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SUMMARY
Human brain size changes dynamically through early development, peaks in adolescence, and varies up to
2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size
remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight
(BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associ-
ations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories
and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW
genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrich-
ment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide
association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related
clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways
underlying human brain size variation in health and disease.
Cell Reports 42, 113439, November 28, 2023 ª 2023 The Authors. 1
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INTRODUCTION

The size of the cerebral cortex varies approximately 100-fold

across primate species1,2 and 2-fold across adult humans.3

While metrics of total brain size have historically been as-

sessed postmortem using tissue weight or volume, highly

correlated measurements including volume and surface area

(SA) are readily quantifiable with modern non-invasive neuro-

imaging methods. Distinct from head circumference, which

plateaus around 5–7 years, total brain volume peaks during

adolescence at around 13–15 years. This growth in absolute

brain size is accompanied by an increase in the variability of

brain size among humans that also peaks in adolescence,

and arises from differential contributions of underlying tissue

types with discrete growth trajectories.4 Many studies have

demonstrated high twin-based and single-nucleotide poly-

morphism (SNP) heritability of brain morphology, with many

global brain size indices reaching above 50% (twin) and

25% (SNP) of interindividual variance explained by genetic

factors.4–7 Brain size has also been implicated in multiple clin-

ically relevant contexts, including case-control differences in

both neuropsychiatric and neurodegenerative diseases, as

well as dimensional associations with anthropometric and

cognitive traits.4,8

Large-scale neuroimaging genetic studies have begun to

determine the polygenic architecture of specific components

of human brain size, such as total volume and cortical SA, which

are highly genetically correlated.6,7,9,10 Collectively, these

studies have implicated genes that are involved in critical devel-

opmental signaling pathways (e.g., Wnt, PI3K-AKT), are highly

expressed during the prenatal period, and are related to neuro-

psychiatric and neurodegenerative disorders as well as poly-

genic traits (e.g., cognition). In addition to neuroimaging ge-

netics, progress toward identifying candidate gene sets and

related molecular processes underlying brain size has stemmed

from convergent evidence across a diverse body of work,

including transcriptome-wide association studies (TWAS) of

neuroimaging phenotypes in humans,11 blood transcriptomic

signatures of neuroimaging-derived brain size metrics in hu-

mans,12,13 and in vitro brain size-related effects in rare neuroge-

netic and cephalic disorders.14–16 In parallel, recent postmortem

brain RNA sequencing data aggregation efforts across tissue

banks, such as the PsychENCODE (PEC) project,17 have led to

the discovery of major transcriptomic signatures of brain evolu-

tion and development.18,19 Although not direct examinations of

brain size, the phylogenetic and ontogenetic dynamics investi-

gated by these studies are intertwinedwith pronounced changes

in brain size across primate species and developmental epochs.

In light of these informative prior results, we aimed to directly

investigate the functional molecular correlates of interindividual

variation in human brain size.

The current study capitalizes on the fact that a direct and ac-

curate measure of brain size—ex vivo brain weight (BW)—is

commonly quantified during postmortem autopsy across tissue

banks. We leverage reported BW and associated transcriptomic

data to perform a genome-wide analysis of transcriptomic asso-

ciations with BW, in a sample of 2,531 individuals acrossmultiple

widely accessed postmortem brain transcriptomic datasets
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(PEC discovery n = 1,670, GTEx and ROSMAP replication total

n = 861). We discover replicable associations across indepen-

dent datasets, identifying 928 genes reaching genome-wide sig-

nificance that are upregulated in individuals with higher BW (BW

positive or BW+; n = 442 genes) or upregulated in individuals with

lower BW (BW negative or BW–; n = 486 genes). These distinct

gene sets show distinct spatiotemporal and relative expression

effects (directly comparing expression of BW+ genes versus

BW– genes; STAR Methods) across non-human primates, cell

types, and neuropsychiatric disease. Moreover, using an inte-

grative multiscale approach, we pinpoint genetic regulatory

mechanisms that link transcriptomic signatures to phenotypic

variation in both neuroimaging-derived and brain-related traits.

Our comprehensive study represents a significant advance in

elucidating the molecular landscape underlying variability in hu-

man brain size.

RESULTS

Brain size is associated with differential brain gene
expression across datasets
We first confirmed the validity of postmortem BW as a proxy for

brain size. Using comprehensive lifespan neuroimaging models

of total cerebrum volume (TCV)4 and previous measurements

of average brain density,20 we found a robust relationship for

predicted versus measured BW aggregated across datasets

(n = 3,689, Pearson’s r = 0.92, p < 0.0001; Figure S1; STAR

Methods). We saw an almost identical relationship using total

cortical SA in lieu of TCV to predict BW measurements (r =

0.92, p < 0.0001). In line with many previous studies on brain

morphology, we also observed a significant difference in BW be-

tween sexes across datasets (males > females, t = 25.772, Co-

hen’s d = 0.76, p < 0.0001).

Next, we performed a transcriptome-wide differential expres-

sion (DE) analysis of interindividual variation in human BW (STAR

Methods). Multiple linear regression was used to model the

relationship between BW and gene expression (n = 25,774

genes) from RNA sequencing in postmortem brain tissue

(sampled from the frontal cortex; STAR Methods). In the discov-

ery dataset (PEC, n = 1,670 subjects), 928 genes showed signif-

icant genome-wide DE (pBonferroni < 0.05, i.e., 0.05/25,774,

p < 1.94e�6; partial r range = �0.16–0.18, absolute partial r

range = 0.05–0.18; Figures 1A and S1; Table S1; STAR

Methods). Of these genes, 442 exhibited a positive association

with BW (i.e., gene expression tended to be greater in individuals

with higher BWs), while 486 genes exhibited a negative associa-

tion with BW (i.e., gene expression tended to be greater in indi-

viduals with lower BWs). These prioritized genes are henceforth

referred to as BW+ and BW– genes, respectively. The large ma-

jority of both BW+ (n = 379, 86%) and BW– (n = 467, 96%) gene

sets had higher than average expression across individuals (Fig-

ure S4), with a small percentage of BW genes showing the oppo-

site pattern—BW+ and BW– genes having lower expression

across individuals with higher or lower BW (n = 69, 14% and

n = 19, 4%, respectively). Restricting our analyses to the top ex-

pressed genes across subjects (n = 15,634 genes CPM > 1) also

showed consistent results (786 [85%] of significant genes over-

lapping). Overall, these results suggest that the DE reflected by
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Figure 1. Differential expression of genes

associated with an increase or decrease in

brain weight across PsychENCODE subjects

(A) Miami plot showing the relationship between

brain weight (BW) and expression across all genes

(depicting –log10 scaled p values multiplied by the

sign of the t value effect), ordered by chromosome.

Dashed lines represent the genome-wide signifi-

cance threshold (pBonferroni < 0.05). For visualiza-

tion, the top ten genes are labeled for both BW

positive (BW+, blue) and BW negative (BW–, red)

sets.

(B) Trajectories of median expression of BW– and

BW+ gene sets across development, using the

BrainSpan atlas. Black vertical dashed lines

represent neuroimaging-derived milestones, high-

lighting the critical period of gray matter volume

(GMV) and white matter volume (WMV) differentia-

tion (shaded area). This period delineates the time

when GMV and WMV are equal until the peak dif-

ference between GMV and WMV. The BW-associ-

ated gene sets show opposing developmental

trajectories, intersecting when the rate of total ce-

rebrum volume (TCV) growth peaks, around 6

postnatal months. Shaded area around trajectories

denotes 95% confidence intervals.

(C) Plots of the brain surface showing the differen-

tial spatial patterns of the suprathreshold genes

(from A) in the Allen Human Brain Atlas (AHBA).

Colors denote the rank (from lowest to highest) of

cortical regions in terms of median expression of

genome-wide significant genes. AHBA probes

were resampled from native coordinates to a

cortical parcellation (STAR Methods).

(D) Left: cortical map of regions showing significant

BW+versusBW–gene expression (pBonferroni < 0.05)

in the AHBA, i.e., the statistical comparison of the

maps in (B). Right: box-violin plots showing the

distributions of diverse multimodal neuroimaging

maps across the significant BW+ and BW– regions

(see key resources table and Figure S6). For all

scaling maps, local/regional surface area was modeled as a function of total cortical surface area across species (evolution), human development, and human

subjects (population). All box-violin plots show median and interquartile range (IQR) with whiskers denoting 1.5 3 IQR.
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the BW+ and BW– gene sets can be interpreted as opposing ef-

fects of actively expressed genes.

We performed multiple sensitivity analyses across the PEC

dataset, showing highly convergent results (Figure S4). First,

using a Freedman-Lane permutation test21 to assess robust-

ness to a nonparametric hypothesis test where transcriptomic

data were permuted across individuals, all 928 BW genes re-

mained significant (all pBonferroni < 0.05, 25,000 permutations).

In addition, the total number of significant BW genes was

greater than the number of BW genes under the null hypothesis

(p < 2e�6, 25,000 permutations). Next, using a cell-type de-

convolution approach with combined reference single-cell

sequencing datasets,22 we found that interindividual variability

in the proportion of neurons (which approximates neuron den-

sity) was not significantly related to BW (t = �1.54, p = 0.12). In

addition, when including principal-component scores based on

genotype (to account for possible ancestry effects) in the BW

gene models in the PEC sample, 619 of the BW genes re-

mained significant (pBonferroni < 0.05), with a high correlation
to original model coefficients (r = 0.92, p < 0.0001; Figure S2).

