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A Real-Time Robust Ecological-Adaptive Cruise
Control Strategy for Battery Electric Vehicles
Sheng Yu, Xiao Pan, Anastasis Georgiou, Boli Chen, Imad M. Jaimoukha and Simos A. Evangelou

Abstract—This work addresses the ecological-adaptive cruise
control problem for connected electric vehicles by a computation-
ally efficient robust control strategy. The problem is formulated
in the space-domain with a realistic description of the nonlinear
electric powertrain model and motion dynamics to yield a
convex optimal control problem (OCP). The OCP is solved
by a novel robust model predictive control (RMPC) method
handling various disturbances due to modelling mismatch and
inaccurate leading vehicle information. The RMPC problem
is solved by semi-definite programming relaxation and single
linear matrix inequality (sLMI) techniques for further enhanced
computational efficiency. The performance of the proposed real-
time robust ecological-adaptive cruise control (REACC) method
is evaluated using an experimentally collected driving cycle.
Its robustness is verified by comparison with a nominal MPC
which is shown to result in speed-limit constraint violations.
The energy economy of the proposed method outperforms a
state-of-the-art time-domain RMPC scheme, as a more precisely
fitted convex powertrain model can be integrated into the space-
domain scheme. The additional comparison with a traditional
constant distance following strategy (CDFS) further verifies the
effectiveness of the proposed REACC. Finally, it is verified that
the REACC can be potentially implemented in real-time owing
to the sLMI and resulting convex algorithm.

Index Terms—Connected and automated vehicle, Eco-driving,
Adaptive cruise control, Robust model predictive control, Convex
optimisation, Linear matrix inequality.

ACRONYMS AND NOMENCLATURE
CAV Connected and Automated Vehicle
CDFS Constant distance following strategy
(R)EACC (Robust) Ecological Adaptive Cruise Control
(s/m)LMI (Single/Multiple) Linear Matrix Inequalities
(R)MPC (Robust) Model Predictive Control
OCP Optimal Control Problem
RMS Root-Mean-Square
RSU Road Side Unit
SDPR Semi-Definite Programming Relaxation
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
∆t Time headway between two vehicles
ηp Powertrain power conversion efficiency factor
κ , Ω, θ Road curvature, raw rate, and slope angle
aRMS, jRMS RMS acceleration and jerk

S. Yu, X. Pan, I. M. Jaimoukha and S. A. Evangelou are with
the Department of Electrical and Electronic Engineering at Imperial
College London, UK (sheng.yu17@imperial.ac.uk,
xiao.pan17@imperial.ac.uk, i.jaimouka@imperial.
ac.uk, s.evangelou@imperial.ac.uk)

A. Georgiou is with the College of Science & Engineering at University of
Minnesota Twin Cities, USA (georg611@umn.edu)

B. Chen is with the Department of Electronic and Electrical Engineering
at University College London, UK (boli.chen@ucl.ac.uk)

E Ego vehicle kinetic energy
Eb Battery energy consumption
Fd Air-drag resistance
fd Coefficient of air-drag resistance
Fg Gradient force
Fm Mechanical braking force
Fr Tyre-rolling resistance
fr Coefficient of tyre-rolling resistance
Ft Powertrain driving force
Fw Total force acting on the wheels
Pb Input power drawn from battery
s Vehicle travelled distance
v, vl Ego and leading vehicle velocities

I. INTRODUCTION

With the growing interest in decarbonisation technologies
for mitigating urbanisation and environmental issues, intel-
ligent transportation systems with advanced digitalised, au-
tomated and electrified road vehicles have been extensively
studied [1]. In particular, with the increasing information
and intelligence of the transportation field, connected and
autonomous vehicles (CAVs) are rapidly developing for the
benefits of reduced pollution, increased traffic efficiency, as
well as improved driving safety and comfort [2], [3]. The
vehicular ad-hoc networks technology enables CAVs to ac-
quire information of route and other road users through
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
wireless communications [4]. The works in [5], [6] address the
ecological-adaptive cruise control (EACC) problem by real-
time optimisation of the driving efficiency of a CAV in a car-
following scenario, which is a common driving scenario during
everyday driving. In this circumstance, the driving behaviour
of the ego vehicle is highly dependent on the leading vehicle.
A velocity change of the leading vehicle may not be responded
to properly by a conventional vehicle operated by a human
driver [7], thereby leading to unnecessary accelerating/braking
or even emergency manoeuvres, which result in additional
energy usage [8] and reduced traffic efficiency [9]. To address
the above issues, recent research has focused on developing
EACC systems in order to improve safety, energy and traffic
efficiencies in car-following scenarios [10], [11], [12], [13].

The foundation of solving a practical EACC problem in-
volves an accurately modelled framework of the vehicle dy-
namics and a computationally efficient algorithm of the control
strategy such that the controller can provide optimal control
solutions in real-time [14], [15]. The dynamics model includes
both longitudinal dynamics and energy consumption models.
In the literature, longitudinal dynamic equations can vary from
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simplified linear models, which exclude any resistive forces
[16] to the more realistic but nonlinear models due to the
presence of the nonlinear friction losses, such as the air-drag
resistance which is quadratically related to the velocity of the
vehicle and the tyre-rolling resistance which exists only when
the vehicle speed is nonzero [17]. The main motivation for util-
ising a simplified linear model is to reduce the computational
burden of the scheme. On the other hand, although a more
realistic model considers details of the motion, its nonlinearity
leads to an extensive computational burden which makes the
practical implementation challenging [18], especially for a fast
dynamic system such as the car-following one. To overcome
the computation issue caused by nonlinearity, [19] defines
a synthetic control law, where the nonlinear terms can be
compensated by feedback linearisation, such that the vehicle
longitudinal dynamic model is linearised. However, feedback
linearisation requires accurate knowledge of nonlinear terms
[20], while parameters involved in the nonlinear terms of the
EACC model such as the air-drag resistance coefficient are
usually not known very accurately and may also be changing
with travel conditions. In the powertrain modelling aspect, a
commonly used energy consumption model is the L2 norm of
the acceleration (control input), which is thought to be mono-
tonically related to the energy consumption [21]. Nevertheless,
this simplified model cannot accurately predict energy usage
due to the ignorance of the powertrain characteristics, such
as the energy conversion and mechanical transmission losses
[22], [23]. Alternatively, a battery electric powertrain model
is usually taken into account by a quadratic model of the
driving force and the velocity, which strikes a balance between
modelling accuracy and convexity of the problem [24], [25].
In this context, [25] utilises a sequential quadratic program-
ming method to efficiently solve the nonlinear electric truck
platooning optimisation problem by reorganising the problem
variables. Moreover, [26] presents a convex scheme for a
signal-free autonomous vehicle intersection crossing problem
through a coordinate transformation from time- to space-
domain and non-conservative relaxation, which can ensure
the consistency between original and convexified problems.
However, a computationally efficient scheme specialised in
the battery electric vehicle powertrain that considers various
longitudinal dynamic resistances, as well as electric powertrain
conversion and transmission losses, has not been extensively
studied in the field of EACC.

In addition to the research on the modelling aspect of the
EACC problem, there have been numerous efforts reported in
the literature regarding the control strategies of the problem,
such as fuzzy control, sliding mode control, learning-based
control, and MPC [27], [28], [29], [30], [31], [32], [33].
More specifically, in [27], fuzzy control is employed and
then an adaptive law is proposed to control the autonomous
vehicle system, which guarantees both deterministic as well as
fuzzy performances of the system. An integral sliding mode
control strategy is presented in [28] for EACC systems. The
method is coupled with a disturbance observer that estimates
unknown uncertainties of the vehicular system. In [29], a
machine learning-based controller is proposed, which can
predict unexpected vehicular behaviours to achieve a resilient

control solution. In addition, [30] utilises a deep Q-network
algorithm to learn the control strategies for car-following and
powertrain energy management with the assistance of a vision-
based distance detector. Furthermore, MPC-based methods are
also widely studied and applied in the field. Ref [31] proposes
a stochastic MPC approach with robust chance constraints,
which is addressed by solving the dual problem of the original
problem based on the strong duality theory and the semi-
definite programming relaxation (SDPR) technique. Ref [32]
proposes a novel RMPC concept for a multi-objective adaptive
cruise control system provided that the additive disturbances
are predictable. This method ensures input-to-state stability
by imposing an additional quadratic constraint for the stage
and terminal costs in the MPC framework. Moreover, a tube-
based MPC is adopted by [33] to cope with uncertainties
from non-autonomous vehicles by confining the state and input
vectors within tightened feasible sets with a high probability.
A feed-forward controller is integrated and triggered in the
event of unusually large disturbances. Earlier initial work
of the authors, which serves as a precursor of the current
work, utilises an RMPC method with SDPR and multiple
linear matrix inequality (mLMI) constraints techniques to
make progress with addressing the modelling mismatches in
the EACC problem [34], [35]. Despite a rich literature and
the previous work of the authors on control strategies of
the EACC problem, there is still a lack of improvement in
computational speed for real-time implementation and robust
guarantee against unavoidable disturbances caused by varying
system and input parameters.

