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Abstract: The well-being and economic prosperity of societies rely on large-scale interdependent 
infrastructure and their provision of essential services. However, past events around the world 
(including major earthquakes) have highlighted the notable vulnerability of infrastructure to 
natural/anthropogenic hazards, which has had significant societal consequences. Previous 
research has focused on developing risk-modelling approaches and computational tools for 
quantifying the consequences of hazardous events on critical infrastructure in urban 
environments. However, in the context of climate change, rapid population growth, and 
increasingly interconnected urbanisation, a theoretical framework for designing risk-informed 
critical infrastructure from a forward-looking, dynamic, and people-centred perspective is 
required. Although, it is also important to consider that optimising infrastructure design accounting 
only for natural-hazard risk could have additional (potentially negative) socioeconomic 
consequences not represented in conventional natural-hazard risk-modelling approaches. In 
response to these challenges, this paper presents a people-centred, risk-informed decision-
making framework for future urban infrastructure development in growing cities. The framework 
captures the performance of infrastructure in terms of serving the community’s needs; the 
underlying optimal infrastructure design balances this performance in regular conditions, in the 
immediate aftermath of a hazard, and during the long-term recovery process. We also illustrate a 
potential expansion of the framework, which involves integrating a bespoke agent-based model 
that accounts for the implications of variations in infrastructure development on land values and 
resulting dynamic residential location choices. This final feature of the framework would allow for 
measuring gentrification, a macro-scale unintended effect of risk-informed infrastructure design 
that is not explicitly related to natural-hazard events. We demonstrate the framework by 
optimising the transportation infrastructure design of a hypothetical future community. 

Introduction 

Critical infrastructure is vulnerable to natural and anthropogenic hazards (including earthquakes), 
which can result in significant indirect consequences to communities that are many times larger 
than the direct costs of infrastructure repair (e.g., Zhang et al. 2020). Numerous previous studies 
have focused on developing engineering tools to model the consequences of hazards on critical 
infrastructure in urban environments. For instance, past work has simulated the seismic 
performance of individual infrastructure components like bridges (e.g., Nocera et al. 2022) and 
translated earthquake damage to these components into changes in infrastructure functionality 
(e.g., Nocera et al. 2019). While these tools help to identify vulnerabilities and risks associated 
with current infrastructure, there is a need for new risk-modelling approaches that inform decision-
making around designing disaster-resilient infrastructure (Cremen et al. 2022a). Furthermore, in 
the context of climate change, rapid population growth, and increasingly interconnected 
urbanisation, these approaches must use a dynamic, forward-looking, and people-centred 
perspective, accounting for appropriate uncertainties (Cremen et al. 2022b; Filippi et al. 2023). 
However, optimising infrastructure design purely in terms of hazard-induced impacts could have 
additional unintended socioeconomic consequences (e.g., gentrification or population 
segregation), which are not considered in conventional hazard-related risk-modelling 
approaches. This means that a so-called risk-informed infrastructure design may end up pricing 
low-income residents out of their homes and creating urban enclaves, for instance (e.g., Bagheri-
Jebelli et al. 2021). 
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Towards addressing these challenges, we illustrate a people-centred, risk-informed decision-
making framework for urban infrastructure development. The framework quantifies the (uncertain) 
ability of infrastructure to serve a community’s needs, using an optimisation procedure to balance 
its performance in business-as-usual conditions (i.e., before the occurrence of a hazard), in the 
immediate aftermath of a (future) hazard event (e.g., major earthquake), and during the long-term 
post-hazard recovery process, accounting for specific end-user priorities across time. In addition, 
we discuss how the framework could be easily extended to incorporate unintended consequences 
of optimal risk-informed infrastructure performance. This extension would include a bespoke 
agent-based model (ABM) that accounts for the implications of infrastructure development on 
land values and resulting dynamic residential location decision-making. The final infrastructure 
design would then (i) maximise the natural-hazard (e.g., earthquake) risk-informed performance 
of the infrastructure; while (ii) limiting unintended socioeconomic consequences to a pre-
determined, end-user-specific acceptable level. 

Mathematical modelling of infrastructure performance 

This section reviews the general mathematical formulation for modelling infrastructure 
performance based on graph theory (Nocera et al. 2019; Sharma and Gardoni 2022). Networks 
are defined as a graph 𝐺 = (𝑉, 𝐸)  that includes attributes such as names, types, and state 

variables, as well as the topological information represented by the vertices 𝑉  and edges 𝐸 
(Sharma and Gardoni 2022). 

