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Abstract—Most eco-driving strategies are developed and tested in simulated environments, neglecting the computational capabilities 

available on-board, making it challenging to apply them in real-time on actual vehicles. In this paper, two real-time energy-oriented 

driving strategies are proposed to minimize the energy consumption for electric vehicles (EVs) on highways with varying slopes. First, a 

novel strategy, called normalized-energy consumption minimization strategy (NCMS), adopts a designed kinetic energy conversion 

factor to convert the vehicle kinetic energy change into the equivalent battery energy consumption. By minimizing the total normalized 

energy consumption, the energy-orientated vehicle control sequence is calculated. In addition, a logic car-following algorithm is 

developed to enhance NCMS for the purpose of avoiding collisions with the potential preceding vehicle on the journey. Second, a driving 

strategy derived from improvements on existing methods, called improved model predictive control (IMPC) is developed with a 

hierarchical framework, which achieves a balance between optimization and computational efficiency. In the upper level, a global, 

coarse-grained, iterative dynamic programming (IDP) is employed to penalize the MPC terminal state, while the lower level performs 

online rolling optimization of the vehicle within a moderate time step. Thirdly, the performance of the proposed driving strategies is 

verified through a traffic simulation to evaluate the energy efficiency improvement and processor computation time compared to 

dynamic programming (DP) and constant speed (CS) strategy. Finally, a vehicle-in-the-loop test is carried out to validate the feasibility 

of the proposed two novel driving strategies and the reliability of simulation results. Both simulation and real-vehicle experimental 

results illustrate the significant computational and energy efficiency improvement of the proposed strategy. 

 

Index Terms—Eco-driving, Dynamic programming, Model predictive control, Electric vehicles, Energy efficiency.

1. Introduction 

The transportation sector accounts for about 24% of global 

CO2 emissions [1], thus, governments around the world 

released increasingly stringent vehicle fuel economy and 

emission regulations, prompting automakers to develop low-

carbon vehicle techniques [2]. Electrification is recognized as 

an effective way to reduce vehicle carbon emissions [3]. 

However, the limited charging infrastructure and battery size of 

electric vehicles (EVs) prevent long-distance travel. 

To extend the driving range of EVs, various attempts have 

been made without increasing battery sizes, including novel 

vehicle propulsion systems [4]-[7], advanced traffic signal 

control [8]-[10], and ecological driving. Among them, 

ecological driving, or called eco-driving, is recognized as a 

simple and straightforward method to improve vehicle energy 

efficiency by regulating vehicle longitudinal motion. It can be 

enabled by training drivers to operate vehicles in an energy-

efficient way, i.e., avoiding unnecessary acceleration and idling 

during the driving process, yet it may increase the operational 

burden on drivers and labor cost to society [11]-[13]. As an 

alternative, designing a vehicle longitudinal control system can 

also minimize vehicle energy consumption through the eco-

driving strategy [14]-[21]. Typically, the pulse and Glide (PnG) 

strategy is recognized as a better energy efficiency performance 

than constant speed (CS) cruising on flat roads using the 

optimal control theory [22]. In recent years, emerging 

information and communication technologies, such as vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

technologies, have further accelerated the development of eco-

driving strategies. Up to now, eco-driving strategy can be 

divided into two scenarios, i.e., on urban roads with traffic 

lights and the highways. By contrast, vehicles travelling on the 

highway, with long driving mileage, are considered to have 

stronger energy-saving potential by an energy-oriented driving 

strategy. However, on long-distance highways, various factors 

such as weather, road gradient, and speed limits can undergo 

dramatic changes at different spatio-temporal points [23]. 

These fluctuations necessitate the utilization of a time-varying 

longitudinal vehicle model, which, in turn, makes achieving 

global energy optimization for the vehicle more challenging in 

this situation. 

Dynamic programming (DP), a global optimization 

algorithm, is widely implemented in eco-driving to improve the 

energy efficiency of vehicles [24]. Based on road slope 

information, Wang et al. [25] developed an eco-driving strategy 

using DP. Zhuang et al. [26] employed DP in the cruising speed 

planning of EVs to realize a tradeoff between energy 

consumption and degradation of the battery. In addition, Sun et 

al. [27] developed an optimal speed planning system, based on 

joint optimization of DP and the interior point method, which 

was proposed for acquiring the global speed trajectory, 

achieving remarkably improve energy efficiency by up to 22% 

in urban driving situations compared with human driving. 

However, the computation time of DP grows exponentially with 
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the increase in the number of state and control variables, called 

the curse of dimensionality, which prevents it from real-time 

applications in standard microcontrollers. To alleviate the 

computational effort, various approaches were proposed to 

develop an eco-driving strategy, including Pontryagin’s 

minimum principle [28], stochastic dynamic programming [29], 

convex programming [30], as well as model predictive control 

(MPC) [31]. Among them, MPC, a receding horizon control 

strategy, is favored for its capacity to adapt to external 

disturbances and mismatches between the dynamic model and 

the real system. A hierarchical-level MPC methodology has 

implemented eco-driving by decoupling vehicle speed planning 

problems with speed limit constraints [32]. An enhanced MPC 

was adopted by Zhang et al. in [33] to improve vehicle economy, 

achieving a 21% energy saving compared with the original 

control strategy. In addition, a predictive cruise control strategy 

was proposed for reducing idle time at signalized intersections 

and fuel consumption using upcoming traffic signal information 

and utilizing the MPC approach to optimal vehicle speed 

trajectory prediction, obtaining a 24% energy savings in single-

vehicle scenario [34]. Most of these studies directly use the 

MPC to minimize energy consumption with a non-linear 

relationship between motor torque and speed, which is a non-

linear, non-quadratic, and non-convex problem. Hence, when 

tackling this issue, a smaller sample time can give rise to an 

overwhelming computational burden, rendering real-time 

implementation impractical. Conversely, a longer sample time 

might yield inadequate energy conservation. To overcome this 

awkward predicament, various MPC frameworks tracking a 

“prescribed baseline” to save vehicle energy have been 

proposed by some academics [35]. The majority of the literature 

defines a fixed desired velocity as this prescribed baseline [36]-

[39], yet a constant desired velocity is not the optimal energy-

efficient velocity trajectory for the freeways with varying 

slopes. Therefore, it is necessary to develop a real-time eco-

driving strategy in combination with road slope information. 

For this purpose, this paper proposes a novel strategy to 

achieve real-time energy-oriented driving of connected electric 

vehicles (CEV) on a highway using terrain information, called 

normalized energy consumption minimization strategy 

(NCMS). It is well known that the essence of the PnG strategy 

is storing the redundant powertrain energy in the type of vehicle 

kinetic energy and discharging the energy while the vehicle is 

gliding. Thus, from the view of energy management, the eco-

driving strategy is improving energy efficiency by optimizing 

the energy allocation between battery energy and vehicle 

kinetic energy. In addition, an improved MPC (IMPC) strategy 

with a hierarchical architecture is developed based on the most 

widely applied MPC framework, which achieves a balance 

between optimization and computational efficiency. Eventually, 

we compare the proposed strategy with several common 

existing driving strategies, namely, the globally optimal DP and 

the widely used CS strategy employed in real-world driving 

scenarios. The main contributions of this paper are threefold: 

(1) A control strategy with high real-time performance, 

NCMS, is developed in the eco-driving of EVs via transforming 

vehicle kinetic energy into equivalent battery energy. In 

comparison to other classical approaches, the designed strategy 

exhibits comparable enhancements in energy efficiency while 

demonstrating a remarkable improvement in computational 

efficiency, which paves the way for novel insights in the realm 

of eco-driving for EVs. 

