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Wake slow waves in focal human epilepsy
impact network activity and cognition

Laurent Sheybani 1,2,3, Umesh Vivekananda1,2,3, Roman Rodionov1,2,3,
Beate Diehl1,2,3, Fahmida A. Chowdhury1,2,3, Andrew W. McEvoy1,2,3,
AnnaMiserocchi1,2,3, James A. Bisby 4, Daniel Bush 5 , Neil Burgess 1,6 &
Matthew C. Walker 1,2,3

Slowwaves of neuronal activity are a fundamental component of sleep that are
proposed to have homeostatic and restorative functions. Despite this, their
interaction with pathology is unclear and there is only indirect evidence of
their presence during wakefulness. Using intracortical recordings from the
temporal lobe of 25 patients with epilepsy, we demonstrate the existence of
local wake slow waves (LoWS) with key features of sleep slow waves, including
a down-state of neuronal firing. Consistent with a reduction in neuronal
activity, LoWSwere associatedwith slowed cognitive processing. However, we
also found that LoWS showed signatures of a homeostatic relationship with
interictal epileptiform discharges (IEDs): exhibiting progressive adaptation
during the build-up of network excitability before an IED and reducing the
impact of subsequent IEDs on network excitability. We therefore propose an
epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant
activity at the price of transient cognitive impairment.

During non-rapid eyemovement (NREM) sleep, neurons undergo slow
fluctuations of membrane potential, alternating between a burst firing
mode (up-state) and a suppression of their activity (down-state). This
fluctuation is reflected by slow oscillations (0.5–4Hz) of the local field
potential (LFP) termed slow wave activity (SWA, Fig. 1a). SWA is a
canonical component of sleep1,2 and has been proposed to be critical
for sleep homeostasis3–7 (specifically, the normalization of synaptic
strength6,8), metabolic regulation9, and metabolic waste clearance in
general10. Elevated sleep pressure, as occurs after a wake period, is
reflectedby an increased rate, slope and amplitude of sleep slowwaves
(SWs), which decrease over the course of the night4,11–15 (Fig. 1b). Fur-
thermore, evidence suggests that neuronal synchrony – e.g. increased
neuronal firing during the up-state and neuronal silence during the
down-state of sleep SWs – favors synaptic normalization8,11,16 and is
homeostatically modulated (high after a wake period, low after a sleep

period, Fig. 1a)12. Importantly, such slow wave activity is distinct from
the focal slowing (i.e., intermittent or persistent theta/delta frequency
oscillations) that occurs in pathological circumstances such as epi-
lepsy, and presumably reflects different generative mechanisms17.

Like wakefulness4 and cognitive processing3,18, epileptic activity
results in increased synaptic connectivity19–21 and metabolic need22.
Consequently, the increased SWA observed during sleep after repeti-
tive seizures has been interpreted as a compensatory mechanism17,23

which counteracts the increased local metabolic demand. However,
this contrasts with the view that SWs occurring in pathological brain
regions are detrimental24,25 or even pro-epileptic26 and there is currently
no evidence for SW having a beneficial impact on epileptic activity.
Furthermore, it is unclear whether such SWs might also appear during
wakefulness, although this could constitute a mechanism to offset
pathological activity, such as epileptiform discharges and seizures.
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Fig. 1 | Local wake slow waves (LoWS) recapitulate defining features of sleep
slow waves. a, b Properties of sleep slow waves (SWs). After a period of wake-
fulness, SWs present with increased rate, slope and amplitude, reflecting
increased homeostatic sleep pressure. Neuronal activity (black vertical lines)
aligns with the up-state of SWs. High-gamma (HG, 45–130Hz) power, color-coded
from blue (low) to red (high), reflects this increased neuronal activity. During the
down-state, neurons are silent (low HG power). Synapses (purple) are pruned and
neurons move from more (green) to less (gray) excitable. b After a period of
sleep, the rate, slope and amplitude of SWs decrease, reflecting the decrease in
homeostatic sleep pressure. c Example of identified negative and positive slow
waves during wakefulness (nSW and pSW respectively, patient 3, electrode 1, 247
nSW and 207 pSW, mean in blue). nSW and pSW correspond to positive and
negative extracellular polarity respectively, the former reflecting hyperpolariza-
tion of neurons, a core feature of sleep SW. d Grand average LoWS across

participants (mean ± SD). e Normalized HG (45–130Hz) power during the nSW-
associated down-state (averaged between the two 0-crossings of nSW) shows a
significant decrease relative to baseline (two-sided permutation paired t-test,
p = 0.0004, n = 17 patients, ES: mean and 95% CI). Time-frequency decomposition
of nSW (f) and pSW (g) converted into t-statistic values. Black line: grand average
nSW and pSW. Note the drop in HG power at nSW trough. In contrast, the drop in
HG power precedes pSW and corresponds to the peak of nSW occurrence before
pSW. Panels g and i are temporally aligned. Mean ± SD (n = 17) co-occurrence of
pSW and nSW (h) and the inverse (i), using true position (blue) and shuffled
position (black, control) of nSW and pSW. nSW and pSW thus occur mainly as 3
peaks (1.5 oscillatory cycles). Note the alignment of the peak of nSW occurrence
before pSW and the drop of HG power seen in g. Scale: per patient, per nSW and
pSW, per unit of time (i.e., percentage of nSW and pSW that is preceded/followed
by another wave). ES effect size.
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Here, using intracranial macro- and micro- electrode recordings
from the temporal lobe of people with focal, pharmacoresistant epi-
lepsy, we demonstrate the presence of highly local wake slow waves
(LoWS) that recapitulate the core features of sleep slow waves,
including the associated down-state of neuronal spiking activity.
Importantly, LoWS are isolated, discrete events that do not correlate
withoverall delta power, indicating that they aredistinct from the focal
slowing / delta oscillations typically associated with brain lesions and
epilepsy in particular27. We hypothesized that these LoWS could serve
a homeostatic purpose by normalizing neuronal activity to prevent
epileptic discharges,mirroring the functionof sleepSWswhichcorrect
the excessive neuronal excitability accumulated during wakefulness
that translates into high sleep pressure (i.e., sleep homeostasis6). If
LoWS do serve a homeostatic function, then they should exhibit two
key features: first, responding to increases in network excitability that
precede interictal epileptiform discharges (IEDs); and second, redu-
cing abnormal activity linked with IEDs. In line with this hypothesis, we
observed that progressive increases in neuronal activity (estimated by
high-gamma (HG) power) before IEDs are accompanied by an increase
of the slope and amplitude of LoWS, analogous to the response of
sleep SW to increased sleep pressure13,15. Moreover, we found that a
longer delay since the last LoWS is associated with higher HG power
during IEDs, suggesting that any protective function of LoWS dis-
sipateswith time. Lastly, we found that a higher rate of LoWSduring an
associative memory task was associated with longer reaction times
(RT), supporting the prediction5 that the substantial modulation of
neuronal activity during SWs12,28 impacts cognitive processing. Toge-
ther, our findings indicate that temporal lobe LoWS with key features
of sleep SW dynamically respond to changes in network excitability,
reduceaberrant activity associatedwith IEDs, and impact on cognition.
We therefore propose that LoWS represent a homeostatic process that
comes at the cost of transient cognitive impairment.

Results
Slow waves during wakefulness in patients with epilepsy
We first asked if we could reliably detect local slow waves during
wakefulness in a cohort of people with focal epilepsy (n = 17) under-
going intracranial EEG recordings, and then whether such slow waves
had key features of sleep slow waves (Fig. 1). We used a validated
algorithm for slowwave detection13,26,28,29 to track their presence in the
human hippocampus (mean± SD hippocampal electrode contacts per
patient = 3.4 ± 1.8, see Supplementary Table 1), while people with focal
epilepsy were performing an associative memory task. We excluded
any slow waves associated with (i.e., within 1 s following) an IED to
ensure that identified events were not post-IED slow waves and also
took several confirmatory steps to ensure that the identified slow
waves were not mislabeled IEDs (see Online Methods).

We identified typical SWs with a positive polarity (i.e., positive
extra-cellular potential but negative EEG signature, nSW) and with an
incidence rate of 0.06 ± 0.02 s−1 electrode−1 during wakefulness
(Fig. 1c-d). Consistent with this, we also found wake nSW in another
dataset from patients with focal epilepsy undergoing intracranial
recordings, although at a lower rate (from Boran et al.30, referred to
as the “Boran dataset” below, Boran vs UCL dataset: effect size [ES]
expressed as mean difference, 95% CI: 0.0294, 0.0164–0.0398 s−1

electrode−1, p = 0.0004, n = 9 and 17 patients respectively, Supple-
mentary Fig. 1a, b). Finally, we also found wake SW in a third inde-
pendent dataset31–33 (from theMNI Open iEEG Atlas, referred to as the
“MNI dataset” below, Supplementary Fig. 1c), but could not
clearly distinguish nSW from pSW due to the bipolar montage used
(see Methods). Nonetheless, the MNI dataset provided an opportu-
nity to compare the incidence of SWs across wake-sleep stages. This
confirmed that SWs were rarer during wakefulness than during sleep
(see Supplementary Fig. 1d). The lower rate during NREM 2 probably
reflects the fact that, by definition1, a maximum of 20% of slow-wave

activity can be detected in any 30 s window, while NREM 3 can be
comprised of 20–100% of slow-wave activity. Furthermore, since the
MNI dataset includes presumably healthy brain regions, the finding
of wake SWs in these regions indicates that they were not strictly
restricted to epileptic brain regions.