Furthermore, there are known inter-relationships between brain

size and anthropometrics,23 which we observed in our data be-

tween BW and height, as well as between BW and body weight

(n = 1,206; partial r2 from regression model = 0.09 and 0.03,

respectively; both p < 0.0001). Consistent with these significant

but relatively low effect sizes, BW models including height and

weight as covariates (available only in a subset of individuals)

were highly correlated to the original models (cross-gene corre-

lation, r = 0.89, p < 0.0001; Figure S2). Comparing genes with

significant associations (pBonferroni < 0.05) across BW and an-

thropometrics supported the existence of specific associations

with BW—507 of 928 genes were not significant for height or

weight (Figure S2).

To further examine the role of age in the BW expression results

in the PEC dataset (age range = 0–90 years, median = 53 years,

standard deviation = 21.2 years), we performed a post hoc asso-

ciation analysis to examine the interaction between BW and age

on expression for each gene. An additional 222 genes showed
Cell Reports 42, 113439, November 28, 2023 3
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significant (pBonferroni < 0.05) BW-by-age interaction effects

(linear or quadratic age terms). There were 130 genes with pos-

itive coefficients denoting the effect of BW on expression

increasing with age, and 92 genes with negative coefficients de-

noting the effect of BW on expression decreasing with age (Fig-

ure S3). In contrast to the defined BW gene sets, whose expres-

sion shows positive (BW+) or negative (BW–) associations with

BW across the lifespan, these gene sets identified for having sig-

nificant age interaction effects show an opposite effect in early

life. Specifically, genes with positive interactions initially show

a negative relationship between expression and BW in early

life, and then positive relationships across older age bins;

whereas genes with negative interactions initially show a positive

relationship between expression and BW in early life, and then

negative relationships across older age bins. Thus, we find

genes whose changing expression patterns are differentially

related to BW across the lifespan. These genes are detailed in

Table S1.

Furthermore, a meta-analytic approach examining the 733/

928 significant BW genes available in two replication datasets

(GTEx: n = 227 subjects, n = 1,327 samples across 12 brain re-

gions, STAR Methods; ROSMAP: n = 634 subjects and sam-

ples, all frontal cortex) revealed highly similar BW gene sets:

329/733 PEC BW genes were nominally significant (uncorrec-

ted p < 0.05; weighted Sime’s method24) compared with

approximately 37 genes that would be expected to replicate

by chance under the null hypothesis of no association.9 In addi-

tion, combining the discovery and replication datasets revealed

highly similar BW gene sets to those identified by the discovery

dataset alone (weighted Sime’s method: 733/733 overlapping

genes, pBonferroni < 0.05), with an additional 116 genes meeting

significance under the combined framework (pBonferroni < 0.05;

Table S1).

We performed additional assessments of replicability in addi-

tion to themeta-analytic approach for replicating the PEC results

in GTEx and ROSMAP. Rank-rank hypergeometric overlap25

analysis confirmed significant replication in both datasets:

GTEx (n = 227 subjects; Spearman r = 0.39, p < 0.0001; 417/

846 significant overlapping genes) and ROSMAP (n = 634 sub-

jects; Spearman r = 0.34, p < 0.0001; 525/847 significant over-

lapping genes).

Brain size-associated genes have distinctive
neurodevelopmental and anatomical profiles
Comparing BW+ and BW– genes revealed opposing neurodeve-

lopmental trajectories in tissue samples spanning the prenatal

period through young adulthood in the BrainSpan atlas26 (Fig-

ure 1B). Moreover, the BWsets showed striking overlapwith pre-

viously defined gene sets based on developmental trajectory

across the perinatal period in an independent dataset with dense

prenatal sampling (BW+ and ‘‘rising’’ genes, BW– and ‘‘falling’’

genes; Figure S3,27). For example, OPALIN (BW+ gene) was

the highest-ranked rising gene based on the slope of expression,

and SOX11 (BW– gene) was the fourth highest-ranked falling

gene. The fact that neither BW gene set was relatively highly

expressed just after birth, at the peak of overall brain growth

and during a critical period of constituent tissue class differenti-

ation (Figure 1B), is consistent with previously established find-
4 Cell Reports 42, 113439, November 28, 2023
ings of low overall gene expression variation after the late-fetal

transition.18

In line with the neurodevelopmental results, BW+ and BW–

gene sets revealed opposing spatial topographies of average

gene expression in densely sampled postmortem adult human

brain tissue (Figure 1C),28 with BW+ genes showing high expres-

sion in association cortical regions and BW– genes showing high

expression in sensorimotor and paralimbic/limbic cortical re-

gions. Thereforewe computed amap of relative expression differ-

ences, comparing BW+ versus BW– genes across cortical

regions. Out of 177 cortical regions with sufficient samples

(STAR Methods), 115 (65%) showed significantly greater relative

expression of either BW+ or BW– gene sets (two-tailed t test per

region, pBonferroni < 0.05 across regions). Out of 12 subcortical

regions, 10 showed significant BW– relative expression differ-

ences (Table S2). These differences in BW+/� relative expression

demonstrated extreme regional divergence and were far greater

than expected by chance given the number of BW+ and BW–

genes (ppermutation < 0.0001). Moreover, these regions of signifi-

cant BW+/� relative expression (Figure 1D, left) showed different

patterns of correspondencewithmultiplemaps of brain organiza-

tion, function, and disease (all pspin < 0.05; Figure 1D, right)—

including axes of fine-grained cortical SA expansion,29,30 aerobic

glycolysis,31 myelin-related topography,32 cognitive function,33

tau distribution in Alzheimer’s disease (AD) patients,34 and tumor

location frequency across patients with glioblastoma and low-

grade glioma.35 In addition, the BW+/� relative expression map

was robust to an alternative cortical parcellation (Figure S3),

and regions with high relative expression of BW genes showed

greater morphological effects across diagnostic categories and

showed differential patterns of neurodevelopmental growth.

Specifically, the spatial topography of BW+/� relative expression

was correlated with regional SA alterations across neuropsychi-

atric disorders (r = 0.52, p = 0.0017, ppermutation < 0.0001,

pspin < 0.000136); as well as regional variation in the age at peak

gray matter volume during neurodevelopment (r = �0.47, p =

0.0046, ppermutation < 0.0001, pspin < 0.00014).

Cortical regions with BW+/� relative expression differences

were also affiliated with specific neurophysiological, functional,

and cytoarchitectonic classes. Using available spatially compre-

hensive positron emission tomography (PET) neuroradiography

data,37 areas of high relative expression of BW– genes showed

greater densities of dopaminergic and serotonergic receptors

comparedwith areas of highBW+ relative expression (Figure S4).

Moreover, there was an abundance of BW– regions in primary

sensory cortices containing short distance (<80 mm) white mat-

ter fibers as estimated with diffusion MRI, and an abundance of

BW+ regions in higher-order association cortices with long

distance white matter fibers (Figures S4 and S5). This aligns

with previous neuroimaging genome-wide association studies

(GWASs) that have identified axon guidance molecules

(SEMA3D and ROBO3) associated with diffusion MRI pheno-

types of the crossing pontine tract9—a nexus of both intra-cere-

bellar long-range corticopontine fibers. Relatedly, a 3D-recon-

structed Merker-stained postmortem human brain38 revealed a

highly diverging laminar architecture of relative cell density, but

not relative thickness, in layer IV for BW– regions and layers

V/VI for BW+ regions,39 a pattern which was also validated using
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spatial RNA sequencing data (Figure S5).40 Collectively, these

results are aligned with century-old observations on cytoarchi-

tectonic variation across the cerebral cortex,41 demonstrating

the convergence of BW– regions with the relatively small number

of regions in ‘‘heterotypic’’ cortex and BW+ regions with the

more abundant canonical ‘‘homotypic’’ six-layered cortical re-

gions (Figure S5).

Brain size-associated genes show cross-species and
cell-type specificity
Genes that are positively associated with variability in brain

size among humans may also be implicated in brain size on an

evolutionary timescale. Using data from a parallel cross-species

study in humans and non-human primates (http://evolution.

psychencode.org/; STARMethods; n = 16 regions; n = 6 humans

[H], not included in main analyses; n = 5 chimpanzees [C]; n = 5

macaques [M]),19 we sought to determine whether phylogenetic

variability in brain size (PBS+ = H > C > M; PBS– = H < C < M)

was associated with DE in BW genes across species. Across

brain regions, 726 genes showed patterns of interspecies DE in

accordance with PBS (pBonferroni < 0.05), and over 60% of genes

previously identified as differentially expressed in humans42

showed specific PBS directional effects (STAR Methods). We

found a general consistency between overlapping BW and PBS

genes (n = 366 significant gene-by-region effects, n = 110 unique

genes) such that BW+ aligned with PBS+ and BW– aligned with

PBS-, respectively (73% congruence, ppermutation < 0.0001; Fig-

ure 2A). Considering all homologous genes across species, we

found that there was a moderate but significant relationship be-

tween BW effect size and PBS effect size (Spearman r = 0.19,

ppermutation < 0.0001). However, it is interesting to note that, inma-

caques, there were no regions with significant BW+ relative

expression (Table S2),43 which is consistent with previous results

showing human-specific expansion of association cortical re-

gions29 (where BW+ genes show greater relative expression dif-

ferences in humans; Figure 1D).