Based on some preliminary results presented in [34], this pa-
per further addresses the concerns on model accuracy, control
robustness, and computation efficiency of the EACC problem
through designing a space-domain modelling framework, and
developing a robust and convex MPC scheme. Specifically,
this paper makes the following contributions:

• It proposes a novel real-time robust ecological-adaptive
cruise control (REACC) strategy for an electric CAV,
which unlike previous work in the literature and [34], [35]
a) utilises a precisely fitted electric powertrain model that
considers energy conversion and mechanical transmission
losses instead of employing the commonly used L2 norm
of the acceleration [21] or other simplified energy con-
sumption models neglecting losses, b) explicitly defines
vehicle dynamic modelling mismatches on air-drag coef-
ficients, tyre-rolling resistance coefficients, and road slope
angles rather than adopting Gaussian distributed random
disturbances as in previous literature and [34], and c)
takes into account the communication or sensing error of
the leading vehicle by the dynamic model of the vehicle
time gap.

• By the choice of the space-domain, the resulting car-
following control problem is newly formulated into a
convex optimal control problem (OCP). This is not re-
alisable in the time-domain which is commonly utilised
in previous EACC literature [11], [14], [17], [35]. The
convex OCP is solved by an LMI-based RMPC technique
with a novel combination of features: a) the RMPC tech-
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nique is for a system subject to direct additive bounded
disturbances, instead of recasting disturbances into un-
certainties as in [36], and b) the problem constraints are
captured by a single LMI (sLMI) reformulation, which
can achieve comparable optimality but with reduced com-
putational complexity compared to the mLMI methods as
in [34], [35].

• By comprehensive numerical case studies, the perfor-
mance of the REACC method is investigated and com-
pared with three benchmarking approaches: a) a nominal
(non-robust) MPC scheme that does not consider distur-
bances in its control framework, b) a recently proposed
time-domain convexified and optimal EACC formulation
scheme [35], and c) a traditional and non-optimised con-
stant distance following strategy (CDFS) [37]. The pro-
posed method demonstrates improved energy efficiency
and a more comfortable travel experience compared to
the benchmark algorithms, with guaranteed robustness
properties. Furthermore, the computational time of the
proposed REACC scheme is evaluated to verify its po-
tential for real-time implementation.

The rest of the paper begins with a statement of the original
non-convex EACC problem and modelling in Section II, fol-
lowed by Section III, which reformulates the original problem
into a convex and nominal (disturbance-free) OCP through
proper convex relaxation and approximation methods. More-
over, the OCP is rewritten into a condensed nominal MPC
format as a benchmark. The proposed RMPC algorithm with
SDPR and sLMI (the REACC), which addresses disturbances
including the modelling mismatches, is further introduced in
Section IV. Simulation results of the REACC and benchmark
comparisons are illustrated and discussed in Section V. Finally,
conclusions are provided and a future work plan is suggested
in Section VI.

Notation: Let R, R≥0, R>0 and N>0 denote the real, the non-
negative real, the strict positive real sets of numbers, and non-
zero natural numbers, respectively. Rn denotes the space of a
n-dimensional real (column) vector, Rn×m denotes the space
of a n×m real matrix and Dn denotes the space of a diagonal
matrix in Rn×n. In denotes an n×n square matrix with ones on
the main diagonal and zeros elsewhere. 0n×m denotes an n×m
matrix with all zeros. A⊤ represents the transpose of A. Let a
symmetric matrix Q∈Rn×n with Q⪰ 0 denote a positive semi-
definite matrix. For matrices, Q1, . . . ,Qn, diag{Q1, . . . ,Qn}
represents a block diagonal matrix with Qi the ith diagonal
matrix.

II. FORMULATION OF EACC PROBLEM WITH
UNCERTAINTIES

This work focuses on the EACC paradigm, where there is an
ego CAV (also known as the controlled vehicle) and its driving
behaviour is constrained by the traffic in front. As it can be
seen in Fig. 1, an ego vehicle is able to acquire real-time road
information from GPS or roadside units (RSUs), such as legal
speed limit, road curvature, and slope angle, [38], [39]. The
front traffic can be reasonably formulated as a leading vehicle
[40], and in the present framework, it is assumed that a speed

profile of the leading vehicle is available for the ego vehicle,
which can be obtained from the leading vehicle via V2V [41]
or from the RSUs via V2I [42] communication. Furthermore, it
is assumed that no lane changing or overtaking of the leading
vehicle is taking place.

Fig. 1: Scheme of EACC paradigm with V2I and V2V
Communications.

In this paper, the ego vehicle is requested to travel the
same distance as the leader, which is predefined. However,
the following distance gap is not fixed and can vary within
a specified range. In this regard, the aim is to design a real-
time robust MPC-based EACC strategy that optimises energy
consumption with free-end time. In order to make vehicle
travel time as a state variable that can be easily optimised,
we formulate the problem in the space-domain (also known
as spatial-domain) [24] rather than in the time-domain as
with the majority of optimisations in adaptive cruise control
in the literature. Later on, it will also be shown that the
space-domain modelling approach can yield a convex program
without sacrificing optimality in terms of the energy economy.

Let us first denote s the vehicle travelled distance, which
is the independent variable in the space-domain formulation.
Then, the motion of the ego vehicle can be described by the
following dynamic equation [24]

d
ds

E(s) = Fw(s)−Fd(s)−Fr(s)−Fg(s), (1)

where E(s) = 1
2 mv(s)2 is the kinetic energy of the ego vehicle,

with v(s) the velocity of the ego vehicle and m the ego vehicle
mass, and Fw(s) is the total force acting on the wheels. Note
that E(s) is chosen as the state to represent vehicle motion
rather than v(s) to avoid the nonlinear dynamic relationship in
the space-domain [43]. Moreover, Fd(s) =

2 fd(s)E(s)
m is the air-

drag resistance, Fr(s) = mg fr(s)cosθ(s) is the tyre-rolling re-
sistance, with g the acceleration of gravity and fd(s) and fr(s)
the space-dependent coefficients of air-drag and tyre-rolling
resistance forces, respectively. Finally, Fg(s) = mgsinθ(s) is
the gradient force due to the road slope angle θ(s). Without
loss of generality, it is assumed that the nominal values of
fd(s), fr(s) and θ(s) are known from the vehicle characteris-
tics, GPS, and so on. Therefore, the real values of fd(s), fr(s)
and θ(s) can be represented as

fd(s) = f̃d +∆ fd(s),

fr(s) = f̃r +∆ fr(s),

θ(s) = θ̃(s)+∆θ(s),

(2)

where f̃d , f̃r, and θ̃ are the nominal parameters available to
CAVs, and ∆ fd(s), ∆ fr(s), and ∆θ(s) are the unknown parts,
treated as modelling mismatch. The mismatch of the real to
the nominal air-drag and tyre-rolling resistance coefficients,
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respectively, is assumed to be bounded with fd(s) ∈ [ f
d
, f d ]

and fr(s) ∈ [ f
r
, f r]. The bounds f

d
and f d of the air-drag

resistance coefficient can be determined with reference to the
physical relationship between the air-drag resistance coeffi-
cient and the headway distance [12], [44]. The tyre-rolling
resistance coefficient limits, f

r
and f r, are determined based

on the investigation of practical tyre-rolling coefficients at the
International Organization for Standardization (ISO) condi-
tions [45]. Furthermore, ∆θ(s) represents the gap between the
real road slope angle θ(s) and the nominal angle data θ̃(s)
collected by road infrastructures including RSUs (which are
accessible to CAVs) at the position s. This modelling mismatch
on road gradients can be caused by RSU measuring errors,
speed humps or other temporary road work. In the present
work, the gradient mismatch range is assumed to be a bounded
disturbance with ∆θ(s) ∈ [∆θ ,∆θ ].