(2) A logic car-following algorithm is developed to enhance 

NCMS, which suits both free traffic and car-following 

scenarios with safety guarantees. 

(3) A codesign, IMPC, is implemented in energy-oriented 

driving of EVs, which incorporates the complementary merits 

with global optimality of IDP and computational efficiency of 

MPC. Compared with DP, the implementation of the IDP 

method yields a substantial enhancement in computational 

efficiency. By offering penalization at each rolling horizon 

terminal for MPC, it further ensures energy efficiency within a 

relatively large time step for the MPC process. 

(4) Representative traditional strategy and the designed 

methods are comprehensively evaluated in a simulated 

environment and vehicle-in-the-loop test to verify the 

promising performance of NCMS. 

The remainder of this paper is organized as follows. The 

problem studied in this paper is formulated in Section II. 

Section III presents the proposed NCMS and IMPC, including 

the overall architecture of the method, the objective function 

definition, and physical constraints. Section IV evaluates 

comparative results for different driving strategies in a 

simulated environment and vehicle-in-the-loop test. The paper 

is concluded in Section VI. 

2. Problem formulation 

The concept of energy-oriented driving on a highway with 

varying slopes is depicted in Fig. 1. This driving strategy not 

only considers the effects of vehicle dynamics such as frequent 

acceleration and deceleration on energy consumption but also 

considers the effect of road gradient. The subject vehicle is a 

CEV that can obtain the road terrain information using Global 

Positioning System (GPS) and Geographic Information System 

(GIS). By optimizing the vehicle speed and powertrain torque 

coordinately, the operating efficiency of the vehicle powertrain 

could be improved, and the vehicle energy consumption can be 

minimized over the whole travelling distance under safety 

constraints.  

 
Fig. 1. Energy-oriented driving on a highway with varying 

slopes. 
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2.1 Vehicle model  

In this paper, as illustrated in Fig. 2, the study focuses on 

longitudinal vehicle control, so lateral dynamics are 

disregarded. The longitudinal acceleration is expressed as 

𝑎 =
𝑇 − 𝑇𝑏

𝛿𝑚𝑟
−

𝑔(𝑓𝑐𝑜𝑠(𝜃) + sin(𝜃))

𝛿
−

𝐴𝜌𝐶𝑑𝑣2

2𝑚𝛿
 (1) 

where 𝑎 is the longitudinal acceleration of the vehicle, 𝛿 is the 

vehicle rotational inertia coefficient, 𝑚 is the vehicle mass, 𝑣 is 

the vehicle speed, 𝑇 and 𝑇𝑏  are the traction torque and braking 

torque applied to the tire, respectively. 𝑟 is the tire rolling radius 

of the vehicle, 𝑔 is the gravity constant, 𝑓, 𝜃 , and 𝐶𝑑  are the 

rolling resistance factor, gradient and aerodynamic drag factor, 

respectively. 𝐴 is the frontal area, 𝜌 is the air density. 

 

Fig. 2. Vehicle longitudinal dynamics on a ramp. 

The driving force of the CEV is provided by the motor, and 

the traction torque and braking torque can be obtained through 

{
𝑇 = 𝑖𝑔𝜂𝑡𝑇𝑚𝑑

𝑇𝑏 = 𝑖𝑔𝑇𝑚𝑏/𝜂𝑡 + 𝑇𝑓𝑏
 
for propulsion

for braking
 (2) 

where 𝑖𝑔  is the transmission gear ratio, 𝜂𝑡  is the transmission 

efficiency, 𝑇𝑚𝑑  and 𝑇𝑚𝑏  are the motoring torque and generating 

torque, respectively. 𝑇𝑓𝑏  is the mechanical braking torque 

generated by hydraulic brakes. 

2.2 Energy consumption model  

The characteristics of the motor can typically be obtained 

from the motor efficiency map provided by the motor 

manufacturer. In this study, to simplify the model, we mainly 

establish a quasi-static motor model as shown in Fig. 3, where 

the motor efficiency is a function of the speed and output torque.  

The power of the motor can be expressed as 

𝑃𝑚 = {
𝑇𝑚𝑑𝜔𝑚 𝜂𝑒    for motoring⁄

𝑇𝑚𝑏𝜔𝑚𝜂𝑒        for generating
 (3) 

with  

𝜂𝑒 = 𝜓𝑚(𝑇𝑚𝑑 , 𝑇𝑚𝑏 , 𝜔𝑚) (4a) 

𝜔𝑚 = 𝑖𝑔𝑣/𝑟 (4b) 

where 𝑃𝑚 is the motor power, 𝜂𝑒  is the motor efficiency, 𝜔𝑚 is 

the electric motor speed. 

2.3 Battery model 

An equivalent electrical circuit is used to model the lithium-

ion phosphate battery system [40], where the complex 

electrochemical reaction inside the battery is ignored, and only 

the charge and discharge characteristics of the battery are 

considered. The battery state-of-charge (SOC) dynamics can be 

modelled as 

SOĊ = −
𝑈𝑜𝑐 − √𝑈𝑜𝑐

2 − 4𝑅𝑏𝑃𝑏

2𝑄𝑏𝑅𝑏

 (5) 

with  

𝑃𝑏 = 𝑃𝑚 + 𝑃𝑎𝑢𝑥 (6) 

where 𝑈𝑜𝑐 is the open-circuit voltage of the battery, 𝑅𝑏 is the 

internal resistance of the battery, 𝑃𝑏   is the terminal battery 

power, 𝑄𝑏  is the nominal capacity of the battery, 𝑃𝑎𝑢𝑥  is the 

auxiliary power. 

 
Fig. 3. Efficiency map of the motor. 

3. Energy-oriented driving strategy design 

In this section, we present the two real-time energy-oriented 

driving strategies, i.e., NCMS and IMPC. 

3.1 Normalized-energy consumption minimization strategy 

In the work presented by Li [22], the PnG strategy is 

introduced, where the internal combustion engine operates in an 

impulse mode to achieve high fuel efficiency by utilizing the 

vehicle body as an energy storage. Building upon this concept 

and considering future applications, the NCMS is proposed as 

illustrated in Fig. 4, where the kinetic energy of the vehicle 

body can be regarded as a power source, alongside the battery 

energy and fuel energy. To better achieve dynamic co-

optimization of the two energy sources, this strategy is inspired 

by the energy management control of hybrid electric vehicles, 

the equivalent consumption minimization strategy (ECMS). In 

ECMS, the power distribution strategy between the engine and 

the electric motor is optimized by minimizing the equivalent 

consumption, which is composed of transient fuel consumption 

and electricity consumption [37]. In this paper, the developed 

NCMS further introduces the concept of ECMS to the speed 

optimization of EVs. This strategy serves as an instantaneous 

cruise control method specifically designed for EVs. 

