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Abstract In this paper, a nonlinear optimal feedback tracking control based on
the nonlinear state estimator for a two-level bilinear open non-Markovian stochas-
tic quantum system is proposed. The proposed nonlinear state estimator is designed
by using state-dependent differential Riccati equation and constructed to optimally
estimate the state based on from the measurement output of the controlled quantum
system. The estimated state is continuously updated by the output data of continuous
weak measurement and used to design the nonlinear state feedback controller to track
the output of the reference model. The output state of reference model is chosen as
the desired performance. The numerical simulation results verify the achievability of
the proposed state feedback control method, and the capability to steer the state of
system from any arbitrary initial state to the final reference target state with high state
transfer success rate ≥ 90%.

Keywords Open stochastic quantum system, Nonlinear optimal control · state-
dependent Riccati equation · Continuous measurement, Nonlinear state estimation

1 Introduction

Quantum information technologies consist of the quantum communication, quantum
computation, and quantum control, among them quantum control is one of very im-
portant areas and plays a key role in all application areas of quantum systems [1,2,
3]. When quantum systems interact with the environment, there will appear the quan-
tum disturbance, decoherence or/and white noise. The measurement is also a type of
interaction with the quantum system, which produces the back-action to the system
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and makes the system become an open stochastic quantum system [4,5]. The open
quantum system in which the environment memory effect is ignored can be described
by Lindblad-type Markovian master equation under Born or Markovian approxima-
tion [33,34,35]. This model is widely used in many fields of quantum optics [36].
However, in some other cases, such as the initial state of correlation and entangle-
ment and the quantum system interaction with a nanostructure environment, there
exists a longer environment memory effect which makes the Markovian approxima-
tion invalid and the systems show non-Markovianain characteristics [37,38,39,40]
existing in spin echo [41], quantum spot [42] and fluorescence systems [43]. Due to
the existence of memory effect, non-Markovian quantum systems show more com-
plex characteristics and the state manipulations become more difficult.

An important task of quantum control is to design an efficient control law for a
given quantum system by means of appropriate control theory to manipulate the ini-
tial states to the desired target states. Many researchers have designed control laws
for the quantum systems [6,7], however, what they designed was the open loop con-
trol strategy, or the states of quantum system used for computational control law
were not estimated by the estimator in real time, but determined from the system
dynamical equation. To overcome this issue, an estimator is required to estimate the
state of the system by using the output values of the quantum system, and then the
estimated state is used to design the state feedback control laws [8]. Some work have
been presented for the feedback control based on estimate of linear stochastic quan-
tum system [9,10]. When the quantum system has some nonlinearities, such as the
bilinearities, to design a state feedback controller for the bilinear stochastic quantum
systems is a challenging work. There are several techniques to design the nonlinear
optimal feedback control for the nonlinear system, among them the optimal control
with nonlinearty is based on the state-dependent Riccati equation (SDRE).

Feedback control and state estimation using continuous weak measurement (CWM)
signal for the linear quantum system were studied in [11,12,13]. The measurement
output continuously updates the state of the nonlinear state estimator (NSE), which
goes asymptotically towards the state of system. Using CWM, one can measure a
quantum ensemble and obtain the system measurement records. The measurement
records are used to construct a serial of optimization problems. Then reconstruct the
state of the quantum state by means of an appropriate optimal algorithm.

This paper focuses on the study of state transfer control of a two-level bilinear
open non-Markovian stochastic quantum system (ONMSQS) beneath spontaneous
emission of spin- 1

2 particle, i.e., the decoherence factor of quantum system. It is
known that in quantum computation the state transfer of ONMSQS with high state
transfer success rate is critical in the presence of environmental noise and decoher-
ence effect. Therefore, the objective is to move the state of ONMSQS to the reference
target state from any of this paper arbitrary initial state with high state transfer success
rate ≥ 90%.

The main contribution and motivation in this paper is that we propose a nonlin-
ear optimal feedback tracking control (NOFTC) based on nonlinear state estimator
(NSE) for the two-level bilinear ONMSQS. The output data is used to estimate the
state continuously by NSE, and based on these estimated state. The NOFTC is de-
signed based on state-dependent differential Riccati equation (SDRE) to capture the
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nonlinearities of the system. The SDRE depends only on the current state. The com-
putation is carried out online, and the control goal is to minimize the quadrature
distance between the dynamical variable of the quantum system and that of the refer-
ence system model. The proposed NSE and NOFTC law are designed separately but
both parts can be combined to perform the desired control task. As far as we know,
such NOFTC has not been applied to the bilinear ONMSQS, and the work done in
this paper has the potential interest.

This paper is arranged as follows: Section 2 gives the description of the bilin-
ear two-level ONMSQS and NSE. NOFTC law designed is described in Section 3.
Closed-loop dynamics of the quantum estimated state feedback control system is de-
signed in Section 4. Section 5 is the numerical simulations and results discussion.
Finally, Section 6 is the conclusion of the proposed work.

The dynamics of open quantum system can be described by the stochastic quan-
tum master equation, which interacts with surrounding environment. The general
form of the total Hamiltonian is

Htotal = Hs +Hc(t)+Hb +Hint (1)

where Htotal , Hs, Hc(t), Hb are the total, free, control and bath Hamiltonian, respec-
tively. Hint represents the interaction Hamiltonian between the environment and sys-
tem controlled. The bath Hamiltonian Hb is consisted of Harmonic oscillators masses
mi and frequencies ωi as

Hb =
N

∑
i=1

(
p2

i
2mi

+
mi

2
x2

i ω
2
i

)
(2)

where mi and ωi are the Harmonic oscillators masses and frequencies, respectively.
(x1, x2, .. . , xN , p1, p2, . .. pN) are the coordinates and their conjugate moments.
Assuming that the quantum system initial state is defined by density matrix ρ(0) =
ρ0, for simplicity = 1. The Hamiltonian Hint of interaction between the Hs and Hb is
assumed to be bilinear and can be defined as

Hint (t) = ei(Hs+Hb)tHinte−i(Hs+Hb)t (3)

= α∑
n

An (t)⊗Bn (t)

where
⊗

denotes the tensor between two systems An(t) and Bn(t), α is the coupling
constant, and there are

An (t) = eiHstAne−iHstBn (t) = eiHbtBne−iHbt

The effect of the environment on the quantum system can be seen as interplay be-
tween the dissipation and fluctuation phenomena, which makes the quantum system
lose the coherence, also called decoherence of the system.