Next, considering vl(s) the leading vehicle velocity, the
dynamics of the time headway between the two vehicles, ∆t(s),
are governed by

d
ds

∆t(s) =
1

v(s)
− 1

vl(s)
. (3)

For the sake of further discussion and the introduction of the
RMPC framework, the system (1)-(3) is discretised by forward
Euler discretisation subject to a sampling interval δ s ∈ R>0,
leading to the discrete dynamic system

E(k+1) = E(k)+
(

Fw(k)−
2 fd(k)E(k)

m

−mg fr(k)cosθ(k)−mgsinθ(k)
)

δ s, (4a)

∆t(k+1) = ∆t(k)+

(
1√

2E(k)/m
− 1

vl(k)

)
δ s, (4b)

where the sampling index k ∈ N[0,ks] with the total number of
samples ks = S f /δ s ∈N>0 (S f is the predefined total travelled
distance). The boundaries of the permissible range of the time
gap are constructed below

∆tmin ≤ ∆t(k)≤ ∆tmax, (5)

where ∆tmin is the minimum time gap to avoid rear-end
collision, and ∆tmax is the maximum allowed time gap to
improve traffic capacity and maintain adequate V2V/V2I com-
munication. For safety purposes, the kinetic energy E(k) is
bounded by

Emin ≤ E(k)≤ Emax(k), (6)

where Emin = 1
2 mv2

min and Emax(k) = 1
2 mv2

max(κ(k)) are the
lower and upper bounds of kinetic energy, determined by the
minimum allowed speed vmin, which is a sufficiently small
positive constant aiming to avoid the singularity issues in
(3) without sacrificing the generality of the formulation, and
the maximum speed limit vmax(κ(k)). Note that vmax(κ(k)) is
modelled as a function of the real-time road curvature κ(k) to
ensure safety and comfort during cornering. It is estimated by
the concept of the acceleration diamond [46] that represents

a combined longitudinal and lateral acceleration constraint for
ordinary driving behaviour∣∣∣∣Fw(k)/m

ax,max

∣∣∣∣+ ∣∣∣∣v(k)Ω(k)
ay,max

∣∣∣∣≤ 1, (7)

where Ω(k) = v(k)κ(k) represents the yaw rate of the vehicle,
and Fw(k)/m and v(k)Ω(k) are the longitudinal and lateral
accelerations, and their individual limits are denoted by ax,max
and ay,max, respectively. By reorganising the cornering speed
limit (7) and merging the local legal speed limit, vleg(k), the
overall combined speed limit of the road, vmax(vleg(k),κ(k))
can be determined, and hence leads to the constraints on
vehicle velocity v(k) as

vmin ≤ v(k)≤ min
(

vleg(k),

√(
1−

Fw,max/m
ax,max

)
ay,max

κ(k)

)
︸ ︷︷ ︸

vmax(vleg(k),κ(k))

, (8)

and the constraints on E(k) in (6) as Emin = 1
2 mv2

min (as
previously) and Emax(k) = 1

2 mv2
max(vleg(k),κ(k)). Fw,max is the

maximum force that can be provided by the vehicle powertrain
(see (10) below) to the wheels. During the driving task, the
ego CAV can be informed vmin and vmax(vleg(k),κ(k)) from
the infrastructure through the V2I communication.

Moreover, the ego vehicle is assumed to be equipped with a
battery-electric powertrain, which is illustrated in Fig. 2. The
powertrain connects the battery (energy source) to the driving
wheels (loads) through a series of components including a DC-
DC converter, a DC-AC converter (an inverter), a permanent
magnet synchronous (PMS) machine (motor/generator), and
a mechanical transmission set that delivers the powertrain
driving force, Ft , to the wheels. Both the converters and the
transmission set can be simply modelled by constant efficiency
factors [46] (see Table. I), while the efficiency of the PMS
machine is modelled as a look-up table-based static efficiency
map from ADVISOR [47], with the machine characteristics
shown in Table. I. Also, an equivalent circuit model with a
constant open circuit voltage, while considering the battery
internal resistance, is utilised to model the battery (battery
specifics are provided in Table. I) [46].

Fig. 2: Block diagram of the battery electric vehicle powertrain
with a DC-DC converter, a DC-AC converter (an inverter),
a PMS motor (a generator), and a mechanical transmission
set. Green and blue arrows represent electrical and mechanical
power flows, respectively.

The total force applied on the wheels Fw(k) consists of the
powertrain driving force Ft(k)∈ [Ft,min,Ft,max] and the non-
regenerative (dissipative) mechanical braking force Fm(k) ∈
[Fm,min,0] such that

Fw(k) = Ft(k)+Fm(k), (9)
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TABLE I: BATTERY ELECTRIC VEHICLE POWERTRAIN
MAIN PARAMETERS.

Descriptions Symbols Values
Battery open circuit voltage 432 V
Battery internal resistance 0.12 Ω

Battery package overall capacity 20.736 kWh
DC-DC converter efficiency 0.97
DC-AC converter efficiency 0.96

PMS machine state resistance 90 Ω

PMS machine rotor magnetic flux 0.21 Wb
PMS machine number of poles 6

Transmission efficiency 0.96
Minimum powertrain driving force Ft,min -3500 N
Maximum powertrain driving force Ft,max 3500 N
Largest mechanical braking force Fm,min -4300 N

Fitted coefficients
of battery terminal power a1/a2/a3

6.31×10−5/
1.046/115.2

and Fw(k) is subject to the following constraints

Ft,min +Fm,min ≤ Fw(k)≤ Ft,max, (10)

with Ft,max (=Fw,max) and Ft,min the maximum traction force
and largest (negative) regenerative braking force, respectively,
delivered by the electric machine at the wheels, and Fm,min
the largest (negative) mechanical braking force at the wheels,
assuming that the tyres can provide this range of forces.

Therefore, the battery energy consumption (Eb) of the
battery electric vehicle can be evaluated by its battery energy
usage, whose rate is the input power drawn from the battery
to drive the vehicle, Pb. The power Pb can be further repre-
sented as a look-up table of Ft and ego vehicle velocity v,
Pb(Ft(k),v(k)), which is shown in Fig. 3a.

The overall electrical-mechanical power conversion effi-
ciency factor ηp of the battery-electric powertrain is defined
as

ηp(k) =


Ft(k)v(k)

Pb(k)
, ∀Ft(k)≥ 0,

Pb(k)
Ft(k)v(k)

, ∀Ft(k)< 0,

(11)

which will be employed in Section V to evaluate the ecological
performance of the proposed method. Fig. 3b illustrates the
overall powertrain efficiency map of ηp, together with the
operation limits of the electric machine and powertrain utilised
in this work, respectively.

The proposed REACC method in this work aims to save
travelling time while reducing energy consumption. Therefore,
a tentative non-convex multi-objective stage cost function of
the EACC problem is designed as follows

L(k) =WE(E(k)−Emax(k))
2+WF

Pb(k)
v(k)

, (12)

where WE ,WF ∈ R>0 are two weighting factors. In particular,
the first term of the cost function encourages the ego vehicle to
maximise mobility, which is equivalent to following vmax(k)
as in the time-domain framework, whereas the second term
aims to minimise the battery energy usage (Eb(k)) under the
space-domain, which is determined by Eb(k) =

Pb(k)
v(k) δ s.

(a) Battery electric vehicle power consumption map.
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(b) Battery electric vehicle powertrain efficiency map.

Fig. 3: Battery electric vehicle power consumption, Pb (shown
in Fig. 3a) and powertrain efficiency, ηp (shown in Fig.
3b), associated with powertrain driving force, Ft and vehicle
velocity, v. Positive force means the battery is discharging
while negative force indicates the battery is recharging. Solid
lines in Fig. 3a and Fig. 3b are battery power consumption
and efficiency contour lines, respectively. Black dashed lines
are motor operational bounds. Red dashed rectangles denote
the feasible overall vehicle powertrain operating range which
is determined by the minimum and maximum powertrain
driving forces (Ft,min and Ft,max), as well as the minimum
and maximum velocities (vmin and vmax, where for illustration
purposes the highest value of vleg is shown for vmax in Fig. 3).

III. EACC PROBLEM CONVEXIFICATION

This section convexifies the formulation of the realistic
(with modelling mismatches) EACC problem introduced in
Section II and hence reformulates the problem as a convex
OCP. The convex modelling framework is then used to design
the computationally efficient RMPC in Section IV.

For the sake of further discussion, let us rewrite the system
equation (4a) in the following form with separated nominal
dynamics and additive disturbance

E(k+1) =E(k)+
(

Fw(k)−
2 f̃dE(k)

m

−mg f̃r cos θ̃(k)−mgsin θ̃(k)+dE(k)
)

δ s,
(13)

where dE ≤dE(k)≤dE is the disturbance capturing the mod-
elling mismatches existing in both the resistance force coeffi-
cients and the road slope angle. Furthermore, the utilisation of
time gap ∆t as the system state allows the communication or
the sensing error of the leading vehicle velocity to be directly
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involved in the system dynamics (4b), and hence (4b) can be
rewritten as

∆t(k+1) = ∆t(k)+

(
1√

2E(k)/m
− 1

ṽl(k)
+dt(k)

)
δ s, (14)

where dt≤dt(k)≤dt is the bounded communication or sensing
error of the leading vehicle. Both dE(k) and dt(k) will be
further explicitly defined in Section IV below.

