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Finding Typing Compiler Bugs
Anonymous Author(s)

Abstract
We propose a testing framework for validating static typ-
ing procedures in compilers. Our core component is a pro-
gram generator suitably crafted for producing programs that
are likely to trigger typing compiler bugs. One of our main
contributions is that our program generator gives rise to
transformation-based compiler testing for finding typing
bugs. We present two novel approaches (type erasure mu-
tation and type overwriting mutation) that apply targeted
transformations to an input program to reveal type inference
and soundness compiler bugs respectively. Both approaches
are guided by an intra-procedural type inference analysis
used to capture type information flow.
We implement our techniques as a tool, which we call

Hephaestus. The extensibility of Hephaestus enables us
to test the compilers of three popular JVM languages: Java,
Kotlin, and Groovy. Within nine months of testing, we have
found 153 bugs (128 confirmed and 71 fixed) with diverse
manifestations and root causes in all the examined compilers.
Most of the discovered bugs lie in the heart of many critical
components related to static typing, such as type inference.

1 Introduction
Compiler reliability has a tremendous impact on the entire
software ecosystem. To this end, compiler testing has sub-
stantially thrived since the beginning of the last decade [8],
when Csmith [47], the most well-known program generator
for C programs, first appeared. Csmith has paved the way for
advanced program generation [18, 26, 28], transformation-
based compiler testing [15, 21, 22, 26, 44], test-case reduc-
tion [39, 41], and test-case prioritization [6, 7]. The result
from this research is far beyond prominent: (1) discovery
of thousands of (critical) bugs in well-established compil-
ers, such as GCC and LLVM, and (2) enhancements on the
compiler testing pipelines [2].
State-of-the-art research endeavors primarily focus on

finding bugs in optimizing compilers. Indeed, optimizations
is a source of problems that justifiably keeps researchers
preoccupied with verifying and testing the implementation
of optimizations [21, 24, 25, 29, 30, 47, 48]. However, opti-
mization issues is not the only challenge when working with
compilers: a recent study [5] has showed that compilers, and
especially those of languages that feature rich type systems
(e.g., Java), suffer from bugs in static typing and semantic
analysis procedures. Notably, such procedures examine if
the input program is error free, thus it is very important
that they are implemented correctly. Unfortunately, the on-
going language evolution and the difficulty of harmonizing
new language features with type systems [20, 32] render

the implementation of the corresponding typing algorithms
notoriously challenging.
Typing bugs degrade the reliability of programs and de-

velopers’ productivity. Specifically, such bugs can (1) lead to
the rejection of well-formed programs making developers
waste time on debugging their correct programs, (2) violate
the safety provided by type systems [35] and can potentially
cause security issues at runtime, or (3) invalidate subsequent
compiler phases, such as optimizations.

Despite the importance of typing bugs, testing static typ-
ing procedures has been barely the goal of the existing testing
campaigns. To our knowledge, the only relevant work is the
fuzzer introduced by Dewey et al. [14] in 2014, which has
found only a couple of bugs in the Rust’s type-checker using
a form of constraint logic programming.

Approach: We introduce a systematic and extensible
approach for detecting typing compiler bugs. Our approach
is motivated and guided by the findings and observations of
a study [5] on 320 typing bugs in the compilers of four JVM
languages, namely Java, Scala, Kotlin, and Groovy:

F1 Typing bugs mainly (51%) manifest as unexpected
compile-time errors, meaning that the buggy compiler
mistakenly rejects a well-formed program.

F2 An important portion (40%) of typing bugs lie in the
implementation of type inference engines and in other
type-related operations (e.g., subtyping checks).

F3 One third of typing bugs are triggered by non-compilable
(e.g., ill-typed) code.

F4 Language features related to parametric polymorphism
(e.g., use of parameterized classes, bounded polymor-
phism) are important for uncovering typing bugs, while
unlike optimization bugs [28], loops and complex arith-
metics do not exhibit high bug-revealing capability.

F5 Many aspects of typing bugs (i.e., symptoms, root causes,
and test case characteristics) are uniformly distributed
across the studied compilers.