Following Sharma and Gardoni (2022), we model infrastructure as a collection of networks, each 

representing a specific function. The collection of all networks is 𝒢 = {𝐺[𝑘] = (𝑉[𝑘], 𝐸[𝑘]): 𝑘 =
1,… , 𝐾}, where superscript [𝑘] denotes the function captured by the 𝑘𝑡ℎ network. Then, the state 

of each network is characterised by a unique set of vectors: (i) capacity measures 𝐂[𝑘](𝑡); (ii) 

demand measures 𝐃[𝑘](𝑡); and (iii) supply measures 𝐒[𝑘](𝑡). The triplet [𝐂[𝑘](𝑡), 𝐃[𝑘](𝑡), 𝐒[𝑘](𝑡)] is 

used to compute an overall performance measure 𝐐[𝑘](𝑡)  of 𝐺[𝑘] . Network measures are a 

function of dynamic state variables 𝐱[𝑘](𝑡) , where the temporal dependence accounts for 
deterioration/ageing processes (e.g., Jia and Gardoni 2018) or recovery activities (e.g., Sharma 
et al. 2020). To capture the time-dependent performance of infrastructure across a region, we 

define an aggregated measure 𝑄(𝑡)  of the component performances 𝐐[𝑘](𝑡) . Then, 𝕽[𝑄(𝑡)] 
denotes some specific societal benefit of infrastructure performance. 𝕽[𝑄(𝑡)]  can be 
disaggregated based on socioeconomic factors (e.g., income, age, gender) to capture higher 
resolution effects of infrastructure performance (or non-performance) across diverse sections of 
the population. 

Proposed framework 

This section presents the framework for facilitating people-centred, risk-informed infrastructure 
design. We formulate infrastructure design as a combinatorial optimisation problem, aiming to 
maximise overall infrastructure performance across three temporal phases – i.e., (i) business-as-
usual operations; (ii) in the immediate aftermath of a hazard event (i.e., the response phase); and 
(iii) during long-term recovery efforts (i.e., the recovery phase) - that are prioritised according to 
end-user input.  

Mathematical formulation of the optimisation  

We write the objective function 𝑍 of the optimisation problem as  

 max𝑍 = 𝔼[(𝛾1 ⋅ 𝑍1 + 𝛾2 ⋅ 𝑍2 + 𝛾3 ⋅ 𝑍3)] (1) 

where 𝔼[∙] is the expected value operator; γ1, γ2, and γ3 are weights, respectively defining the 
end-user-dependent relative importance of infrastructure performance during the business-as-
usual, response, and recovery phases; and 𝑍1, 𝑍2, and 𝑍3 represent infrastructure performance 

in the corresponding phases. 𝑍1 is formulated as 

 

𝑍1 =
1

𝑛𝑎
∑𝜔𝑎

𝑛𝑎

𝑎=1

1

𝑁𝐻
∑𝑤𝑖𝕽𝑖,𝑎[𝑄(𝑡0−; 𝐠)]

𝑁𝐻

𝑖=1

 (2) 

where 𝑛𝑎 is the number of considered infrastructure needs (e.g., locations/activities required to 

be accessed by a transportation infrastructure), ω𝑎  is the weight (priority) placed on the 𝑎𝑡ℎ 
infrastructure need, 𝑁𝐻 is the number of household agents in the community, and 𝑤𝑖 is the weight 
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(priority) placed on meeting the 𝑖𝑡ℎ household’s infrastructure needs. 𝕽𝑖,𝑎[𝑄(𝑡0−, 𝐠)] describes a 

specific benefit of infrastructure performance at household-level during 𝑡0− (before the occurrence 

of the hazard event) and 𝐠 is the set of 𝐸[𝑘] to be added as part of the infrastructure development, 

such that different 𝐺[𝑘] will result in different values of 𝕽𝑖,𝑎[𝑄(𝑡0−; 𝐠)]. In the example case of using 

a topology-based approach to measure the performance of a transportation infrastructure, we can 
define 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] as 

 

𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] =
𝜂𝑖,𝑎
(𝐻)(𝑡0− , 𝐠)

𝜂𝑖,𝑎
∗ (𝑡0− , 𝐠)