According to the quantum dissipation theory, the dynamical equation of a stochas-
tic quantum process can be described as a reduced density matrix ρt of the quantum
system as

dρt =−i [Hs,ρ]dt +
2

∑
k=1

uk (−i [Hck,ρt ])dt +L1 (t) [ρt ]dt +L2 [ρt ] (4)
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where ρt indicates state density matrix, ux(t) and uy(t) are the control fields, L1[ρt ]dt
and L2(t) depicts the Lindblad terms, ω0 indicates the transition frequency. σx, σy
and σz are the Pauli matrices. Hck is the control Hamiltonian, and uk are the control

fields. The term
2
∑

k=1
ukHck = ux (t)σx + uy (t)σy, and Hs = H0 = σz, where ω0 is the

transition frequency. σx, σy and σz are the Pauli matrices defined as

σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
, σx =

(
0 1
1 0

)
The Lindblad terms L1[ρt ]dt and L2(t) can be described as

L1 (t) [ρt ]dt = [∆ (t)(t)+ γ (t)]D
[
σ
−]

ρtdt +[∆ (t)+ γ (t)] D
[
σ
+
]

ρtdt

+MD [σz]ρtdt
(5)

where the parameters ∆(t) and γ(t) represents the diffusion and dissipation coef-
ficients of the quantum system, σ− and σ+ are the lowering and raising operators,
respectively. M is the interaction strength between the system and the measurement,
η is the detection efficiency and Wt is the Weiner process noise. and

L2 [ρt ] =
√

MηH [σz]ρtdWt (6)

and dWt can be described

dWt = dYt −
√

Mηtr (σzρt)dt (7)

where dYt is the output of the observation process.
Then dynamics of system (4) can be written as

dρt =−iω0 [σz, ρt ]dt +−iux (t) [σx, ρt ]dt − iuy (t) [σy, ρt ]dt +[∆ (t)+ γ (t)]D
[
σ
−]

ρtdt

+[∆ (t)+ γ (t)] D
[
σ
+
]

ρtdt +MD [σz]ρtdt +
√

MηH [σz]ρtdWt
(8)

where σ− = 1/2(σx − iσy) and σ+ = 1/2(σx + iσy) are the lowering and raising op-
erators, M ≥ 0 is the interaction strength between the system and the measurement,
0<η < 1 is the detection efficiency, and dWt is the Weiner process which satisfies the
quantum Itô’s rules, E[dWt ] = 0, [dWt ]

2 = dt. D and H denote the superoperators.
The superoperators D and H are

D [σz]ρt = σzρtσ
†
z −

1
2

σ
†
z σzρt −

1
2

ρtσ
†
z σz

H [σz]ρt = σzρt +ρtσz − [tr (σzρt +ρtσz)]ρt

The parameters ∆(t) and γ(t) in Eq. (8) are the diffusion and dissipation coefficient
of the quantum system. The parameters ∆(t) and γ(t) are given by [19].

∆ (t) =
t∫
0

dτk (τ)cos(ω0τ) (9)
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γ (t) =
t∫
0

dτµ (τ)cos(ω0τ) (10)

with

k (τ) = 2
∞∫
0

dωJ (ω)coth [ω/2kBT ]cos(ωτ) (11)

µ (τ) = 2
∞∫
0

dωJ (ω)sin(ωτ) (12)

where kBT is the environmental temperature. J(ω) is the spectral density of the
environment which has the form

J (ω) =
2
π

ω
ω2

c

ω2
c +ω2 (13)

where ω is the bath frequency, and ωc is the high-frequency cutoff.
Then the analytical expression in Eq. (10) can be expressed as

γ (t) =
α2ω0r2

1+ r2

[
1− e−rω0t cos(ω0t)− rsin(ω0t)

]
(14)

where r is the ratio of ωc and ω0.
Analytical expression of Eq. (9) can be expressed as

∆ (t) = α
2
ω0

r2

1+ r2

(
coth(πr0)− cot(πrc)e−ωct [rcos(ω0t)− sin(ω0t)]

+
1

πr0
cos(ω0t) [ F̄ (−rc, t)+ F̄ (rc, t)− F̄ (irc, t)− F̄ (−irc, t)]

− 1
πr0

sin(ω0t)
{

e−v1t

2r0
(
1+ r2

0

) [(r− i) Ḡ(−r0, t)+(r+ i) Ḡ(r0, t)
]

+
1
2r

[F̄ (−rc, t)− F̄ (rc, t)]
})

(15)

where r = ωc/ω0 and r0 = ω0/2πkBT/, in which kBT is the environmental temperature,
and

F̄ (x, t)≡ 2F1
(
x, 1, 1, 1+ x,e−v1t) , Ḡ(x, t)≡ 2F1

(
2, 1+ x,2+ x, e−v1t)

where 2F1(a,b,c,z) is the Guass hyoergeometric function and defined as

2F1 (a, b, c, z) = 1+
ab
1!c

z+
a(a+1)b(b+1)

2!c(c+1)z2 z2 + . . .