If the neurodevelopmental trajectories of BW+ and BW– genes

differ between humans and non-human primates, we would

expect to see differences between species in BW+/� relative

expression. We leveraged established DE statistics between hu-

mans andmacaques19 to assess whether there were differences

in BW+/� relative expression across brain regions and develop-

mental epochs were similar across species. Greater numbers of

BW– genes were differentially expressed during the prenatal

epoch and greater numbers of BW+ genes were differentially

expressed in the postnatal epochs in humans compared with

macaques (Figure 2B). Although there were more differentially

expressed BW+ genes in the early postnatal period in humans

(Figure S6), there was a small number of exceptions to the gen-

eral pattern observed in the prenatal period (generally BW– pre-

dominant) and the adult period (generally BW+ predominant).

Specifically, the striatum and thalamus showed more BW+

differentially expressed genes prenatally, and the hippocampus

showed more BW– differentially expressed genes in adult hu-

mans. This relative heterochronicity in the abundance of BW

differentially expressed genes in non-cortical brain regions could

reflect the protracted neurogenesis of adult hippocampal

compared with thalamic neurons.45 Overall, these results sug-
gest that BW gene sets are enriched for genes that show diver-

gent expression in humans compared with non-human primates,

with BW– and BW+ genes showing increased expression in early

and late periods, respectively (where each set is most highly ex-

pressed across human development).

We hypothesized that BW+/� relative expression differences

could be related to the relative abundance of specific cell types

among brain regions and across developmental and evolutionary

timescales. In single-cell (fetal) and single-nucleus (adult) RNA

sequencing data18 in macaques http://evolution.psychencode.

org/ and humans http://development.psychencode.org/, there

was greater BW– expression compared with BW+ expression

across most macaque prenatal cell types and all human prenatal

cell types, including human-specific progenitor cell subtypes

(Figures 2C and S6). Overall, in both species, there were fewer

adult cell types with BW+/� relative expression differences.

Whereas BW– genes did not show any relative expression differ-

ences in adult macaques, they demonstrated greater relative

expression in human endothelial and oligodendrocyte progenitor

cells, as in their respective prenatal cell type counterparts. In both

species, BW+ genes showed greatest relative expression in

excitatory neurons (primarily supragranular layer subtypes) and

oligodendrocytes, in contrast to BW– relative expression in those

prenatal counterparts (Figures 2C and S6). These results are

consistent with spatiotemporal and laminar findings (Figure 1),

as well as the differential trajectories of human gene expression

across BW+ (low prenatal, high postnatal) and BW– (high prena-

tal, low postnatal) gene sets. This coincides with observed pro-

tracted maturation of cortical myelin4 as well as the relative

neuronal density of cortical regions with expanded supragranular

layers.41

The BW cell-type divergence is further reflected by the pre-

dominance of prenatal BW– differentially expressed cell types

within species versus a predominance of postnatal BW+ differ-

entially expressed genes across species. The human-specific

neotenic BW– DE in inhibitory neurons and astroglial cell types

is in line with the abovementioned findings of BW– relative

expression between species in the adult hippocampus—a

structure that not only is preferentially enlarged in humans rela-

tive to non-human primates46 but is also highly connected (via

specified GABAergic inhibitory circuits47) to functionally related

areas of significant BW– relative expression (see Figure 1D).

Recent work has also demonstrated the convergent roles of

inhibitory neuron and astrocyte marker genes (e.g., BW– genes

ROBO1 and AQP4, respectively) on synaptic plasticity in the hip-

pocampus, identifying a potential underlying link between brain

size and local circuit function.48,49 Independent human fetal

RNA sequencing across brain regions further suggest greater

BW– relative expression signatures in the subventricular zone

(Figure S7), which is expanded in primates50,51 and in line with

the BW– enrichment of neuronal precursor subtypes and persev-

eration of BW– enrichment in adult human inhibitory neuron

subtypes.52

Brain size-associated genes are implicated in
neuropsychiatric and neurodevelopmental disorders
Given myriad previous studies showing brain volume abnormal-

ities across a range of neuropsychiatric and neurodegenerative
Cell Reports 42, 113439, November 28, 2023 5
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Figure 2. Genes associated with BW show differential effects across species

(A) Grid plot showing BW-associated genes that are also significantly differentially expressed in humans relative to chimpanzees andmacaques (pBonferroni < 0.05),

across 16 brain regions (11 neocortical areas). These are BW-associated genes that were previously defined42 as having higher or lower expression compared with

the two species collectively, and reanalyzed to assess stepwise interspecies effects that reflect the absolute differences in brain size between species (i.e., up-

regulated implies gene expression humans > chimpanzees > macaques, while downregulated implies gene expression humans < chimpanzees < macaques).

Triangles represent directions of effects and colors denote the respective BWgene set. Genes that are highlighted show congruent directional effects in respective

BW sets (i.e., BW+ and upregulated in humans, and vice versa).

(B) Brain plots of differences in counts of number of BW+ or BW– genes that were defined to be significantly differentially expressed in humans relative to

macaques each of three developmental epochs—a positive regional difference (blue) indicates that BW+ genes tend to be upregulated in humans in that region in

a given developmental epoch, while a negative difference (red) indicates that BW– genes tend to be upregulated. The same 16 regions from (A) are shown

anatomically, based on manual assignment using a common human atlas.44

(C) Differential expression of BW+ versus BW– genes across individual cell types, using cell-specific RNA sequencing data in fetal and adult samples from

macaques (left) and humans (right). BW– relative expression (red) indicates that BW– genes are more highly expressed in that cell type compared with BW+,

whereas BW+ relative expression (blue) indicates the opposite effect. Black outlines denote significant effects (pBonferroni < 0.05). Circles are scaled according to

Bonferroni-corrected p values. Black rectangles denote human-specific effects relative to macaques. V1C, primary visual cortex; M1C, primary motor cortex;

S1C, primary somatosensory cortex; A1C, primary auditory cortex; ITC, inferior temporal cortex; IPC, inferior parietal cortex; STC, superior temporal cortex; OFC,

orbitofrontal cortex; VFC, ventrolateral frontal cortex; DFC, dorsolateral frontal cortex; MFC, medial frontal cortex; STR, striatum; MD, medial dorsal thalamus;

AMY, amygdala; HIP, hippocampus; CBC, cerebellar cortex. Astro, astrocytes; Endo, endothelial cells; ExN, excitatory neurons; InN, inhibitory neurons; NasN,

nascent neurons; Oligo, oligodendrocytes; OPC, oligodendrocyte precursor cells.
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disorders, we predicted that BW– expression associations

would be related to DE statistics from postmortem brain case-

control studies of these conditions. Akin to genetic correlation

analysis—where overlap between significant loci from GWAS

does not necessarily imply an overall genetic correlation be-
6 Cell Reports 42, 113439, November 28, 2023
tween two traits (or vice versa)—we would expect to observe

‘‘transcriptomic correlations’’ of DE statistics across all genes

if relative patterns of DE are similar (or opposing) between these

phenotypes.53 Across shared genes in each condition (n = 4,226

genes), there were significant gene-level correlations between
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PEC BW– expression statistics and DE statistics from previous

studies on neuropsychiatric53 and neurodegenerative54,55 disor-

ders (Figure 3A). Specifically, positive correlations were found

with alcohol abuse disorder, whereas negative correlations

were found with Parkinson’s disease, AD, autism spectrum dis-

order (ASD), bipolar disorder (BD), and schizophrenia (SCZ), with

no significant correlation with inflammatory bowel disease—a

non-neural control. The direction of correlation related to the

proportion of intersecting significant BW and DE genes (both

thresholded pFDR < 0.05) showing either convergent (positive

correlation = BW/DE +/+ or �/�) or divergent (negative correla-

tion = BW/DE +/� or �/+) effects, with five disorders showing

significant BW-DE alignment scores (all ppermutation < 0.001; Fig-

ure 3B). Moreover, we identified a subset of 36 BW-DE genes

shared across disorders showing divergent BW-DE alignment

(AD, ASD, BD, SCZ; Figure 3C). This subset of BW-DE genes

was almost perfectly separated in terms of the direction of effect,

such that BW+ genes were downregulated and BW– genes were

upregulated in patient tissue (Figure 3C). In supplemental ana-

lyses, we also derived a cumulative BW transcriptome score,

which showed case-control differences across diagnostic cate-

gories (Figure S7). Consistent with the spatial alignment between

the map of BW+/� relative expression and tau-PET (Figure 1D),

the cumulative transcriptome score was also associated with

indices of tau and amyloid neuropathology in patients with de-

mentia in the independent ROSMAP dataset (supplemental

information).