=

=
1

𝑁(𝑖)
∑

𝑑𝑖,𝑎(𝑚)
∗

𝑑𝑖,𝑎(𝑚)

𝑁(𝑖)

𝑚=1

 (3) 

where 𝑁(𝑖) is the number of individuals in household 𝑖 that have infrastructure need 𝑎 to access 

a given location of interest, 𝑑𝑖,𝑎(𝑚) is the distance from the residence of household agent 𝑖 to the 

location of interest of the 𝑚𝑡ℎ  individual in household 𝑖 , and 𝑑𝑖,𝑎(𝑚)
∗  is a reference value for 

normalising 𝑑𝑖,𝑎(𝑚) (e.g., the maximum value of 𝑑𝑖,𝑎(𝑚) within the corresponding socioeconomic 

group) so that each component of the objective function in Eq. (1) can be added together. 𝑍2 is 
expressed as 

 

𝑍2 =
1

𝑛𝑎′
∑ 𝜔𝑎′

𝑛𝑎′

𝑎′=1

1

𝑁𝐻
∑ 𝑤𝑖𝕽𝑖,𝑎′[𝑄(𝑡0+), 𝐠]

𝑁𝐻

𝑖=1,
𝑝(𝑖)⊆𝑖∈Ω𝑎′

 (4) 

where ω𝑎′ is the weight associated with the 𝑎′𝑡ℎ infrastructure need in the response phase 𝑡0+, 

𝑝(𝑖) ⊆ 𝑖 ∈ Ω𝑎′  identifies the individuals (in household 𝑖) associated with the 𝑎′𝑡ℎ  infrastructure 
need in the response phase, and 𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)]  describes some benefit of infrastructure 

performance in the response phase. In the context of using a topology-based approach to 
measure the performance of a transportation infrastructure, we can define 𝕽𝑖,𝑎′[𝑄(𝑡0+, 𝐠)] =

𝜂
𝑖,𝑎′
(𝐻)(𝑡0+ , 𝐠) 𝜂𝑖,𝑎′

(𝐻)(𝑡0− , 𝐠)⁄ , capturing the increase in distance to each location of interest at the 

household level compared to those distances at 𝑡0− . The locations of interest captured by 

𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] may be different to those captured by 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] in Eq. (3), and could be 

limited to shelters (for those who are displaced) and hospitals (for those who are injured), for 
instance. Finally, Z3 is expressed as 

 

𝑍3 =
1

𝑇𝑅
∑

1

𝑛𝑎
∑𝜔𝑎

𝑛𝑎

𝑎=1

1

𝑁𝐻
∑𝑤𝑖𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)]

𝑁𝐻

𝑖=1

𝑇𝑅

𝜏=𝑡0+

 (5) 

where 𝑇𝑅 represents the time at which recovery activities are completed, and 𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)] is a 

time-varying measure of some benefit of infrastructure performance during the recovery process. 
Considering a topology-based approach to measuring performance of a transportation 

infrastructure, we can define 𝕽𝑖,𝑎[𝑄(𝜏, 𝐠)] = 𝜂𝑖,𝑎
(𝐻)(𝑡, 𝐠) 𝜂𝑖,𝑎

(𝐻)(𝑡0−, 𝐠)⁄  analogous to 𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] in 

Eq. (4), where the locations of interest are the same as those captured by 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] in Eq. 

(3).  

The first constraint of the optimisation is 

 𝐶𝑝 ≤ 𝑀𝑝 (6) 

where 𝐶𝑝  is the cost of implementing a specific infrastructure design, and 𝑀𝑝  is the budget 

allocated to the infrastructure development process. We also force the resulting 𝐺[𝑘]  to be a 
connected network, which can be written as 

 ∀𝑣1, 𝑣2 ∈ 𝑉
[𝑘], ∃ 𝜑(𝑣1, 𝑣2)  (7) 

where 𝑣1 and 𝑣2 are two generic nodes in 𝑉[𝑘], and 𝜑(𝑣1, 𝑣2) is a path between them. We include 
additional non-negative constraints 𝜔𝑎 ≥ 0, ∀𝑎 , 𝑤𝑖 ≥ 0, ∀𝑖 , 𝜔𝑎′ ≥ 0, ∀𝑎′ , and 𝛾1, 𝛾2, 𝛾3 ≥ 0 , and 

ensure that sets of weights 𝜔𝑎, 𝑤𝑖, 𝜔𝑎′, and 𝛾1, 𝛾2 and 𝛾3 sum to one. The final constraint of the 

optimisation is 𝜂𝑖,𝑎
(𝐻)(𝜏∗, 𝐠) 𝜂𝑖,𝑎

(𝐻)(𝑡0− , 𝐠)⁄ ≥ 𝜉(𝜏∗), ∀𝜏∗, where 𝜉(𝜏∗) represents a lower threshold for 
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infrastructure performance at time 𝜏∗, facilitating a possible requirement for the infrastructure to 
be restored to pre-hazard performance levels within a certain timeframe. 