The core of the proposed NCMS is to convert the change of 

vehicle kinetic energy into electric energy consumption through 

a kinetic energy conversion factor (KECF). The KECF is the 

weight of the conversion of kinetic energy into electric energy 

along with different vehicle speeds and road slopes. It should 

be noted that the higher the vehicle speed, the greater the kinetic 

energy stored in the vehicle body, and the greater the 

aerodynamic drag resistance during the vehicle driving. 

Therefore, to reduce the energy consumption caused by the air 



 4 

drag resistance and rolling resistance, our proposed NCMS 

further improves the energy consumption behavior for the same 

driving time by adjusting the KECF to better utilize the kinetic 

energy and gravitational potential energy of host vehicle. In 

other words, it is to reduce the speed of the vehicle to overcome 

the rolling resistance and air drag resistance, and to convert the 

kinetic energy of the body to offset the power consumption. On 

the contrary, when the speed is low, the kinetic energy stored 

by the vehicle body is low. Currently, it is necessary to increase 

the weight of kinetic energy conversion (i.e., reducing KECF). 

Combining the working efficiency of the motor with vehicle 

power demand, excess motor energy is collected by increasing 

the kinetic energy reserve, to maintain a higher working 

efficiency of the motor. The energy consumption of EVs can be 

equivalently represented as 

𝐸𝑁𝐶𝑀𝑆 = 𝐸𝑒 − 𝛽∆𝐸𝑘 (7) 

with  

𝐸𝑒 = ∫ 𝑃𝑏𝑑𝑡
𝑡𝑓

𝑡0

 (8a) 

∆𝐸𝑘 = ∫ (
1

2

𝑡𝑓

𝑡0

𝑚𝑣2 −
1

2
𝑚𝑣0

2)𝑑𝑡 (8b) 

where 𝐸𝑒 is the electricity consumption, ∆𝐸𝑘 is the change of 

vehicle kinetic energy, 𝛽 is the kinetic energy conversion factor 

(KECF). 𝑡0 and 𝑡𝑓 are the initial and terminal time, respectively. 

𝑣0 is the initial velocity. It should be noted that the motor can 

recover energy by the feedback braking, so 𝐸𝑒 may be positive 

or negative. 𝐸𝑒 < 0 denotes that the output torque of the motor 

is negative, and the kinetic energy is converted into electric 

energy for energy recovery through the feedback braking, and 

vice versa. Note that kinetic energy can also be converted 

bidirectionally. ∆𝐸𝑘 < 0 indicates that the vehicle is in a 

deceleration state when it is desired to transform the kinetic 

energy of host vehicle to help the motor to do work, aiming to 

reduce electrical energy consumption. ∆𝐸𝑘 > 0 means that the 

torque output of the motor exceeds the torque required for 

constant speed driving, it is necessary to store the kinetic energy 

of the vehicle and reduce the speed. 

 
Fig. 4. A schematic of the proposed NCMS. 

For vehicles traveling long distances, formulating the 

problem in the spatial domain is more conducive to dealing with 

the effects of gradient on energy consumption. Consequently, 

the equivalent energy consumption rate of the vehicle in the 

spatial domain can be described as 

𝑃𝑁𝐶𝑀𝑆 =
𝑑𝐸𝑁𝐶𝑀𝑆

𝑑𝑠
=

𝑃𝑏

𝑣
− 𝛽𝑚𝑎 (9) 

Comprehensive analysis of the above, KECF should be 

related to road gradient and driving speed. In addition, since the 

value converted from kinetic energy to electrical energy 

changes dynamically, the specific influence relationship is 

defined by the numerical tests as follows 

𝛽 = 𝜀 ∙
𝜑(𝜃)

𝜑(𝜃) + 𝐶𝑑 ∙ 𝜇𝑚

 (10) 

where  

𝜇𝑚 =
𝑣2 − 0.5(𝑣𝑚𝑎𝑥

2 + 𝑣𝑚𝑖𝑛
2 )

𝑣𝑚𝑎𝑥
2 − 𝑣𝑚𝑖𝑛

2  (11) 

where 𝜀 denotes the displacement coefficient of vehicle kinetic 

energy converted into battery power, 𝜑(𝜃)  is the road 

resistance of the vehicle including the gradient and rolling 

resistance, i.e., 𝜑(𝜃) = 𝑚𝑔𝑠𝑖𝑛(𝜃) + 𝑚𝑔𝑓𝑐𝑜𝑠(𝜃) . Since the 

kinetic energy of the vehicle body is regarded as configurable 

driving energy, the cruising speed will fluctuate up and down 

within the set speed range, 𝑣𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛  are the maximum 

and minimum vehicle speeds in the cruising speed range, 

respectively, i.e., upper and lower bounds of road speed limits 

To specifically observe the relationship between the change 

of KECF and the road gradient and driving speed, the analysis 

in Fig. 5 is done based on Eq. (10), where 𝛽 is calculated under 

the different road gradient (0°~10°) and driving speed (13 m/s-

21 m/s). As shown in Fig. 5, when the vehicle speed is high, the 

weight of kinetic energy is less than 1. As the vehicle speed 

decreases, the weight of kinetic energy is greater than 1. 

Moreover, the size of the road gradient exacerbates this 

relationship. With the decrease of the road slope, the gradient 

resistance gradually reduces its impact on vehicle kinetic 

energy, and it is obvious that the influence of vehicle speed on 

KECF is greater relative to the slope. 

 
Fig. 5. The range of KECF 𝛽. 

To implement the NCMS with a dynamics model, an optimal 

problem is formulated. An objective function is minimized and 

expressed as  

min
𝑢

𝐽 = ∫ 𝑃𝑁𝐶𝑀𝑆(𝑇, 𝑇𝑏 , 𝑡, 𝑣)𝑑𝑠
𝑠𝑓

𝑠0

 (12) 

subject to (2)-(11) and  
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𝑑𝑣

𝑑𝑠
= [

𝑑𝑡

𝑑𝑠
𝑑𝑣

𝑑𝑠

] =

[
 
 
 

1

𝑣
𝑇 − 𝑇𝑏

𝛿𝑚𝑟𝑣
−

𝑔(𝑓𝑐𝑜𝑠(𝜃) + sin(𝜃))

𝛿𝑣
−

𝐴𝜌𝐶𝑑𝑣
2𝑚𝛿 ]

 
 
 

 (13a) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑠) ≤ 𝑣𝑚𝑎𝑥  (13b) 

𝑇𝑚𝑑,𝑚𝑖𝑛(𝜔𝑚) ≤ 𝑇𝑚𝑑(𝑠) ≤ 𝑇𝑚𝑑,𝑚𝑎𝑥(𝜔𝑚) (13c) 

𝜔𝑚,𝑚𝑖𝑛 ≤ 𝜔𝑚(𝑠) ≤ 𝜔𝑚,𝑚𝑎𝑥  (13d) 

𝑇𝑚𝑏 ≤ 𝑇𝑚𝑏,𝑚𝑖𝑛  (13e) 

|�̇�| ≤ 𝑗𝑚𝑎𝑥 (13f) 

where 𝑠0  and 𝑠𝑓  are the start and end position of the journey, 

respectively. 𝑠  is the vehicle position 𝑥 = [𝑡, 𝑣]T  is the state 

variable including travel time 𝑡 and speed 𝑣, 𝑢 = [𝑇, 𝑇𝑏]
T is the 

control variable including traction torque 𝑇  and braking 

torque 𝑇𝑏 . �̇� is the accelerated derivative, 𝑗𝑚𝑎𝑥  is the maximum 

accelerated derivative. 