We next asked whether these isolated nSW simply reflected the
background slowing/increased delta activity typically associated with
epileptic foci or increased delta power that dominates hippocampal
activity during wakefulness31. First, we observed that nSW were, qua-
litatively, isolated, discrete events, and not continuous oscillations
(Supplementary Fig. 2). Furthermore, their incidence rate was not
correlated with delta or theta power across the whole recording
(Supplementary Fig. 3a, b) and the delta-band oscillatory content
around nSW and during control periods was similar (ES, 95% CI: 0.002,
−0.004 to 0.007 a.u., p = 0.501, n = 17, Supplementary Fig. 3c–e;
oscillatory content: see Methods for details), indicating that they did
not occur during transient oscillatory activity. Finally, we compared
the incidence rate of nSW on mesial temporal lobe electrodes (MTL,
amygdala and hippocampus) between patients with mesial (n = 6) and
extra-mesial temporal (n = 10; excluding one patient in which the sei-
zure onset zone could not be localized) lobe epilepsy anddid notfind a
significant difference (ES, 95% CI: 0.05, −0.02 to 0.14 s−1, p = 0.226,
Supplementary Fig. 4). Altogether, this indicates that nSW were dis-
tinct from the pathological slowing typically observed in epileptogenic
regions and their rate was not increased in the epileptic focus, at least
in the case of mesial temporal lobe epilepsy.

Next, we isolated the negative and positive EEG signatures of slow
waves, i.e., negative and positive slow waves (nSW and pSW respec-
tively, Fig. 1c, d). Rates of nSWandpSWwere similar (ES, 95%CI: 0.002,
−0.001 to 0.009 s−1 electrode−1, p = 0.464, n = 17 patients, Supplemen-
tary Fig. 5a) and highly correlated across patients (Pearson correlation,
r2 =0.79, p <0.0001, n = 17, Supplementary Fig. 5b). nSW had a peak
(extracellular) positive potential (Fig. 1c, d), which corresponds to a
hyperpolarization of neurons. This inactive state is a core feature of,
and defines, sleep SW5,28. For this reason, we subsequently focus only
on the negative component of this slow wave activity (i.e., nSW),
except where stated otherwise. The median oscillatory frequency of
nSW, estimated by the delay between the two 0-crossings, was 1.3Hz
(SD: 0.08Hz, n = 17 patients).

Wake slowwaves share key characteristicswith sleep slowwaves
Next, we determined whether identified slow waves had key char-
acteristics of sleep SW (Fig. 1). Analogous to sleep SW28, nSW were
associated with a down-state, as revealed by decreased high-gamma
(HG, 45–130Hz) power averaged between the two 0-crossings of the
grand average nSW (−0.15 to 0.165 s around the trough of nSW versus
baseline: ES, 95% CI: −0.137, −0.236 to −0.0884 a.u., p = 0.0004, n = 17,
Fig. 1e). Using a time-resolved frequency analysis, we confirmed that
the decrease in HG power was localized to the nSW trough (Fig. 1f).
This was further confirmed by the observation of a decrease in HG
power before the peak of pSW (from −0.42 to −0.13 s, Fig. 1g), the
timing of which matched the peak of nSW occurrence before pSW in
our data (around −0.36 s, Fig. 1g, i).

In the time domain, up to 9–10% of nSW were preceded or fol-
lowed by a pSW (with a delay of ± 0.37 s, Fig. 1h). The same analysis for
pSW gave, as expected, a similar result (Fig. 1i). This rate of temporal
coincidencewas significantly above the chance rate (nSWaroundpSW:
significant from −0.95 s to 0.05 s, then from 0.25 s to 0.95 s; pSW
around around nSW: from −0.85 s to 0.05 s, then from 0.25 s to 0.85 s,
n = 17, see Methods and black traces in Fig. 1h–i), suggesting that nSW
and pSW typically occurred as short trains of 2-3 half-waves. In the
spatial domain, the presence of a slow wave on one hippocampal
contact was accompanied by a slow wave on only 27% of the other
hippocampal contacts (Supplementary Fig. 6a). Thismicrofocality was
less pronounced in the amygdala (49%, Supplementary Fig. 6b) and
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more pronounced in the temporal neocortex (18%, Supplementary
Fig. 6c), which could reflect differences in the volume and coverage of
these brain regions. Similarly, the detection of a slow wave in the
hippocampus, amygdala or temporal neocortex was accompanied, on
average, by the detection of a slow wave in at least one of the other
regions in 24% of cases (Supplementary Fig. 6d). Slow wave incidence
rates were similar in the hippocampus (mean ± SD: 0.06 ± 0.02 s−1

electrode−1, n = 17), amygdala (0.06 ± 0.01 s−1 electrode−1, n = 12), and
temporal neocortex (0.06 ± 0.02 s−1 electrode−1, n = 17, Supplementary
Fig. 6e). Given the highly focal nature of detected nSW, we subse-
quently refer to them as local wake slow waves (LoWS).

LoWS are associated with a down-state of neuronal firing
To confirm that the decrease in HG power during the LoWS trough
corresponds to decreased neuronal activity, we examined LoWS in a
separate cohort of patients who underwent hippocampal microelec-
trode implantation (n = 8 patients) and identified unit spiking activity
(see Methods and Fig. 2a). We observed a significant decrease in unit
activity locked to the trough of LoWS (paired bootstrap statistic fol-
lowedby false discovery rate correctionacross timebins,p <0.05 from
−0.049 to 0.147 s, Fig. 2b). The maximal decrease of neuronal firing
occurred just after the trough (Fig. 2a–d), as previously described for

sleep SWs in the hippocampus28. At this time point, >50% of identified
units in all 8 patients showed a decrease in firing rate (mean ± SD= 78%
±17%, one sample t-test, p =0.0024, Fig. 2c, n = 8). Similarly, a com-
parison of normalized mean firing rates between the two 0-crossings
of the grand average LoWS versus baseline confirmed that the
decrease was significant (ES, 95% CI: −0.273, −0.455 to −0.0795,
p =0.0368, n = 8, Fig. 2e blue lines). Conversely, we found only non-
significant trends in the modulation of neuronal activity around pSW
(red lines in Fig. 2e) and IEDs (Supplementary Fig. 7a, b). In sum,
neuronal activity shows a significant decrease shortly after the trough
of LoWS during wakefulness, confirming the presence of this core
feature of sleep slow waves in LoWS.

LoWS and interictal epileptiform discharges
Next, we asked if there was any interaction between LoWS and inter-
ictal epileptiform discharges (IEDs). IEDs were identified in all but one
patient (mean rate ±SD across patients and electrodes: 0.01 ± 0.01 s−1

electrode−1, n = 16, Fig. 3a–c). First, we examinedwhether the incidence
rate of IEDs changed after LoWS. IEDs have been shown to co-occur
with the transition from up- to down-state of sleep SWs26. In our data,
wedid notfind significant changes in IED rates following LoWS (Fig. 3d,
e) or pSW (Supplementary Fig. 8a, b), in contrast to sleep SW26.

aa bb
slow wave trough

dd

-2 -1 0 1 2
0

1

2

3

time (s)

norm
. firing rate

0

1
ee

wave=1

wave=817

fir
in

g 
ra

te

cl
us

te
r #

29
0

cc
**

adj. p-val<0.0510 �V
0.5 ms

50%
1 s

su
bj

ec
ts

0     50%100%
% of clusters with
normalized firing

< 1
> 1

true: 78%chance: 50%

shuffle LoWS occurrence
true LoWS occurrence

no
rm

. f
iri

ng
 ra

te

0 1 2 3-1-2-3
time [s]

(not tested) (not tested)

pSWnSW
effect sizes

(ES)

no
rm

. f
iri

ng
 ra

te

m
ean paired difference

0.5

1.0

1.5
2

4

-0.5

0.0

0.5

1.0

p<0.05

p=0.31

Fig. 2 | Local wake slowwave (LoWS) trough is associated with a down-state of
neuronal activity. a Left Example of 1 unit. Right Normalized mean firing rate of
that unit aligned to all LoWS trough (blue line). There is a decrease in firing locked
to LoWS trough. Scale: percentage of the mean. b Mean firing rate, normalized by
the mean firing rate per epoch, around the trough of LoWS (mean± SEM, n = 8).
Pink: actual neuronal firing ±SEM; black: neuronal firing around shuffled LoWS
occurrence ±SEM. Orange boxes: periods with significant differences. c The per-
centage of units, by patient, that shows a decrease in firing rate (dark blue), at the
minimum identified in b is significantly above 50% (two-sided, one-sample t-test,
**p =0.0024, n = 8 patients). d Neuronal firing rate around LoWS (see Online
Methods). The firing rate is normalized to the mean firing rate per epoch (the

maximum being set to 1 for display) and then sorted by the firing rate at the
minimum identified in b, i.e., 0.079–0.081 s. Below the red line, LoWS with asso-
ciated firing rate showing an increase in comparison to baseline.White trace: grand
average LoWS from Fig. 1b. e Paired statistic comparing themean firing rate locked
to randomized nSWoccurrence (left end of the blue lines) and to randomized pSW
occurrence (left end of the red lines) and mean firing rate locked to nSW and pSW
occurrence (right end of the blue and red lines respectively). The period of interest
corresponds to the period in-between the two0-crossings of nSW (−0.15 to 0.165 s).
Blue: locking to nSW; red: locking to pSW. There is a significant decrease around
nSW (two-sided permutation paired t-test, p =0.0368, n = 8 patients, ES: mean
and 95% CI).