To deal with the nonlinearity of 1√
2E(k)/m

existing in the

dynamics of (14) due to the space-domain formulation, an
auxiliary variable denoted as ζ (k) is introduced to convexify
the nonlinearity. By defining ζ (k) = 1√

2E(k)/m
, the dynamics

of the time gap (14) can be relaxed as an equality constraint
and a convex path constraint

∆t(k+1) = ∆t(k)+
(

ζ (k)− 1
ṽl(k)

+dt(k)
)

δ s, (15a)

ζ (k)≥ 1√
2E(k)/m

. (15b)

Note that the feasibility of the original nominal state dynamics
(14) is enlarged in (15a) due to the inequality path constraint
(15b). The equivalence between (14) and (15) is valid if the
equality of (15b) holds for all k, which can be ensured under
the proposed framework and will be discussed below when
introducing the stage cost function.

Therefore, by collecting (13) and (15a), a realistic and
convex dynamic state-space representation with additive dis-
turbances can be summarised as

x(k+1) = Ax(k)+Buu(k)+BcC(k)+Bdd(k),

A =

[
1− 2 f̃d

m δ s 0
0 1

]
, Bu =

[
δ s 0
0 δ s

]
, Bc=

[
δ s 0
0 δ s

]
,

C(k)=

[
−mg f̃r cos θ̃(k)−mgsin θ̃(k)

− 1
ṽl(k)

]
, Bd =

[
δ s 0
0 δ s

]
,

(16)

where x(k)= [E(k),∆t(k)]⊤ denotes the realistic state vector,

u(k)=[Fw(k),ζ (k)]⊤ is the control input, and d(k)=
[

dE(k)
dt(k)

]
collects the disturbances. Note that C(k) depends only on k
since both the nominal road slope angle θ̃(k) and the available
leading vehicle speed ṽl(k) contained by C(k) are varying with
k. Furthermore, realistic constraints of the states and the input
Fw(k) can be given by

f (k)≤ f (x(k),u(k),d(k))≤ f (k), (17)

in which f (k) collects (5) (6), and (10) as given below

f (k) =C f x(k)+D f uu(k)+D f dd(k),

f (k)=

 E(k)
∆t(k)
Fw(k)

,C f=

1 0
0 1
0 0

,D f u=

0 0
0 0
1 0

 , (18)

with D f d = 03×2. f (k) is bounded by lower and upper
constraints f (k) = [Emin,∆tmin,Ft,min +Fm,min]

⊤ and f (k) =
[Emax(k),∆tmax,Ft,max]

⊤, respectively.

Moreover, it is worth noticing from Fig. 3a that the battery
terminal power Pb can be precisely fitted by a quadratic
function of Ft and v, as shown in Fig. 4, in which

Pb(k) =
(
a1Ft(k)2 +a2Ft(k)+a3

)
v(k), (19)

where a1, a2 and a3 are the fitted coefficients, which are
provided in Table. I.

Fig. 4: Electric vehicle battery power fitting map by the
quadratic function in (19). Nonlinear regression of the battery-
drawn power data represented by the blue regression surface,
calculated based on the power consumption map shown in
Fig. 3a, with the coefficient of determination, R2 = 0.995.

By substituting (19) into (12) for Pb(k), the multi-objective
stage cost function of the EACC problem is convexified as a
quadratic polynomial function of E(k) and Ft(k). Moreover, in
order to guarantee the inequality condition of (15b) becomes
an equality condition once the proposed OCP is formulated, an
additional cost Wζ ζ (k) is added to the objective function, with
Wζ ∈ R>0 the corresponding weighting factor. The previous
non-convex form of the stage cost (12) is finally modified as

L(k) =WE (E(k)−Emax(k))
2

+WF
(
a1Fw(k)2 +a2Fw(k)

)
+Wζ ζ (k),

(20)

which is the final convexified objective function as a quadratic
polynomial function of the state E(k) and control inputs Fw(k)
and ζ (k). Term a3 in (19) is removed since it is a constant
term, and Ft(k) is substituted by Fw(k), which are equivalent if
there is no mechanical friction braking; see (9). The proof of
the equality condition of (15b) by the choice of the stage cost
(20) can be referred to the authors’ previous work in [26],
which involves a similarly convexified stage cost for a dif-
ferent application and is therefore omitted. As the powertrain
driving force Ft(k) is replaced by Fw(k) that also includes
the mechanical friction braking force, the optimality of the
convex optimisation problem that will be formulated may be
compromised in case the friction braking force is active during
the mission (i.e., ∃k, Fm(k) ̸= 0). However, friction braking
is naturally suppressed in eco-driving to maximise energy
recovery, which will also be confirmed by the simulation
results in Section V.

To summarise, the overall EACC problem with modelling
mismatches can be formulated as a convex OCP in the space-
domain as follows

min
u(k)

ks

∑
k=0

J(k)δ s =

(
ks−1

∑
k=0

L(k)δ s+Ψ(ks)

)
, (21a)
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s.t. x(k+1) = Ax(k)+Buu(k)+BcC(k)+Bdd(k), (21b)

f (k)≤ f (x(k),u(k),d(k))≤ f (k) , (21c)

ζ (k)≥ 1√
2E(k)/m

, (21d)[
dE
dt

]
≤ d(k)≤

[
dE
dt

]
, (21e)

given: x(0)=[E(0), ∆t(0)]⊤ , (21f)

where E(0) and ∆t(0) are the system initial states, which are
available in advance. Ψ(ks) is the terminal cost, which is given
by

Ψ(ks)=WE(E(ks)−Emax(ks))
2 +W∆t(∆t(ks)−∆t(0))2,

(22)
where the W∆t ∈ R>0 term in the terminal cost Ψ(ks) is
imposed to ensure the distance travelled by the ego vehicle is
identical to that of the leading vehicle, thereby facilitating the
comparison between different methods. In practice, the W∆t
term in Ψ(ks) could be removed or reduced to allow more
emphasis on energy economy (more travel time / less energy
consumption, since ∆t(ks) will tend to ∆tmax) or mobility (less
travel time / more energy consumption, since ∆t(ks) will tend
to ∆tmin), depending on the choice of WE and WF .

Furthermore, J(k) of the objective function (21a) can be
redefined as a state-space form of a combination of both the
stage cost L(k) (20) and the terminal cost Ψ(ks) (22), and it
is expressed by

J(k) = (z(k)−z(k))⊤Q⊤Q(z(k)−z(k))+Pz(k)+z(k)⊤P⊤,
(23)

where z(k) = [E(k),∆t(k),Fw(k),ζ (k)]⊤ and the reference sig-
nal z(k) = [Emax(k),∆t(0),0,0]⊤. Furthermore, z(k) can be
explicitly expressed as

z(k) =Czx(k)+Dzuu(k)+Dzdd(k), Dzd = 04×2,

Cz=

[
1 0 0 0
0 1 0 0

]⊤
, Dzu=

[
0 0 1 0
0 0 0 1

]⊤
.

(24)

The weighting matrices in (23) are defined as

Q(W∆t)=


√

WE 0 0 0
0

√
W∆t 0 0

0 0
√

WF a1 0
0 0 0 0

 ,P=


0
0

1
2WF a2

1
2Wζ

 ,
(25)

where the Q matrix is dependent on W∆t , while P is a fixed
matrix.

IV. ROBUST MODEL PREDICTIVE CONTROLLER DESIGN
FOR EACC

This section mainly presents the proposed RMPC controller,
while a nominal MPC benchmark is also presented.

A. Proposed RMPC algorithm

This subsection designs the proposed RMPC controller for
solving the convex OCP (21) in real-time with consideration of
two types of disturbances, including the modelling mismatches
in the longitudinal dynamics (4a) and the errors involved in

the leading vehicle velocity (e.g., caused by communication
or sensing) in the dynamics of the time gap (4b) (proposed
REACC scheme). The robust optimal solutions are solved by
using SDPR and sLMI methods [36].

In view of (4a) and (13), the modelling mismatch in the
longitudinal dynamics is explicitly defined as

dE(k) =
(

f̃d− fd(k)
) 2E(k)

m
+mg f̃r cos θ̃(k)+mgsin θ̃(k)

−mg fr(k)cosθ(k)−mgsinθ(k),

(26)

recalling dE ≤ dE(k) ≤ dE with dE = min(dE(k)) and dE =
max(dE(k)), which are determined through a conservative
consideration of the limits of fd(k), fr(k), ∆θ(k). Regarding
the dynamics of the time gap, its associated error can be
defined explicitly after finding the difference between (4b) and
(14) as

dt(k) =
1

ṽl(k)
− 1

vl(k)
, (27)

recalling dt ≤ dt(k)≤ dt , and dt =min
(

1
ṽl(k)

− 1
vl(k)

)
and dt =

max
(

1
ṽl(k)

− 1
vl(k)

)
.