=
∞

∑
n=0

(a)n(b)nzn

(c)n

zn

n!
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where(a)n is a pochhammer symbol. Under high temperature limit, the diffusion co-
efficient ∆(t) in Eq. (15) has the form,

∆ (t) = 2α
2kBT

r2

1+ r2

{
1− e−rω0t

[
cos(ω0t)− 1

r
sin(ω0t)

]}
(16)

The parameters ∆(t) and γ(t) contain very important Markovian and non-Markovian
features of open quantum systems. The indispensable difference between Markovian
systems and non-Markovian systems is the presence of environmental memory ef-
fect. The environment behaves as a sink for the quantum system information. The
system loses quantum information into the environment, due to the system reservoir
interaction. If the environment has a non-trivial structure, the apparently lost infor-
mation can go back to the system in future time, which leads to the non-Markovian
dynamics with memory [20,21]. Define the decay rate as β± (t) = ∆(t)±γ(t)

2 , β ≥ 0,
the system behaves in a Markovian dynamics; when β < 0, the system presents the
non-Markovian dynamical characteristics. From Eqs. (14) and (16) one can observe
that for the high temperature, | ∆(t)≫ γ(t) | and γ(t)≈ 0, which means that the dif-
fusion coefficient ∆(t) plays a dominant role in affecting the dynamical behavior of
system. In high temperature dynamics, β+(t) = β−(t) =

∆(t)
2 , as γ(t)≈ 0. In order to

carefully investigate the transfer of quantum state, the effect of the dissipation coef-
ficient γ(t) can no longer be negligible, although it is small under high temperature,
thus β (t) depends on both γ(t) and ∆(t).

The density matrix ρt of a two-level quantum system can be defined by (xt , yt , zt)
in the Cartesian coordinate system as

ρt =
1
2
(I + xtσx + ytσy + ztσz) =

1
2

(
1+ zt xt − iyt

xt + iyt 1− zt

)
(17)

where xt , yt , and zt represent the Cartesian coordinate system, and they are real
numbers. tr(ρt) = 1, and tr(ρ2

t )≤ 1.

dxt =−
(

∆ (t)+
M
2

)
xtdt −ω0yt +uy (t)ztdt +

√
MηxtztdWt

dyt =−
(

∆ (t)+
M
2

)
ytdt +ω0xt −ux (t)ztdt +

√
MηytztdWt

dzt =−2γ (t)dt −2∆ (t)ztdt −uyxtdt +ux (t)ytdt +
√

Mη
(
z2

t −1
)

dWt

(18)

In the weak measurement, a laser probe (along the z-axis) interacts with the atomic
ensemble, and then the output of the interacted system system is detected using a
photodetector which is called a homodyne detector. This provides a continuous mea-
surement of the spin component along the propagation direction, the measured ob-
servable is σz in the z-direction. The quantum Weiner noise after interaction with
the system is also in the output of the quantum system. From Eq. (7) the stochastic
differential equation of the output of quantum system can also be described as

dYt =−
√

Mηztdt +dWt (19)
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where M is the interaction strength between the system and the measurement, η

is the detection efficiency and Wt is the Weiner process noise. dYt shows the output
of the observation process, and Yt is the measurement process output of homodyne
detector [14,22].

Equation (19) shows that the output of the system not only affects the Wiener
noise but also contains some information of the system state, and one can extract
the information about quantum states by making measurement output of the system.
Therefore, the output of the system can be processed to design an estimator and an
estimated state feedback control of quantum system [14].

Consider the equivalent dynamical system of SME (18) and output measurement
process (19),

dXt = A0(t)dt +A(t)Xtdt +B(Xt)U(t)dt +G(Xt)dWt (20)
dYt =CXtdt +dWt (21)

where Xt is the actual state of the system, and Xt = [xt yt zt ]
T ∈ {Xt ∈ Rn ||Xt | ≤ |1| }

are values of ρt ; xt , yt and zt are the qubit Bloch sphere coordinates corresponding to
the density matrix ρt , Ao ∈ R(n×p), A ∈ R(n×n), B(Xt) ∈ R(n×m), C ∈ R(p×n), G(Xt) ∈
R(n×p) and Wt ∈ Rp are real polynomial functions of Xt and Yt ∈ Rp×p. n, m and p are
positive integers, respectively,

A0 =

 0
0

−2γ(t)

 , A =

−(
∆ (t)+ M

2

)
−ω0 0

ω) −
(
∆ (t)+ M

2

)
0

0 0 −2∆ (t)

 , B(Xt) =

 zt 0
0 −zt

−xt yt



U (t) =
[

uy (t)
ux (t)

]
, G(Xt) =


√

Mηxtzt√
Mηytzt√

Mη
(
z2

t −1
)
 , C =

[
0 0 −

√
Mη

]
The vector Xt is a collection of 22 −1 Gell-mann matrices, generating SU(2), which
should satisfy the following commutation relationship [23,24],[

Xt ,XT
t
]
= XtXT

t −
(
XtXT

t
)T

= 2iΘ (Xt)

where Θ(Xt) is the linear mapping.
The system Eq. (18) and Eq. (19) is realizable if there exists Hamiltonian operator

H= αXt with α ∈ R3 and coupling operator L = ΩXt with Ω ∈ C3, such that, A0 =
2iΘ(Ω)Ω †, A=−2iΘ(α)+Ω †Ω +Ω T Ω ∗−2Ω †Ω I, B= 2iΘ [−Ω † Ω T )]Γ , where
Γ is the complex matrix, G =Θ(i(Ω ∗−Ω)) and C = Ω +Ω ∗.

The quantum system coherence can also be described with purity. For an arbitrary
state ρt , the purity pt can be expressed as

pt = tr(ρ2
t ) (22)

with pt = 1 denotes the pure state, and pt < 1 the mixed state. The coherence of
quantum state is an essential feature of quantum systems and is usually represented
by the non-diagonal elements of the density matrix ρt in Block spheres as:

Λ t =

√
x2

t + y2
t

2
(23)
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and the population

ρt11 =
1+ zt

2
, ρt22 =

1− zt

2
(24)

where parameters Λt and pt relate with the coherence and purity of the real system.
ρt11 and ρt22 , are elements of the density matrix

Figure 1 is the schematic diagram of dynamical stochastic quantum system (20)
and measurement output process (21).