Solving for the final infrastructure design 

The optimal infrastructure layout (topology) results from a finite set of possible infrastructure 
interventions, i.e., added edges, such as new roads in a transportation infrastructure. We start 
with an augmented infrastructure layout that includes the existing infrastructure components and 
the full set of potential (candidate) edges for development. Several procedures can be used to 
obtain the augmented layout, such as (i) manually digitising the candidate edges in a geographic 
information system; (ii) defining a grid of points based on digitised geospatial data in a geographic 
information system and finding the least cost paths among all the points in the grid; or (iii) using 
a fully-automated interactive procedural modelling approach based on tensor field theory (e.g., 
Chen et al. 2008). First, we find the combination of new edges to be added that maximises the 
objective function in Eq. (1) and satisfies the constraints of the optimisation problem discussed in 
the previous section. 

An exhaustive search of every possible combination of new edges is not feasible because of 
several computational complexities, such as nonlinearity, non-convexity, and non-differentiability 
of the objective function in Eq. (1). However, heuristic approaches can be used to obtain near-
optimal solutions, and we use a simulated annealing (SA)-based metaheuristic procedure in our 
framework. SA-based heuristics maximise/minimise an objective function by applying small 
random changes to the decision variable 𝐠, i.e., the edges to add from the full set of candidates. 
If a new solution improves the value of the objective function, a further search is initiated in the 
neighbourhood of this point to determine a solution that further improves the objective function. If 
a further solution cannot be found, the current solution is accepted with a certain probability, i.e., 
exp(−𝑍/𝑇), in which 𝑍 is the objective function in Eq. (1), and 𝑇 is one of the hyperparameters of 
the optimisation algorithm, typically known as the temperature. 

We start the search for the optimal infrastructure layout by randomly selecting a subset of 
candidate edges that satisfy the constraints of the optimisation problem. We evaluate the 
objective function using this subset as the initial optimisation solution. Then, the initial solution is 
perturbed by making small changes to the current subset of candidates. For each perturbation, 
we randomly select one of the following options: add, remove, or replace. If add is selected, we 
randomly add a new edge candidate from the full set of candidates to the current subset. If remove 
is selected, we randomly remove a candidate from the current subset. If replace is selected, we 
randomly replace a candidate from the current subset with a new candidate from the full set of 
candidates.  

Next, we avoid infeasible solutions that violate the constraints of the optimisation problem by 
adding a dynamic penalty function (Michalewicz and Schoenauer 1996) to the solution of the 
objective function. Mathematically, this means that we rewrite Eq. (1) as  

 
𝑍′ = {

𝑍         if 𝐠 ∈ Ω𝑓  

𝑍 + 𝑃(𝐠) otherwise
 (8) 

where Ω𝑓 is the set of feasible solutions, and the penalty function 𝑃(𝐠) is introduced if there is a 

violation of the constraints of the optimisation problem. Following Michalewicz and Schoenauer 

(1996), 𝑃(𝐠) can be expressed as 𝑃(𝐠) = (1 2𝑇⁄ ) ⋅ [𝑌(𝐠)2], where 𝑌(𝐠) is a constraint of 𝑍, and 
all other variables are as previously defined. The optimisation result is a sorted list of infrastructure 
development layouts ranked in terms of the value of the objective function in Eq. (1). 

A participatory, people-centred process 

The illustrated framework is inherently participatory in nature. Infrastructure needs 𝑎 and 𝑎′ can 
be identified through discussions with affected communities, ensuring that the infrastructure 
development process is based on local people’s requirements. Values of γ1, γ2, γ3, 𝜔𝑎, and 𝜔𝑎′ 
should be defined by relevant (local) decision-makers. Values of 𝑤𝑖 can be assigned based on 
socioeconomic characteristics such as income, which can help to prioritise the needs of lower-
income populations and support a pro-poor approach (e.g., Galasso et al. 2021).  