Our approach is based on both program generation
and transformation-based compiler testing. The first compo-
nent of our approach is a program generator that comes with
three important characteristics. First, it produces semanti-
cally valid programs, because typing bugs mainly cause the
compiler to reject well-formed programs (F1). Rejecting a
well-formed program produced by our generator indicates
a potential compiler bug (test oracle). Second, the resulting
programs rely heavily on parametric polymorphism (F4),
while we avoid generating complex arithmetics or nested
loops, because such features are irrelevant to the types of
bugs we aim to detect. Third, to test compilers of different
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languages (F5), our generator yields programs at a higher-
level of abstraction, and then uses translation mechanisms
to convert the “abstract” programs into the target language.
The second component is based on our design of two

novel transformation-based methods: type erasure mutation
and type overwriting mutation whose goal is to exercise com-
pilers’ type inference algorithms and other type-related op-
erations (F2). Given an input program 𝑃 , the type erasure
mutation removes declared types from variables and parame-
ters, or type arguments from parameterized constructor and
method calls, while preserving the well-formedness of 𝑃 . The
type overwriting mutation adopts a fault-injecting approach
(F3), and introduces a type error in 𝑃 by replacing a type
𝑡1 with another incompatible type 𝑡2. The type overwriting
mutation updates the test oracle, as compiling a program
obtained from this mutation indicates a potential soundness
bug in the compiler under test. To perform sound transforma-
tions with respect to the test oracle, both mutations rely on
a model underpinned by an intra-procedural type inference
analysis that captures (1) the declared and inferred type of
each variable, (2) how each type parameter is instantiated,
and (3) dependencies among type parameters.

Testing campaign: Our tool implementation called Hep-
haestus1 is currently able to test compilers for three differ-
ent languages: Java (javac), Kotlin (kotlinc), and Groovy
(groovyc). All selected languages are statically-typed, object-
oriented languages, feature advanced type systems, and sup-
port parametric polymorphism via the Java generics frame-
work [4]. Java is consistently on the list of the top five most
popular languages [19, 45]. Kotlin has become the de-facto
language for Android development [33]: already over 80%
of the top-1000 Android applications use Kotlin [3]. Finally,
Groovy is a popular hybrid language that supports both
dynamic and static typing.
Over a period of nine months, we have found 153 bugs

in all the examined compilers, of which 71 bugs were sub-
sequently fixed by developers. Thanks to type erasure and
type overwriting mutations, we have uncovered 50 inference
and 22 soundness bugs, which we were unable to detect by
using our program generator by itself. Our results further
indicate that our mutations are able to increase coverage of
compiler code. For example, type erasure mutation covers up
to 5,431 more branches and invokes up to 217 more functions,
when compared to our generator.

Contributions: We make the following contributions.
• A program generator carefully designed to find typing
bugs in compilers of diverse languages.
• Two novel transformation-based testing techniques,
namely type erasure mutation and type overwriting muta-
tion used for finding type inference and soundness issues.
Both methods rely on an intra-procedural type inference
analysis for capturing type information flow.

1In Greek mythology, Hephaestus was the smithing god.

1 public class Test {

2 void test() {

3 def closure = { new B<>(new A<Long>()); }

4 A<Long> x = closure().f

5 }

6 }

7 class A<T> {}

8 class B<T> {

9 T f;

10 B(T f) { this.f = f; }

11 }

Figure 1. GROOVY-XXXX: This well-typed program is re-
jected by the Groovy compiler.

• An openly available implementation called Hephaestus,
which is the first tool that is capable of testing different
JVM compilers: javac, kotlinc and groovyc.
• A thorough evaluation of Hephaestus in terms of both
bug-finding capability and code coverage improvement.
From February 2021 to mid-November 2021, Hephaes-
tus has found 153 bugs in total, of which 11 bugs are in
javac, 32 are in kotlinc, and 110 in groovyc.
Availability: We plan to make our research artifact pub-

licly available, concurrently with this paper’s publication.

2 Illustrative Examples
To motivate the importance of typing bugs, we present two
real examples detected by our tool.

Unexpected compile-time error in groovyc: Figure 1
shows a Groovy program that leads to this error in groovyc.
Unexpected compile-time error are cases where the bug
makes the compiler mistakenly reject a well-formed pro-
gram. This bug had affected groovyc since version 2.0.0. For
almost a decade (from December 2011 until May 2021 when
we reported it), this bug had slipped the thorough testing ef-
forts applied by the Groovy development team. Notably, this
long-latent issue was resolved within days after reporting it.

The program declares two parameterized classes, namely
A and B. Class B defines a field whose type is given by the
type parameter T. On line 3, the code declares a lambda that
returns an object of type B<A<Long>>. Although the type
argument of B is omitted on line 3 (via the diamond operator
<>), the compiler should be able to infer the corresponding
type parameter from the type of the constructor’s argument,
which is A<Long>. However, a type inference bug causes the
compiler to report a type mismatch on line 4. groovyc in-
correctly infers the type of closure().f as Object instead
of B<A<Long>>. Surprisingly, replacing A<Long> with Long
at line 3 successfully compiles the program.