In pursuit of computational efficiency, we introduce a rolling 

distance-domain method (RDM) rather than a full horizon 

optimization. This innovative approach focuses on solving 

control sequences within a limited forward distance during each 

horizon H, as shown in Fig. 6. The entire journey is divided into 

n stages, i.e., 𝑠𝑓 − 𝑠0 = ∑ 𝐻𝑘
𝑛
𝑘=1 . For any of these stages k, the 

end state of the previous stage k-1 is used as the initial state of 

the current stage k, while the end state of the current stage k will 

serve as the initial state of the next stage k+1. In this way, the 

vehicle can derive the optimal state sequence 𝑥𝑜𝑝,𝑘 and control 

sequence 𝑢𝑜𝑝,𝑘 for each stage. Eventually, the optimal state 

sequence [𝑥𝑜𝑝,1,  𝑥𝑜𝑝,2 , ⋯ , 𝑥𝑜𝑝,𝑛 ] and the control input 

sequence [𝑢𝑜𝑝,1 , 𝑢𝑜𝑝,2 , ⋯ ,𝑢𝑜𝑝,𝑛 ] for the whole journey are 

obtained. 

 

Fig. 6. Schematic diagram of RDM. 

In each distance horizon, the optimal control problem is 

formulated as follows 

min 𝐽 = ∑𝑃𝑁𝐶𝑀𝑆(𝑇, 𝑇𝑏 , 𝑡, 𝑣)∆𝑠

𝑁

𝑖=1

 (14) 

subject to  

{
𝑣(𝑖 + 1) = √𝑣(𝑖)2 + 2𝑎(𝑖)∆𝑠

𝑡(𝑖 + 1) = 𝑡(𝑖) +
∆𝑠

𝑣(𝑖)

 (15a) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑖) ≤ 𝑣𝑚𝑎𝑥 (15b) 

𝑇𝑚𝑑,𝑚𝑖𝑛(𝜔𝑚) ≤ 𝑇𝑚𝑑(𝑖) ≤ 𝑇𝑚𝑑,𝑚𝑎𝑥(𝜔𝑚) (15c) 

𝜔𝑚,𝑚𝑖𝑛 ≤ 𝜔𝑚(𝑖) ≤ 𝜔𝑚,𝑚𝑎𝑥 (15d) 

𝑇𝑚𝑏(𝑖) ≤ 𝑇𝑚𝑏,𝑚𝑖𝑛 (15e) 

|𝑎(𝑖) − 𝑎(𝑖 − 1)| ≤ 𝑗𝑚𝑎𝑥  (15f) 

where ∆𝑠 is the sampling distance. 𝑣(𝑖) is the average speed in 

𝑖 th distance step, i.e., 𝑣(𝑖) = 0.5(𝑣(𝑖) + 𝑣(𝑖 + 1)). N is the 

number of distance steps in each stage, i.e., 𝑁 = 𝐻 ∆𝑠 + 1.⁄  

3.2 Controller design for NCMS in car-following scenarios 

The behavior of the host vehicle may be constrained by the 

vehicle in front during long-distance travel, so the safety of the 

host vehicle must be ensured. In this section, a logic car-

following algorithm is designed for both control strategies. The 

detailed logic car-following algorithm is further presented in 

Fig. 7. The incorporation of driving safety constraints 

necessitates the host vehicle to adhere to a maximum safe 

acceleration limit upon detecting a vehicle ahead via radar, 

thereby avoiding potential collisions. For this purpose, the 

Gipps model is adopted as the longitudinal car-following model 

in this study. The Gipps model follows a deterministic 

acceleration modelling framework and proves to be well-suited 

for characterizing vehicles equipped with adaptive cruise 

control, facilitating platoon formation. It is important to note 

that other car-following models specifically designed for 

connected vehicle systems could be considered as alternatives 

to the Gipps model in the proposed framework. The Gipps 

formulates the predicted acceleration rate as 

𝑣(𝑡 + ∆𝑡)

= 𝑏∆𝑡

+ √𝑏2∆𝑡2 − 2𝑏(∆𝑠 − 𝑑0) + 𝑏𝑣(𝑡)∆𝑡 + 𝑏𝑣𝑝
2 𝑏𝑝⁄  

(16) 

with  

∆𝑠 = 𝑠𝑝 − 𝑠 (17) 

where 𝑏 and 𝑏𝑝 denote the maximum braking deceleration of 

the host vehicle and preceding vehicle, respectively. 𝑣𝑝  and 

𝑠𝑝  are the speed and position of the preceding vehicle, 

respectively. 𝑑0 is the static inter-vehicle distance, ∆𝑡  is the 

response time of the braking system, ∆𝑠  is the inter-vehicle 

distance between the host vehicle and the preceding vehicle. 

The parameters of the Gipps are summarized in Table 2. 

Table 1 

Parameters of Gipps 
Parameter Value Parameter Value 

𝑏 -6 m/s2 ∆𝑡 0.55 s 

𝑏𝑝 -6 m/s2 𝑑0 4.5 m 

In the following scenario, we assume that the host vehicle 

with adaptive cruise capability can monitor the surrounding 

vehicles or obstacles with the help of millimeter-wave radar. In 

Fig. 7, when there are no vehicles detected within the radar 

detection range D of the host vehicle, it follows the ecological 

acceleration 𝑎𝑒  planned by the proposed NCMS. However, 

when there is a leading vehicle within D, the host vehicle will 

choose the smaller acceleration between 𝑎𝑒  and safety 

acceleration 𝑎𝑠  as its input to achieve a trade-off between 

vehicle safety and driving economy. Here safety acceleration 

𝑎𝑠 can be obtained by the Gipps model, i.e. 

𝑎𝑠(𝑡) =
𝑣(𝑡 + ∆𝑡) − 𝑣(𝑡)

∆𝑡
 (18) 
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Fig. 7. Flow diagram of the logic car-following algorithm. 

3.3 Improved model predictive control strategy 

To demonstrate the algorithmic efficiency and energy 

efficiency improvement of NCMS, this section presents a novel 

IMPC strategy designed for real-time driving control of an EV. 