Illustrative example 

This section demonstrates the proposed framework for designing an expansion of the roadway 
transportation infrastructure of the Futureville virtual urban testbed to accommodate expected 
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infrastructure needs associated with future urbanisation, i.e., when all zones of Futureville are 
inhabited (Cremen et al. 2022a). Futureville is a geospatial database of urban features that 
includes buildings and infrastructure. It contains social information on resident households (such 
as income levels) and individuals, as well as detailed data on each person’s daily infrastructure 
needs. The testbed is a heavily altered version of the Centerville Virtual Community presented in 
Ellingwood et al. (2016). It was developed on the same physical footprint as Centerville (located 
in the Midwestern U.S.) but contains a modified set of engineering assets, details of which can 
be found in Cremen et al. (2022a). However, the initial roadway transportation infrastructure of 
Futureville is identical to that of Centerville.  

The hazard event considered is a hypothetical earthquake with magnitude 𝑀𝑤 = 7.9 and a depth 
of 10 km, located 25 km southwest of Futureville. The map of the Peak Ground Acceleration 
(PGA) at the site of the vulnerable components considered in this paper, i.e., bridges, is obtained 
from the Fernandez and Rix (2006) ground-motion model (GMM), which is valid for the 
hypothetical location of Futureville. This GMM characterises PGA as a function of magnitude and 
epicentral distance. Since this is purely an illustrative demonstration of the framework, we only 
consider the median values of PGA determined from the GMM.  

We use bridge fragility functions detailed in Nielson and DesRoches (2007) – which are 
appropriate for the hypothetical location of Futureville – to obtain the probability of each bridge 
being in a particular damage state, considering slight, moderate, extensive, and complete 
damage states. Table 1 summarises the bridge types included in the current and potential future 
roadway transportation infrastructure of Futureville.  

Bridge 
(see 
Figure 1) 

Bridge type Abbreviation (Nielson 
and DesRoches 2007) 

B1 Multispan continuous concrete girder MSC concrete 

B2 Multispan continuous slab MSC slab 

B3 Multispan continuous steel girder MSC steel 

B4 Multispan simply supported concrete box girder MSSS conc box 

B5 Multispan simply supported concrete girder MSSS concrete 

B6 Multispan simply supported slab MSSS slab 

B7 Single span steel girder SS steel 

B8 Multispan simply supported steel girder MSSS steel 

B9 Single span steel girder SS steel 

B10 Single span concrete girder SS concrete 

B11 Single span concrete girder SS concrete 

B12 Single span concrete girder SS concrete 

Table 1. Bridge types that feature in the current and potential future roadway transportation 
infrastructure of Futureville. 

Then, we quantify the performance of the transportation infrastructure during business-as-usual 
operations 𝑡0− and the response phase 𝑡0+ (i.e., 𝛾3 = 0), assuming that the infrastructure needs 

include access to hospitals (ℎ) and workplaces (𝑙) in both temporal phases, i.e., 𝑎 = 𝑎′ = {ℎ, 𝑙}. In 
this example, we assume there is one hospital located in Zone 4 (a retail/business zone), see 
Figure 1. We estimate 𝕽𝑖,𝑎[𝑄(𝑡0− , 𝐠)] and 𝕽𝑖,𝑎′[𝑄(𝑡0+ , 𝐠)] using a topology-based approach and 

assuming a bridge is closed when its damage state is at least moderate (Nocera et al. 2019). 

We make the following additional assumptions: (i) 𝛾1 = 𝛾2 = 0.5, (ii) 𝛚𝑎 = 𝛚𝑎′ = [1 2⁄ , 1 2⁄ ] for 

households with at least one employed individual and 𝛚𝑎 = 𝛚𝑎′ = [1,0] for retired households. 
The assumed weights reflect an objective stakeholder who places equal importance on each 
temporal phase and infrastructure need when making decisions; (iii) 𝐰𝑖 = [0.7, 0.2, 0.1], where the 
vector entries respectively refer to low-income, middle-income, and high-income households, 
reflecting stakeholders that adopt a pro-poor approach. 

Figure 1 displays the augmented transportation infrastructure layout of Futureville, where the 
existing transportation infrastructure is indicated in black.  
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Figure 1. Case-study application. Z corresponds to a zone, B to a bridge, and N to a generic 
node. 