Erroneous compilation of ill-typed program in
kotlinc: Figure 2 presents another bug detected by Hep-
haestus. The development and the stable versions of
kotlinc fail to detect a type error in this program. This
bug is a regression introduced by a major refactoring in the
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1 fun <T1: Number> foo(x: T1) {}

2 fun <T2: String> bar(): T2 { return "" as T2 }

3 fun test() {

4 foo(bar())

5 }

Figure 2. KT-XXXX: This ill-typed program is compiled by
the Kotlin compiler.

Mutations

Program Generator

Translator

P

Type 
Overwriting

Type 
Erasure

config
Well-typed 
program P in 
intermediate 
language (IR)

Produces 
well-typed
programs

Produces
ill-typed 
programs

BugOutput CheckerCompiler

Figure 3. Our approach for detecting typing compiler bugs.

type inference algorithm of Kotlin, shipped with version
1.4, which appeared in August 2020. The bug remained un-
detected until we reported it in September 2021, and was
classified as “major” by developers.
The program defines two parameterized functions: foo

and bar. The first function declares a type parameter T1
bounded by Number, while the second one introduces T2
bounded by String. When calling bar at line 4, kotlinc
instantiates it as Number => Number, because the return
value of bar flows to a parameter whose type is bounded by
Number. However, this type substitution is not valid, as T2
cannot be a Number. Hence, instead of accepting the program,
kotlinc should have raised a type error of the form: “ type
parameter bound for T2 is not satisfied: inferred type Number
is not a subtype of String”.

The two examples demonstrate that both well-typed and
ill-typed programs can uncover typing bugs. Furthermore,
the bug-revealing programs combine multiple language fea-
tures, e.g., mix of parametric polymorphism, lambdas, type
inference, etc. Finally, both examples highlight that the pro-
cess of static typing is hard to get right.

3 Techniques
Figure 3 summarizes our approach for detecting typing com-
piler bugs. The core component of our approach is a program
generator (Section 3.2) designed to produce well-formed pro-
grams written in an intermediate representation (IR) (Sec-
tion 3.1), an object-oriented language supporting paramet-
ric polymorphism, functional programming constructs, and
type inference. As our approach tests multiple compilers,
we use this IR to abstract away differences of target lan-
guages. Our generator takes as input a configuration that
can either disable certain features (e.g. bounded polymor-
phism), enable them, or affect their probability distribution.
Language-aware translators then convert a program written
in the IR into a corresponding source file, which is ultimately
passed as an input to the compiler under test.
We have also designed two transformation-based ap-

proaches (Section 3.4), namely: a type erasure mutation and

⟨𝑝 ∈ Program⟩ ::= 𝑑

⟨𝑑 ∈ Decl⟩ ::= class C extends 𝑒 𝑑
| fun𝑚(𝑥 : 𝑡 . . . ) : 𝑡 = 𝑒

| var 𝑥 : 𝑡 = 𝑒 | Λ𝛼.𝑑
⟨𝑒 ∈ Expr⟩ ::= val(𝑡) | 𝑥 | 𝑒.𝑓 | 𝑒 ⊕ 𝑒 | {𝑑 . . . 𝑒 . . . }

| (𝑒.𝑚 𝑡) (𝑒 . . . ) | (new C 𝑡) (𝑒 . . . )
| 𝑒.𝑥 = 𝑒 | if(𝑒) 𝑒 else 𝑒 | 𝑒 :: 𝑚
| 𝜆𝑥 : 𝑡 .𝑒

⟨⊕ ∈ BinaryOp⟩ ::= == | ! = | && | | | | > | ≥ | < | ≤
⟨𝑥 ∈ VariableName⟩ ::= is the set of variable and field names
⟨𝑚 ∈ MethodName⟩ ::= is the set of method names
⟨C ∈ ClassName⟩ ::= is the set of class names

(a) Syntax of the IR.

⟨𝑡 ∈ Type⟩ ::= ⊤ | ⊥ | 𝛼 | T : 𝑡
| Λ𝛼.𝑡 | (Λ𝛼.𝑡) 𝑡

⟨𝛼 ∈ TypeParameter⟩ ::= 𝜙 : 𝑡
⟨T ∈ TypeName⟩ ::= is the set of type names

(b) Types in the IR.

Figure 4. The syntax and the types in the IR.

a type overwriting mutation for detecting type inference and
soundness bugs respectively. The type erasure mutation is
a semantics-preserving transformation that removes type-
related information from an input program. The type over-
writing mutation replaces a type 𝑡 with another type 𝑡 ′ in a
way that this replacement invalidates the program’s correct-
ness. Hence, unlike a program produced by our generator or
through the type erasure mutation, we expect the compiler
to reject the output of type overwriting mutation.
In contrast to previous work [28, 43, 47, 48], which re-

quires differential testing [34], our approach does not need
to employ it, as each program derived either from the genera-
tor or our mutations also acts as an oracle, based on the way
it was derived. In the following, we present the technical
details behind each component of our approach.