Furthermore, functional gene ontology enrichment analysis of

the BW gene sets aligned with disease DE signatures. BW+

genes showed significant enrichment for axonal and synaptic

functions, including ion channel signaling, and BW– genes

showed significant enrichment for neurogenesis/organogenesis

and abnormal developmental physiology (Figures 3D and S8;

Table S3). Additional analysis using the Synaptic GO (SynGO)

database57 https://www.syngoportal.org/ yielded specific syn-

apse-related enrichments for both gene sets (cellular component

[BW+]: postsynaptic cytoskeleton [pFDR = 0.032]; cellular

component [BW–]: postsynaptic ribosome [pFDR = 4.64e�4],

presynaptic ribosome [pFDR = 0.021]; biological process [BW+]:

synaptic vesicle exocytosis [pFDR = 0.037]; biological process

[BW–]: translation at postsynapse [pFDR = 0.037], translation

and presynapse [pFDR = 0.037]).

In addition to the gene ontology analyses, BW genes showed

enrichment across multiple modules derived from gene co-

expression networks in the PEC dataset58 (Figure S9), indicating

that BW genes are significant components of transcriptional reg-

ulatory programs, some of which may be cell-type specific.

In alignment with the cell-type enrichment results described

above, we found module-specific enrichments of BW– genes in

‘‘geneM3’’ (related to astrocytes) and of BW+genes in ‘‘geneM1’’

and ‘‘geneM2’’ (related to neuronal/synaptic signaling and oligo-

dendrocytes, respectively). Using gene co-expression modules

derived In the ROSMAP cohort,59 we found module-specific en-

richments of BW– genes in ‘‘m107’’ (related to astrocytes) and of

BW+ genes in ‘‘m23’’ (related to neuronal/synaptic signaling)

(Figure S9; Table S4; STAR Methods). Moreover, we found

enrichment of BW– genes in ‘‘m109’’, which was shown in prior

work59 to be linked to cognitive decline and multiple indices of
neuropathology (FigureS9). Further gene set enrichment analysis

using independent RNA sequencing data acrossmultiple tissues

from the Human Protein Atlas60 yielded significant enrichment of

BW+genes in theadult cerebral cortex versusenrichment ofBW–

genes in female reproductive tissues (Figure S10), which aligns

with the high prenatal expression of BW– genes.

To examine the landscape of rare genetic variation in BW gene

sets, hypothesized to be associated with neurodevelopmental

disorders, we leveraged two metrics of mutational constraint

derived from public databases of whole-exome sequencing and

de novo mutations.61,62 We found that BW– genes, and not

BW+ genes, were significantly enriched for intolerance to loss-

of-function (protein truncating) variation (Figure S10). Using previ-

ously defined gene sets of high dosage sensitivity (n = 2,987 hap-

loinsufficient; n = 1,559 triplosensitive), we found a significant

bidirectional enrichment (c2 = 6.1534, p = 0.0131, ppermutation =

0.0047; Figure S10), with greater overlap in BW– and haploinsuf-

ficient genes and between BW+ and triplosensitive genes.63

Moreover, BW– genes showed greater overlap with documented

pathogenic de novo developmental mutations (BW– odds ratio

[OR] = 1.46, ppermutation = 0.008; BW+ OR = 0.83, ppermutation =

0.31), which are associatedwith abnormalities of brain and cogni-

tion, head size, facial, gastrointestinal, and reproductive systems

(all ppermutation < 0.05; Figure S10).

Brain size-associated transcription is regulated by
genetic variants
The genetic regulation of the transcriptome is one factor that

could contribute to interindividual variability in brain gene

expression and brain size. We used multiple approaches to

distinguish the influence of germline genetic variation on BW

transcripts from reactive or secondary gene expression changes

due to environmental events. First, leveraging individual-level

transcriptome and genotype data from subjects in PEC as the

reference dataset, we performed a TWAS of structural neuroi-

maging phenotypes in the UK Biobank (n = 21,936), normalized

using BrainChart,4 to assess the degree to which BW gene sets

overlapped with significant genes across neuroimaging TWAS.

In general, BW genes significantly overlapped with 29 transcrip-

tome-wide significant global (ppermutation < 0.01) and 124 unique

transcriptome-wide regional (ppermutation < 0.05) genes associ-

ated with multimodal neuroimaging phenotypes (using a TWAS

threshold of pBonferroni < 0.05 across regions and phenotypes

to establish significant gene sets). Specificity analysis across

neuroimaging phenotypes did not reveal any significant differ-

ences in BW gene set overlap or enrichment. For TCV and

cortical SA, two of the phenotypes whose models accurately

predicted BW, 21 genes reached genome-wide significance

(pBonferroni < 0.05) with 15 shared between both phenotypes

and an additional 6 significant only for SA. Fourteen of these

shared genes were not identified in previous TWASs of related

phenotypes—intracranial volume and total brain volume.11,64

Of these 15 significant shared genes, 2 genes (PRR13, EGFR)

overlapped with BW gene sets (OR = 3.07, ppermutation =

0.0053), and an additional 7/13 genes (LRP11, INPP5F,

ERBB3, EML2, SUOX, GINM1, CCT7P1) were members of

PEC co-expression modules significantly enriched for BW genes

(see previous section). Sensitivity analysis (conducted with an
Cell Reports 42, 113439, November 28, 2023 7
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Figure 3. BW gene sets are differentially enriched across disease and functional domains

(A) Matrix of transcriptomic correlations of differential expression (DE) statistics in multiple human diseases and BW statistics in the PsychENCODE dataset.

Pairwise Pearson’s r coefficients were computed across overlapping genes between datasets (n = 4,226)—only significant (pBonferroni < 0.05) values are plotted.

Autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD), Parkinson’s disease (PD), alcohol abuse disorder

(AAD), Alzheimer’s disease (AD). Inflammatory bowel disease (IBD) was included as a non-neural control.

(B) Plot showing the alignment of BW and DE genes within each disorder. Intersecting lists of significant BW and DE genes (both pFDR < 0.05) were categorized as

‘‘convergent’’ or ‘‘divergent’’ based on the concordance of the directions of effects, then Z scored according to a null distribution based on 10,000 resamples of

BW gene sets of similar size (gray box-violins). Circles are sized according to the number of DE genes and colored according to values in (A). Asterisks denote

significant (ppermutation < 0.001) Z scores.

(C) Grid plot showing 36 significant BW and DE genes (DE and BW pFDR < 0.05) in patients with AD, BD, SCZ, and ASD. Triangles represent directions of effects

(up- or downregulated in patients compared with controls) and colors denote the respective BW gene set.

(D) Grid plot showing significant (pFDR < 0.05, reduced for visualization, see Table S5) Gene ontology enrichment of BW-associated genes for biological processes

(circles) and cellular components (squares) using ToppGene.56 Shapes are sized and ordered (high-to-low) according to adjusted negative log-scaled p values.

All box-violin plots show median and IQR with whiskers denoting 1.5 3 IQR.
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Figure 4. Functional relevance of genes

associated with BW

(A) Left: lollipop plot showing MAGMA65 enrichment

statistics for BW gene sets across GWASs of 12

multimodal neuroimaging phenotypes we generated

in the UK Biobank dataset (STAR Methods). Black

lines representvarioussignificance thresholds.Black

outlines denote suprathreshold effects (at least un-

corrected p < 0.05). No significant effects were

observed for the BW+ gene set. Right: enrichment of

BW– genes for regional surface area and graymatter

volume across 180 cortical regions (the same par-

cellation as in Figure 1; STAR Methods). Black

outlines denote significant areas of enrichment

(pFDR < 0.05 shown for visualization, see Table S10).

(B) Alluvial diagrams representing the concordance

between BW genes (pBonferroni < 0.05) and multi-

variate multiple quantitative trait loci71 with genome-

wide significant association with brain-related traits.

SNP, single-nucleotide polymorphism; FDR, false

discovery rate.
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uncorrected p < 0.05 for TWAS genes) also demonstrated signif-

icant enrichment of TCV and SA genes, with 40 genes overlap-

ping with BW gene sets (OR = 9.21, ppermutation < 0.0001).

Supplemental analyses with a wide range of neuroimaging phe-

notypes including diffusion MRI measures (Figure S11), at both

whole-brain and regional scales, also demonstrated significant

overlapwith BWgenes (pBonferroni < 0.05; see supplemental infor-

mation; Table S5).

To further evaluate the genetic influence of BW gene sets on

other phenotypes, we leveraged >2,300 GWAS summary statis-

tics across micro- and macro-structural neuroimaging pheno-

types.10 Using established gene set enrichment methods

(MAGMA65), competitive enrichment analyses of multimodal

global neuroimaging phenotypes (averaged or summed across

regions) revealed a strong and specific link of BW– genes to brain

size (cortical SAandvolume) but notbrain compositionmeasured

via diffusion MRI (Figure 4A; Table S6). Interestingly, we did not

find enrichment of BW gene sets with recent large-scale GWAS

of height,66 bodymass index,67 or head size (head circumference

and intracranial volume),68–70 which could either indicate insuffi-

cient statistical power for current head size GWAS or suggest a

specificity to brain parenchyma size (Table S6). Based on BW–

gene set enrichment in GWAS of morphological phenotypes

(cortical SA and volume), post hoc analysis revealed a spatially

patterned enrichment of BW– genes in GWAS of specific cortical

regions (Figure 4A; Table S6). Remarkably, cortical regions

showing significant BW– gene enrichment in SA GWAS overlap-

ped with regions with high BW– relative expression as shown in

Figure 1D (OR = 6.17, p = 1.14e�5, pspin < 0.0001), but did not

overlap with regions with high BW+ relative expression (OR =

0.61, p = 0.14, pspin = 0.94). These brain regions with significant

BW– gene enrichment in SAGWAS also showed significant over-

lap with established regions of hypo-allometric scaling (OR =

3.98, pspin < 0.0001; using maps of allometric [non-linear] scaling
Cell
of regions with total brain size across pop-

ulation, evolutionary, and developmental

scales). Collectively, these results inte-
grate neuroimaging maps of local nonlinear scaling with brain

size, the genetic regulatory signatures of brain size-related

morphology, and the spatial differential gene expression underly-

ing brain size variation.