Fig. 1 Schematic diagram of two-level ONMSQS with output measurement process

2 Design of nonlinear optimal feedback tracking control of ONMSQS

In this section, nonlinear state estimator (NSE) and nonlinear optimal feedback track-
ing control (NOFTC) based on NSE are proposed for the ONMSQS. The NOFTC
includes the estimated behavior of the quantum system for reconstructing the dynam-
ical variables of the ONMSQS. Continuous weak measurement (CWM) is usually
used for the quantum feedback control system. The state of system can be estimated
based on the output of CWM process, to design a state feedback control law. How-
ever, the state ρt cannot be completely estimated with only one measurement record
Yt , it should be estimated by the output data obtained from CWM, because the mea-
surement operator related with Yt contains the partial information of the system state.
Therefore, it is an optimal estimation problem, to do this the output Yt are applied to
drive the state estimator to estimate the system state. Assuming that all the parameters
of the system are known except the state, and the state ρt can be estimated precisely
by state-dependent differential Riccati equation (SDRE) estimator. Then the NOFTC
law is designed based on estimated state of NSE to perform desired control task.

2.1 Nonlinear state estimator design of ONMSQS

The estimator of ONMSQS is designed by constructing a NSE with the structure of a
linear observer, whose matrices and the gain can be depend on the state estimate X̂t .
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The proposed NSE is based on the dual of the SDDRE nonlinear control by allowing
the coefficient matrices of state-dependent [25,26,27,28].

Consider the system (20) and measurement output (21) the objective is to design
the NSE to be able to estimate X̂t of Xt that minimizes the error at time t by means
of measurement data [Ys : t0 ⩽ s ⩽ t]: the conditional expectation value of Xt . We
establish the estimator with the same construction of the dynamic system 20, in which
by adding the correction term Ke(X̂t , t)(dYt −dŶt) into (20) to ensure the realization
of state estimation. Where Ke(X̂t , t) is the NSE gain matrix, dYt −dŶt is the innovated
error between the system output and that of NSE, which describes the information
gain from output Yt , dYt is the actual measurement output of the system , and dŶt is
the estimated output of the NSE. Thus the proposed NSE in this paper has the form

dX̂t = A0(t)dt +A(t)X̂tdt +B(X̂t)U(t)dt +Ke(X̂t , t)(dYt −CX̂tdt) (25)

dŶt =CX̂tdt +dWt (26)

The Eq. (25) can also be written as

dX̂t =
(
A(t)−Ke

(
X̂t , t

)
C
)

X̂tdt +B
(
X̂t
)

U (t)dt +Ke
(
X̂t , t

)
CXtdt

+Ke
(
X̂t , t

)
dWt +A0 (t)dt

(27)

where X̂t is the estimated state, and X̂t = [x̂t ŷt ẑt ]
T ∈

{
X̂t ∈ Rn

∣∣∣∣X̂t
∣∣≤ |1|

}
are the

estimated variables of ρ̂t in Eq.(18), where x̂t , ŷt and ẑt are the qubit Bloch sphere
coordinates corresponding to the density matrix ρ̂t . Ke(X̂t , t) is the estimator gain
matrix.

Considering density matrix must satisfy the conditions: tr(ρ̂t) = 1 and tr(ρ̂2
t )⩽ 1,

with X̂t=X̂0 and the commutation relationship

X̂t X̂T
t − (X̂t X̂T

t )T = 0

Notice that there is the partial information of ρt in the output Eq. (18), and in such
a case, if there is no noise, we can estimate the two-level state’s variables in Eq.
(17), but the noise makes the estimated state remains with error, we need to design
an optimal algorithm to minimize this error. The error between the Xt and X̂t , can be
defined as

et = Xt − X̂t

where rate of error is

det = dXt −dX̂t

The design purpose of the NSE is to find the estimator gain Ke(X̂t , t) that minimizes
the estimation error covariance matrix Pe(X̂t , t) = E[et · eT

t ], so the rate of error dy-
namics of the systems (20) and (25), we have

det =
[
A(t)−Ke

(
X̂t , t

)
C
]

etdt −B(Xt)U (t)dt +B
(
X̂t
)

U (t)dt

+
(
G(Xt)−Ke

(
X̂t , t

))
dWt

(28)
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If the gain matrix Ke(X̂t , t) is properly designed, then the error will approach to zero
with arbitrary decay. The fulfillment of above requirement means that the system is
to be asymptotically stable. Now the rate of error covariance has the form

dPe(X̂t , t) = E
[
det · eT

t + et ·deT
t
]

(29)

where E[·] is the expectation function.
Substituting Eq. (28) in the above Eq. (29), and by using then by straight forward

computation we have

Ṗe(X̂t , t) =[A−Ke(X̂t , t)C]Pt(X̂t , t)+Pe(X̂t , t)[A−Ke(X̂t , t)C]T

+G(Xt)FW GT (Xt)+Ke(X̂t , t)FW KT
e (X̂t , t)

(30)

where FW is noise intensity, and FW dt = E[dWtdW T
t ].

The objective is to minimize the error covariance, i.e., min
Ke(X̂t ,t)

tr Ṗe(X̂t , t) w.r.t.,

observer gain Ke(X̂t), we have

∂
(
tr Ṗe(X̂t , t)

)
∂Ke(X̂t , t)

=−Pe(X̂t , t)CT −Pe(X̂t , t)CT +2Ke(X̂t , t)FW = 0

where tr denotes the trace of matrix.
Rearranging the above equation to find the observer gain Ke(X̂t , t), we get

Ke(X̂t , t) = Pe(X̂t , t)CT F−1
W (31)

By using Eqs. (31) and (30), the state dependent differential Riccati (SDRE) equation
can be expressed as

Ṗe(X̂t , t) = APe(X̂t , t)+Pe(X̂t , t)A+QW (X̂t)−Pe(X̂t , t)CT F−1
W CPe(X̂t , t) (32)

where QW (X̂t)dt = G(X̂t)FW GT (X̂t)dt.
From Eq. (32) one can see that the SDRE is the function of state variables and

can be integrated with some initial condition of Pe0 to compute Pe(X̂t , t). Therefore, its
computation needs to be carried out on-line at each update step to obtain estimation of
the system states continuously. The error between the NSE and the ONMSQS tends
to zero if the gain matrix Ke(X̂t , t) is properly designed. Then the error will approach
to zero asymptotically and it will tracks the systems states trajectory. This means that
the estimator is asymptotically stable and detectable.