For the purpose of saving the computational time as well as
the memory requirements [48], the convex OCP formulation
(21) is now reorganised into a condensed formulation. Let us
define the following stacked vectors

u = [u(0)⊤,u(1)⊤, . . . ,u(N −1)⊤]⊤ ∈ R2N ,

C = [C(0)⊤,C(1)⊤, . . . ,C(N −1)⊤]⊤ ∈ R2N ,

d = [d(0)⊤,d(1)⊤, . . . ,d(N −1)⊤]⊤ ∈ R2N ,

d = [d
⊤
,d

⊤
, . . . ,d

⊤
]⊤ ∈ R2N ,

d = [d⊤,d⊤, . . . ,d⊤]⊤ ∈ R2N ,

ξ = [ξ (0)⊤,ξ (1)⊤, . . . ,ξ (N)⊤]⊤,

(28)

where N is the prediction horizon length of the MPC problem.
d and d collect disturbance boundaries as d = [dE ,dt ]

⊤ and
d = [dE ,dt ]

⊤, respectively. The symbol ξ stands for stacked
vectors x, x̌, f, f̌, f, f, z, ž, and z, with x and x̌ ∈ R2(N+1), f,
f̌, f, and f ∈ R3(N+1), while z, ž and z lie in R4(N+1).

As such, the system dynamics (16) over the prediction
horizon N can be rewritten into a condensed formulation as

x = Ãx(0)+ B̃uu+ B̃cC+ B̃dd , (29)

where x(0) is the initial condition defined in (21f), and Ã, B̃u,
B̃c, and B̃d are stacked coefficient matrices of A, Bu, Bc, and
Bd respectively. They are readily obtained from iterating the
dynamics in (16) from k = 0 to k = N.

By repeating the recursive steps in (18) and substituting
recursive steps in (16) to eliminate the x(k) terms, the stacked
coefficient matrices C̃ f , D̃ f u, D̃ f c, and D̃ f d are obtained,
and hence the corresponding condensed form of the signal
response function of constraint (18) can be written after
substituting the stacked vectors defined in (28) as

f = C̃ f x(0)+ D̃ f uu+ D̃ f cC+ D̃ f dd , (30)
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from which it follows that f ≤ f ≤ f. Analogously, the con-
densed form of the cost response function defined in (24) can
be expressed by

z = C̃zx(0)+ D̃zuu+ D̃zcC+ D̃zdd , (31)

where C̃z, D̃zu, D̃zc, and D̃zd are stacked coefficient matrices
after iterating the z(k) equation in (24) and substituting the
x(k) equation in (16).

Hence, the stacked formulation of the objective function
(23) over a prediction horizon N can be derived by J with

J=(z− z)⊤ Q⊤Q(z̃− z)+Pz+ z⊤P⊤, (32)

where Q=diag{Q(0), . . . ,Q(0),Q(W∆t)}∈R4(N+1)×4(N+1),
P = [P, . . . ,P] ∈ R1×4(N+1) are stacked vectors of Q and P
in (25). Recall the W∆t (̸= 0) weight is only imposed in the
terminal cost as described after (22).

Next, a new auxiliary variable, γ , is introduced to represent
the upper bound of stacked objective functions J such that

J− γ ≤ 0, ∀d : d ≤ d ≤ d. (33)

Furthermore, we use an SDPR procedure to turn (33) into a
semi-definite program and a Schur complement to eliminate
involved nonlinearity when substituting (31) for z in J, such
that J− γ can be written as

J− γ =−(d−d)⊤D(d−d)−
[
d⊤ 1

]
L(u,D,γ)

[
d
1

]
, (34)

where D ⪰ 0 with D ∈D2N is a positive semi-definite diagonal
matrix. L(u,D,γ) is a linearised matrix dependent on u, D, and
γ as

L(u,D,γ) =−D̃⊤
zdQ⊤QD̃zd +D −D(d+d)/2−bd 0

∗ d⊤Dd−cd + γ u⊤D̃⊤
zuQ⊤

∗ ∗ I4(N+1)

 , (35)

with ∗ denoting the symmetry element of the corresponding
matrix, bd and cd are expressions of stacked matrices and
vectors shown in (31). (See [34], [36] for detailed expressions.)
An inspection of (34) verifies that (33) is satisfied if D ⪰ 0
with D ∈ D2N and if it satisfies the following LMI

L(u,D,γ)⪰ 0. (36)

In view of (30), the stacked inequality constraints f≤f≤f can
be expanded as

f ≤ C̃ f x(0)+ D̃ f uu+ D̃ f cC+ D̃ f dd ≤ f, (37)

which normally requires 3(N + 1) LMI constraints for the
upper and lower boundaries, respectively [34]. To reduce the
computational burden, the sLMI approach which combines all
6(N + 1) LMIs in (37) into a single LMI is presented next.
First, (37) is written as[

I3(N+1)

−I3(N+1)

]
f ≤
[

f
−f

]
=: f∗. (38)

To simplify the notation, let I∗ =
[

I3(N+1)

−I3(N+1)

]
. By defining a

new variable f̃ ∈ R6(N+1), it is desirable to satisfy the single
condition

f̃ := f∗− I∗f ≥ 0, (39)

such that constraints (37) are satisfied. From Theorem 3 of
[36], let e ∈R6(N+1) be the vector of ones, then f̃ ≥ 0 if there
exist µ ∈ R and M ∈ D6(N+1) such that

L =

[
2µ (f̃−Me− eµ)⊤

∗ M+M⊤

]
⪰ 0. (40)

By substituting (39) for f̃ and (30) for f into (40), yields[
2µ

(
f∗−I∗

(
C̃fx(0)+D̃f uu+D̃f cC+D̃f dd

)
−(Me+eµ)

)⊤
∗ M+M⊤

]
⪰0.

(41)
Applying the Schur complement to transform the left-hand-
side of (41) into a scalar and followed by an SDPR procedure
to remove the disturbance term d, one can obtain a nonlinear
matrix inequality constraint

LsLMI(D̃,µ,M,u)⪰ 0, (42)

where 0 ⪯ D̃ ∈ D2N is a new slack variable. To remove the
nonlinearity included, the Schur complement is applied again
such that a linear LsLMI(D̃,µ,M,u) is determined as

LsLMI(D̃,µ,M,u) =
D̃ −D̃

(
d+d

)
/2 D̃⊤

f dI∗⊤

∗ 2µ+d⊤D̃d
(
−f∗+I∗

(
C̃ f x(0)+D̃ f cC+D̃ f uu

)
+(Me+eµ)

)⊤
∗ ∗

(
M+M⊤)

.
(43)

Remark 1: Detailed derivation steps from LMI (41) to
matrix (43) can be referred to Appendix A.

Therefore, if the single LMI (42) of (43) is satisfied, all
constraints in (37) are satisfied.

To summarise, the RMPC formulation of the optimisa-
tion problem under the space-domain scheme, after applying
SDPR, Schur complement and sLMI, can be organised as

min
u

γ, (44a)

s.t. L(u,D,γ)⪰ 0, (44b)
LsLMI(D̃,µ,M,u)⪰ 0, (44c)

ζ (0)
ζ (1)

...
ζ (N −1)

≥


1/
√

2E(0)/m
1/
√

2E(1)/m
...

1/
√

2E(N −1)/m

 , (44d)

given: x(0)=[E(0), ∆t(0)]⊤, (44e)

0 ⪯ D ∈ D2N , (44f)

0 ⪯ D̃ ∈ D2N . (44g)

Remark 2: The recursive feasibility of the proposed scheme
could be potentially guaranteed by utilising the standard
shifting arguments and the assumption that the invariant ter-
minal set is defined by the terminal constraint. In particular,
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the optimal control sequence ({u(k | k),u(k+ 1 | k),u(k+ 2 |
k), . . . ,u(k+N −1 | k)}) computed at sample k can be shifted
and appended with an extra terminal control law u(k+N)
obtained by imposing an invariant set of the terminal con-
straints to yield the control sequence {u(k + 1 | k),u(k + 2 |
k), . . . ,u(k +N − 1 | k),u(k +N)} which remains feasible at
the next sample k + 1. For more details refer to [36], [49],
[50]. On the other hand, a series of numerical simulations
have been carried out to illustrate that the proposed REACC
scheme can provide recursively feasible solutions through trial
and error. Nevertheless, further rigorous investigation into
recursive feasibility has been scheduled for future work.