Finally, we used recently published multivariate multiple quan-

titative trait loci (mmQTLs) derived from the same three cohorts71

used in the current study to triangulate genetic variants (i.e.,

SNPs) that may influence brain-related traits via an impact

on regulating expression of BW genes. Thus, we were able to

identify eight BW– genes (EGFR, FARP1, HAUS4, ID4, IP6K2,

PRMT6, SARM1, TRIOBP) and four BW+ genes (FAM134A,

RP11-660LI6.2, STAT4, THBS4) with mmQTLs associated with

brain-related traits including educational attainment, impulsivity,

and psychotic disorders (Figure 4B). Of these, BW– genes ID4,

IP6K2, and TRIOBP showed evidence of pleiotropy across mul-

tiple brain-related traits, and expanded analysis across all stud-

ied traits showed additional pleiotropic associations between

both BW gene sets and multiple anthropometric and metabolic

domains (Table S7).

A brain size transcriptomic score is associated with
disease pathology and clinical outcomes in healthcare
system data
Inspired by recent work on the integration of transcriptomic data

and polygenic indices,72 and based on the overlap of BW gene

setswith differentially expressedgenes in patientswith neuropsy-

chiatric disease, we developed a BW– transcriptome score—

calculated for each individual as the linear combination of

weighted gene expression (i.e., sum of expression across genes

weighted by the PEC BW model coefficients). Using all available

genes, this cumulativePECBW– transcriptomescorewaspredic-

tive of BW in the replication samples (GTEx partial r = 0.19, p =

0.0266;ROSMAPpartial r =0.17,p=1.44e�5;FigureS7), demon-

strating similar out-of-sample prediction as polygenic scores
Reports 42, 113439, November 28, 2023 9



Figure 5. Phenome-wide association study

of a BW transcriptomic index in the Mass

General Brigham Biobank

Manhattan plot of the associations between BW

transcriptomic index and 1,482 medical outcomes

defined by ‘‘phecodes’’ in theMassGeneral Brigham

Biobank, estimated with logistic regression in up to

37,272 patients. Associations are represented as

triangles, where an upward-facing triangle denotes a

positive relationship, while a downward-facing tri-

angle denotes a negative relationship. The x axis

refers to the statistical significance of the association

(plotted as –log10 p values), the y axis refers to the

category of disease/disorder, and the dashed line

denotes the pBonferroni < 0.05 significance threshold

(i.e., 0.05/1,482 = 3.37e�5). Legibility necessitated

that some condition labels be omitted from the plot.

The complete results, including case-control record

counts, effect sizes, and standard errors, are re-

ported in Table S14.
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derived from GWASs of structural neuroimaging phenotypes in

much larger cohorts.73 Moreover, we found this BW– transcrip-

tome score to have significant group differences across neuro-

psychiatric disorders (PEC), as well as patients with a reported

history of smoking (GTEx; Figure S12)—a well-documented co-

morbidity with deleterious effects on brainmorphology.74 In addi-

tion, considering the spatial alignment between the BW+/� rela-

tive expression and neurodegenerative disease pathology (from

tau PET), we found significant group differences in the BW

transcriptome score in patients with dementia (ROSMAP). In

ROSMAP, we implemented a linear mixed effects model frame-

work similar to the per gene BW models (STAR Methods) with

the BW– transcriptome score instead as the outcome variable

and Braak stage or amyloid as predictor variables in lieu of BW.

We found significant relationships between interindividual varia-

tion in BW– transcriptome scores and both postmortem neuro-

pathological metrics (all gene BW– transcriptome score: Braak

stage t = �2.173, p = 0.0171; amyloid t = �4.832, p = 1.71e�6).

To further investigate the clinical correlates of genetic variation

influencing BW transcription, we conducted a phenome-wide as-
10 Cell Reports 42, 113439, November 28, 2023
sociation study of patient medical out-

comes in the Mass General Brigham Bio-

bank, an independent biorepository from

a US healthcare system.75 We then used

logistic regression models to examine rela-

tionships between the BW– transcriptome

score and 1,482 case-control disease/dis-

order phenotypes in up to 37,272 individ-

uals of European ancestry. All models

included sex assigned at birth, current

age, genotyping batch, and the first 10 ge-

netic principal components as covariates.

Overall, we found that 241 phenotypes

were associated with the BW– transcrip-

tome score at pFDR < 0.05, of which 36

were pBonferroni < 0.05, with odds ratios

ranging from 0.3 to 3.1 per standard
deviation increase in the score (Figure 5; Table S8). The most

notable associations were with neurodegenerative disorders

(negative association), general mental and behavioral problems

(negative), congenital brain abnormalities and neural tube de-

fects (negative), and intellectual disability (positive). Individuals

with extreme BW– transcriptome scores in both directions also

showed worse health in many other bodily systems. They were

more likely to suffer, for example, from infertility or adverse preg-

nancy outcomes. Collectively, this integrative genomic scoring

approach, leveraging observed BW– expression associations

and imputed gene expression data, demonstrates a proof-

of-concept bridge between functional enrichments and bio-

informatic annotations of the BWgene sets with real-world trans-

lational potential.

DISCUSSION

Human brain size changes dynamically during the lifespan and

varies substantially across individuals. Using available postmor-

tem brain RNA sequencing and coupled ancillary data including
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BW from over 2,000 human brain samples, we identified hun-

dreds of genes that are differentially expressed across the BW

continuum. Our results are replicable across independent data-

sets, show evidence of specificity to BW compared with corre-

lated traits such as height and weight, and reveal many BW

genes that have not been implicated previously in imaging-ge-

netic studies of brain size-related phenotypes. Overall, genes

upregulated in individuals with larger brains (BW+) or upregu-

lated in individuals with smaller brains (BW–) showed highly

diverging spatiotemporal and cell-type-specific patterns of

gene expression, and opposing DE patterns across species

and in patients with neuropsychiatric disorders. These results

pinpoint unreported molecular features of human brain size vari-

ation, and highlight the value of integrating measurements of

brain morphology with postmortem transcriptomics.

The opposing developmental trajectories of BW gene sets,

such that the expression of BW+ genes generally increases

with age while that of BW– genes decreases with age, are highly

suggestive of functional differences between these genes and

their relationship with brain size. The difference in developmental

trajectories of BW+ and BW– genes is corroborated by the

anatomical convergence between the BW+/� relative expres-

sion map in the Allen Human Brain Atlas (AHBA) and the topog-

raphy of volumetric growth during human development.4 We find

that brain areas with higher BW+ relative expression (frontal, pa-

rietal, temporal cortices) undergo protracted maturation with

peak volume occurring later in life, while brain areas with higher

BW– relative expression (insula, sensory cortices) achieve peak

volume earlier in development. Moreover, the cross-species

relative expression patterns in BW gene sets collectively mirror

the expression differences observed in humans relative to non-

human primates,19 with greater differences in the prenatal and

late postnatal periods. BW– genes showed greater relative

expression differences across both brain regions and cell types

during the prenatal epoch—and these differences showed more

pronounced expression in humans compared with macaques—

which may be explained by BW– genes’ significant enrichment

for molecular pathways involved in overall organismal growth

and neurogenesis in particular. Notably, ID4, a BW– gene that

functions as a transcriptional regulator, was previously impli-

cated as part of a human-specific neural progenitor class

showing earlier and higher expression in human fetal develop-

ment compared with mice, and Id4-deficient mice also exhibit

decreased brain size and mistimed neurogenesis.76,77 In

contrast to BW– genes, BW+ genes showed relative expression

differences across brain regions and cell types during postnatal

periods (differences that were, again, more pronounced in hu-

mans relative to macaques). Of particular note, the BW+ cell

membrane protein-encoding gene FREM3 has been shown to

have human-specific expression in deep cortical layer III gluta-

matergic neurons and distinct relationships with morphological

and electrophysiological properties relative to other supragranu-

lar genes.78 The functions of FREM3 and the BW+ gene MBP,

which is critical for myelination of white matter tracts, pinpoint

a potential role of BW+ genes in the origination of long-range

cortical feedforward projections that emerge during childhood.79

The aforementioned spatiotemporal associations demon-

strate the critical link between BW– genes and brain growth dur-
ing dynamic periods of human neurodevelopment, well before