Figure 2 shows the schematic diagram of system model (25) and output (26),
where EMO stands for estimated measurement output Ŷt and Table 1 depicts the entire
procedure of estimation of the system

Table 1 depicts the entire procedure of estimation of the system.

2.2 Design of nonlinear optimal feedback tracking control law of ONMSQS

In this subsection, NOFTC law is designed by using the state dependent Riccati equa-
tion (SDRE) for control of ONMSQS. The whole closed-loop control is performed
online due to state-dependent equation of both controller and NSE, which allows the
NOFTC to achieve the control results even the quantum system is under the environ-
mental noises.
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Fig. 2 Schematic diagram of NSE of ONMSQS

Table 1 Procedure of the ONMSQS state estimation

Consider the system 20 and output 21
dXt = A0dt +AXt dt +B(Xt)U(t)dt +G(Xt)dWt

dYt =CXt dt +dWt
Initialize

Pe(0) = Pe0 , X̂(0) = X̂0
Update Pe(X̂t , t)
Ṗe(X̂t , t) = APe(X̂t , t)+Pe(X̂t , t)AT +QW (X̂t)−Pe(X̂t , t)CT F−1

w CP(X̂t)
Estimator gain Ke(X̂t , t)

Ke(X̂t , t) = Pe(X̂t , t)CT F−1
W

Estimate update
dX̂t = A0dt +AX̂t dt +B(X̂t)U(t)dt +Ke(X̂t , t)

(
dYt −CX̂t dt

)

2.2.1 Reference system model

A reference system model should have the required dynamics, the output of reference
system is selected as a desired quantum state as

X̂ r
t = ArX̂ r

t (33)
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with

Ar =

Π 1 0 0
0 Π 2 0
0 0 Π 3


where −1 ⩽ Πi ⩽ 1, i = 1, 2, 3 are the constant of the reference model. The dynam-
ical variable vector X̂ r

t of this reference is denoted as X̂ r
t = [x̂r

t ŷr
t ẑr

t ]
T , where X̂xr

t ŷr
t

and ẑr
t are the desired Cartesian coordinates of the reference model state in the Bloch

sphere. When the dynamical ONMSQS closely tracks these reference system state
variables, then the desired quantum control goal can be achieved.

2.2.2 Control problem formulation

Considering the non-Markovian SME (20), measurement output (21) and the esti-
mator (25), and the reference system model (33). The NOFTC problem is to design
the control field U(t) based on estimated state X̂t and desired state X̂ r

t using SDRE
strategy to minimize the following cost functional of error

J
(
X f , X̂t , U (t)

)
= E

1
2

êT
t f

Sêt f +
1
2

t f∫
t0

(
êT

t Q
(
X̂t
)

êt +UT (X̂t , t
)

R
(
X̂t
)

U
(
X̂t , t

))
dt


(34)

where êt = X̂t − X̂ r
t , X̂ r

t is the desired final state, Q(X̂t), and S are the symmetric pos-
itive semi-definite matrices, and R(X̂t) is a symmetric definite matrix. The êT

t Q(X̂t)êt
and UT (X̂t , t)R(X̂t)U(X̂t , t) represents the control accuracy and measure of control
effort.

The utmost advantage of SDRE control is that there always exists physical intu-
ition, and designers can directly control performance by adjusting the weight matrix
Q(X̂t) and R(X̂t). Furthermore, Q(X̂t) and R(X̂t) not only are constants, but also can
be varying functions of state. In this way, different behavior patterns can be applied
in different regions of the system’s state space [29,30].

2.2.3 NOFTC law design

The optimal form of the SDRE control can be obtained by using Hamilton-Jacobi
equation (HJB) theory. The corresponding stochastic HJB expression for the cost
functional Eq. (34) and estimated state equation Eq. (25) can be derived as

−∂tV
(
X̂t , t

)
=min

ut :t f

(
1
2

UT (X̂t , t
)

R
(
X̂t
)

U
(
X̂t , t

)
+

1
2

êT
t Q

(
X̂t
)

êt

+
(
∇X̂t

V
(
X̂t
))T (A0 (t)+A(t) X̂t +B

(
X̂t
)

U
(
X̂t , t

))
+

1
2

G
(
X̂t
)

∇X̂t X̂t
V
(
X̂t , t

)
GT (X̂t

)) (35)

where V (X̂t , t) is the optimal value function, and ∇X̂t
, ∇X̂t X̂t

depict the partial deriva-
tives of V (X̂t , t) w.r.t., X̂t and twice w.r.t., X̂t , respectively. In order to solve for the
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optimal value function we will guess its parametric form which should satisfy the
HJB Eq. (35). Due to quadratic nature of Eq. (35), we consider the value function of
the form as

V
(
X̂t , t

)
=

1
2

X̂T
t Pc

(
X̂t , t

)
X̂t − X̂T

t s
(
X̂t , t

)
+q

(
X̂t , t

)
(36)

where V (X̂t , t) is symmetric with boundary condition V (X̂t f , t f ) = X̂T
t f

SX̂t f . Now from
Eq. (36) we can compute the required derivatives for HJB Eq. (35), i.e.,

∂tV
(
X̂t , t

)
=

1
2

X̂T
t Ṗc

(
X̂t , t

)
X̂t − X̂T

t ṡ(Xt , t)+ q̇
(
X̂t , t

)
∇X̂t

V
(
X̂t , t

)
= Pc

(
X̂t , t

)
X̂t + s

(
X̂t , t

)
∇X̂t X̂t

V
(
X̂t , t

)
= Pc

(
X̂t , t

)
The approximations are done for the NOFTC law designed in skipping terms, i.e.,
∂Pc(X̂t ,t)

∂ X̂t
,

∂ s(X̂t ,t)
∂ X̂t

and
∂q(X̂t ,t)

∂ X̂t
are skipped in state-dependent differential equations

and in the control equation for the sake of computational simplicity and avoiding
mathematical complexity [18].