Article https://doi.org/10.1038/s41467-023-42971-3

Nature Communications |         (2023) 14:7397 4



Reciprocally, we did not observe a change of LoWS rate before IEDs
(Supplementary Fig. 8c, d).We then compared the overall rate of LoWS
with that of IEDs.We observed a significant negative correlation across
patients (Pearson correlation, r2 =0.51, p =0.002, n = 16, Fig. 3f, see
Discussion for further comments). We hypothesized that this might
explain why we found more LoWS in our dataset than in the Boran
dataset. Indeed, after correcting the rate of LoWS by that of IEDs (see
Online Methods), we found a similar normalized rate of LoWS in both
datasets (Boran versus UCL, ES, 95% CI: −0.0004, −0.001 to 0.0001,
n = 9 and n = 16 respectively, p =0.22, Supplementary Fig. 1b, two last
columns). Besides incidence rate, neither the slope (Pearson correla-
tion, r2 < 0.001, p >0.99, n = 16, Supplementary Fig. 9a), nor the
amplitude (Pearson correlation, r2 <0.001, p =0.96, n = 16, Supple-
mentary Fig. 9b) of LoWS correlated with the IED rate.

Some evidence indicates that IEDs are preceded by a progressive
increase in network excitability34,35. In line with this, we observed a
progressive increase in HG power prior to IEDs (β-estimate ± sem:
increase of 1 log(µV2) in HG power each 66.5 ± 25.4 s, n = 15 patients,
p =0.009, Fig. 4). Thus, in parallel to this progressive increase in
excitability before IEDs, we asked whether LoWS undergo electro-
physiological changes similar to those of sleep SW in response to
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increased excitability after a period of wakefulness. Under high
homeostatic sleep pressure, sleep SW present with high slope and
amplitude15 (see Fig. 1a, b). Using these features as independent vari-
ables in a linear mixed model with time to the next IED as the depen-
dent variable, we found that the slope (β-estimate ± sem:
slope increases by 0.001% ± 0.0002% each 1 s, adj. p < 0.0001, n = 16,
Fig. 5a, b) and amplitude (β-estimate ± sem: amplitude increases by
0.002% ±0.0001% each 1 s, adj. p < 0.0001, n = 16, Fig. 5a, c) of LoWS
increased significantly across time leading up to the next IED. Impor-
tantly, although these rates of change may appear small, they are
within the range of that reported in sleep SW across a whole night (at
least for SW slope: change of 20–30% across 381min of sleep)13. Thus,
two classical markers of synaptic strength (the slope and amplitude of
LoWS)6 change in parallel to progressive increases in HG power prior
to IEDs. This indicates that LoWS exhibit the first property expected of
a homeostatic process: they show adaptation to increased network
excitability, similar to the response of sleep SW to increased activity
during wakefulness.

Effects of LoWS on IEDs
The results above indicate a response of LoWS to increases in network
excitability leading up to IEDs, but do LoWS also represent a mechan-
ism to reduce these aberrant increases in network activity? To inves-
tigate this question, we analyzed the changes in HG power during IEDs,
as a surrogate for excitability during IED, and related these to the delay
since the last LoWS. We used a linearmixedmodel with delay since the
last LoWS as the independent variable andHGpower during IEDs (from

−0.05 to 0.05 s around peak amplitude) as the dependent variable. We
found a significant effect of the delay since the last LoWS on HG power
during IEDs (β-estimate ± sem: 2 ∙ 10−3 ± 3 ∙ 10−4 log(μV2) s−1, n = 16,
p <0.0001, Fig. 5d), indicating that for every additional 1 s since the last
LoWS, HG power during IEDs increases by ~1 µV2, or 0.9% of the grand
average HG power across patients (mean± SD: 113.1 ± 56.7 μV2, n = 17
patients). This suggests that any beneficial impact of LoWS on IEDs
operates as a dynamic process and dissipates with time. In sum, these
results indicate that LoWSalso exhibit the secondproperty expectedof
a homeostatic process: they reduce network excitability, similar to the
proposed function of sleep SW.

Phasic modulation of LoWS during a cognitive task
Cognitive tasks are known to increase the brain’s metabolic demand36.
We therefore asked whether this increased demand also changed
features of LoWS, consistent with a putative homeostatic role. To do
so, we examined the properties of LoWS during the encoding and
retrieval phases of a temporal lobe dependent associative memory
task (see Online Methods). We found that the rate of LoWS increased
during encoding (ES, 95% CI: 0.0116, 0.0038–0.026 s−1 electrode−1,
p =0.023, n = 17, Fig. 6a) but not retrieval (ES, 95% CI: 0.00446,
−0.00343 to 0.0136 s−1 electrode−1, p =0.348, n = 17, Fig. 6a). Further-
more, we observed that the slope of LoWSwas steeper during both the
encoding (ES, 95% CI: 0.056, 0.03–0.0936 a.u., p =0.002, n = 17,
Fig. 6b) and retrieval (ES, 95% CI: 0.0504, 0.0178–0.0805 a.u.,
p =0.0074, n = 17, Fig. 6b) phases of the memory task, while LoWS
amplitude was higher during encoding (ES, 95% CI: 0.108,
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0.07–0.15 a.u., p = 0.0002, n = 17, Fig. 6c) but not retrieval (ES, 95% CI:
−0.00104, −0.0555 to 0.0459 a.u., p = 0.972, n = 17, Fig. 6c) phase.
Together, these results support an adaptative modulation of LoWS by
cognitive processes.

LoWS are associated with transient cognitive impairment
One reason why SW are believed to be restricted to sleep is their
impact on neuronal activity, which might be expected to have a det-
rimental effect on cognition5. We tested this prediction by analyzing
the relationship between LoWS and performance on the associative
memory task. Using a linear mixed model, we found that a higher rate
of LoWSduring retrieval, but not encoding, was associatedwith longer
reaction times (RTs; β-estimate ± sem during retrieval: 0.56 ± 0.14 s2,
n = 17, p < 0.0001, Fig. 7a; during encoding: −0.33 s2 ± 0.31, n = 17,
p =0.84). This indicates that the RT was prolonged by 0.56 s for each
increase of 1 LoWS per s. To address the possibility that this relation-
ship arose from transient periods of drowsiness or fluctuations in
attention (which could increase both RTs and the incidence of LoWS),
we repeated the analysis using accurate trials only (i.e., correct
answers) and again found a significant correlation (β-estimate ± sem:
0.51 ± 0.17 s2, n = 17, p = 0.002). Conversely, the rate of LoWS during
encoding and retrieval did not differ between high and low accuracy
trials (ES, 95% CI: encoding: −0.004, −0.07 to 0.06 s−1, n = 15 patients,
p =0.919; retrieval: 0.004, −0.04 to 0.04 s−1, n = 17, p = 0.841), indi-
cating that these events were associated with impaired processing
speed rather than accuracy. Performing the same analysis on IEDs
revealed no significant association between incidence rate and RTs (β-
estimate ± sem during encoding: −0.01 ± 0.98 s2, n = 17, p = 1; during
retrieval: 0.70 ± 0.48 s2, n = 17, p =0.14). However, the rate of IEDs was
significantly lower during high versus low accuracy trials in both the
encoding and retrieval phases (ES, 95% CI during encoding: −0.0413,
−0.122 to −0.0132 s−1, p = 0.0114, n = 15 patients; ES, 95% CI during
retrieval: −0.0187, −0.0319 to −0.00805 s−1, p =0.0032, n = 16, Fig. 7b),
consistent with previous studies37. Altogether, these results indicate
that LoWSand IEDs are associatedwith distinct cognitive impairments:
the former with increased reaction time and the latter with decreased
accuracy.

Discussion
In sum, these findings reveal the existence of SW during wakefulness
that recapitulate thedistinctive features of sleepSW, including adown-
state of neuronal activity. We demonstrate that these SWs are distinct
from and not the result of sporadic increases in delta power that can
occur as a result of lesions or within epileptogenic foci. Although
evidence supports a restorative function of SW during sleep10,11, it was
previously unknown whether such beneficial activity could occur
during wakefulness under pathological conditions. Here, we provide
evidence of changes in LoWS properties (slope and amplitude) before
IEDs that reproduce the changes of sleep SW under high homeostatic
sleep pressure13,15. We further show that the closer an IED is to the
preceding LoWS, the lower the associated network excitability (mea-
sured by HG power). We therefore propose that LoWS operate as key
components of epilepsy homeostasis38, mirroring the well-known
sleep homeostasis regulated by sleep SWs6. This is further supported
by the negative correlation between LoWS rate and IED rate, which
suggests that IEDs occur more frequently in patients with fewer pro-
tective LoWS. Lastly, we observed that these beneficial effects are
associated with a negative effect on cognitive processing, with slower
RTs in an associativememory task, consistentwith the impact of SWon
neuronal activity5.

While it is difficult to infer whether LoWS are physiological or
induced by the presence of epilepsy, we do not expect them to be
entirely specific to epilepsy. Indeed, we were able to identify LoWS in
presumably healthy brain regions within the MNI dataset; and fur-
thermore, they do not show evidence of co-localization with the
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epileptic focus. Hence, our interpretation is that they represent, at
least in part, physiological activities that impact on neuronal excit-
ability, including that associated with epileptiform discharges.