This strategy strikes a balance between the global optimality 

offered by IDP and the real-time performance of MPC, thereby 

overcoming the challenge of MPC getting trapped in local 

optimality. In addition, the utilization of the IDP technique 

leads to improved computational efficiency in contrast to the 

traditional offline DP method. This enhancement is attained 

through a two-step iterative strategy that involves the 

systematic scaling of state and control variables grids. The 

presented IMPC, as shown in Fig. 8, employs a bi-level 

framework. In this approach, the upper level computes an 

optimized trajectory sequence based on a coarse discretization 

of state variables using IDP, and the lower level refines the IDP 

output in a smaller time step based on the MPC. 

 
Fig. 8. A schematic representation of the IMPC strategy. 

Within the bi-level framework, the upper-level IDP algorithm, 
resulting in a global solution, focuses on the minimization of 

energy consumption. To effectively address this issue, IDP 

operates in a backward manner similar to RDM. By discretizing 

the distance, it ensures an equitable comparison of power 

consumption within each segment. The algorithm optimizes 

control inputs at each distance step to ascertain the most 

efficient energy consumption, progressively working towards 

the destination. Ultimately, IDP generates an optimal state 

sequence that maximizes performance while minimizing 

energy usage.  

Therefore, each stage is divided into 𝑁𝐼𝐷𝑃  parts by the 

distance step ∆𝑠𝐼𝐷𝑃, instead of discretizing the problem in the 

time domain, the cost function of the optimization problem is 

min 𝐽 = ∑ ∆𝑆𝑂𝐶(

𝑁𝐼𝐷𝑃

𝑖=1

𝑇(𝑖), 𝑇𝑏(𝑖), 𝑣(𝑖))
∆𝑠𝐼𝐷𝑃

𝑣(𝑖)
 (19) 

subject to  

{
𝑠(𝑖 + 1) = 𝑠(𝑖) + ∆𝑠𝐼𝐷𝑃

𝑣(𝑖 + 1) = √𝑣(𝑖)2 + 2𝑎(𝑖)∆𝑠𝐼𝐷𝑃

 (20a) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑖) ≤ 𝑣𝑚𝑎𝑥 (20b) 

𝑇𝑚𝑑,𝑚𝑖𝑛(𝜔𝑚) ≤ 𝑇𝑚𝑑(𝑖) ≤ 𝑇𝑚𝑑,𝑚𝑎𝑥(𝜔𝑚) (20c) 

𝜔𝑚,𝑚𝑖𝑛 ≤ 𝜔𝑚(𝑖) ≤ 𝜔𝑚,𝑚𝑎𝑥 (20d) 

𝑇𝑚𝑏(𝑖) ≤ 𝑇𝑚𝑏,𝑚𝑖𝑛 (20e) 

|𝑎(𝑖 + 1) − 𝑎(𝑖)| ≤ 𝑗𝑚𝑎𝑥  (20f) 

The IDP algorithm is a two-step iterative approach that 

refines the state and control variable grids based on DP, which 

aims to improve computational efficiency by reducing mesh 

density. In the first iteration, the initial state variable boundaries 

[𝑥𝑚𝑖𝑛
1 , 𝑥𝑚𝑎𝑥

1 ], control variable boundaries [𝑢𝑚𝑖𝑛
1 , 𝑢𝑚𝑎𝑥

1 ] and the 

initial grid sizes ∆𝑥1 and ∆𝑢1 are input, and the optimal state 

variable 𝑥𝑜𝑝  and optimal control variable 𝑢𝑜𝑝  are calculated 

according to the DP algorithm. Then, the second iteration of 

IDP is shown in the Eq. (21)-(24), where [𝑥𝑚𝑖𝑛
1 , 𝑥𝑚𝑎𝑥

1 ]  and 

[𝑢𝑚𝑖𝑛
1 , 𝑢𝑚𝑎𝑥

1 ] are updated based on the boundary of the optimal 

result obtained in the first iteration, i.e. [𝑥𝑜𝑝,𝑚𝑖𝑛
1 , 𝑥𝑜𝑝,𝑚𝑎𝑥

1 ] and 

[𝑢𝑜𝑝,𝑚𝑖𝑛
1 , 𝑢𝑜𝑝,𝑚𝑎𝑥

1 ]. This update helps refine the grids and focus 

on regions of interest. To prevent state points from falling at the 

boundaries of the grid, the state and control variables scaling 

factors 𝜎  and 𝜏  are introduced to reasonably adjust the 

boundary range. The adjustments ensure that state and control 

points are placed away from the edges, providing a more stable 

and accurate representation of the problem. Therefore, with 

enough iterations, IDP will be able to achieve the same 

optimization effect as DP. 

𝑥𝑚𝑎𝑥
2 = min (𝑥𝑜𝑝,𝑚𝑎𝑥

1 − 𝜎 ∙ ∆𝑥1, 𝑥𝑚𝑎𝑥) (21) 

𝑥𝑚𝑖𝑛
2 = max (𝑥𝑜𝑝,𝑚𝑖𝑛

1 + 𝜎 ∙ ∆𝑥1, 𝑥𝑚𝑖𝑛) (22) 

𝑢𝑚𝑎𝑥
2 = min (𝑢𝑜𝑝,𝑚𝑎𝑥

1 − 𝜏 ∙ ∆𝑢1, 𝑢𝑚𝑎𝑥) (23) 

𝑢𝑚𝑖𝑛
2 = max (𝑢𝑜𝑝,𝑚𝑖𝑛

1 + 𝜏 ∙ ∆𝑢1, 𝑢𝑚𝑎𝑥) (24) 

In the second iteration, the mesh sizes ∆𝑥2 and ∆𝑢2 are also 

updated by the shrinking factors 𝜉 and 𝛾 as follows 

∆𝑥2 = 𝜉 ∙ ∆𝑥 (25) 

∆𝑢2 = 𝛾 ∙ ∆𝑢 (26) 

where 𝜉 and 𝛾 affect the grid density. Thus, the hyperparameter 

𝝅 = [∆𝑥, ∆𝑢, 𝜎, 𝜏, 𝜉, 𝛾]  in the IDP algorithm is crucial in 

balancing algorithm efficiency and optimization performance, 

which are summarized in Table 2. Since MPC is a time-domain 

control strategy and IDP is solved discrete in the distance 

domain, ultimately, the optimized state sequence of IDP after 

the transformation of time and space domains is shown in Eq. 

(27)-(28). For any stage k, these results are referenced by the 

lower MPC to make control decisions. 