peak brain size is reached. Thus, BW– genes can be interpreted

as being both highly expressed in individuals with lower BW and

when the brain is smallest. As only postnatal data were available

to initially define the BWgene sets, the limited prevalence of high

expression of BW– gene transcription in specific cell types later

in life suggests that overall brain size is heavily influenced by crit-

ical periods of neuronal proliferation and migration when BW–

genes are highly expressed. This hypothesis is in line with the

finding of BW– relative expression differences in distinct post-

natal cell types in humans relative to non-human primates,

including inhibitory neurons in cortical layer IV. Notably, the

AHBA BW+/� relative expression map and respective bio-anno-

tations—against cytoarchitectonic, connectivity, and spatial

expression data—further support the relationship between

BW– genes and cortical layer IV. Previous work has demon-

strated the potential role of protocadherins in the specification

of layer IV identity in mice,80 and eight protocadherin family

genes were identified within the BW– gene set (and none in the

BW+ set). This gene superfamily is involved with dendritic arbor-

ization and synaptic functioning, with evidence of broader devel-

opmental roles in programmed cell death and interneuron posi-

tioning in the cortex,80,81 and has been implicated in a number of

neuropsychiatric and neurodegenerative diseases.82

There was direct evidence that BW genes are relevant to hu-

man disease. Intriguingly BW+ genes tended to be downregu-

lated, while BW– genes tended to be upregulated, in individuals

with SCZ and AD, two disorders that are robustly associated

with decreased brain size.4 This trend was also seen in BD and

ASD, informing long-standing debates about the relevance of

mechanisms that influence brain size to the pathophysiology of

neuropsychiatric disorders in light of many shared genetic risk

factors.53,83,84 Although these BW expression associations

were identified in postmortem transcriptomic datasets, the trans-

lation of the cumulative BW– transcriptome score using imputed

expression in theMassGeneral BrighamBiobank yielded associ-

ations to diverse clinical phenotypes that aligned with the bio-

informatic annotations of BWgene sets. Notably, the relationship

between the BW– transcriptome score and general mental health

problems, intellectual disability, and neurodegenerative condi-

tions helps validate the translational potential of this approach.

Of particular interest were phenotypic relationships with

congenital brain-related anomalies, which were associated

with a negative BW– transcriptome score. While a comprehen-

sive examination of the relationship between gene dosage sensi-

tivity and mechanisms that influence brain size is outside the

scope of the current study, we did observe increased loss-of-

function intolerance as well as enrichment for known causes of

microcephaly in BW– (and not BW+) genes. Two of 12 genes

(PHC1, CEP135) involved in primary microcephaly were within

the BW– gene set,85 and recent work has also demonstrated

the causal role of BW– genes TRIM71 and EGFR in the patho-

genesis of hydrocephalus-induced and viral-induced micro-

cephaly, respectively.86,87

Despite the myriad results demonstrating a clear distinction

between the BW+/� gene sets, it is important to note exceptions

to this trend. For example, we identified multiple gene groupings

from both BW+/� sets that are affiliated with prominent growth
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signaling pathways: IGF2BP2 (BW–) and IGF2BP3 (BW–) versus

IGFBP6 (BW+); WNT2 (BW+) versus WNT4 (BW–); BMP4 (BW–)

versus BMPR1B (BW+); EGF (BW+) versus EGFR (BW–). This

molecular convergence of genes showing opposing associa-

tions with brain size points to a possible regulatory model of

brain growth whereby BW– genes in these mixed BW+/� gene

subgroups are negatively regulated by their complement BW+

genes. Under thismodel, BW– genes (enriched for neurogenesis)

may promote brain growth during early development. Thus, an

observed reduction in brain size could result from either (1) over-

expression of BW+genes prenatally (when BW– genes are highly

expressed, leading to brain growth faltering) or (2) overexpres-

sion of BW– genes postnatally (when BW+ genes are highly ex-

pressed, leading to premature degeneration). This simple regula-

tory model is in line with prior evidence on head size in children

with ASD harboring distinct rare genetic mutations.88

Limitations of the study
Some methodological aspects of the present study deserve

further consideration in future work. First, most donor samples

came from the cerebral cortex (specifically dorsolateral prefrontal

cortex). The GTEx dataset is an exception, with samples coming

from numerous cortical and non-cortical regions; however,

GTEx contains considerably fewer donors than the PEC and

ROSMAP datasets. Future work will incorporate additional brain

regions to assess variability in differential gene expression with

respect to variation in BW. Second, BW was used as a proxy for

brain size in transcriptomic analyses. Although future studies

could directly measure brain volume in addition to weight, the

linear association between BW and volume has been clearly es-

tablished. Third, given the lack of linked brain size and transcrip-

tomic data in non-humanprimate datasets, the cross-species an-

alyses herein were restricted to general inter-species differences.

Thus, although we found evidence of divergence in regional

patterning of BW+/� relative expression, it remains possible

that different genesalso control brain size in non-humanprimates.

Future work in other non-primate species (e.g., mice) with more

comprehensive accompanying phenotypic data will be critical to

extend this cross-species assessment and experimentally vali-

date the molecular pathways, cell-type specificity, and causal

roles of identified BW genes in humans. Furthermore, given the

lackofcell-specific resolution from thebulk tissue transcriptomics

and, despite our cell type deconvolution results showing an insig-

nificant relationship between estimated neuronal proportion and

BWacross individuals,wecannot fully rule out thepossible contri-

butionofcell typeproportionalityandbrainsize.Furtheranalysis in

datasets with both single-cell sequencing and brain size esti-

mates from the same individuals will be required to validate the

cell-specific findings herein. Finally, all donors for the transcrip-

tomic analyses were sampled during the postnatal period. Given

that many of our results highlight the importance of prenatal

epochs, future work using similar transcriptomic data in fetal tis-

sue will be critical for comparative analysis during early periods

of neurodevelopment.

Despite these methodological considerations, this study

comprehensively outlines the transcriptomic underpinnings of

human brain size variation and demonstrates the importance

of postmortem measurement of brain size as a quantitative trait
12 Cell Reports 42, 113439, November 28, 2023
to incorporate into transcriptomic analyses. Examined sepa-

rately or in contrast to one another, the BW+/� gene sets define

the spatiotemporal extremes of brain gene expression, charting

a molecular segregation of brain regions and developmental

epochs. Our results implicate BW genes in the expansion of

the human brain relative to non-human primates, as well as

gene expression differences observed in brain tissue from pa-

tients with neuropsychiatric and neurodegenerative disorders

with established differences in brain size. The BW– transcrip-

tome score bridges ex vivo transcriptomics and in vivo genetic

risk, highlighting the role of BW genes in both primary and

non-primary brain conditions. With ever-increasing data from

open science initiatives, parallel innovations in RNA sequencing

technology, and widespread utility of clinical genetics, the power

of leveraging phenotypic associations from readily accessible

transcriptomic datasets holds tremendous promise for future

translational studies across human traits and diseases.
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PsychENCODE human brain RNAseq Li et al.18 https://psychencode.synapse.org; http://

resource.psychencode.org/

GTEx v8 human brain RNAseq GTEx Consortium89 https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=

phs000424.v8.p2 Accession ID: 26317

ROSMAP human RNAseq De Jager et al.90 https://www.radc.rush.edu; https://

adknowledgeportal.synapse.org/

Explore/Studies/DetailsPage/

StudyDetails?Study = syn3219045

BrainSpan human brain developmental RNAseq Miller et al.26 https://www.brainspan.org

Allen Human Brain Atlas Hawrylycz et al.28 and

Arnatkeviciute et al.91
https://figshare.com/articles/

dataset/AHBAdata/6852911

PsychENCODE non-human primate brain RNAseq Zhu et al.19 http://evolution.psychencode.org

Developmental macaque RNA-seq atlas Yin et al.43 GEO: GSE128537

UK Biobank (neuroimaging+genetics) Warrier et al.10 Application 20904

Neuroimaging GWAS summary statistics Warrier et al.10 https://portal.ide-cam.org.uk/overview/483

Neuroimaging lifespan models Bethlehem et al 4 https://github.com/brainchart/Lifespan

Evolution, development, and cross-subject

‘‘population’’ allometric scaling maps

Hill et al.29 and Reardon et al.30 https://github.com/netneurolab/neuromaps

Neurotransmitter/receptor maps Hansen et al.37 https://github.com/netneurolab/

hansen_receptors

Venous density maps (VENAT) Huck et al.92 https://figshare.com/articles/dataset/

VENAT_Probability_map_nii_gz/7205960

Diffusion MRI fiber length profiling Bajada et al.93 https://balsa.wustl.edu/study/1K3l

Cognitive function map Assem et al.33 https://balsa.wustl.edu/study/B4nkg

Alzheimer disease PET maps Vogel et al.34 https://neurovault.org/collections/12296/

ENIGMA cross-disorder cortical thickness map Larivière et al.36 https://enigma-toolbox.readthedocs.io/

en/latest/pages/04.crossdisorder/index.html

Glioblastoma and low grade glioma tumor map Mandal et al.35 https://neurovault.org/images/785830/

BigBrain Amunts et al.38 https://bigbrain.loris.ca/main.php

LiBD Spatial RNA-seq Die cytoarchitektonik der

hirnrinde des erwachsenen

menschen Google Books.40

http://research.libd.org/spatialLIBD/

PsychENCODE WGCNA modules Gandal et al.58 http://resource.psychencode.org

Mutational constraint datasets (gnomAD v2.1.1) Chen et al.62 https://gnomad.broadinstitute.org

Mutational constraint datasets (DECIPHER) Firth et al.61, Collins et al.63 https://www.deciphergenomics.org