Substituting the above derivatives ∂tV (X̂t , t), ∇XtV (X̂t , t) and ∇X̂t X̂t
V (X̂t , t) into

Eq. (35), one can get

−1
2

X̂T
t Ṗc

(
X̂t , t

)
X̂t + X̂T

t ṡ
(
X̂t , t

)
− 1

2
q̇
(
X̂t , t

)
= min

ut :t f

(
1
2

UT (X̂t , t
)

R
(
X̂t
)(

X̂t
)

U
(
X̂t , t

)
+

1
2

êT
t Q

(
X̂t
)

êt

+
(
Pc
(
X̂t , t

)
X̂t + s

(
X̂t , t

))T (A0 (t)+A(t) X̂t +B
(
X̂t
)

U
(
X̂t , t

))
+

1
2

tr
(
G
(
X̂t
)

GT (X̂t
)

Pc
(
X̂t , t

)))
(37)

Taking derivative of Eq. (37) w.r.t., U
(
X̂t , t

)
and set to zero, we can obtain the corre-

sponding nonlinear optimal control U∗ (X̂t , t
)

as

U∗ (X̂t , t
)
=−R−1 (X̂t

)
B
(
X̂t
)T (Pc

(
X̂t , t

)
X̂t − s(Xt , t)

)
(38)

Substituting the value of U∗ (X̂t , t
)

in Eq. (37), the term HJB can be re-written as

− 1
2

X̂T
t Ṗ

(
X̂t , t

)
X̂t + X̂T

t ṡ
(
X̂t , t

)
− 1

2
q̇
(
X̂t , t

)
=−1

2
X̂T

t

[
A(t)T Pc

(
X̂t , t

)
+Pc

(
X̂t , t

)
A(t)−Pc

(
X̂t , t

)
B
(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

Pc
(
X̂t , t

)
+Q

(
X̂t
)]

X̂t − X̂T
t

[(
A(t)−B

(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

Pc
(
X̂t , t

))T
s
(
X̂t , t

)
+Q

(
X̂t
)

X̂ r
f

−Pc
(
X̂t , t

)
A0 (t)

]
− s

(
X̂t , t

)T A0 (t)−
1
2

s
(
X̂t , t

)T B
(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

s
(
X̂t , t

)
+

1
2

G
(
X̂t
)

Pc
(
X̂t , t

)
GT (X̂t

)

(39)



14 Shahid Qamar et al.

From Eq. (39) one can get,

−Ṗc
(
X̂t , t

)
=A(t)T Pc

(
X̂t , t

)
+Pc

(
X̂t , t

)
A(t)+Q

(
X̂t
)

−Pc
(
X̂t , t

)
B
(
X̂t
)

B
(
X̂t
)T Pc

(
X̂t , t

) (40)

ṡ
(
X̂t , t

)
=−

(
A(t)−B

(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

Pc
(
X̂t , t

))T
s
(
X̂t , t

)
−Q

(
X̂t
)

X̂ r
t +Pc

(
X̂t , t

)
A0

(41)

q̇
(
X̂t , t

)
=s

(
X̂t , t

)T B
(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

s
(
X̂t , t

)
+2s

(
X̂t , t

)T A0 (t)

−G
(
X̂t
)

Pc
(
X̂t , t

)
GT (X̂t

) (42)

where Pc(X̂t , t) is symmetric, and it is the suboptimal solution of SDRE with Pc(X̂t f , t f )=

S. The terms s(X̂t , t) is the solution of the nonhomogeneous equation with s
(

X̂t f , t f

)
=

X̂ r
t f

and q
(

X̂t f , t f

)
= 0. Obviously, the characterization advantage of resulting NOFTC

Eq. (38) by solving the corresponding Eqs. (40) and (41) is that it provides a possi-
bility to deal with the nonlinearities of the systems. Moreover, because the SDRE
depends only on the current state, the computational calculations can be performed
online, in which case the Eqs. (40) and (41) are then solved at each point X̂t to obtain
U∗(X̂t , t) in NOFTC .

2.2.4 Approximate Lyapunov-based solution

There still is a problem in the solution of Eq. (38) by using Eqs. (40) and (41) with the
final conditions Pc(X̂t f , t f ) = S and s

(
X̂t f , t f

)
= X̂ r

t f
: the ststes used in the future are

not known ahead of time. One cannot calculate SDCs of Eqs. (40) and (41) backward
in time from t f to t0. To solve this problem, the original nonlinear SDRE is converted
to the differential Lyapunov equation (DLE) using an approximate analytical method,
which can be solved in closed form at each time step [20, 22, 23, 36]. Furthermore,
the states’ values in the Riccati equation are frozen their current values from each
time step of the current time t to the final time t f .

Now in order to get the closed-form solution of SDRE (40) and non-homogeneous
Eq. (41) we have following steps:

(a) Closed-form solution for Riccati equation

In order to get the solution of Pc(X̂t , t) in Eq. (40), solve the algebraic Riccati equation
(ARE) to calculate the steady state value Pss(X̂t , t)

A(t)T Pss
(
X̂t , t

)
+Pss

(
X̂t , t

)
A(t)−Pss

(
X̂t , t

)
B
(
X̂t
)

B
(
X̂t
)T Pss

(
X̂t , t

)
+Q

(
X̂t
)
= 0

(43)

Subtract Eq. (43) from Eq. (40)

−Ṗc
(
X̂t , t

)
=A(t)T (Pc

(
X̂t , t

)
−Pss

(
X̂t , t

))
+
(
Pc
(
X̂t , t

)
−Pss

(
X̂t , t

))
A(t)

−Pss
(
X̂t , t

)
B
(
X̂t
)

B
(
X̂t
)T Pss

(
X̂t , t

)
+Pss

(
X̂t , t

)
B
(
X̂t
)

B
(
X̂t
)T Pss

(
X̂t , t

)(44)
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Use the change of variables in Eq. (44) and let

KP
(
X̂t , t

)
=
[
Pc
(
X̂t , t

)
−Pss

(
X̂t , t

)]−1 (45)

The final condition of Eq. (45) is

KP
(
X̂t , t f

)
=
[
S−Pss

(
X̂t , t

)]−1 (46)

Calculate the closed-loop value Acl(X̂t)