What could be the underlying mechanism for a protective effect
of LoWS? Evidence suggests that SW are instrumental in decreasing
neuronal excitability during sleep4,12. In particular, sleep SW orches-
trate increased neuronal synchronization (i.e., low frequency bursts of
population activity) that has been shown to promote synaptic down-
scaling (i.e., a decrease in synaptic strength)8. Since neuronal syn-
chronization has been shown to correlate with sleep SW slope12, the
increase in LoWS slope that we observed before IEDs (although rela-
tively small across this much shorter timescale) might also reflect
increased neuronal synchronization, which promotes synaptic down-
scaling and could therefore underlie the reduction in HGpower during
subsequent IEDs. Further studies, including manipulation protocols,
will be necessary to demonstrate causality.

SWs have traditionally been considered to be specific to, and
almost exclusively studied during sleep4,6,10,12,15,18,29,39,40, whilst evidence
of slow wave activity during wakefulness has only recently been
described25,41,42. Those studies of wake SWs have made use of sleep-
deprived animals43, humans under sleep pressure undergoing scalp
EEG recordings41, stimulation of cortical regions surrounding focal
brain injury24, or thermocoagulation of clinically-defined brain areas25.
However, typical slow waves with an associated neuronal down-state

have not previously been described in awake humans, and it was
unknown whether this core feature of sleep SW occurred during
wakefulness. Indeed, the identification of neuronal down-states has
been recognized as particularly challenging in awake humans, since
these periods are expected to be very short44. Hence, LoWS might
previously have been overlooked, but could be particularly important
in the context of brain pathology24,25,43. Nonetheless, our results are
based on wake SW with a particularly high amplitude, detected by an
algorithm similar to that used by Frauscher et al.26, in order to distin-
guish SW frombackground noise. It thus remains unclear if the effects
we observe generalize to all (including lower amplitude) SWs.

Although different frequency ranges have been used to define
sleep SW, we followed the range typically used for SW detection
(0.5–4Hz)13,26,28 and our detection method was validated by the pre-
sence of an associated down-state. To note, we excluded post-IED slow
waves, since evidence suggests that sleep slow waves participate in
sleep homeostatic regulation17 and aredifferent frompost-IEDwaves28.
Nevertheless, further work is needed to fully understand the proper-
ties that differentiate post-IED waves from LoWS.

Previous intracranial EEG studies in people with epilepsy describe
separate low and high theta bands that are independently modulated
by various cognitive processes45–47. However, the results presented
here raise thepossibility that changes in low thetapowermay reflect an
increased incidence of LoWS associated with cognitive effort. This
would also explain why low theta is rarely observed in EEG or MEG
recordings from healthy participants performing similar tasks48 who
may be less likely to have LoWS.

The LoWS we observed in epilepsy resulted in decreased HG
activity and neuronal firing akin to an interruption of network func-
tion, so it is not surprising that LoWS were also associated with
slower memory retrieval. Using scalp EEG, a previous study sug-
gested that when patients declare thinking about nothing, or some-
thing other than the current cognitive task, they present an increased
density of SWs41. However, it remains unknown whether this sub-
jective experience reflects the occurrence of SWs, or whether
reduced attention triggers the expression of SWs. In our study, the
finding that LoWS rate predicts RTs, even when analyzing correct
trials only, suggests that this relationship is independent from fluc-
tuating degrees of attention. Since we used an associative memory
task, we focused our analyses on temporal lobe recordings. However,
the impact of LoWS on other brain regions might vary, depending on
the degree of the associated modulation of neuronal activity28,49,50,
and should be tested further using different cognitive tasks.
Regarding IEDs, their impact on memory when generated in extra-
hippocampal brain regions has already been addressed51 and we did
not intend to replicate this result in the present study. It would have
required more patients to control for the multiple brain regions
potentially involved in modulating memory performance and was
beyond the scope of this work.

Both beneficial and detrimental or even pro-epileptic functions of
SW have been suggested24–26,43,52,53. This may, however, be dependent
upon brain state and timescale and a clear causal association has not
been established. Our findings indicate that the wake slow waves we
identified are associated with a reduction in excitability and a bene-
ficial impact on IEDs; and this opens promising therapeutic perspec-
tives. In this context, the specificity of low-frequency (1–3Hz)
stimulation to elicit synaptic depression in vitro54 and to decrease
cortical excitability in humans55 aswell as its antiepileptogenic effect in
a rodent model of epilepsy56

fits well with the hypothetical anti-
epileptic property of LoWS. Our work proposes that the same pattern
of activity is naturally employed by the brain in patients with epilepsy,
and a failure to express LoWS could be detrimental. Modulating LoWS
could thus represent an efficient neurostimulation protocol that
enhances their protective activity to increase the epileptic threshold.
Preliminary work has shown that it is possible to experimentally
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amplify sleep SW57, and the application or improvement58 of such
devices to the field of epilepsy could bewithin reach in the near future.

To summarize, our study provides evidence of “micro-sleep”
modules during wakefulness in epilepsy that present with clear
homeostatic features, showing not only adaptation in association with
increases in network excitability before IEDs, but also negative feed-
back on IEDs, at the cost of cognitive lapses. Our work highlights the
compromise made by a brain that is affected by pathological activity
and calls for the development of interventional strategies aimed at
promoting LoWS to test their direct therapeutic potential in epilepsy.

Methods
Patients
A total of 25 patients with medically refractory epilepsy (11 female, 23
right-handed, mean age of 38.5 yrs, 17 withmacroelectrode recordings
and 8 with microelectrode recordings, Supplementary Table 1)
undergoing intracranial EEG monitoring for clinical purposes at the
National Hospital for Neurology and Neurosurgery, London, were
included in this study.One supplementarypatientwithmicroelectrode
recording was excluded because of high epileptic activity that would
have impeded a reliable analysis of slow wave activity. Patients with
microelectrode recordings also had macroelectrodes implanted, but
there were technical issues with the synchronization of both signals
which prevented us from including those macroelectrode data. Prior
approval was granted by the NHS Research Ethics Committee (15/LO/
1783), and informed written consent was obtained from each patient.
Patients were recruited if the research protocol did not impact nega-
tively on their clinical care, and if intracranial electrodes were targeted
at mesial temporal lobe structures. Sex and gender were not con-
sidered in the study design, given the rarity of the data. Some of these
patients participated in other research projects that have been pub-
lished elsewhere59,60.

Task
Adescription of the associativememory task isprovided inmore detail
elsewhere59,60. Briefly, the task was divided into encoding and retrieval
phases. During encoding, participants were presented with 27 pairs of
images that remained on screen for 6 s, preceded by a 2 s fixation cross
and followed by a 2 s blank screen. Unbeknownst to participants, each
pair was drawn from one of 9 discrete events comprised of a person,
place and object. As such, each item (person, place, object) was paired
with two other items over the course of encoding. During retrieval,
participants were first presented with a single cue image for 3 s, drawn
either from one of the 9 events viewed during encoding or an equal
number of New events, comprised of person, place and object images
that had not been viewed during encoding. Next, participants were
asked whether the cue image was Old or New? – i.e., whether that
image had formed part of a pair viewed during encoding or not. If the
cue image was Old, whether or not the participant correctly identified
it as such, they were then successively asked to indicate which two
images it had been paired with, from two groups of four alternative
choices drawn from the same image category across all Old events (i.e.
if cuedwith a person, they were first askedwhich place and thenwhich
object it had been paired with during encoding). In each case, parti-
cipants had unlimited time to indicate their response with a key press,
and reaction times (RTs)were recorded. Importantly, the rate of LoWS/
IEDs during retrieval was correlated with the accuracy of memory
retrieval in that trial, whilst the rate of LoWS/IEDs during encodingwas
correlated with the accuracy of memory retrieval across both retrieval
trials for the pair being presented on screen. This leads to a small
difference in the number of patients included in each analysis.

Data acquisition
Macroelectrode EEG data were recorded continuously against a com-
mon reference located inwhitematter remote from the epileptic focus

at a sample rate of 2048Hz (Patients 12 and 13), 512 Hz (Patients 1 and
16), or 1024Hz (all other patients),with a low-pass hardwarefilter set at
a cut-off frequency equal to¼ of the sampling rate and a 0.15Hz high-
pass, using a Micromed SD long-termmonitoring system (Micromed).
Electrodes (platinum Spencer probes) were implanted purely for
clinical purposes via stereotaxis. Recordings made at a higher sam-
pling rate were downsampled to 512Hz before any analyses were
performed. Microwire EEG data were recorded continuously at a
sample rate of 30 kHz using a Blackrock Neuroport system (Blackrock
Neurotech LLC) and Adtech Behnke Fried electrodes.

Electrode locations were established visually by a consensus
between authors (LS, RR and DB) combining the pre-implantationMRI
and post-implantation CT using EpiNav™. Further information can be
found in Supplementary Table 1. For the purpose of this study, we only
analysed data from electrodes located in the hippocampus, amygdala
and temporal neocortex, so that we could focus on the interaction
between IEDs, LoWS, and associative memory function.

Patients were alert and responsive during cognitive task periods,
as assessed directly by one of the co-authors (UV, JB, or DB) in the
recording room. Between cognitive task periods, patients were seen
intermittently, and no evidenceof sleepwas noted. Furthermore, since
some recordings were particularly long (see Supplementary Table 1),
we confirmed that there were no signs of drowsiness in the EEG by
comparing delta (0.5–4Hz), theta (4.1–7Hz) and alpha (7.1–12 Hz)
power during vs outside the cognitive task periods (Supplementary
Fig. 10a). It is possible that the trend for an increase in delta power
during the cognitive task reflects the increased incidence of LoWS
(although, as mentioned earlier, there was no correlation between
delta power and LoWS rate, Supplementary Fig. 3a), or could be a
consequence of memory processing45. A standard criterion of NREM 1
is a decrease in alpha peak frequency by 1Hz61; but in our data, alpha
peak frequency was actually significantly higher during rest periods
than during the cognitive task (during rest, mean± SD: 9.74 ±0.6Hz;
during cognitive task: 9.61 ± 0.58Hz, paired t-test, p =0.0262, Sup-
plementary Fig. 10b). Hence, the rest period was not marked by two
fundamental properties of NREM 1 (a decrease in alpha power and
peak frequency), and delta/theta activity also tended to be higher
during rest periods, implying that patients did not sleep between
cognitive task periods.