Table 2  

Parameters of IDP 
Parameter Range of value Parameter Range of value 

∆𝑣 [0.3 m/s, 3 m/s] 𝜏 [0, 1] 

∆𝑢 [10 Nm, 500 Nm] 𝜉 [0.1, 1] 

𝜎 [0, 1] 𝛾 [0.01, 1] 
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𝑣𝑜𝑝,𝑘 = [𝑣𝑘(1), 𝑣𝑘(2),⋯ , 𝑣𝑘(𝑁𝐼𝐷𝑃)] (27) 

𝑠𝑜𝑝,𝑘 = [𝑠𝑘(1), 𝑠𝑘(2),⋯ , 𝑠𝑘(𝑁𝐼𝐷𝑃)] (28) 

In the lower layer, the coarsely gridded IDP solution is 

employed to formulate penalties on the terminal states 

(𝑠𝑓,𝑑𝑒𝑠 , 𝑣𝑓,𝑑𝑒𝑠)  during the MPC optimization process. 
Additionally, it serves as the initial guess for the sequential 

quadratic programming (SQP) solver. The cost function of the 

IMPC over each prediction horizon is expressed as 

min 𝐽 = ∑ ∆𝑆𝑂𝐶(𝑇(𝑘), 𝑇𝑏(𝑘), 𝑣(𝑘)

𝑘+𝑁𝑚−1

𝑖=𝑘

)∆𝑡𝑚𝑝𝑐

+ 𝑤1 (min(0, 𝑠(𝑘 + 𝑁𝑚|𝑘) − 𝑠𝑓,𝑑𝑒𝑠))
2

+ 𝑤2 (min(0, 𝑣(𝑘 + 𝑁𝑚|𝑘)

− 𝑣𝑓,𝑑𝑒𝑠))
2 

(29) 

subject to  

{
𝑠(𝑖 + 1|𝑘) = 𝑠(𝑖|𝑘) +

(𝑣(𝑖 + 1|𝑘) + 𝑣(𝑖|𝑘))∆𝑡𝑚𝑝𝑐

2
𝑣(𝑖 + 1|𝑘) = 𝑣(𝑖|𝑘) + 𝑎(𝑖|𝑘)∆𝑡𝑚𝑝𝑐

 (30a) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑖|𝑘) ≤ 𝑣𝑚𝑎𝑥  (30b) 

𝑇𝑚𝑑,𝑚𝑖𝑛(𝜔𝑚) ≤ 𝑇𝑚𝑑(𝑖|𝑘) ≤ 𝑇𝑚𝑑,𝑚𝑎𝑥(𝜔𝑚) (30c) 

𝜔𝑚,𝑚𝑖𝑛 ≤ 𝜔𝑚(𝑖|𝑘) ≤ 𝜔𝑚,𝑚𝑎𝑥 (30d) 

𝑇𝑚𝑏(𝑖|𝑘) ≤ 𝑇𝑚𝑏,𝑚𝑖𝑛 (30e) 

|𝑎(𝑖 + 1|𝑘) − 𝑎(𝑖|𝑘)| ≤ 𝑗𝑚𝑎𝑥  (30f) 

where (𝑖|𝑘) represents the corresponding value of a variable at 

step 𝑖 predicted at time 𝑘, 𝑁𝑚 is the prediction horizon of the 

MPC, ∆𝑡𝑚𝑝𝑐  is the time step used by the MPC, 𝑤1 and 𝑤2 

denote tunable weights to regulate the relative importance of 

the target terminal position 𝑠𝑓,𝑑𝑒𝑠  and velocity 𝑣𝑓,𝑑𝑒𝑠 

transmitted down from the upper-level IDP. 

4. Simulations and results 

To validate the performance of the proposed candidate 

driving strategies, a series of simulations are performed in a 

workstation with Intel® Core™ i7-10875H CPU @ 2.3 GHz 

and 16 GB RAM. Furthermore, a vehicle-in-the-loop 

experiment of the prototype CEV is conducted in a real-world 

road, where the CEV interacts with the environment in real time. 

4.1 Given route and simulation setup 

In the simulation, a specific highway route, Zhigu Avenue, 

located in Nanjing City, China, is carefully selected, as 

illustrated in Fig. 9. This chosen route spans approximately 35 

km and traverses the scenic foothills of Zhongshan and Jiuhua 

Mountain. To acquire the road elevation information for the 

experimental route, data packets from the designated section on 

the map are extracted by Google Maps. However, the collected 

data may contain rough singularities arising from sensor 

accuracy, signal interference, and other influencing factors. To 

address this issue, a five-point triple smoothing method is 

employed to effectively mitigate irregularities and singularities 

in the data, resulting in a smoothed road elevation profile, as 

depicted in Fig. 10. Notably, the smoothed profile shows a 

series of distinct ascending and descending slopes. The main 

parameters of the simulated vehicle are shown in Table 3, and 

Table 4 demonstrates the parameter settings of the proposed 

algorithm.  

Apart from conducting a comparative analysis between the 

two proposed strategies, we also compared them with two 

common driving strategies: DP and CS strategy. To increase the 

fairness of the comparison, the speed of CS is set to the average 

speed obtained by DP. 

Travel distance 35 km

 
Fig. 9. The experimental route in Nanjing City, China. 

 
Fig. 10. The road elevation of the experimental route obtained 

from digital road maps. 

Table 3 

Parameters of the subject vehicle 
Component Parameter Symbol  Value 

Vehicle 

Mass 𝑚 2500 kg 

Accessory power 𝑃𝑎𝑢𝑥 400 W 

Tire radius 𝑟 0.36 m 

Transmission efficiency 𝜂𝑡 0.95 

Transmission gear ratio 𝑖𝑔 1 

Frontal area A 2.45 m2 

Air drag resistance 

coefficient 
𝐶𝑑 0.28 

Rolling resistance 

coefficient 
𝑓 0.015 

Air density 𝜌 1.202kg/m3 

Gravity factor g 9.81 m/s2 

Motor 

Maximum motoring 

torque 
𝑇𝑚,𝑚𝑎𝑥 1225 Nm  

Minimum generating 

torque 
𝑇𝑚𝑏,𝑚𝑖𝑛 -1225 Nm 

Maximum Speed 𝜔𝑚𝑎𝑥 1600 rpm 

Battery  

Open-circuit voltage 𝑈𝑜𝑐 365 V 

Charge/discharge internal 

resistance 
𝑅𝑏 0.032/0.029Ω 

Nominal capacity 𝑄𝑏 48 kWh 
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Table 4 

Algorithm parameters 

Parameter Symbol Value 

Sampling distance of NCMS ∆𝑠 1 m 

Predictive distance horizon H 400 m 

Minimum speed 𝑣𝑚𝑖𝑛 13.89 m s⁄  (50 km h⁄ ) 

Maximum speed 𝑣𝑚𝑎𝑥 20 m s⁄  

Maximum accelerated derivative 𝑗𝑚𝑎𝑥 2 m s3⁄  

Sampling distance of IDP ∆𝑠𝐼𝐷𝑃 10 m 

Sampling time of MPC ∆𝑡𝑚𝑝𝑐 0.1 s 

Radar detection range D 50 m 

Initial speed 𝑣0 16.67 m s⁄  (60 km h⁄ ) 

Initial SOC 𝑆𝑂𝐶0 80% 

4.2 Simulation results 

Fig. 11 shows the simulation results of vehicle velocity 

trajectories for different driving strategies along the 

experimental route. It can be seen that the vehicle velocity 

trajectories of the IMPC are very close to that of the DP 

algorithm and lower than that of the NCMS. Table 5 further 

compares their overall difference in speed, the average speed of 

the three strategies was calculated, where the average speed of 

the NCMS reached 16.58 m/s, followed by DP and IMPC with 

15.5 m/s and 15.25 m/s, respectively. Therefore, the NCMS 

consumed the least amount of time for the whole journey. 

