters. This consultation identifies 
earthquake-induced livelihood impact, residential building damage, and the age of the household 
head as significant factors. 

The inclusion of these predictors in the Data-driven Model is consistent with our literature review 
of past disasters worldwide. Myers et al. (2008) analysed county-level data from the U.S. Census 
Bureau and found that disaster-hit regions with more severe housing damage experienced 
greater outmigration in the wake of Hurricanes Katrina and Rita. Age plays a role in household 
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relocation decision-making via its correlation with place attachment. Older people often have 
higher place attachment than younger people, due to the longevity of their presence within a 
location (Anton and Lawrence, 2014). People with high place attachment show reluctance to 
move away from places to which they are attached (Johnson et al., 2020). Earthquake impact on 
livelihood (e.g., lack of local jobs) also affects household's relocation decisions after earthquake 
events (Wang et al., 2015). 

Data-driven model 

A bespoke Data-driven Model is developed specifically for this case study, based on the 
information provided by Local Perspectives. The required input variables of the Data-driven Model 
(i.e., earthquake impact on livelihood, residential building damage, age of the household head) 
are outputs or encapsulated information of the Policy Bundles module, the Urban Planning 
module, and the Physical Infrastructure Impact module. 

Due to the synthetic nature of Tomorrowville, it is not possible to use data collected in the same 
locality to develop the Data-driven Model. We therefore use information from a region with a 
comparable social, physical, and economic context. The data used to develop the Data-driven 
Model is derived from the Independent Impacts and Recovery Monitoring (IRM) project, a 
longitudinal study conducted to monitor disaster-induced social impacts, recovery patterns, and 
disaster-affected households' evolving needs after two devastating earthquakes struck Nepal in 
April and May 2015 (The Asia Foundation, 2019). The IRM project revisited the same disaster-
affected households and asked them similar questions over a five-year duration following the 
disaster. Questions included e.g., “to what extent was your livelihood affected by the earthquake?” 
In this study, we adopt the fourth-round survey data (collected in April 2017) - as opposed to 
previous survey rounds conducted during the emergency response and the early recovery phase 
- to focus on long-term household relocation. 

To construct the Data-driven Model, the survey data must include responses from households 
that indicate the earthquake impact on their livelihood, residential building damage level (𝐷𝐿), as 
well as the age of their household head and information on their relocation decisions. The 
residential building 𝐷𝐿 (i.e., no damage, partial damage, and full damage) and the age of the 
household head (provided in the form of age groups, i.e., 18-25, 26-35, 36-45, and 46 and above) 
are directly available from the IRM survey data. We assume a uniform distribution to sample a 
specific values of the ages of household heads, due to a lack of more detailed information. The 
earthquakes are assumed to have affected the livelihoods of households who indicated that their 
jobs were “completely affected” or “somewhat affected”. We assign positive relocation decisions 
to households that had at least one member planning to migrate when the survey was conducted. 

The survey data used contain responses from 4,854 households affected by the earthquakes. 
Excluding households with “unknown” residential building damage leads to a total of 3,519 
complete responses (samples), which are used for the model development. Among those, 157 
households were associated with positive relocation decisions and 1,724 households 
experienced earthquake-induced livelihood impacts. 2,735, 439, and 345 of households with 
complete responses experienced full damage, partial damage, and no damage to their homes, 
respectively. 230, 649, 824, and 1,816 of households with complete responses had heads with 
ages of 18-25, 26-35, 36-45, and 46 and above, respectively. 

The majority (95.5%) of complete data samples are not associated with a positive relocation 
decision, which renders the dataset imbalanced (He and Garcia, 2009). A model fit to imbalanced 
data is biased toward the majority classification (in this case, the decision not to relocate; He and 
Garcia, 2009). We adopt oversampling to obtain a balanced dataset, which involves adding more 
samples randomly drawn from the minority class (i.e., those with positive relocation decisions).  
In the adjusted dataset, 2,512 samples are labelled as having ‘positive relocation decisions’ and 
3,362 samples are labelled otherwise. 

We use random forest to fit the Data-driven Model with the balanced dataset. Random forest is a 
non-parametric statistical model that aggregates the predictions given by multiple (thousands or 
more) decorrelated decision trees (Breiman, 2001). The outcomes of the model are households' 
probabilities of having a positive relocation decision. We perform ten-fold cross validation, and 
evaluate the model performance by calculating the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve for each test fold. The closer the AUC is to unity, the more 
predictive power the model has (Hastie et al., 2009). The highest mean AUC obtained across the 
ten folds through tuning the hyper-parameters of the random forest (e.g., number of trees) is 0.71, 
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which we consider to be satisfactory. The Data-driven model is finally refit on the entire dataset, 
using the tuned hyper-parameters. 