Publicly available datasets
Two publicly available datasets30–33 relating to complementary
cohorts from other centers (total of 115 supplementary patients),
were also included for control purposes. The Boran dataset30 was
published under a CC BY-SA 4.0 license (https://creativecommons.
org/licenses/by/4.0/) and is available here: https://doi.org/10.12751/
g-node.d76994. The MNI dataset31–33 is publicly available at https://
mni-open-ieegatlas.research.mcgill.ca/. In the Boran dataset, we
analyzed hippocampal activity in intracranial recording from
patients with epilepsy undergoing a working memory task62. Data
were acquired at 4 kHz (passband 0.5–1000Hz, Neuralynx ATLAS)
against a common intracranial reference and resampled to 2 kHz30.
Further information can be found in30. In the MNI Open iEEG dataset,
we analyzed activity from all contacts in intracranial recordings from
patients across the sleep-wake cycle (wakefulness, NREM 2, NREM 3
and REM sleep)31–33. Data were resampled to a sample rate of 200Hz
(low-pass filter set at 80Hz). These data are provided in a bipolar
montage (see note regarding the choice of the reference in the
subsection “Identification of slow waves” below). Further informa-
tion can be found in refs. 31–33.

Code and software used for analyses
Analyses were performed using custom Matlab (The MathWorks, v.
2022a) code and the Fieldtrip toolbox63. Statistical analyses were per-
formed using the web application EstimationStats64, Graphpad Prism
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(v. 9.5.0), SPSS (v. 29.0.0.0) and Matlab (v. 2022a). Figures were
designed in Matlab, Graphpad Prism and Adobe Illustrator.

Identification of IEDs
IEDs were identified in a semi-automated manner. First, the data were
screened using a published algorithm for rodent models of epilepsy65

that was adapted to human recordings. Briefly, data were filtered
between 20–80Hz (using a second order Butterworth filter) and the
amplitude of the filtered signal estimated using the absolute value of
the Hilbert transform. Candidate IEDs were then defined as periods
where both the amplitude of the filtered signal exceeded 3.5 times the
mean envelope and the amplitude of the unfiltered signal exceeded 4
times the mean envelope. Next, if >1 recording contact in any single
region of interest (hippocampus, amygdala, temporal neocortex)
exhibited a candidate IEDwithin awindowof ±0.3 s, only the candidate
IED with the highest amplitude was retained. This was introduced to
avoid working on replicates and/or volume conducted activity. Finally,
all candidate IEDs were curated by visual inspection and missed IEDs
were manually added.

It is important to note that we generally present the average rate
of IEDs per electrode, which can appear low. This is to avoid patients
with more intra-hippocampal electrodes presenting with an artificially
higher rate of IEDs. Uncorrected, the maximal rate reaches 0.23 s−1

(mean± SD: 0.05 ± 0.07 s−1).

Identification of slow waves
Slow waves were detected using a standard algorithm13,26,28,29. First, the
LFP signal was filtered between 0.5–4Hz (using a second order But-
terworth filter), all positive-to-negative zero-crossings and negative-to-
positive zero-crossings in the filtered signal were detected, and events
with a duration of 0.25 to 1 s were selected as candidate slow waves.
Next, any candidate slow waves that occurred ≤1 s after a detected IED
on any of the recording contacts in the same brain region were dis-
carded. Finally, only the remaining candidate slow waves whose
amplitude exceeded the 90th percentile were retained. Candidate slow
waves were then visually inspected, and any that appeared artifactual
or had an apparent IED occurring shortly beforehand were discarded.
We were concerned by the fact that IEDs are typically followed by a
slowwave, but itwasnot possible to visually inspect all slowwaves, due
to the large number detected. In addition to the precautionary mea-
sures taken above, we thus undertook several verification steps to
ensure that detected slow waves were not mislabeled IEDs. First, the
detected slow waves were visually similar to those described in other
publications (Fig. 1c, d)13,29. Second, detected slow waves and IEDs had
a different spectral signature (Figs. 1f, g and 3c). Third, we observed
that 45–130Hz high-gamma (HG) power during IEDs (measured either
during the time window used for down-state analysis, −0.15 to 0.165 s;
or during the time window of IED peak, −0.05 to 0.05 s) was sig-
nificantly higher than during pSW (ES, 95% CI: 4.49 ∙ 103, 2.68 ∙ 103 –

7.25 ∙ 103 µV2; and ES, 95% CI: 2.24 ∙ 104, 1.29 ∙ 104 – 3.71 ∙ 104 µV2,
p =0.0008 for both, Supplementary Fig. 7c). Note that sinceHGpower
is decreased during nSW, we did not compare it with HG increases
during IEDs. Fourth, we reasoned that if slow waves were mislabeled
IEDs, then variability in the rate of slowwaves across electrodes should
follow variability in the rate of IEDs rate across the same electrodes. To
test this, we defined an index of parallel rate variability (PRV) that
records the ratio of IED rate to slowwave rate for each electrodeminus
the ratio of the sumof IED rate and slowwave rate across all electrodes
for each participant. As such, the median PRV value is expected to be
significantly different from0 if the rates of IEDs and slowwaves do not
follow the same pattern across electrodes. The PRV is defined by:

prv =
XN

n = 1

rateðiedÞen
rateðswÞen

� rateðiedÞen + rateðiedÞen+ 1
+ rateðiedÞeN

rateðswÞen + rateðswÞen + 1
+ rateðswÞeN

 !2

ð1Þ

Where n = 1 to N indexes the electrodes in a specific patient.
Across participants, the median PRV was significantly different from 0
(median, 25–75th percentile: 0.06, 0.001–1.62, one sample Wilcoxon
test, p <0.0001, Supplementary Fig. 11), indicating that variability in
the rate of IEDs rate is not paralleled by variability in the rate of slow
waves across electrodes. We calculated the PRV only in the hippo-
campus, where all main analyses were performed. Fifth, we reasoned
that if LoWS were mislabeled IEDs, then electrodes that exhibit the
greatest number of IEDs should also record the greatest number of
slowwaves. However, there was no difference in the rate of slowwaves
between the electrode with the highest rate of IEDs and all other
electrodes (ES, 95% CI: −0.002, −0.01 to 0.003 s−1, p =0.595, Supple-
mentary Fig. 12). Sixth, we observed that LoWS and IEDs are associated
with different memory deficits (Fig. 7). Seventh, we observed that
LoWS and IEDs rates are negatively correlated (Fig. 3f). Conversely, if
LoWS were a subpopulation of mislabeled IEDs, and since LoWS
detection is semi-automatic (except for the visual removal of artefacts
and post-IED waves), then the proportion of mislabeled IEDs as LoWS
should be constant across participants, resulting in a positive corre-
lation (Supplementary Fig. 13). Finally, we also wished to address the
possibility that the slow waves we identified corresponded to low
frequency post-IED waves that propagate more readily across elec-
trode contacts than the sharp component of the IED. To test this, we
measured the absolute amplitude of the raw LFP signal at the peak of
each IED (i.e., the amplitude of the sharp component) across all hip-
pocampal electrodes and the maximum absolute amplitude in the
0–0.5 s window after that peak (i.e., the amplitude of the subsequent
slow wave) and then quantified the relative reduction in amplitude of
each with distance from the focus. Across 7 adjacent recording con-
tacts (the maximum number available on each depth electrode), there
was no significant difference in these normalized amplitudes (Sup-
plementary Fig. 14a, b). Since our main focus was on the deepest (i.e.,
most medial) recording contacts (located in the hippocampus), we
also compared the ratio of amplitudes on the 1st electrode (electrodeof
interest) and 2nd (adjacent electrode contact) and did not find a sig-
nificant difference (ES, 95% CI: 0.0391, −0.0513 to 0.153, p = 0.49,
Supplementary Fig. 14c). In sum, this indicates that the amplitude of
post-IED slow waves decreases with distance from the focus at the
same rate as the sharp component, arguing against the wider propa-
gation of post-IED slow waves compared to the sharp component
which could make post-IED waves appear as LoWS (i.e., without the
sharp component).

To note, steps 4 and 5 only indicate that the majority of LoWS are
not IEDs, but the convergence of all 8 findings strongly supports the
hypothesis that LoWS are not mislabelled IEDs.

Corrected rate of slow waves
Since we observed a negative correlation between the rate of LoWS
and IEDs (Fig. 3f), we computed the rate of LoWS corrected for the rate
of IEDs to verify whether variability in the rate of IEDs could explain
discrepancies between our dataset and the Boran dataset (Supple-
mentary Figs. 1b and 2 first columns). The corrected rate was calcu-
lated by multiplying the LoWS rate by the IED rate (Supplementary
Figs. 1b and 2 last columns), to account for the negative correlation
between these variables.