Meta-analytic multi-ancestry quantitative trait loci Zeng et al.71 https://github.com/jxzb1988/MMQTL

MGB Biobank Zeng et al.75 https://www.massgeneralbrigham.org/

en/research-and-innovation/participate-

in-research/biobank

Software and algorithms

RStudio (‘‘Ghost Orchid’’ for macOS) with

R (v.4.1.2)

Team, R.S. RStudio: integrated

development for R

https://www.rstudio.com

RNA-seq preprocessing for PsychENCODE

and GTEx

Kim et al.94 https://github.com/gandallab/C4A-network

ToppGene Chen et al.56 https://toppgene.cchmc.org

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

MAGMA de Leeuw et al.65 https://ctg.cncr.nl/software/magma

FUSION Gusev et al.95 https://github.com/gusevlab/fusion_twas

Genomic quality control Peterson et al.96 https://github.com/getian107/MGBB-QC;

https://github.com/Annefeng/PBK-QC-pipeline

FreeSurfer (v6.0.1) Fischl et al.97 https://afni.nimh.nih.gov/

AFNI Cox et al.98,99 https://surfer.nmr.mgh.harvard.edu/

ENIGMA toolbox Larivière et al.36 https://enigma-toolbox.readthedocs.io/en/latest/

neuromaps Markello et al.100 https://github.com/netneurolab/neuromaps

Lifespan brain charts Bethlehem et al.4 https://github.com/brainchart/Lifespan
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jakob

Seidlitz (jakob.seidlitz@pennmedicine.upenn.edu; seidlitzj@chop.edu).

Materials availability
d This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code is available in this paper’s supplemental information.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Validation of brain weight predictions from lifespan neuroimaging models
Brain weight data from the three primary transcriptomic datasets (N = 2,531; PsychENCODE, GTEx, ROSMAP) was combined with

additional brain weight data from the literature101 (total N = 3,689). Metrics of brain size (total cerebrum volume and total cortical sur-

face area) for each subject were predicted using life-spanning models of the two neuroimaging phenotypes.4 Subsequently, brain

weights for each subject were converted to volumes based on reported estimates of average brain density,20 and correlations

were computed with predicted brain size.

Brain weight differential gene expression analysis
All transcriptomic datasets were downloaded from accessible repositories listed in the table above, with methods described previ-

ously in the respective source citations. Briefly, the PsychENCODE ‘‘freeze 2’’ dataset consisted of uniformly processed data from six

studies: BipSeq, LIBD_szControl, CMC_HBCC, CommonMind, BrainGVEX and UCLA-ASD.94,102 Post-quality-control RNA-seq

reads were previously aligned to the hg19 reference genome with STAR 2.4.2a and gene-level quantifications were calculated using

RSEM v1.2.29. Genes were filtered to include those with >0.1 TPM in at least 25% of samples. Similarly, GTEx RNA-seq reads were

aligned to the hg19 reference genome with STAR 2.4.2a and transcript-level counts quantified with RSEM v1.2.22. Samples from

non-brain tissues and tissues with different sample preparation (cortex and cerebellar hemisphere) were removed. Additionally, sam-

ples with a history of disease possibly affecting the brain prior to filtering for features with CPM >0.1 in at least 25% of samples were

also removed. Gene-level counts were then normalized using TMM normalization in edgeR and log2-transformed to match

PsychENCODE. Each brain region was then assessed for outlier samples, defined as those with standardized sample network con-

nectivity Z scores <�3, which were removed. For the ROSMAP cohort, normalized data from previous publications was downloaded

from the link provided in the table above based on previouswork.90 RNA-seq data was aligned by Tophat v2.0 and v2.1 and transcript

enrichments were estimated with RSEM. Quality metrics were provided by Picard, which was also used to mark duplicate reads.

Within-batch normalization was conducted through quantile normalization while the between-batches normalization was conducted

through ComBat.103 Overall, 25,774 genes were included in the PsychENCODE analyses after filtering, 21,347 in GTEx (19,481 over-

lapping with PsychENCODE), and 15,083 in ROSMAP (all overlapping with PsychENCODE).

For the PsychENCODE and GTEx cohorts, code for performing the transcriptomic normalization and differential expression anal-

ysis followed a previously published approach58,94 with the addition of brain weight as an independent predictor variable (https://

github.com/gandallab/C4A-network). Per gene linearmodels were implemented for PsychENCODE, and linear mixed effectsmodels
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using the ‘‘lme4’’ package in R were implemented for the GTEx cohort with the addition of a random effect for donor (to account for

the multiple brain regions per donor). p-values for the linear mixed effects models were calculated using the likelihood ratio test, as

implemented in the ‘‘lmerTest’’ package in R. For ROSMAP, as for the GTEx dataset, per gene linear mixed effects models were im-

plemented, including covariates used for the normalization, brain weight, and a random effect of study. Cross-cohort meta-analyses

were performed at the level of gene-brain weight association statistics (beta coefficients) and empirical p-values using the ‘metap’

packing in R.

Neuroimaging data
Structural minimally processed (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) T1 and T2-FLAIR weighted data

was downloaded from the UK BioBank, and further preprocessed with Freesurfer (v6.0.1)97 using the T2-FLAIR weighted image

to improve pial surface reconstruction. The ‘recon-all’ reconstruction included bias field correction, registration to stereotaxic space,

intensity normalization, skull-stripping, and white matter segmentation. When no T2-FLAIR image was available, Freesurfer recon-

struction was done using the T1 weighted image only. Given systematic variation related to the inclusion of T2-FLAIR, this was

included as a confound variable in downstream analyses. Following reconstruction, the Human Connectome Project multimodal par-

cellation ‘‘HCP-MMP’’104 was aligned to each individual freesurfer average image and parcellated values were extracted. Recon-

struction reliability was assessed using the Euler index105 and included as a covariate in subsequent analyses.

Structural diffusionweighted imaging was obtained for both datasets. In addition toMDand FA, we ran AcceleratedMicrostructure

Imaging via Convex Optimization (AMICO) to estimate neurite orientation density and dispersion indices.106 The T1 aligned parcel-

lation template was co-registered to the diffusion weighted image using FSL FLIRT and regional values for FA, MD and the three

NODDI parameters were extracted using AFNI’s 3dROIstats function. Total sample size of the imaging dataset (to match with

imputed expression data for the transcriptome-wide association analyses, described below) was 22,387 subjects.

Neuroimaging transcriptome-wide association studies
To identify genes whose cis-regulated expression is associatedwith global and regional neuroimaging phenotypes in the UKBiobank

in vivo dataset, we performed a series of transcriptome wide association studies (TWAS) leveraging individual-level genotype and

postmortem brain expression data from PsychENCODE, described previously.58,95 Briefly, TWAS was implemented using the

FUSION software package (https://github.com/gusevlab/fusion_twas95) with custom SNP-brain-expression weights generated us-

ing the PsychENCODE dataset of 1321 unique individuals with imputed genotypes. Using the AI-REML algorithm107 implemented in

GCTA108 by the FUSION package, we first identified the subset (N = 14,750) of total expressed genes found to have significant cis

SNP-heritability in our dataset (cis-h2g uncorrected p < 0.05 within 1 Mb window around the gene body). SNP-expression weights

were calculated in a 1Mb region around all heritable genes using expression measurements adjusted for diagnosis, study, age,

age,2 RIN, RIN2, sex, tissue, PMI, 20 ancestry PCs, and 100 hidden covariates.58 Accuracy of five expression prediction models

were tested (best cis-eQTL, best linear unbiased predictor, Bayesian linear mixed model, Elastic-net regression, LASSO regression)

using the most accurate model for final weight calculations as implemented in the FUSION package. TWAS neuroimaging-associ-

ation statistics were computed using these custom weights, LD structure calculated from our PsychENCODE samples’ genotypes,

and neuroimaging data from UK Biobank as described above. For each global and regional neuroimaging phenotype, TWAS

association statistics were Bonferroni-corrected for multiple comparisons (final count N = 13,421 genes). At loci (+/� 100 kb) with

multiple significant associations, joint and conditional association analyses were further performed as implemented in the

FUSION.post_process.R script. Gene weights are available from http://resource.psychencode.org/.

Bioinformatics analyses
Spatiotemporal annotation

Spatially-comprehensive cortical microarray gene expression data from the Allen Human Brain Atlas (AHBA) was processed and

mapped to the same HCP-MMP atlas (N = 180 regions) as the previously described neuroimaging data28,91 for the purpose of as-

sessing regional expression and relative expression differences in brain weight gene sets. Three regions (‘‘MT’’, ‘‘a10p’’, ‘‘RI’’)

were removed due to inadequate sampling across donors and quality control. AHBA data was also mapped to the Desikan-

Killiany atlas (N = 34 regions) depending on the comparative maps used for spatial correlation. Additional multimodal neuroimaging,

cytoarchitectonic, and functional maps (each projected to the same abovementioned cortical parcellations) can be found in the key

resources table. Developmental RNA-seq data as well as prenatal laser microdissection microarray data from BrainSpan26 was used

for mapping age trajectories and assessing early regional relative BW expression differences (see also key resources table).