Acl
(
X̂t
)
= A(t)−B

(
X̂t
)

R−1 (X̂t
)

B
(
X̂t
)T Pss

(
X̂t , t

)
(47)

Solve the DLE

K̇P
(
X̂t , t

)
= KP

(
X̂t , t

)
AT

cl
(
X̂t
)
+Acl

(
X̂t
)

KP
(
X̂t , t

)
−B

(
X̂t
)

R−1 (X̂t
)

B
(
X̂t
)T (48)

The solution KP(X̂t , t) of equation (48) is [16]

KP
(
X̂t , t

)
= eAcl(X̂t)(t−t f )

[
KP

(
X̂t , t f

)
−D

]
eAT

cl(X̂t)(t−t f ) +D (49)

where D is the solution of the following algebraic Lyapunov function [32,31]

Acl
(
X̂t
)
D+DAT

cl
(
X̂t
)
−B

(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)
= 0 (50)

Then calculate the value of Pc(X̂t , t)

Pc
(
X̂t , t

)
= K−1

P
(
X̂t , t

)
+Pss

(
X̂t , t

)
(51)

(b) Closed-Form Solution for Non-homogeneous Equation

Calculate the steady state value of sss(X̂t , t) according to Eq. (41)

sss
(
X̂t , t

)
=
(
A(t)−B

(
X̂t
)

R−1 (X̂t
)

BT (X̂t
)

Pss (Xt , t)
)T −1 (

Q
(
X̂t
)

X̂ r
t −Pss (Xt , t)A0 (t)

)
(52)

Use the change of variables and define

Ks
(
X̂t , t

)
=
[
s
(
X̂t , t

)
− sss

(
X̂t , t

)]
(53)

The solution Ks(X̂t , t) is given as

Ks
(
X̂t , t

)
= e−(A(t)−B(X̂t)R−1(X̂t)BT (X̂t)Pss(Xt ,t))

T
(t−t f )

[
s
(
X̂t , t f

)
− sss

(
X̂t , t

)]
(54)

Then calculate the value of s(X̂t , t) from the equation below as

s
(
X̂t , t

)
= Ks

(
X̂t , t

)
+ sss

(
X̂t , t

)
(55)

Finally calculate the NOFTC law U∗(X̂t , t) by using Eqs. (51) and (55)

U∗ (X̂t , t
)
=−R−1 (X̂t

)
B
(
X̂t
)T (Pc (Xt , t) X̂t − s(Xt , t)

)
(56)
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In summary, the online implementation of NOFTC in Finite-horizon SDRE strategy
is shown in the following Algorithm.

Algorithm: Steps for online implementation of NOFTC SDRE strategy
At each time-step repeat:
{

1: Estimate the system state Xt using NSE (25) and calculate A0(t), A(t) and B(X̂t).
2: Solve SDARE (43) for Pss(X̂t , t).
3: Evaluate KP(X̂t , t f ) using Eq. (46).
4: Calculate Acl(X̂t) in Eq. (47).
5: Solve algebraic Lyapunov function (50) to find D.
6: Find KP(X̂t , t) using Eq. (49).
7: Calculate Pc(X̂t , t) using Eq. (51).
8: Using Eq. (52) calculate the steady state value of sss(X̂t , t).
9: Solve Eq. (54) to calculate Ks(X̂t , t f ).

10: Find s(X̂t , t) using Eq. (55).
11: Calculate the NOFTC law using Eq. (56).
12: Apply NOFTC law on the ONMSQS and NSE.

}

Figure 3 shows the flow chat of the NSE based ONFTC process for ONMSQS.

Fig. 3 Flowchart of the NSE based NOFTC process for ONMSQS
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3 Closed-loop system dynamics

By applying the NSE-based NOFTC to the ONMSQS, we can get the closed-loop
dynamics of the system which includes the NOFTC, principle ONMSQS, the NSE
and reference system model. Denoting the closed-loop dynamical variables as X̌t =[
Xt X̂t

]T and X̌t =
[
Yt Ŷt

]T , from the system (20) and measurement process output
(21), NSE (25) , estimated output (26), NOFTC (38), and the reference system model
(33), the dynamical equation of the closed-loop system is described as

dX̌t = (Ǎ0 + ǍX̌t + B̌(X̌t))dt + Ǧ(X̌t)dW t (57)

d

Xt
X̂ r

t
X̂t

=

Ǎ0 (t)+ Ǎ (t)

Xt
X̂ r

t
X̂t

+ B̌
(

X̌ t

)Xt
X̂ r

t
X̂t

dt + Ǧ
(

X̌ t

)
dWt

dY̌t = ČX̌ + Ď
[

dW t
0

]
(58)

d
[
Yt
Ŷt

]
= Č

[
Xt
X̂t

]
+ Ǧ

[
dW t

0

]
where

Ǎ 0 (t) =

A0 (t)
03×1
A0 (t)

 , Ǎ (t) =

 A(t) 03×3 03×3
03×3 Ar 03×3

Ke
(
X̂t , t

)
C 03×3 A(t)−Ke

(
X̂t , t

)
C


,

B̌(X̌t)

03×3 B(Xt)Ξ 2 −B(Xt)Ξ 1
03×3 03×3 03×3
03×3 B

(
X̂t
)

Ξ 2 −B
(
X̂t
)

Ξ 1

 , Ǧ(X̌t) =

 G(Xt)
03×1

Ke
(
X̂t , t

)


,

Č =

 C 01×3 01×3
01×3 01×3 01×3
01×3 01×3 C

 , Ď =

[
D 0
0 0

]

where Ξ 1 =−R−1
(
X̂t
)

B
(
X̂t
)T Pc

(
X̂t , t

)
and Ξ 2 = R−1

(
X̂t
)

B
(
X̂t
)T s

(
X̂t
)
.

The Eqs. (57) and (58) are the closed-loop dynamical model of NSE based NOFTC
for the ONMSQS. The closed-loop NSE-based NOFTC structure for the ONMSQS
is shown in Figure 4.