The full set of candidate edges is shown in green, which we obtain through a manual digitisation 
process that hypothetically reflects the outcome of a conversation with potential stakeholders. 
Table 2 summarises the assumed costs of building the new roads in Figure 1. We investigate 
three possible budgets that would be available to stakeholders for the infrastructure development, 
i.e., 𝑀𝑝 = £ 10M, £ 37.5M, and £ 50M.  

New road  Cost (in millions) 

N3-B12 £ 5 

B12-Z6 £ 5  

Z6-B10 £ 10 

B10-Z9 £ 10 

Z3-B11 £ 7.5 

B11-N13 £ 7.5 

Z4-N18 £ 2.5 

N18-Z1 £ 2.5  

Z9-N14 £ 2.5 

Z1-N14 £ 2.5 

N14-N15 £ 2.5 

Table 2. Assumed construction costs of new roads. 

Figure 2 displays the final infrastructure designs associated with the three considered budget 
scenarios, where the added edges are shown in blue.  

 

(a) 𝑀𝑝 = £ 10M 

 

(b) 𝑀𝑝 = £ 37.5M 
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(c) 𝑀𝑝 = £ 50M 

Figure 2. Infrastructure layout development for the three considered budget scenarios, where 
the added edges are shown in blue. 

The results show that the value of 𝑍 improves by 10%, 14.5%, and 14.6% for the three budget 

scenarios, respectively, compared to the 𝑍 obtained for the initial transportation infrastructure. 

Furthermore, investing £ 10M is enough to ensure that all households of Futureville will have 
access to the hospital (located in Zone 4) after the earthquake. 

Agent-based modelling of unintended consequences 

We now discuss how the proposed framework could be extended to incorporate unintended 
consequences of optimal risk-informed infrastructure performance through a bespoke ABM, 
capturing the implications of infrastructure development on land values and resulting dynamic 
residential location decision-making (e.g., Alonso 1964). The ABM features buyer and seller 
agents interacting with a spatial context of residential units. The benefit gained by an agent from 
a residential unit is quantified using utility values, which depend on the agent’s preferences 
towards various related attributes that depend on the state of infrastructure provision (e.g., 
proximity to locations that correspond with infrastructure needs). Buyers relocate to maximise 
utility within the limits of their available budget (e.g., Magliocca et al. 2014).  

Mathematically, we write the utility of a residential unit as  

 
𝑈𝑟,𝑖 =∑𝛼𝑖,𝑗 ⋅ 𝑢(𝜆𝑗)

𝑛

𝑗=1

 (9) 

where 𝑈𝑟,𝑖 is the total utility of residential unit 𝑟 for the 𝑖𝑡ℎ agent, 𝛼𝑖,𝑗 is the weight representing 

the preference of the 𝑖𝑡ℎ  agent towards attribute 𝜆𝑗 , 𝑢(𝜆𝑗) is the utility associated with the 𝑗𝑡ℎ 

attribute, and 𝑛 is the number of attributes. We write 𝑢(𝜆𝑗) as  

 

𝑢(𝜆𝑗) =

{
 
 

 
 

𝜆𝑗

ma x(𝜆𝑗)
 if 𝜆𝑗  ∈ Λ

1 −
𝜆𝑗

max(𝜆𝑗)
 otherwise

 (10) 

where Λ is the set of desirable attributes. Next, we distinguish between agents as either buyers, 

𝑏, or sellers, 𝑠, i.e., 𝑖 ∈ {𝑏, s}. We write the 𝑏𝑡ℎ buyer’s willingness to pay for the 𝑟𝑡ℎ residential 

unit 𝑊𝑇𝑃𝑟,𝑏, as 

 
𝑊𝑇𝑃𝑟,𝑏 =

𝐻𝑏 ⋅ 𝑈𝑟,𝑏
2

𝛽𝑏 + 𝑈𝑟,𝑏
2  (11) 

where 𝐻𝑏 is the 𝑏𝑡ℎ buyer’s available budget, and 𝛽𝑏 is a parameter controlling the convexity of 
𝑊𝑇𝑃𝑟,𝑏, reflecting the risk appetite of the buyer. The range of 𝛽𝑏 is the same as that of 𝑈𝑟,𝑏; high 

𝛽𝑏 indicates risk-averse behaviour and low 𝛽𝑏 indicates risk-taking behaviour. We write the price 

of the 𝑟𝑡ℎ residential unit set by the 𝑠𝑡ℎ seller, 𝑃𝑟,𝑠 as 
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𝑃𝑟,𝑠 =

𝐻𝑠 . 𝑈𝑟,𝑠
2

𝛽𝑠 + 𝑈𝑟,𝑠
2

 (12) 

where 𝐻𝑠 is the expected budget of the buyer, and 𝛽𝑠 is analogous to 𝛽𝑏 . 