Cross-species effects

To assess relative expression differences in BW across species, we leveraged a matched human and non-human primate dataset

associated with the PsychENCODE project.19 This dataset combines tissue samples from the six adult humans, five adult chim-

panzee brains and five adult macaque brains. The dataset can be downloaded from http://evolution.psychencode.org where it is

labeled as ‘‘Adult human, chimpanzee, macaque data’’ in the ‘‘Processed Data’’/’’mRNA-seq’’ tab. The dataset is pre-harmonized

to include a consistent set of 16 cortical and subcortical brain regions with mRNA sequencing performed on 11,346 curated homol-

ogous genes. Similarly, to examine species-by-development effects, we used a second pre-curated dataset, downloadable from the

same link, labeled ‘‘Developmental rhesus and human data’’. This dataset includes tissue samples from 36 human brains (15 female,
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ages 8 post-conception weeks to 40 years, mean = 97 ± 147 post-conception months) and 26 macaque brains (8 female, ages 60

post-conception days to 11 years, mean = 36 ± 46 post-conception months) across 16 homologous cortical, subcortical and cere-

bellar brain regions. Three transient developmental brain regions were excluded (lateral, medial and caudal ganglionic eminence),

while other prenatal regions were considered equivalent to their most similar adult brain regions (e.g., dorsal thalamus tomediodorsal

thalamus, upper rhombic lip to cerebellum, etc). This was only relevant for two of 62 total brains that possessed these early devel-

opmental regions. Each brain region had mRNA sequencing for 27,932 genes. Phylogenetic variability in brain size (PBS) was

assessed for each gene across species, modeled as follows: PBS+ = H > C > M and PBS- = H < C < M, with model significance

assessed based on likelihood ratio tests for nestedmodels and thresholded (PBonferroni < 0.05) to examine overlap with BWgene sets.

Additionally, to assess the consistency of regional BW +/� relative expression differences across species, we used an indepen-

dent postmortem brain gene expression dataset (RNAseq; see key resources table) in macaques containing 416 samples from 8ma-

caques across 52 cortical and non-cortical brain regions.43 Processed data was available (see key resources table), and we included

biological (age, sex) and technical (RIN, medTIN) covariates when examining BW +/� relative expression differences for each brain

region. Each brain region had mRNA sequencing for 14,898 genes.

Cell-type relative expression differences

To assess relative expression differences in BW across cell types, we leveraged aligned developmental single cell (fetal) and single

nucleus (adult) RNA-seq datasets in both humans and non-human primates. Macaque data was downloaded from http://evolution.

psychencode.org, where they are labeled as ‘‘Fetal expression matrix’’ and ‘‘Adult expression (Rdata)’’ under the ‘‘Processed Data’’/

’’Single cell RNA-seq’’ or ‘‘Processed Data’’/’’Single nucleus RNA-seq’’ tabs, respectively. These datasets contain expression data

on �15k genes across various cell types sampled in the dorsolateral prefrontal cortex (DFC) from two (fetal) and three (adult) ma-

caques. More detailed protocol information can be found in previous work.19

Human data were downloaded from http://development.psychencode.org, where they are labeled as ‘‘scRNA-seq (Rdata)’’ and

‘‘snRNA-seq (Rdata)’’ under the ‘‘Processed Data’’/’’Single cell/nucleus RNA-seq’’ tab. For over 20k genes, the fetal single cell data-

set contains expression data sampled across the pallium (labeled as ‘‘DFC’’) from nine donors, and the adult single nucleus dataset

contains expression data in the DFC from three donors. More detailed protocol information can be found in previous work.18

We performed the cell-type deconvolution analysis using the ‘‘dtangle’’ R package to evaluate the relationship between interindi-

vidual variation in brain weight and predicted cell-type proportions. We chose this approach because it is a top performing algorithm

for brain gene expression,22 and it has the capacity to combine multiple reference single cell datasets for deconvolution of canonical

cell-types.

Gene ontology enrichment

Brain weight gene lists were submitted as gene sets to ToppGene’s ToppFun enrichment feature (https://toppgene.cchmc.org/

enrichment.jsp). The following term categories were assessed: GO: Molecular Function, GO: Biological Process, GO: Cellular

Component, Pathway (all), Mouse Phenotype and Human Phenotype. All other settings were left to their defaults. Note that

ToppGene databases are continuously updated; this ToppGene query was last conducted on October 23rd, 2021.

Functional enrichment

The gene set enrichment analysis further nominated associations with brainmorphological phenotypes derived from in vivo structural

magnetic resonance imaging (MRI). To validate this finding, we used an established gene-set analysis method, MAGMA,65 to eval-

uate the enrichment of BW gene sets against genome-wide association studies of global and regional neuroimaging phenotypes,10

as well as metrics of head size – head circumference and intracranial volume.68–70

Gene co-expression network modules

For the PsychENCODE and ROSMAP datasets, modules were derived from gene co-expression network analysis using Weighted

Gene Co-expression Analysis (WGCNA)58,109 and the SpeakEasy clustering methods,59,110 respectively. WGCNA module assign-

ments and annotations for PsychENCODE are available from http://resource.psychencode.org/) (see also key resources table),

and module enrichment results for ROSMAP can be found in Table S6.

Phenome-wide association study in Mass General Brigham Biobank

Phenome-wide association study (PheWAS) analyses were performed in the Mass General Brigham (MGB) Biobank, a biorepository

from theMGB healthcare system based in the greater Boston area with patient data on electronic health record, genetic, and lifestyle

variables.75 Launched in 2010, the MGB Biobank has enrolled 138,042 participants and generated genotyping microarray data for

more than 65,265 participants to date. To reduce the risk of population stratification, we restricted all PheWAS analyses to

37,272 patients of European ancestry (22,232 were genotyped using Illumina MEG, MEGA, or MEGA EX arrays and the remaining

15,040 were genotyped using the Illumina GSA array). The recruitment strategy, genotyping procedures, and quality control proced-

ures of MGB Biobank have been described previously (see key resources table).75 All participants provided written consent upon

enrollment. MGB Institutional Review Board approval for the present analyses is covered under protocols #2009P002312 and

#2021P003641.

We used the FUSION package in R, as in the TWAS, to impute individual-level gene expression for patients in MGB Biobank, using

pre-computed weights from the PsychENCODE consortium as the reference transcriptome dataset (gene weights available from

http://resource.psychencode.org/). We then calculated a cumulative brain weight transcriptomic index as a coefficient-weighted

sum of imputed gene expression – similar to how polygenic indexes are calculated using single nucleotide polymorphism data.

This score was subsequently standardized and linked to electronic health record data from the MGB Biobank participants. Case
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status for each medical phenotype was assigned using a standard ‘‘phecode’’ approach,111 where the presence of at least two In-

ternational Classification of Disease (ICD)-10CM codes was required. PheWASwas then conducted using the PheWAS package in R

(https://github.com/PheWAS/PheWAS), fitting logistic regression models to each of the 1,482medical outcomes in order to estimate

the odds of each diagnosis given the brain weight transcriptomic index while accounting for sex assigned at birth, current age, gen-

otyping batch, and the first 10 genetic principal components as covariates.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses in this study significancewas determined at p < 0.05, after Bonferroni correction for multiple comparisons (PBonferonni).

For the brain weight discovery analyses in PsychENCODE this equated to an uncorrected p < 1.94e�6 threshold. For the TWAS an-

alyses, PBonferroni < 0.05 equated to an uncorrected p < 3.73e�6 for global phenotypes, uncorrected p < 2.07e�8 for regional surface-

based phenotypes, and uncorrected p < 1.19x10e�8 for regional volume-based phenotypes. False Discovery Rate (FDR) correction

was used in lieu of Bonferroni correction to determine significant brain weight gene sets (PFDR < 0.05) in the intersection analyses with

the differential expression results across disorders, for consistency with how these data were thresholded in their original publica-

tions. Additionally, where applicable, we used two different permutation-based tests for empirical statistics to complement uncor-

rected p-values based on context-specific robust null models (Ppermutation and Pspin), as implemented previously.112 Ppermutation de-

notes performing gene-level statistical analyses using 10,000 randomly sampled gene sets (without replacement) of similar size to the

empirical sets, drawn from the entire gene list used for the brain weight gene expression analysis in PsychENCODE. Pspin denotes

performing spatial correlations between two brain maps using 10,000 ‘‘spins’’ (preserving spatial autocorrelation) of one map (see

also key resources table). We report t-values from linear mixed models of brain weight expression association analyses, in addition

to partial correlation values of brain weight and expression after regression of the same covariates used in the linear mixed models.

For all BW ‘‘relative expression’’ analyses, we used Student t-tests to compare mean expression of BW + genes and BW- genes.

Unless otherwise noted, all p-values for linear mixed models were calculated using likelihood ratio tests as implemented in the

‘‘lmerTest’’ package in R. As this was a retrospective study, no statistical methods were used to pre-determine sample sizes, how-

ever, collectively, this studymakes use of the three largest datasets of postmortem human brain tissue. As such, we comprehensively

assessed the main brain weight gene expression results explicitly in a discovery (PsychENCODE) and in two independent replication

datasets (GTEx and ROSMAP). Randomization and blinding were not possible due to the study being retrospective and observa-

tional. Accordingly, subject-level covariates were used to account for variation in gene expression as well as to remove unwanted

confounding effects. Normalized gene expression was assumed to follow normal distribution, but this was not formally tested. Addi-

tional details for each analysis are provided in relevant sections above.
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