4 Numerical simulation and results analyses

In this section, we apply NOFTC on a two-level ONMSQS to demonstrate the advan-
tages of NSE-based NOFTC system for the state transfer of ONMSQS. The control
fields transfer the system from arbitrary initially state ρ0 to the target eigenstate ρ f .
For the two-level ONMSQS (20) there are all two eigenstates: |0⟩ and |1⟩. Experimen-
tal performance of the state transfer success rate ≥ 90% is selected for the quantum
system state transfer from arbitrary state to the desired state.
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Fig. 4 Schematic diagram of the closed-loop NOFTC of the system

We first do the experiment of the free evolution of the system without external
control fields, i.e., ux(t) = uy(t) = 0. The initial state is chosen as: X0 = [x0 y0 z0]

T =
[0.1 −0.2 0.85]T , and other parameters are selected as: α = 0.1, ω0 = 10, KBT = 30,
r = 0.2, M = 2 and η = 1. Figure 5 shows the free evolution of the system (20) in
the Bloch sphere, in which m0 and m f are the initial and final state of the ONMSQS ,
from which one can see that the system states eventually terminate on the equilibrium
state: the maximum mixed state, which is the stable point of the system. Due to the
characteristics of the non-Markovian, the trajectory of the state does not directly but
spirally attenuate to the center of ball.

0.50

xt

mo
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mf

-0.5
0

yt
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0

0.5

1

-1

z t

Fig. 5 Free time evolution trajectory of the ONMSQS with X0 = [x0 y0 z0]
T = [0.1 −0.2 0.85]T

It should be noted that moving the system to the desired state with high transfer
rate depends not only on the control fields but also the joint relationship of system
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parameters, i.e., the relations of α , ω0, KBT , r, M, and η and [ux(t); uy(t)]. we do
the experiments to verify the validity of the NOFTC, and the comparisons between
the estimated and real states, in which the initial values of the ONMSQS controlled
has been selected randomly and the NSE is initialized at X̂0 = [−0.2 0.15 0.6]T , at
t = 0, and Fw = 1 and Pe0 = I3×3. The respective state and input weighting matrices
are selected as Q = 3× diag[2 12 5], R = 10× diag[0.01 0.09], S = diag[111], and
the reference targeted final state is the eigenstate |1⟩, i.e., X̂ r

t = [0 0 −1]T . α = 0.1,
ω0 = 10, KBT = 30, r = 0.1, M = 3, and η = 1. t f = 4 seconds. The variance of dWt
is 0.1 and C = [0 0

√
Mη ]. Figure 6 shows the state transfer of real and estimated

ONMSQS with NSE-based NOFTC, from which one can see that the estimated
state can track the system state and achieve error within ±2% about 1 sec. time, and
NOFTC designed can drive the system in the direction of the given desired trajectory
with high state transfer success rate, i.e., ≥ 90%.
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Fig. 6 State transfer of the actual and the estimated ONMSQS with Fw = 1 and Pe0 = I3×3

Figure 7 shows the control fields of NOFTC. Figures 8, 9 and 10 are the time
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Fig. 7 State transfer control fields with Q = 3×diag[2 12 5], R = 10×diag[0.01 0.09] and S = diag[111]
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evolution of coherence (23), purity (22) and occupation probability of the real and
the estimated system (24), respectively. Figure 11 shows the errors between the
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Fig. 8 Evolution of coherence function Λt
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Fig. 9 Evolution of the purity of the system

Cartesian coordinates of the real and estimated ONMSQS, i.e., e1 = xt − x̂t , e1 = yt − ŷ
and e3 = zt − ẑ, from which one can see that the error between the estimated and real
system is small enough for each individual value about 1 sec. time.

Non-Markov quantum system has many parameters, and some of them are chang-
ing with the time. In order to demonstrate the robustness of the performances of the
system for the different parameters, in the experiments, for the total 6 different pa-
rameters, we first do one experiment for a given group parameters, then we let one of
them are equal to different two values and at the same time let the other parameters
un-changed, the total number of the experiments of desired and designed states of
the system for these 6 parameters are 2+12=14. i.e., α = 0.1 , ω0 = 10, KBT = 30,
r = 0.1, M = 3, η = 1, α = 0.05 , ω0 = 10, KBT = 30, r = 0.1, M = 3, η = 1, α = 0.1
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Fig. 10 Evolution of occupation probabilities of the system
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Fig. 11 Error between real and estimated system with e1 = xt − x̂t , e1 = yt − ŷ and e3 = zt − ẑ

, ω0 = 15, KBT = 30, r = 0.1, M = 3, η = 1, α = 0.1 , ω0 = 10, KBT = 50, r = 0.1,
M = 3, η = 1, α = 0.1 , ω0 = 10, KBT = 30, r = 0.2, M = 3, η = 1, α = 0.1 , ω0 = 10,
KBT = 30, r = 0.1, M = 5, η = 1 and α = 0.1 , ω0 = 10, KBT = 30, r = 0.1, M = 3,
η = 0.8 . Figure 12 shows the states transfers of estimated and real ONMSQS with
different system parameters, from which one can see that with higher M and the more
noise introduced in the system, when the effect of KBT and r increase the coherence
becomes shorter, and with smaller r the system can achieve high success state trans-
fer rate. Under the all different parameters, the characteristics of the quantum system
have little changed, and the designed control quantum system can well track the de-
sired state and have good performances in any cases. The experiments demonstrate
that the NOFTC designed has ability to track the states of the control quantum system
to the desired trajectory.
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Fig. 12 Evolution of state transfer of the real and estimated system with different system parameters

5 Conclusion

In this paper, a closed-loop NSE-based NOFTC was proposed and designed for the
state transfer of two-level ONMSQS. The proposed, which included a NSE to con-
tinuously estimate the system state by the measurement data, and then the NOFTC
law was designed via SDRE. The closed-loop NSE based NOFTC for ONMSQS was
implemented online at each time step to get the high control performance for the
tracking of reference model. Numerical simulations results demonstrate that the NSE
was able to track the real ONMSQS with the error ±2%, and the NOFTC proposed
had the ability to steer the state of ONMSQS from any initial arbitrary state to the
final target state.
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