Modelling details 

The ABM captures the behaviour of household agents in the form of a relocation action. 

Relocation occurs for the 𝑏𝑡ℎ household buyer agent when 𝑃𝑟,𝑠 > 𝑊𝑇𝑃𝑟,𝑏. Relocating households 

move to the first residential unit 𝑟∗  (within a set of 𝜃  residential units in their current 

neighbourhood) that satisfies (i) 𝑊𝑇𝑃𝑟,𝑏 ≥ 𝑃𝑟,s and (ii) 𝑈𝑟,𝑏 ≥ 𝑈𝑏
∗, where 𝑈𝑏

∗ is a utility threshold 

equal to the average utility value of the 𝜃 residential units. If none of the 𝜃 residential units meet 
these conditions, the household instead emigrates out of the urban system. Thus, relocations are 

triggered by changes in 𝑃𝑟,𝑠  and/or 𝑊𝑇𝑃𝑟,𝑏 ; these result from changes to 𝜆𝑗  that arise from 

infrastructure development. Unintended consequences of infrastructure development are 
quantified in terms of the total number of triggered relocations 𝜀 (i.e., the number of times 𝑃𝑟,𝑠 >

𝑊𝑇𝑃𝑟,𝑏 is valid for household buyer agents). In summary, 𝜀 can be thought of as forced evictions, 

which are a proxy for gentrification.  

Integrating unintended consequences in the risk-informed infrastructure development framework 

The risk-informed design process previously introduced could further consider the tolerable level 
of unintended consequences 𝜀  resulting from the infrastructure layout, through the workflow 
presented in Figure 3. In this case, the optimisation result stored would be a sorted list of 
infrastructure development layouts ranked in terms of the value of the objective function in Eq. 
(1) (referred to as the “optimised infrastructure set” in Figure 3). Then, the final infrastructure 
layout selected would be the one ranked highest in the optimisation set that yields 𝜀 ≤ 𝜀𝑇, where 

𝜀𝑇 is a pre-determined, end-user-specific acceptable level of unintended gentrification.  

 

Figure 3. Workflow for finding the final infrastructure design, accounting for the unintended 
consequence of gentrification. 

Conclusions 

This paper illustrated a people-centred, risk-informed decision-making framework for future 
infrastructure development in growing cities. We formulated the risk-informed infrastructure 
development process as a combinatorial optimisation problem, in which the objective is to 
maximise the performance of the infrastructure in three distinct temporal phases, i.e., business-
as-usual conditions, in the immediate aftermath of a (future) hazard, and during the long-term 
recovery process, according to stakeholder/end-user priorities and needs. We applied the 
framework to optimise the transportation infrastructure design of a hypothetical future community. 
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This example application revealed that different investments in infrastructure lead to varying 
levels of improvement in accessibility (as expected), although the benefits do not increase linearly 
with expenditure. It was also found that accessibility to essential services (i.e., hospitals) after the 
occurrence of a (future) earthquake could be achieved using a limited budget (the lowest one 
investigated). 

In addition, we illustrated how the framework could be extended to incorporate unintended 
consequences of optimal risk-informed infrastructure performance through a bespoke agent-
based model (ABM) that accounts for the implications of infrastructure development on land 
values and resulting dynamic residential location decision-making. If unintended consequences 
of risk-informed infrastructure design are also considered, the final infrastructure design selected 
would be the one that (i) maximises the performance of the infrastructure considering the effects 
of hazard (e.g., earthquake) events; while (ii) limiting unintended socioeconomic consequences 
to a pre-determined, end-user-specific acceptable level. In summary, the illustrated framework 
extends beyond conventional natural-hazard infrastructure impact assessments by (i) focusing 
on future infrastructure design; as well as introducing a design process that (ii) facilitates external 
participation and (iii) possibly adopts a more holistic lens by explicitly accounting for unintended 
consequences of risk-informed infrastructure development (e.g., gentrification).  
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