Identification of slow waves in the Boran dataset
We used another dataset of patients with epilepsy recorded with
intracortical electrodes30 to assess the reproducibility of slow waves
detection. To identify hippocampal slow waves, we used the Juelich
Histological Atlas, which computes a probability that each contact is
located in a subset of brain regions.We considered a contact to locate in
the hippocampus if the hippocampuswas themost probable region and
the probability was ≥25%. We used the Matlab mni2atlas.m function for
that purpose (https://github.com/dmascali/mni2atlas/releases/tag/1.1).
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Identification of slow waves in the MNI Open iEEG Atlas
We followed the same procedure as described above. For this dataset,
however, we did not manually curate identified SWs to remove
potential post-IED waves or artefacts for three reasons: (1) this dataset
presents only traces from presumably healthy brain regions, including
the lack of IEDs31, (2) wedid notwant to introduce a bias in the removal
of waves across states of vigilance (it is not possible to be blinded to
the vigilance state, since many more waves were detected during
NREM 3 than wakefulness) and (3) it was simply not conceivable to
visually inspect all identified waves in this very large dataset. Besides
wakefulness, the MNI Open iEEG Atlas also comprises data during
NREM 2, NREM 3 and REM sleep. Since the data are presented in a
bipolar montage, we included waves with both negative and positive
polarities in these analyses.

Choice of the reference
Signals of the Boran dataset and our dataset were calculated against a
common intracranial reference. Since slow waves reflect ongoing
membrane fluctuations66 and not a spatially-directed current, the use
of a common reference allowed inferring whether the polarity reflects
hyper- or depolarization28,67. This means that for the MNI Open iEEG
Atlas, inwhich signals were in a bipolarmontage, we cannot determine
whether the waves represent hyper- or depolarization. For this reason,
we combined nSW and pSW in this dataset. Since the incidence rate of
nSW and pSW was shown to be highly correlated (Supplementary
Fig. 5b), we assumed that combining both activities would only glob-
ally increase the rate, without bias for a state of vigilance.

Correlation between LoWS rate and delta/theta power
Delta (0.5–4Hz) and theta (4.1–7Hz) power were estimated using
Welch’s method and then log-transformed. The rate of LoWS was
estimated as the number of LoWS per second and per electrode, after
correcting for the refractory period of 1 s following identified IEDs
(Supplementary Fig. 3a, b).

LoWS-slope and amplitude before IEDs
To look for changes in the slope and amplitude of LoWS leading up to
IEDs, we first identified theminimumof the 0.5–4Hz filtered signal in a
1 s window following LoWSonset (whichwas defined as the amplitude)
and defined LoWS slope as the ratio between that amplitude and the
post-onset time of this minima. Slope and amplitude values were then
normalized by the highest absolute slope and amplitude observed in
each patient, so that all values lay in the range of 0 to 1. These values
were then used as dependent variables in separate linear mixed
models. Time to the next IED was included as a fixed factor. We also
included time since the start of recording as a random factor, to
account for the possibility that any observed changes in slope and
amplitude are simply due to the accumulation of sleep pressure over
the course of testing. Finally, we included patient identity as a
grouping variable, in this and all other linearmixedmodel analyses. As
in other linearmixedmodels (Figs. 4, 5b–d and 7a), weused a common
slope with variable intercept. For display purposes, panels b and c of
Fig. 5 were constructed from the average slope and amplitude
respectively by bins of 5 s.

To account for the variability across patients in IEDs and LoWS
frequency – and therefore, in the range of delays since the last LoWS
and number of observations included in these analyses – we used a
linear mixed-model.

Peri-stimuli time histogram
To generate peri-stimuli time histograms (Figs. 1h, i, 3d, e, Supple-
mentary Fig. 8) of nSW incidence rate aroundpSW (and vice-versa) and
SW around IEDs (and vice-versa), and to avoid bias from under sam-
pling the incidence rates at times distant from the triggering event, we
undertook a different analysis (this does not apply to slope, amplitude

and HG power before IEDs [see below], since those are not calculated
when LoWS are not present). We first convolved the incidence rate of
the modulated activity around the index activity (e.g., modulation of
the rate of nSW around IEDs) with a Hanning window of 0.5 s and then
calculated the mean occurrence of the modulated activity per elec-
trodes and patients around the index activity. The rate was also nor-
malized by the number of epochs of the index activity, explaining why
the apparent basal rate is lower than the actual rate of the modulated
activity. To assess statistical significance on a short-term scale, we
followed the same procedure described to assess the neuronal down-
state of LoWS (see below): we downsampled each patient’s mean
incidence rate of the modulated activity to 10Hz and computed a p-
value for time-windows of 2 s (chosen for homogeneity with the ana-
lysis of down-state around LoWS; bootstrap, 5000 loops against
shuffled position of index activity). For nSW and pSW, this window
extends from −1 to 1, while for IEDs it extends from 0 to 2 s after a SW
(since, for IEDs, the rate is expected to be equal to 0 in the second
before SW given our detection algorithm; see above). To assess the
statistical significance on a long-term scale (60 s), we calculated the
slope (β-coefficient) of IEDs rate change after LoWS and tested whe-
ther themeanslope acrossparticipantswas significantlydifferent from
0 (one sample Wilcoxon test). In this analysis, the timescale of 60 s
could thus have included epochs with other index activity before or
after the modulated activity and the use of a shorter window (60 s,
instead of 250 s) was intended to mitigate this risk.

HG power before IEDs
We used the Fieldtrip63 function ft_freqanalysis.m to calculate HG
power (45–130Hz) during non-overlapping windows of 1 s before
IEDs (multitaper frequency transformation) and log-transformed the
result. To control for potential outliers, we selected the same number
of trials for each time-bin prior to IEDs by identifying for each par-
ticipant themaximal pre-IED duration (which depended on inter-IEDs
delay) that would encompass at least 50% of all IEDs. This explains
why n = 15 in this analysis. HG power was then used as the indepen-
dent variable and time to the next IED as the dependent variable in a
linear mixed model.

Interaction between LoWS and HG power during IEDs
HG power during IEDs (−0.05 to 0.05 s around IEDs) was used as the
dependent variable in a linear mixed model with delay since the last
LoWS as the independent variable. We selectedHG power during IEDs,
rather than the peak amplitude of IED, because the peak amplitude is
sampled at only one timeframe,whichwouldnot reliably represent the
relatively long duration of IEDs (see Fig. 3a–c), and because the peak
amplitude can vary with shifts in ongoing baseline activity. Further-
more, HG activity is typically considered a reliable proxy of neuronal
activity68. Mean HG power across recordings was measured using the
same parameters, randomly sampling the recordings with windows of
similar size (500 bootstraps).

Analyses of down-state
To measure changes in HG power (45–130 Hz) associated with LoWS
(Fig. 1e), we used the Fieldtrip63 function ft_freqanalysis.m (multitaper
frequency transformation) for the timewindow between the two zero-
crossings of the grand average LoWS (−0.15 to0.165 s around the LoWS
trough). Power values were baseline corrected using average power at
each frequency across the −2.9 to −0.2 s and 0.2 to 2.9 s time windows
relative to the LoWS trough. As a control, the same analysis was per-
formed relative to a randomly sampled set of time bins (as opposed to
the occurrence of genuine LoWS). Importantly, changes in HG power
associated with pSW and IEDs were not baseline corrected, because
changes in HG power were observed within the baseline timewindows
(e.g., during the down-state before pSW [Fig. 1g] and following IEDs
[Fig. 3c]). For the time-frequency decompositions in Fig. 1f, g (LoWS)
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and Fig. 3c (IEDs), dynamic changes in oscillatory power were esti-
mated using a seven-cycle Morlet wavelet transform (implemented
using the Fieldtrip function ft_freqanalysis.m) in ±3 s time windows
around IEDs and LoWS across a 1.5–130Hz frequency range. For con-
trol purposes, we used the functions randsample.m or datasample.m
to randomly generate twice as many time bins (for LoWS) or the same
number of time bins (for IEDs), excluding artefactual periods and time
windows of ±3 s around another IED or LoWS (for LoWS) or time
windows of ±3 s around another IED (for IEDs).

Micro-electrode recordings
Single and multi-unit activity was identified using the wave_clus
toolbox69. Briefly, data were filtered in the 300–3000Hz range and
events whose amplitude was within 4–50 standard deviations of the
median noise identified as candidate spikes. Spikes were then clus-
tered automatically based on wavelet features of the waveform
before single- and multi-unit activity clusters (denoted together as
unit spiking activity or “units” in the manuscript) were manually
identified based on the inter-spike interval distribution and average
waveform. The firing rate of each unit was then convolvedwith a 0.2 s
Gaussian window and normalized to the mean firing rate across
epochs (±3 s around individual LoWS). Finally, units with a mean
firing rate <2Hz across the entire recording session were discarded,
following28. The statistical analysis in Fig. 2c was performed with
units that had a mean firing rate >2Hz across the entire EEG and with
units that had a mean firing rate > 2Hz during the surrounding
baseline (−2.9 to −0.2 s and 0.2 to 2.9 s) and both came out as sig-
nificant after Bonferroni–Holm correction. For display (Fig. 2d) we
used units with mean firing >2Hz during the surrounding baseline.
The boundary was set at −2 s and 2 s to encompass the LoWS (the
mean duration of LoWS, i.e., in-between two zero crossings, was
0.3571 s, which we rounded to 0.4 s).