Social impact 

The Social Impact module uses inputs from the Physical Infrastructure Impact module (i.e., the 
𝐷𝐿 of each building), the Urban Planning module (e.g., the workplace buildings where employed 
individuals work, the age of the head of each household), and the Policy Bundles module to 
calculate residential building 𝐷𝐿 and earthquake-induced household-level livelihood impact. 

We assume that workplace buildings with at least extensive damage (𝐷𝑆 ≥ 3) cannot function 
and the livelihoods of people working in these buildings are impacted. A household's livelihood is 
classified as being impacted if the livelihood of one or more employed members is impacted. We 
assume that policy No.1, which provides livelihood assistance funds to households whose 
livelihoods are impacted, eradicates the effect of earthquake-induced livelihood impact on 
household relocation decision making. In other words, we assume that implementing policy No.1 
removes earthquake-induced livelihood impact from all affected individuals within Tomorrowville. 

This module finally leverages the Data-driven Model to compute 𝐼ℎℎ,𝑗 , adopting 0.50 as the 

classification cut-off threshold between 𝐼ℎℎ,𝑗 = 0 and 𝐼ℎℎ,𝑗 = 1. 

Results 

Figure 3 shows for all policies (and no policy) the empirical cumulative distribution functions (CDF) 
of 𝐼𝑎𝑙𝑙,𝑗 (left panel), and 𝑃𝐵𝐼𝑗 (right panel), across the 500 GMFs. Policy No.1 is the most effective 

in mitigating positive post-earthquake relocation decision-making. Policy No.2 is slightly more 
effective than policy No.3 in lower-intensity ground-motion realizations (i.e., corresponding to the 

lower tail of 𝑃𝐵𝐼𝑗 values), whereas policy No.3 performs better in higher-intensity ground-motion 

realizations. These findings reflect the underlying relative significance of each predictor and how 
it changes as the ground-motion intensity varies. That is, earthquake impact on livelihood (related 
to policy No.2) has a larger marginal impact on overall household relocation decisions than 
residential building damage (related to policy No.3), when ground-motion intensity is lower. Policy 
No.1 is also the most pro-poor policy among those considered in this case study, slightly 
outperforming even policy No.4 that is explicitly designed to facilitate pro-poor outcomes by 
specifically targeting low-income households. 

 

Figure 3. Empirical cumulative distribution functions (CDF) of 𝐼𝑎𝑙𝑙,𝑗 (left panel) and 𝑃𝐵𝐼𝑗 (right 

panel), for the 500 sets of GMFs. Results are shown for policies No.1 to 4 (and no policy). 

Conclusion 

We present a forward-looking approach for assessing the effectiveness of DRR policies in 
mitigating positive post-earthquake relocation decision-making, which involves enriching an 
existing framework for risk-informed policy design (Wang et al., 2023) with local perspectives and 
an accompanying data-driven model. This enrichment is facilitated by the introduction of a so-
called contextual social knowledge component, which allows for better context-specific 
characterization of post-earthquake household relocation decision-making. 
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We demonstrate the adapted framework by assessing the effects of multiple DRR policies (i.e., 
livelihood assistance funds, and residential and workplace building upgrading programs) 
implemented on an expanding virtual urban testbed, Tomorrowville, particularly focusing on the 
extent to which the policies mitigate positive post-earthquake relocation decision-making among 
low-income households. We find that a soft policy of post-disaster livelihood assistance provision 
(policy No.1) is more effective and more pro-poor in mitigating positive post-earthquake relocation 
decision-making than hard policies centred on the seismic strengthening of buildings (policies 
No.2, 3, and 4). This finding emphasises the fact that hard strategies only consisting of resource-
intensive engineering interventions might not always be the most effective disaster risk reduction 
solution for urban areas. It also reveals that soft policies can offer a pro-poor means of mitigating 
disaster impacts without the need to explicitly restrict their remit based on politically sensitive 
income thresholds. These findings demonstrate that the framework can be used to inform disaster 
risk reduction policies and to support forward-looking risk-sensitive urban development practices 
in yet-to-be urbanised regions. 
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