 

Fig. 11. A comparison of vehicle velocity trajectories for 

different strategies along the experimental route.   

In order to compare the characteristics of the different driving 

strategies, we analyze the speed change characteristics of the 

four driving strategies in detail below: 

For the DP method, the vehicle speed trajectory exhibits an 

irregular trend in response to changes in road curvature, as 

depicted in Fig. 12. On relatively flat road sections, the speed is 

maintained at 13.89 m/s with minimal fluctuations, which 

aligns with the motor's lowest electricity consumption. This 

finding further confirms that avoiding unnecessary acceleration 

and deceleration to maintain a constant speed leads to a 

significant reduction in energy consumption. However, in areas 

with significant changes in gradient, such as the road terrain 

marked in red in Fig. 12, the speed undergoes dramatic 

variations, transitioning between uphill and downhill stretches. 

At the lowest elevation point of the road, the vehicle reaches its 

maximum speed, and vice versa. It is evident that adjusting the 

speed in accordance with the changes in road terrain proves to 

be effective in reducing energy consumption. 

 

Fig. 12. Vehicle velocity trajectories of DP with corresponding 

road slope. 

Fig. 13 demonstrates that the speeds generated by the IMPC 

and DP generally align with each other, indicating that speed 

planning based on local road gradient information can yield 

favorable results. Fig. 14 compares the SOC variations of IMPC 

and DP, further validating the similarity of the two driving 

strategies. However, there are certain locations, such as those 

marked at 5 km, 10 km, and 20 km in Fig. 14, where the IMPC 

fails to achieve optimal speed planning in comparison to the DP. 

To conduct a more detailed comparison of the speed differences 

between the two control strategies, we zoomed in on the speed 

profile near the 20 km mark and correlated it with the terrain 

shown in Fig. 15. Notably, the speed profile obtained by the DP 

exhibits significantly higher magnitude changes. The reason for 

this difference lies in the fact that the IMPC experiences a delay 

of approximately 100 m in initiating speed increments. It 

determines that the vehicle is traversing a downhill slope, and 

hence utilizes feedback braking to recover energy. 

Subsequently, when the vehicle encounters a transition from the 

downhill to a smooth road ahead, it increases its speed and 

stores energy to mitigate efficiency losses arising from the 

motor operation. Conversely, the DP is based on global 

planning, anticipates future road changes, and can plan vehicle 

speed considering the complete road information available. 

This difference in approach accounts for the variations in speed 

planning results between the IMPC and DP at specific locations, 

highlighting the importance of real-time decision-making and 

the utilization of comprehensive road data in achieving optimal 

speed trajectories. 

 

Fig. 13. A comparison of vehicle velocity trajectories between 

the DP and IMPC.  
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Fig. 14. Comparison of SOC changes between IMPC and DP. 

To illustrate the performance of the IDP, we compared the 

velocity trajectories of the DP and IDP planning over the 800 

m journey. In Fig. 16, it can be seen that as the number of IDP 

iterations increases, the speed of IDP is gradually close to that 

of DP, especially the speed of IDP is basically coincident with 

that of DP after 10 iterations. Fig. 16 illustrates the computation 

time of DP versus IDP with different numbers of iterations. 

Although the computation time of IDP increases with the 

number of iterations, it is significantly more efficient with 

respect to DP. 

 

Fig. 15. Analysis of speed difference around 20 km of the 

experimental road. 

 

Fig. 16. Comparison of the speed of IDP and DP. 

 
Fig. 17. Comparison of computation time of DP and IDP. 

For the NCMS driving strategy, as can be seen in Fig. 11 that 

the vehicle speed is well-restricted within a predetermined 

range, which varies with the road gradient. In road sections with 

gentle slopes, the vehicle's speed variation range is relatively 

stable and consistently maintained at a lower speed level. This 

deliberate control of speed aims to minimize energy 

consumption associated with overcoming air resistance, as 

lower speeds require less power to counteract aerodynamic drag. 

Conversely, on uphill and downhill sections with steeper 

gradients, the variation in vehicle speed becomes more 

pronounced. In such situations, additional measures are taken 

to optimize energy efficiency. The motor actively assists by 

strategically managing the kinetic energy conversion of the 

vehicle. This approach helps to mitigate energy losses due to 

the efficiency characteristics of the motor, ultimately leading to 

more effective energy utilization. The speed adjustment of the 

NCMS is achieved through the implementation of the KECF, 

as illustrated in Fig. 18. The KECF dynamically adapts the 

proportional distribution of vehicle kinetic energy based on the 

road gradient. 

 
Fig. 18. The range of KECF along the experimental route. 

To illustrate the energy efficiency benefits of the speed 

variation, we compared the motor operating points of NCMS 

and CS. Fig. 19 demonstrates that NCMS exhibits larger driving 

torque outputs in the low-speed range, with a tendency to 

approach the high-efficiency region. It is noteworthy that 

Table 5  

Comparison of the results of different strategies. 
Driving strategies Average speed Final SOC Change of SOC  Energy saving Calculation time per step 

CS 15.5 m/s 66.26 13.74 -- -- 
DP 15.5 m/s 68.08 11.92 13.25% -- 

IMPC 15.25 m/s 67.86 12.14 11.64% 0.35 s 

NCMS 16.58 m/s 67.39 12.61 8.23% 0.02 s 

 

About 100 m 
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NCMS shows torque discontinuities in the range of 100 Nm to 

350 Nm, as these torque levels correspond to relatively lower 

motor power efficiency. On the other hand, for CS, the motor 

operates at a constant speed, resulting in a vertical line 

distribution in Fig. 19. 

 

Fig. 19. Operating points of the motor for CS and NCMS. 

For an unbiased comparison among the different driving 

strategies, a comparison of motor torque is shown in Fig. 20. 

The differences in motor operation characteristics between the 

three energy-oriented driving strategies and CS are as follows: 

(1) The peak output torque of the motor is reduced, and the 

frequency of the motor operating at high torque levels is 

significantly decreased. 

(2) The instances of motor feedback braking are notably 

reduced. While vehicle feedback braking allows for energy 

recovery, it also leads to inevitable energy loss due to efficiency 

losses. 

(3) The motor operates more frequently at the zero-output 

torque point, during which the vehicle is in a coasting state with 

no power input. 

Just like Fig. 19, Fig. 20(c) demonstrates that NCMS 

significantly improves the motor operating efficiency by 

adjusting kinetic energy conversion. In Fig. 20(c), the 

frequency of motor feedback braking is significantly reduced. 

Within the driving working range, the motor predominantly 

operates under low-torque conditions. When facing high torque 

demands, the motor is selectively operated at approximately 

400 Nm, which aligns with the outcomes obtained through 

simulation using DP optimization. The observed intermittent 

nature of the motor operation, characterized by transitions from 

low to high torque, may indicate a potential pursuit of higher 

work efficiency. Regarding the IMPC strategy, it is evident that 

the strategy applies high torque braking at specific distances, 

such as 5 km, 10 km, and 20 km, consistent with the vehicle 

trajectory presented in Fig. 13. The difference between the 

velocity trajectories of DP and IMPC and the motor output 

torque could be attributed to the limitations of MPC. The 

effectiveness of MPC is bounded by the prediction horizon, 

making it more prone to local optimum solutions. 