To obtain a time-resolved evaluation of the firing rate around
LoWS, we first obtained the mean firing rate per patient (n = 8) and
down-sampled these time series to 10Hz, thus obtaining a resolution
of 0.1 s for statistical analysis. We then used a bootstrapping approach
as follows: for each timebin from −1 to 1 s around the LoWS trough, the
difference between themeanfiring rate around LoWS and five times as
many randomly sampled time bins was calculated. Across 5000
bootstraps, the identity of these conditions was then randomly swit-
ched to obtain a null distribution of paired firing rate differences. We
then identified where the actual firing rate difference lays on the
bootstrapped distribution and recorded the percentile to calculate a
two-tailed p-value. We chose more control markers to increase the
reliability of baseline estimation. Finally, p-values were adjusted by the
false-discovery rate (function fdr_bh.m70).

Mean firing rates during the down-state were computed between
the two zero-crossings of themean LoWS (from −0.15 to0.165 s around
the LoWS trough) and normalized by the mean firing rate during the
surrounding baseline window (−2.9 to −0.2 and 0.2 to 2.9 s around the
LoWS trough). For statistical analysis, these values were compared
against the firing rate occurring around nSW and pSW, which occur-
rence had been shuffled (left end of each line in Fig. 2e).

Analysis of IEDs, LoWS and memory performance
To assess the effect of IEDs and LoWS onmemory performance, we
tested whether mean incidence rates during encoding (i.e., during
the 6 s of image presentation) and retrieval (i.e., during the vari-
able duration period between the associative memory question
appearing and participant’s response) differed between high and
low accuracy trials (i.e., those with correct versus incorrect
responses) and fast vs slow RT trials. To assess the effect on RTs,
we computed a linear mixed model using RT as the dependent
variable and IED rate and SW rate during encoding and retrieval as
independent variables.

Statistical analyses
Using the web application estimationstats.com64, we performed esti-
mation statistics rather than significance testing for most statistical
analyses. Estimation statistics provide numerous advantages64, one of
them being that the statistical analyses relies on an evaluation of the
effect size. For these analyses, the p-values displayed represent the
probability of obtaining the same effect size if the mean paired dif-
ference is equal to 0. We indicate the mean paired difference (effect
size, ES) as well as the 95% confidence interval (95% CI). P-values are
obtained through two-sided permutation t-tests using 5000 boot-
straps. Since estimation statistics are not null-hypothesis testing, they
do not require correction for multiple comparisons. Even so, we
checked whether p-values survived a Bonferroni–Holm correction
when multiple comparisons were applied: % of unit spiking activity
showing a decrease during down-state; LoWS effect on behavior; IEDs
effect on behavior; LoWS slope during encoding and retrieval; LoWS
amplitude during encoding and retrieval; LoWS rate during encoding
and retrieval. We found that all p-values remained significant. When
multiple comparisons were applied on null-hypothesis statistics, we
also applied a Bonferroni–Holm correction. For most plots, we display
the effect size on the right of the respective panel.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thiswork is basedon clinical data thatwas subject to ethics committee
approval and patient consent. We will share clinical data on request,
provided that request fulfils the ethics approval that we have for data
collection and analysis. Source data for the main Results are provided
with the paper. The MNI dataset is accessible on https://mni-open-
ieegatlas.research.mcgill.ca/. The dataset is powered by LORISwhich is
under licenseGPLv3. TheBoran dataset is accessible onhttps://doi.gin.
g-node.org/10.12751/g-node.d76994/. The Boran dataset is under
license CC BY-SA 4.0 DEED. Source data are provided with this paper.

Code availability
Code for slow wave and interictal epileptiform discharge detection is
available at https://github.com/bushlab-ucl/slowWaveDetection. Fre-
quency analyses were performed using Fieldtrip (https://www.
fieldtriptoolbox.org/). Single and multi-unit activity were identified
using wave_clus (version 3.0.3, https://github.com/csn-le/wave_clus).
We alsousedMatlab (v. 2022a), GraphpadPrism (v. 9 and updates, also
for illustration), Adobe Illustrator (v. 26 and updates, for illustration
only), SPSS (v. 29) and the web application EstimationStats (https://
www.estimationstats.com/#/).

References
1. Fiorillo, L. et al. Automated sleep scoring: a review of the latest

approaches. Sleep. Med. Rev. 48, 101204 (2019).
2. Buzsáki, G. Rhythms of the brain (Oxford University Press, 2006).
3. Huber, R. et al. Arm immobilization causes cortical plastic changes

and locally decreases sleep slow wave activity. Nat. Neurosci. 9,
1169–1176 (2006).

4. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. &
Tononi, G. Molecular and electrophysiological evidence for net
synaptic potentiation in wake and depression in sleep. Nat. Neu-
rosci. 11, 200–208 (2008).

5. Vyazovskiy, V. V. &Harris, K. D. Sleep and the single neuron: the role
of global slow oscillations in individual cell rest. Nat. Rev. Neurosci.
14, 443–451 (2013).

6. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from
synaptic and cellular homeostasis to memory consolidation and
integration. Neuron 81, 12–34 (2014).

Article https://doi.org/10.1038/s41467-023-42971-3

Nature Communications |         (2023) 14:7397 12

https://mni-open-ieegatlas.research.mcgill.ca/
https://mni-open-ieegatlas.research.mcgill.ca/
https://doi.gin.g-node.org/10.12751/g-node.d76994/
https://doi.gin.g-node.org/10.12751/g-node.d76994/
https://github.com/bushlab-ucl/slowWaveDetection
https://www.fieldtriptoolbox.org/
https://www.fieldtriptoolbox.org/
https://github.com/csn-le/wave_clus
https://www.estimationstats.com/#/
https://www.estimationstats.com/#/


7. Levenstein, D., Watson, B. O., Rinzel, J. & Buzsáki, G. Sleep regula-
tion of the distribution of cortical firing rates. Curr. Opin. Neurobiol.
44, 34–42 (2017).

8. Czarnecki, A., Birtoli, B. & Ulrich, D. Cellular mechanisms of burst
firing-mediated long-term depression in rat neocortical pyramidal
cells: firing modes and synaptic plasticity. J. Physiol. 578,
471–479 (2007).

9. Sharma, S. & Kavuru, M. Sleep and metabolism: an overview. Int. J.
Endocrinol. 2010, 1–12 (2010).

10. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and
cerebrospinal fluid oscillations in human sleep. Science 366,
628–631 (2019).

11. Esser, S. K., Hill, S. L. & Tononi, G. Sleep homeostasis and cortical
synchronization: I. Modeling the effects of synaptic strength on
sleep slow waves. Sleep 30, 1617–1630 (2007).

12. Vyazovskiy, V. V. et al. Corticalfiring and sleephomeostasis.Neuron
63, 865–878 (2009).

13. Riedner, B. A. et al. Sleep homeostasis and cortical synchronization:
III. A high-density EEG study of sleep slow waves in humans. Sleep
30, 1643–1657 (2007).

14. Huber, R. et al. Human cortical excitability increases with time
awake. Cereb. Cortex 23, 1–7 (2013).

15. Vyazovskiy, V. V., Riedner, B. A., Cirelli, C. & Tononi, G. Sleep
homeostasis and cortical synchronization: II. A local field
potential study of sleep slow waves in the rat. Sleep 30,
1631–1642 (2007).

16. Bellesi, M., Riedner, B. A., Garcia-Molina, G. N., Cirelli, C. & Tononi,
G. Enhancement of sleep slow waves: underlying mechanisms and
practical consequences. Front. Syst. Neurosci. 8, 208 (2014).

17. Boly, M. et al. Altered sleep homeostasis correlates with cognitive
impairment in patients with focal epilepsy. Brain 140, 1026–1040
(2017).

18. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and
learning. Nature 430, 78–81 (2004).

19. Bower, M. R. et al. Evidence for consolidation of neuronal assem-
blies after seizures in humans. J. Neurosci. 35, 999–1010 (2015).

20. Schevon, C. A. et al. Evidence of an inhibitory restraint of seizure
activity in humans. Nat. Commun. 3, 1060 (2012).

21. Debanne, D., Thompson, S. M. & Gahwiler, B. H. A brief period of
epileptiform activity strengthens excitatory synapses in the rat
hippocampus in vitro. Epilepsia 47, 247–256 (2006).

22. Vulliemoz, S. et al. Simultaneous intracranial EEG and fMRI of
interictal epileptic discharges in humans. NeuroImage 54,
182–190 (2011).

23. Sheybani, L. et al. Asymmetry of sleep electrophysiologicalmarkers
in patients with focal epilepsy. Brain Commun. 5, fcad161 (2023).

24. Sarasso, S. et al. Local sleep-like cortical reactivity in the awake
brain after focal injury. Brain 143, 13 (2020).

25. Russo, S. et al. Focal lesions induce large-scale percolation of
sleep-like intracerebral activity in awake humans. NeuroImage 234,
117964 (2021).

26. Frauscher, B. et al. Facilitation of epileptic activity during sleep is
mediated by high amplitude slow waves. Brain 138, 1629–1641
(2015).

27. Zumsteg, D., Hungerbühler, H. & Wieser, H. G. Atlas of adult elec-
troencephalography (Hippocampus-Verlag, 2004).

28. Nir, Y. et al. Regional slow waves and spindles in human sleep.
Neuron 70, 153–169 (2011).

29. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep
slow oscillation as a traveling wave. J. Neurosci. 24,
6862–6870 (2004).

30. Boran, E. et al. Dataset of human medial temporal lobe neurons,
scalp and intracranial EEG during a verbal working memory task.
Sci. Data 7, 30 (2020).

31. Frauscher, B. et al. Atlas of the normal intracranial electro-
encephalogram: neurophysiological awake activity in different
cortical areas. Brain 141, 1130–1144 (2018).

32. Frauscher, B. et al. High-frequency oscillations in the normal human
brain. Ann. Neurol. https://doi.org/10.1002/ana.25304 (2018).