B. Nominal MPC for benchmarking

In this subsection, a nominal (disturbance-free) MPC is in-
troduced, which will be utilised as a benchmark and compared
with the proposed REACC scheme in Section V-B. Since the
nominal MPC does not involve disturbances in its dynamic
state-space equations, d(k) as well as the associated condensed
form d are set to zero. Based on the original convex OCP
organised in (21) with d(k) eliminated, and eliminating d terms
in (29), (30), and (31), a condensed nominal MPC formulation
can be summarised as

min
u

J̌=(ž− z)⊤ Q⊤Q(ž− z)+Pž+ ž⊤P⊤, (45a)

s.t. x̌ = Ãx̌(0)+ B̃uu+ B̃cC , (45b)

f̌ = C̃ f x̌(0)+ D̃ f uu+ D̃ f cC , (45c)

ž = C̃zx̌(0)+ D̃zuu+ D̃zcC , (45d)

f ≤ f̌ ≤ f , (45e)
ζ (0)
ζ (1)

...
ζ (N −1)

≥


1/
√

2Ě(0)/m

1/
√

2Ě(1)/m
...

1/
√

2Ě(N −1)/m

 , (45f)

given: x̌(0)=[E(0), ∆t(0)]⊤. (45g)

where the variables Ě(k), x̌(0), J̌, x̌, f̌, and ž have the same
meaning as the already introduced variables E(k), x(0), J, x, f,
and z, respectively, but have different evolution because they
are not affected by disturbances.

V. SIMULATION RESULTS

The evaluation of the proposed space-domain REACC
method is fourfold: 1) the robustness of the RMPC method is
investigated and compared with a nominal benchmark MPC
method (described in Section IV-B) given the same initial
conditions and disturbances in simulations; 2) a comprehensive
comparison is conducted between space-domain (denoted by
REACC) and time-domain formulations described in [35] in
terms of energy consumption and passenger comfort using
the same RMPC method in both domains under identical
initial conditions and disturbances; 3) the proposed REACC is
further compared with a benchmark method using a CDFS that
targets a fixed inter-vehicular distance gap in terms of energy

efficiency; 4) the computational efficiency of the sLMI-based
REACC method is examined by evaluating the average running
time required for each iteration. The numerical simulations
are tested in the Matlab environment using the optimisation
toolbox Yalmip [51] with MOSEK solver [52] on a 2.3 GHz
quad-core Intel Core i5 with an 8 GB of 2133 MHz LPDDR3
onboard memory. Before presenting the numerical examples,
the velocity profiles of the leading vehicle and the definition
of the disturbances are given.

A. Simulation setup

The leading vehicle in the following simulations is operated
on an experimental route, of which the data is collected on a
real-world route in London UK as shown in Fig. 5. The road
profile data and the traffic constraint of the selected test route
are collected based on Google Maps and are shown in Fig.
6, which includes a plot on the road curvature profile (top
subplot), a plot on the leading vehicle velocity, its prediction,
and the combined speed limit (middle subplot), and a plot on
the road slope angle (bottom subplot).

Fig. 5: 18.7 km route in London UK selected for the velocity
profile of the leading vehicle in the numerical simulations.
(https://goo.gl/maps/2CTCW7smdCkGCsKv5)

Specifically, the top subplot of Fig. 6 shows the actual
curvature κ of the test route. The middle subplot contains three
velocity profiles represented by different colours. The yellow
curve denotes the combined speed limit of this selected route,
vmax(vleg,κ), which is dependent on the legal speed limit as
well as the cornering speed limit which is further dependent on
the road curvature (calculated by (8)). The blue trajectory rep-
resents the actual velocity profile of the leading vehicle (i.e.,
vl), which follows an experimental velocity profile collected
by a human-driven passenger car on the real route. It can be
observed that this non-optimised velocity profile could involve
aggressive manoeuvres (e.g., at s=4.6 km) and violations of the
speed limit (e.g., at s=12 km). Moreover, we introduce the red
curve (vl, f ) that is obtained by passing the real velocity profile
(the blue curve) through a low-pass filter to remove sharp
changes in speed, which can be understood as unexpected
events and high-frequency noises from communication or
sensing. Furthermore, the filtered speed profile is capped by
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Fig. 6: Detailed road information of the London UK route with: a) actual road curvature (top), b) actual leading vehicle velocity
vl , ‘filtered’ leading vehicle velocity vl, f , and combined speed limit vmax (middle), and c) actual and nominal road slope angles,
θ and θ̃ , respectively (bottom).

the legal speed limit. Let us now recall the background of
the EACC problem that the ego vehicle has access to a
future velocity profile of the leading vehicle through V2V/V2I
communication. Unlike simulation setups in other literature
that further embed data- or learning-based velocity predictors
[12] or conservatively assume the leading vehicle maintains the
current acceleration [17], this work adopts the velocity profile
of vl, f as the future velocity plan such that the prediction of
the leading vehicle ṽl(k:k+N−1) available to the ego vehicle
is generated by setting ṽl(k:k+N−1)=vl, f (k:k+N−1), ∀k ∈
[0,ks]). This setup practically fits into the framework of the
connected EACC scenario, where the shared future velocity
profile is a smooth and legal plan while the actual velocity
profile contains some non-optimal and even illegal driving
behaviours. The accuracy of the predicted leading velocity
profile against the actual velocity profile in this work is similar
to the present vehicle velocity prediction ability [53]. To this
end, the implementation of MPC demanding the prediction of
∆t (by (14)) within the control horizon, which in turn requires
a prediction of the leading vehicle velocity, ṽl , is completed.
The resulting velocity error between the actual and predicted
profiles further results in the disturbance on the time gap state,
dt , (determined by (27)).

The bottom subplot of Fig. 6 illustrates the slope angle
profiles of the road, where the blue curve denotes the actual
road slope angle trajectory θ collected from the latest Google
Maps database, with θ(k)∈ [θ ,θ ]. The nominal (available to
the ego vehicle) slope angle profile, θ̃ (red curve in the same
subplot), is obtained after rounding θ to integers in degrees.
The difference between the actual and nominal slope angle
leads to the associated modelling mismatch ∆θ in (2).

In addition to the modelling mismatch on the road slope
angle as well as the communication or the sensing error on
the velocity of the leading vehicle, the disturbances consid-
ered in this work also come from modelling mismatches on
the air-drag and the tyre-rolling resistance coefficients. The
practical air-drag resistance coefficients utilised in this work

TABLE II: VEHICLE PARAMETERS AND ROAD CHARAC-
TERISTICS.

Descriptions Symbols Values
Acceleration of gravity g 9.81 m/s2

Ego vehicle mass m 1200 kg
Nominal air-drag coefficient f̃d 0.34 kg/m

Nominal tyre-rolling
resistance coefficient f̃r 0.01

Ego vehicle initial velocity v0 0.9108 m/s
Initial time gap ∆t(0) 3 s

Acceleration limits ax,max/ay,max 9.81 m/s2

Min velocity limit vmin 0.1 m/s
Min/max time gap ∆tmin/∆tmax 1/8 s

Limits of air-drag coefficient f d / f d 0.296/0.380 kg/m
Limits of tyre-rolling
resistance coefficient f r/ f r 0.008/0.012

Limits of road slope θ /θ −5.22◦/7.17◦

Limits of road slope mismatch ∆θ /∆θ −0.5◦/0.5◦
Limits of disturbance

on kinetic energy dE /dE −146.28/148.20 N

Limits of disturbance
on time gap dt /dt −0.58/0.11 s/m

are obtained according to a fitted look-up table associated with
the real-time inter-vehicular distance gap [44], which are also
used to provide f

d
and f d . The actual tyre-rolling resistance

coefficients adopted in the simulations are randomly generated
within the specified realistic bounds of the coefficient, f

r
and

f r, with a uniform distribution. The nominal coefficients of
the air-drag and tyre-rolling resistance, f̃d and f̃r respectively,
are determined by the middle points of the associated bounds.
Furthermore, the overall disturbance on the ego vehicle kinetic
energy dE and its limits are obtained by merging all modelling
mismatches on fd , fr, and θ , and their limits, respectively, by
(26), with dE(k)∈[dE ,dE ]. Additionally, the sampling distance
interval is set to δ s=3 m.

The limits of disturbances discussed as well as other main
characteristic parameters of the ego vehicle model are sum-
marised in Table. II.
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B. Comparisons between nominal MPC and RMPC

A comparison of the ego vehicle speed trajectories between
the REACC proposed in (44) and the nominal MPC benchmark
formulated in (45) is illustrated in Fig. 7. After simulating with
identical disturbances in both the nominal MPC benchmark as
well as the proposed REACC scheme, it can be observed that
when the travelled distance reaches 4.617 km in the zoomed-
in box of Fig. 7, the velocity trajectory of the nominal MPC
violates the speed limit constraint, which leads to infeasible
solutions. In contrast, the robust controller (REACC) can
always satisfy the velocity constraint with feasible solutions,
which verifies the robustness of the RMPC.