The quantitative outcomes of the four driving strategies (DP, 

IMPC, NCMS, CS) are summarized in Table 5. The DP leads 

to the smallest total cost, followed by the IMPC, and then the 

NCMS and CS method. It is discernible that the DP consumes 

less energy than the other three strategies, saving 13.25% 

compared to CS, thanks to the fact that DP is a global 

optimization, yet its computation time is also a tremendous 

challenge. Compared to the DP, the IMPC energy savings is a 

comparable 11.64%, while the calculation time for a single step 

is 0.35 s. Specifically, the energy savings of the NCMS is 

8.23%, and the calculation time is 0.02 s, which is faster than 

the IMPC, further indicating that the NCMS has the advantages 

of low computation burden and high real-time performance, 

with significant practical significance for future optimization 

calculation of real vehicles. 

 
(a) DP 

 
(b) IMPC 

 
(c) NCMS 

 
(d) CS 

Fig. 20. The motor torque of different strategies.  

To verify the effectiveness of the proposed logic car-

following algorithm, we simulate a car-following scenario. The 

logic car-following algorithm of NCMS under collision 

avoidance constraints is verified under the 4 km road scenario, 

as shown in right half of Fig. 24. This road is taken from a 

suburban highway near Laoshan in Nanjing, China. We set that 

the initial speed of the host vehicle is 17 m/s. At 150 m along 

the road, there is a preceding vehicle cruising at 15.5 m/s and 

slowly accelerating to 16 m/s at 2 km and maintaining the speed.  

Fig. 21 to Fig. 23 show the acceleration, velocity, and 

following distance of the NCMS in the car-following scenario 

with the logic car-following algorithm. It is evident that after 

the preceding vehicle enters the radar detection area of the host 

vehicle, the following acceleration of the host vehicle is 

dynamically adjusted between 𝑎𝑒  and 𝑎𝑠 , enabling the host 

vehicle to effectively avoid the occurrence of rear-end 

collisions. During the whole journey, the ecological vehicle 

velocity is not strictly followed by the host vehicle due to the 

rear-end collision avoidance constraints. However, the host 
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vehicle was able to maintain a safe distance from the preceding 

vehicle, which effectively confirms that NCMS is a practical 

and safe driving strategy. This approach can simultaneously 

meet the demands of economy, safety, and real-time driving, 

making it highly practical and promising for future applications. 

 

Fig. 21. Acceleration of NCMS in the car-following scenario. 

 
Fig. 22. Velocity of NCMS in the car-following scenario. 

 

Fig. 23. Following distance of NCMS in the car-following 

scenario. 

4.3 Vehicle-in-the-loop test  

The experimental vehicle is a modified Chery Ant, equipped 

with autonomous driving capabilities as shown in Fig. 24. The 

vehicle mainly consists of two parts: hardware and software. 

The hardware part includes four modules, namely the 

perception module, the communication module, the positioning 

module, and the computing module. For perception, a Bosch 

camera, a Delphi millimeter-wave radar, and a Hesai LIDAR 

are used to provide the vehicle with essential environmental 

information about its surroundings. The communication 

module is a mobile workstation equipped with an Intel Core i7-

7700 @ 3.6 GHz CPU and 16GB of memory. The vehicle's 

positioning primarily relies on a NovAtel GNSS/INS system. 

The communication between the mobile workstation and the 

sensors takes place over Ethernet, facilitated by a Cisco 3560 

network switch. Regarding the vehicle software, it utilizes the 

ROS network for socket-based communication, enabling 

interactions with microsimulation, sensor fusion, advanced 

motion planning, and low-level drive control modules. In this 

study, the low-level controllers run at a frequency of 35 Hz on 

the mobile workstation, whereas the high-level controllers 

 

Fig. 24. Experimental platform and test road for connected and automated vehicle. 
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operate at a frequency of 10 Hz. This hierarchical control 

architecture ensures accurate control of the vehicle's dynamic 

behavior, thereby enhancing driving safety and performance to 

a significant extent.  

In the vehicle-in-the-loop test, as shown in Fig. 24, a 4 km 

suburban highway near Laoshan in Nanjing is chosen. Note that 

the experiment is conducted between 4 a.m. and 5 a.m. on a 

certain morning. In situations with minimal to no other traffic 

participants and sufficient ambient light, which has a weaker 

impact on the energy-efficient driving of the host vehicle. Fig. 

25 displays the velocity trajectory obtained by different driving 

strategies in the vehicle-in-the-loop test. The velocity trajectory 

of the NCMS exhibits a similar overall trend to that of IMPC. 

Nonetheless, the NCMS demonstrates markedly higher average 

velocities and a more pronounced velocity increment, 

corroborating the findings observed in the preceding virtual 

simulations. The NCMS demonstrates higher velocity, leading 

to increased energy consumption, as depicted in Table 6. 

Nonetheless, the energy consumption of NCMS is merely 2.82% 

higher than that of IMPC. Notably, NCMS achieves nearly 10 

times the computational speed of IMPC when considering the 

single-step computation time based on the onboard vehicle 

controller. It is crucial to emphasize that the computation time 

mentioned in this context adheres to the real-time requirements 

of the proposed driving strategy. Moreover, the performance 

validation of NCMS and IMPC through vehicle-in-the-loop 

tests exhibits consistent trends with the simulation environment, 

providing further validation of the reliability of the simulation. 

Table 6  

Comparison of the results of NCMS and IMPC. 

Strategies 
Energy 

consumption 
Optimality Calculation time per step 

NCMS 1668.9 kJ 
-2.82% 

0.02 s 
IMPC 1623.6 kJ 0.26 s 

 

 
Fig. 25. Velocity trajectories by different driving strategies in 

the vehicle-in-the-loop test. 

5. Conclusion 

This paper proposes two real-time energy-oriented driving 

strategies, namely NCMS and IMPC. They are compared with 

DP and CS strategies in the simulation in terms of energy 

consumption and computational efficiency. The quantitative 

results demonstrate that the energy cost of the NCMS and 

IMPC can be saved by 8.23% and 11.64% respectively, when 

compared to the CS strategy, for 35 km of the experimental road. 

The latter is almost similar to the energy savings of the global 

optimal DP strategy. In addition, a vehicle-in-the-loop test 

demonstrates that the NCMS strategy is the most 

computationally efficient among all methods and maintains a 

good prospect of energy savings. The most important thing is 

that in order to ensure the real-time performance and safety of 

vehicles in real traffic conditions, a logic car-following 

algorithm is applied to NCMS with the expected results. 

In the future, we will address the lateral planning and control 

of CEV for the eco-driving problem. Due to the complex and 

dynamic nature of real road environments, necessary lane 

changes are inevitable. Therefore, exploring how to enhance 

vehicle energy efficiency through both lateral and longitudinal 

movements will become a crucial research direction. 
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