33. von Ellenrieder, N. et al. How the humanbrain sleeps: direct cortical
recordings of normal brain activity. Ann. Neurol. 87,
289–301 (2020).

34. Ren, L. et al. Gamma oscillations precede interictal epileptiform
spikes in the seizure onset zone. Neurology 84, 602–608 (2015).

35. Keller, C. J. et al. Heterogeneous neuronal firing patterns during
interictal epileptiform discharges in the human cortex. Brain 133,
1668–1681 (2010).

36. Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Annu.
Rev. Neurosci. 29, 449–476 (2006).

37. Kleen, J. K. & Kirsch, H. E. The nociferous influence of interictal
discharges on memory. Brain 140, 2072–2074 (2017).

38. Staley, K. Molecular mechanisms of epilepsy. Nat. Neurosci. 18,
6 (2015).

39. Beenhakker, M. P. &Huguenard, J. R. Neurons that fire together also
conspire together: is normal sleep circuitry hijacked to generate
epilepsy? Neuron 62, 612–632 (2009).

40. Valero, M. et al. Sleep down state-active ID2/Nkx2.1 interneurons in
the neocortex. Nat. Neurosci. 24, 401–411 (2021).

41. Andrillon, T., Burns, A., Mackay, T., Windt, J. & Tsuchiya, N. Pre-
dicting lapses of attention with sleep-like slow waves. Nat. Com-
mun. 12, 3657 (2021).

42. Quercia, A., Zappasodi, F., Committeri, G. & Ferrara, M. Local use-
dependent sleep in wakefulness links performance errors to
learning. Front. Hum. Neurosci. 12, 122 (2018).

43. Facchin, L. et al. Slow waves promote sleep-dependent plasticity
and functional recovery after stroke. J. Neurosci. 40,
8637–8651 (2020).

44. Nir, Y. et al. Selective neuronal lapses precede human cogni-
tive lapses following sleep deprivation. Nat. Med. 23,
1474–1480 (2017).

45. Lega, B. C., Jacobs, J. & Kahana, M. Human hippocampal theta
oscillations and the formation of episodicmemories.Hippocampus
22, 748–761 (2012).

46. Jacobs, J.Hippocampal theta oscillations are slower inhumans than
in rodents: implications for models of spatial navigation and
memory. Philos. Trans. R. Soc. B 369, 20130304 (2014).

47. Bush, D. et al. Human hippocampal theta power indicates move-
ment onset and distance travelled. Proc. Natl Acad. Sci. USA 114,
12297–12302 (2017).

48. Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in
human memory. Trends Cogn. Sci. 24, 208–227 (2020).

49. Isomura, Y. et al. Integration and segregation of activity in
entorhinal-hippocampal subregions by neocortical slow oscilla-
tions. Neuron 52, 871–882 (2006).

50. Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N. & Buzsáki,
G. Network homeostasis and state dynamics of neocortical sleep.
Neuron 90, 839–852 (2016).

51. Horak, P. C. et al. Interictal epileptiform discharges impair word
recall in multiple brain areas. Epilepsia 58, 373–380 (2017).

52. Sheybani, L. et al. Slow oscillations open susceptible timewindows
for epileptic discharges. Epilepsia 62, 2357–2371 (2021).

53. Sheybani, L., van Mierlo, P., Birot, G., Michel, C. M. & Quairiaux, C.
Large-scale 3–5 Hz oscillation constrains the expression of neo-
cortical fast ripples in a mouse model of mesial temporal lobe
epilepsy. eNeuro 6, ENEURO.0494–18.2019 (2019).

54. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in
area CA1 of hippocampus and effects of N-methyl-D-aspartate
receptor blockade. Proc. Natl Acad. Sci. 89, 4363–4367 (1992).

Article https://doi.org/10.1038/s41467-023-42971-3

Nature Communications |         (2023) 14:7397 13

https://doi.org/10.1002/ana.25304


55. Manzouri, F. et al. Low-frequency electrical stimulation reduces
cortical excitability in the human brain. NeuroImage Clin. 31,
102778 (2021).

56. Paschen, E. et al. Hippocampal low-frequency stimulation prevents
seizure generation in a mouse model of mesial temporal lobe epi-
lepsy. eLife 9, e54518 (2020).

57. Ngo, H.-V. V.,Martinetz, T., Born, J. &Mölle,M. Auditory closed-loop
stimulation of the sleep slow oscillation enhancesmemory.Neuron
78, 545–553 (2013).

58. Fattinger, S. et al. Closed-loop acoustic stimulation during sleep in
children with epilepsy: a hypothesis-driven novel approach to
interact with spike-wave activity and pilot data assessing feasibility.
Front. Hum. Neurosci. 13, 166 (2019).

59. Vivekananda, U. et al. Spatial and episodic memory tasks promote
temporal lobe interictal spikes. Ann. Neurol. https://doi.org/10.
1002/ana.25519 (2019).

60. Vivekananda, U. et al. Theta power and theta‐gamma coupling
support long‐term spatial memory retrieval. Hippocampus 31,
213–220 (2021).

61. Troester, M. et al. The AASM Manual for the Scoring of Sleep and
Associated Events: Rules, Terminology andTechnical Specifications.
Version 3 www.aasmnet.org (Darien, IL: American Academy of
Sleep Medicine, 2023).

62. Boran, E. et al. Persistent hippocampal neural firing and
hippocampal-cortical coupling predict verbal working memory
load. Sci. Adv. 5, eaav3687 (2019).

63. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data.Comput. Intell. Neurosci.2011, 1–9 (2011).

64. Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving
beyond P values: data analysis with estimation graphics. Nat.
Methods 16, 565–566 (2019).

65. Gelinas, J. N., Khodagholy, D., Thesen, T., Devinsky, O. & Buzsáki, G.
Interictal epileptiform discharges induce hippocampal–cortical
coupling in temporal lobe epilepsy. Nat. Med. 22, 641–648 (2016).

66. Timofeev, I. et al. Spatio-temporal properties of sleep slowwaves and
implications for development.Curr. Opin. Physiol. 15, 172–182 (2020).

67. Csercsa, R. et al. Laminar analysis of slow wave activity in humans.
Brain 133, 2814–2829 (2010).

68. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S.
Neural correlates of high-gamma oscillations (60-200 Hz) in
macaque local field potentials and their potential implications in
electrocorticography. J. Neurosci. 28, 11526–11536 (2008).

69. Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike
detection and sorting with wavelets and superparamagnetic clus-
tering. Neural Comput. 16, 1661–1687 (2004).

70. Groppe, D. David Groppe (2022). fdr_bh (https://www.mathworks.
com/matlabcentral/fileexchange/27418-fdr_bh). MATLAB Central
Exchange (2022).

Acknowledgements
We thank Dimitri Kullmann for critically reviewing the manuscript. We
thank Ece Boran, Johannes Sarnthein, Birgit Frauscher and all the con-

tributors of the MNI Open iEEG Atlas for sharing their respective data-
sets. This work was supported by the Department of Health’s National
Institute forHealthResearch, UCL/UCLBiomedical ResearchCentre. L.S.
is funded by Swiss National Science Foundation P500PM_206720. U.V.
is funded by Academy of Medical Sciences, ER UK, MRC (MR/T033150/
1), Medical Research Foundation and NIHR BRC. D.B. is funded by a UKRI
Frontier ResearchGrant (EP/X023060/1). F.A.C. is fundedbyMRCCARP.
B.D. is funded by ER UK. N.B. is funded by Wellcome Principal Research
Fellowship (222457/Z/21/Z). RR is funded by Wellcome Trust Innovation
Program (218380/Z/19/Z).

Author contributions
Designed the study: L.S., U.V., D.B., N.B., M.C.W. Data acquisition: U.V.,
R.R., B.D., F.A.C., A.W.M., A.M., J.A.B., D.B. Analyzed the data: L.S., U.V.,
R.R., D.B., N.B.,M.C.W.Wrotefirst draft of themanuscript: L.S., U.V., D.B.,
N.B., M.C.W. All authors read and commented on subsequent drafts

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42971-3.

Correspondence and requests for materials should be addressed to
Daniel Bush, Neil Burgess or Matthew C. Walker.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42971-3

Nature Communications |         (2023) 14:7397 14

https://doi.org/10.1002/ana.25519
https://doi.org/10.1002/ana.25519
http://www.aasmnet.org
https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh
https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh
https://doi.org/10.1038/s41467-023-42971-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Wake slow waves in focal human epilepsy impact network activity and cognition
	Results
	Slow waves during wakefulness in patients with epilepsy
	Wake slow waves share key characteristics with sleep slow�waves
	LoWS are associated with a down-state of neuronal�firing
	LoWS and interictal epileptiform discharges
	Effects of LoWS on�IEDs
	Phasic modulation of LoWS during a cognitive�task
	LoWS are associated with transient cognitive impairment

	Discussion
	Methods
	Patients
	Task
	Data acquisition
	Publicly available datasets
	Code and software used for analyses
	Identification of IEDs
	Identification of slow waves
	Corrected rate of slow�waves
	Identification of slow waves in the Boran dataset
	Identification of slow waves in the MNI Open iEEG�Atlas
	Choice of the reference
	Correlation between LoWS rate and delta/theta power
	LoWS-slope and amplitude before�IEDs
	Peri-stimuli time histogram
	HG power before�IEDs
	Interaction between LoWS and HG power during IEDs
	Analyses of down-state
	Micro-electrode recordings
	Analysis of IEDs, LoWS and memory performance
	Statistical analyses
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