Furthermore, it is worth noticing that the behaviours of
both nominal and robust MPC algorithms are similar to each
other in most of the travelled distance. However, close to
the position where the nominal scheme becomes infeasible
(e.g., s = 4.617 km), the resulting velocity trajectory of the
REACC starts to differ from the velocity profile generated
by the benchmark nominal MPC. This is understood that
the REACC scheme determines state constraints based on
disturbance boundaries as well as the current state in a real-
time manner. When the velocity and other constraints are
not tight, the REACC provides control solutions similar to
nominal MPC which does not consider disturbances. On the
other hand, when the velocity constraint is tight, due to the
real-time constraint boundary calculation, the RMPC provides
solutions that are different from solutions of nominal MPC to
ensure feasibility, at the cost of some degree of optimality.
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Fig. 7: A comparison of the ego vehicle speed trajectories
between the REACC method and the nominal MPC under the
same initial conditions and simulation disturbances.

C. Comparison between time- and space-domain schemes

In this section, the energy saving and driving performances
of the space-domain formulation are investigated by compar-
ing the proposed space-domain formulated REACC scheme
against the results yielded by a benchmark scheme using the
same proposed RMPC but formulated in the time-domain.
The benchmark scheme utilises the feedback linearisation
method to linearise the vehicle dynamic motion [19] as well
as an energy consumption model based on the L2 norm
of the acceleration [35], under the same initial conditions,
constraints, exogenous input (leading vehicle velocity), and
disturbances. To further ensure the fairness of the comparison,
the sampling interval of the time-domain scheme is chosen

as 0.2 s, which guarantees the equivalence of the sampling
interval as well as the total number of samples of the two
domain schemes, based on the average velocity of the profiles
generated by the two schemes. In addition, the weighting
parameters are selected carefully such that the most optimal
performance in terms of energy consumption is provided by
each scheme, respectively. Moreover, the weights in the cost
functions of both time- and space-domain MPC schemes are
finely adjusted for a small number of iterations at the end of
the simulation to ensure negligible differences in terms of the
terminal speed (the terminal speeds of the ego vehicles in both
domains and the final speed of the leading vehicle are all the
same). As such, the involvement of the kinetic energy change
can be excluded and the total energy consumption during a
driving cycle can be directly compared as the battery energy
usage, Eb=∑

ks−1
k=0 Pb(F∗

t (k),v
∗(k)) δ s

v∗(k) , which is a part of the
original multi-objective cost function in (12). F∗

t (k) is the
optimal input force on the wheels and v∗(k) is the optimal
speed determined by the utilised control methods. To this
end, with the aforementioned arrangements excluding other
possible interference, the intended comparisons of electric
battery powertrain energy consumption as well as driving
behaviours between the space- and time-domain formulations
can be carried out with ensured fairness.

In Fig. 8, the comparison of the battery energy consumption
of the space-domain (denoted by REACC) and the time-
domain RMPC schemes is presented. As it can be seen for
all cases in Fig. 8, the REACC scheme can save around 4.8%
battery energy consumption as compared with the results of
the time-domain formulated benchmark. Moreover, the largest
improvement of roughly 5% can be found when the prediction
horizon is 17. In addition, the average velocity of the REACC
is found to be higher than that of the benchmark by 7.33%,
which shows the superiority of the REACC in both objectives
of maximising mobility and saving energy.
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Fig. 8: Comparisons of the battery energy consumption (Eb)
of the proposed REACC and time-domain RMPC schemes,
for different prediction horizon lengths.

Further investigation of the driving comfort verifies the find-
ing of the energy saving superiority of the REACC strategy.
As shown in Fig. 9, the driving comfort is evaluated by the
root-mean-square (RMS) of acceleration and jerk

(
j= d2v

dt2

)
of

the ego vehicle [54]. The proposed REACC method achieves
lower values of both indexes against the time-domain bench-
mark for all prediction horizon length choices. The findings in
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both Fig. 8 and Fig. 9 can be understood that as compared to
the time-domain formulated benchmark method, the REACC
strategy, in addition to the highly accurate and convexified
powertrain fitting model embedded into the cost function,
which is exclusively enabled in the space-domain formulation,
tends to avoid large accelerations and achieve a smooth driving
profile, hence it is expected to be more energy efficient in
terms of powertrain operation.

11 13 15 17 19 21

0

0.5

11 13 15 17 19 21

0

0.2

Fig. 9: Comparisons of the RMS acceleration and RMS
jerk throughout the mission of the proposed REACC and
time-domain RMPC schemes, for different prediction horizon
lengths.

To provide further insight into the comparison of the two
schemes, analyses of the ego vehicle velocity profile and
inter-vehicular gap have been provided in Fig. 10 and Fig.
11, respectively, for the case of prediction horizon N = 11.
Fig. 10 shows that although the time-domain scheme with
L2 norm of the acceleration in its objective function directly
penalises magnitudes of accelerations, its associated velocity
profile contains more frequent velocity changes compared
to the REACC scheme that does not directly minimise the
acceleration magnitude, which is aligned with the result in
Fig. 9. This is understood that, compared with the space-
domain formulation where the weights of two objectives in the
cost function are more balanced, a relatively heavier weight
is applied to the objective of following the speed limit in
the time-domain formulation while a lighter weight is applied
to the L2 norm of the acceleration (which is directly related
to energy consumption and velocity profile smoothness). As
shown by Fig. 11, the time-domain scheme is more likely
to push the ego vehicle to approach the minimum time gap
(∆t) constraint. Since the current weighting in the time-domain
scheme is unbalanced, one may suggest further increasing
the weight on the L2 norm of the acceleration. Although
this suggestion may help to save energy, smooth the velocity
profile, and hence improve comfort, it also makes the velocity
profile less varying and therefore less able to maintain the
∆t within the gap constraints as the leading vehicle velocity
changes frequently. On the other hand, since the objective
function of the space-domain formulation utilises a fitted
quadratic function of driving force for the energy consumption,
minimising energy consumption does not directly penalise the
change of velocity. Therefore, its velocity profile is more
flexible (observe in Fig. 11 that the blue curve fully makes
use of the allowed range) and the scheme can bear a heavier
weight on energy consumption penalisation.
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Fig. 10: A comparison of the ego vehicle velocity (v) of the
proposed REACC and time-domain RMPC schemes, taking
the prediction horizon length N = 11 as an example.
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Fig. 11: A comparison of the inter-vehicular distance gap (∆s)
by the time-domain RMPC scheme and the time gap (∆t) by
the proposed REACC, taking the prediction horizon length
N = 11 as an example.

D. Comparison between CDFS and proposed REACC
schemes

This section investigates the energy economy of the pro-
posed REACC against a benchmark using a CDFS scheme
by which the velocity of the ego vehicle is identical to that
of the leading vehicle. The powertrain operating points of the
ego vehicles for the two methods are evaluated based on the
battery electric vehicle powertrain efficiency map (Fig. 3b).
As shown in Fig. 12, the operating points of the CDFS are
widely allocated with more points being found closer to the
operational boundaries (red dash rectangle), which are less
efficient regions. As for the REACC, the operating points
are more concentrated and mostly located within the highly
efficient zone. Therefore, the REACC method can drive the
vehicle in a more ecological way compared to the CDFS,
yielding 11.53% (N=11 of REACC) of energy saving.

Furthermore, the composition of various energy losses is
presented in Fig. 13. Although the two schemes have similar
amounts of air-drag and tyre-rolling resistance losses (illus-
trated by heights of the orange and blue bars, respectively),
the proposed REACC can reduce up to 40.1% and 18.6%
the energy losses caused by powertrain regeneration and
propulsion, respectively. Moreover, the mechanical braking
is completely avoided when REACC is deployed, while it
contributes to approximately 0.369% of the losses in the case
of the CDFS (not shown in Fig. 13), which reinforces the
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Fig. 12: Operating points of REACC (N=11) and CDFS
schemes.

validity of the choice of (20) as the OCP cost function, in
which Ft is replaced by Fw. As a result, the total powertrain
loss (propulsion and regeneration) of REACC can be reduced
by up to 23.43% as compared to the CDFS scheme. Note that
the change of kinetic energy corresponding to the difference
between the initial and the final velocities of the ego vehicle,
as well as the potential energy change because of the height
differences between the initial and final positions of the ego
vehicle are identical, respectively, in simulations with both
the CDFS and REACC schemes due to the terminal speed
condition imposed to the REACC scheme (similarly to Section
V-C) and the equal travelled distance of the two schemes.
Therefore, these quantities are not included in the energy loss
comparison between the two schemes. These findings further
verify the finding in Fig. 12 of the capability of the REACC
to achieve a more ecological driving behaviour.

100 % 100 % 100 % 100 %

100 % 97.8 % 97.9 % 97.7 %

100 %
84.8 % 82.5 % 81.4 %

100 %
66.6 % 62.3 % 59.9 %

Tyre-rolling Loss

Air-drag Loss

Powertrain Loss (Propulsion)

Powertrain Loss (Regeneration)

Fig. 13: Energy loss compositions breakdown by REACC
(N=11,15,21) and CDFS schemes, for different prediction
horizon lengths. Energy losses are categorised into four main
types: tyre-rolling, air-drag, powertrain propulsion, and pow-
ertrain regeneration losses. Each type of loss is represented
by a different colour and is labelled by a number that shows
the relative quantity of the loss by REACC compared to the
same type of loss by CDFS in terms of percentage. Although
a portion of consumed energy can also be dissipated through
mechanical braking, this type of loss is not included in the
figure since its amount compared with other loss types is neg-
ligible. Specifically, mechanical braking amounts to 0.369% of
total losses for the CDFS scheme, while the REACC schemes
can fully avoid mechanical braking losses.

E. Verification of the approach in real-time implementation

The computational burden of the proposed REACC is eval-
uated in this part. The test results are presented in Fig. 14. The
average computational time required for each iteration can be
reduced to 0.141 s when N=11. When the prediction horizon
is enlarged, the computational cost monotonically increases
and reaches 0.463 s when N=21. Given the fixed sampling
distance interval, δ s=3 m, and the average velocity (15.22 m/s)
of following this experimental drive cycle, which would result
in an average sampling time interval of 0.21 s, the result shows
a possibility of implementing the REACC scheme in real-time.
One of the key contributors to saving computation time is the
sLMI technique, which is able to compact multiple LMIs into a
single LMI rather than process LMIs individually as an mLMI
technique. To further justify the claim, the computational
efficiencies of the REACC scheme are compared in Fig. 14
with those of another identical RMPC-based EACC scheme as
the proposed one but which utilises the previously developed
mLMI instead of the proposed sLMI technique. The figure
demonstrates that for various prediction horizon length choices
in comparison to the mLMI-based method the REACC can
reduce the computational time from 17% up to approximately
48%, while, the accumulated optimisation objective γ in (44a)
over the whole car-following task is sacrificed by a negligible
amount (0.0092%) in an example case where N = 11.
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Fig. 14: Comparisons between mean computation time per
iteration for different prediction horizon lengths by REACC
with the sLMI scheme and RMPC with mLMI.

VI. CONCLUSIONS

In this work, the REACC problem is addressed by proposing
a robust convex energy-optimal adaptive cruise control strat-
egy. To deal with the disturbances dominated by modelling
mismatches, an RMPC controller with SDPR and sLMI con-
straint formulation is designed to enhance the robustness of
the system as well as address the computational issue. By
applying conservative relaxation and convexification on the
battery electric vehicle powertrain and the system dynamics,
the overall REACC problem is formulated as a convex optimi-
sation problem in the space-domain. The performance of the
proposed REACC is evaluated on a real-world London UK
driving cycle against three benchmarks under the same initial
conditions and simulation disturbances. The robustness of the
REACC is verified through the comparison with the infeasible
solutions yielded by a nominal-based MPC. As compared to a
benchmark RMPC in the time-domain, the REACC method
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in space-domain is able to achieve a 4.5% ∼ 5% higher
energy efficiency thanks to a precisely fitted battery powertrain
model, as well as an improved driving comfort with less
jerky manoeuvres, which further contributes to energy-saving.
Moreover, the REACC scheme is compared with a CDFS
scheme by investigating energy economy, powertrain operating
points and energy loss compositions, and it is found to reduce
energy losses by approximately 11%, which further illustrates
the contribution towards energy saving by the REACC strat-
egy. By further investigating computational time, it is verified
that the REACC can be potentially implemented in real-time
with enhanced energy economy, driving comfort and robustly
satisfied safety constraints without sacrificing optimality.

Future work could involve a further hardware-in-the-loop
investigation of the performance and computational benefits
of the proposed space-domain scheme in further realistic and
more demanding driving missions as well as with consider-
ation of practical powertrain characteristics, such as thermal
effects. On the other hand, a rigorous proof and analysis of
the recursive feasibility of the presented methodology can also
be addressed, as well as a comparison of the performance of
new implementations of other robust approaches in the EACC
problem, such as with the Tube-MPC.

APPENDIX A

Recall the LMI in (41)[
2µ

(
f∗−I∗

(
C̃fx(0)+D̃f uu+D̃f cC+D̃f dd

)
−(Me+eµ)

)⊤
∗ M+M⊤

]
⪰0.

Applying the Schur complement to transform the left-hand-
side of (41) into a scalar

=2µ−(
f∗−I∗

(
C̃f x(0)+D̃f uu+D̃f cC+D̃f dd

)
−(Me+eµ)

)⊤
·(

M+M⊤
)−1

·(
f∗−I∗

(
C̃f x(0)+D̃f uu+D̃f cC+D̃f dd

)
−(Me+eµ)

)
=2µ−(

f∗⊤−x(0)⊤C̃⊤
f I∗⊤−u⊤D̃⊤

fuI∗⊤−C⊤D̃⊤
fcI

∗⊤−d⊤D̃⊤
fdI∗⊤−(Me+eµ)⊤

)
·(

M+M⊤
)−1

·(
f∗−I∗C̃fx(0)−I∗D̃f uu−I∗D̃f cC−I∗D̃f dd−(Me+eµ)

)
.

Since f∗, I∗C̃ f x(0), and I∗D̃ f cC are all constant terms, by
defining a new f′ = f∗ − I∗C̃ f x(0)− I∗D̃ f cC, the scalar can
be further simplified as in

=2µ −
(

f′⊤−u⊤D̃⊤
f uI∗⊤−d⊤D̃⊤

f dI∗⊤−(Me+eµ)⊤
)
·(

M+M⊤
)−1(

f′−I∗D̃f uu−I∗D̃f dd−(Me+eµ)
)

=2µ − f′⊤
(

M+M⊤
)−1

f′+ f′⊤
(

M+M⊤
)−1

I∗D̃f uu+

f′⊤
(

M+M⊤
)−1

I∗D̃f dd+ f′⊤
(

M+M⊤
)−1

(Me+eµ)+

u⊤D̃⊤
f uI∗⊤

(
M+M⊤

)−1
f′−u⊤D̃⊤

f uI∗⊤
(

M+M⊤
)−1

I∗D̃f uu−

u⊤D̃⊤
f uI∗⊤

(
M+M⊤

)−1
I∗D̃f dd−

u⊤D̃⊤
f uI∗⊤

(
M+M⊤

)−1
(Me+eµ)+

d⊤D̃⊤
f dI∗⊤

(
M+M⊤

)−1
f′−d⊤D̃⊤

f dI∗⊤
(

M+M⊤
)−1

I∗D̃f uu−

d⊤D̃⊤
f dI∗⊤

(
M+M⊤

)−1
I∗D̃f dd−

d⊤D̃⊤
f dI∗⊤

(
M+M⊤

)−1
(Me+eµ)+

(Me+eµ)⊤
(

M+M⊤
)−1

f′− (Me+eµ)⊤
(

M+M⊤
)−1

I∗D̃f uu−

(Me+eµ)⊤
(

M+M⊤
)−1

I∗D̃f dd−

(Me+eµ)⊤
(

M+M⊤
)−1

(Me+eµ) .

After applying the SDPR procedure to decouple terms with
disturbance d and introducing a new variable, 0⪯ D̃ ∈ D2N ,
the scalar is rewritten as

(d−d)⊤D̃(d−d)+
[
d⊤ 1

]
LsLMI(D̃,µ,M,u)

[
d
1

]
,

where LsLMI(D̃,µ,M,u) =[
D̃ −D̃

(
d+d

)
/2

∗ 2µ +d⊤D̃d

]
−

 D̃⊤
f dI∗⊤(

−f′+ I∗D̃ f uu+(Me+eµ)
)⊤
 ·

(
M+M⊤

)−1 [
I′D̃ f d −f′+ I∗D̃ f uu+(Me+eµ)

]
.

Furthermore, the Schur complement is utilised here to elim-
inate nonlinear terms included in the matrix. Moreover, sub-
stituting back f′ = f∗− I∗C̃ f x(0)− I∗D̃ f cC, as written in (43),
the matrix LsLMI(D̃,µ,M,u) is

LsLMI(D̃,µ,M,u) =
D̃ −D̃

(
d+d

)
/2 D̃⊤

f dI∗⊤

∗ 2µ+d⊤D̃d
(
−f∗+I∗

(
C̃ f x(0)+D̃ f cC+D̃ f uu

)
+(Me+eµ)

)⊤
∗ ∗

(
M+M⊤)

.
Hence, (41) is held, if the LMI LsLMI(D̃,µ,M,u)⪰ 0 is true.
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