3.1 IR and Preliminary Definitions
Figure 4a shows the syntax of the IR. Use- and declaration-
site variance, interfaces, and abstract classes are omitted
from the figure for the sake of simplicity. A program in the
IR consists of a sequence of declarations. A declaration is
either a class, a function, or a variable. The language also
supports parameterized declarations by introducing a type
parameter in the body of the declaration (see Λ𝛼.𝑑). The IR
contains constant values of a type 𝑡 (val(𝑡)) and the typical
expressions encountered in an object-oriented language (e.g.,
conditionals, parameterized method and constructor calls),
along with functional features, i.e., method references and
lambdas. Arithmetic expressions, loops, exceptions, access
modifiers (e.g., public, private) are not supported.

3
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Regarding types (Figure 4b), the language involves a nom-
inal type system. A type is either (1) a regular type (T : 𝑡 )
labeled with a name T and a supertype 𝑡 , (2) a type param-
eter (𝜙 : 𝑡 ) with an upper bound 𝑡 , (3) a type constructor,
or (4) a type application that instantiates a type constructor
with a set of concrete types.

In the following definitions, we use the symbol <: to de-
note the subtyping relation, and the operation 𝑆 (𝑡) to give
the supertype of type 𝑡 (e.g., 𝑆 (T : 𝑡) = 𝑡)).

Definition 3.1. (Type substitution) The substitution [𝛼 ↦→
𝑡] : Type −→ Type, where 𝛼 is a type parameter, and 𝑡 is a
type 𝑡 ∈ Type, is inductively defined by:

[𝛼 ↦→ 𝑡]𝛼 = 𝑡

[𝛼1 ↦→ 𝑡]𝛼 ′2 = 𝛼2 𝛼1 ≠ 𝛼 ′2
[𝛼 ↦→ 𝑡1]T : 𝑡2 = T : [𝛼 ↦→ 𝑡1]𝑡2
[𝛼 ↦→ 𝑡1]Λ𝛼.𝑡2 = [𝛼 ↦→ 𝑡1]𝑡2 = (Λ𝛼.𝑡2)𝑡1

[𝛼1 ↦→ 𝑡1] (Λ𝛼2.𝑡2)𝑡3 = (Λ𝛼2.𝑡2) [𝛼1 ↦→ 𝑡1]𝑡3
A type substitution replaces all occurrences of a type param-
eter 𝛼 in a type 𝑡1 with another type 𝑡2.

Definition 3.2. (Type unification) Type unification (Type×
Type −→ 𝑆) is an operation that takes two types (𝑡1, 𝑡2 ∈
Type) and returns a type substitution 𝜎 so that 𝜎𝑡1 <: 𝑡2:

unify(𝛼, 𝑡) = [𝛼 ↦→ 𝑡]
unify((Λ𝛼.𝑡)𝑡1, (Λ𝛼.𝑡)𝑡2) = unify( [𝛼 ↦→ 𝑡1]𝑡, [𝛼 ↦→ 𝑡2]𝑡)

unify(𝑡1, 𝑡2) = unify(𝑡1, S(𝑡2)) 𝑡1 ∉ TypeParam

Type unification identifies a substitution 𝜎 so that the type
𝜎𝑡1 is a subtype of 𝑡2. We explain how we use the above
definitions, when detailing our techniques.

3.2 Program Generation
We now describe the internals of our program generator
used to produce programs written in the IR.

Context: Our program generator maintains a data struc-
ture called context, which stores all declarations and types
in their namespace. Specifically, we use context to store the
following entities: class-, method- and variable declarations
(i.e., local variables, class fields, and method parameters),
as well as type parameters and lambdas. Every time our
generator uses a declaration or a type (e.g., initializing an in-
stance of a class), it consults the context to determine which
declarations are available in the current scope.

Generating declarations: The entry point of our pro-
gram generator is the creation of random declarations (i.e.,
either a class, a method, or a variable) in the top-level scope.
The maximum number of these top-level declarations is
given as an input. When our generator constructs a declara-
tion, it adds it to the context so that subsequent declarations
and expressions can refer to the initial one.

Generating types: To generate a type, our generator
first computes the set of available types in the current scope,
and then picks one type at random. This set contains types
from three different sources, namely, (1) built-in types (e.g.,
Int, String, Array) supported by the language under test,
(2) types derived from previously generated classes, and
(3) type parameters that are available in the current scope.
Notably, for obtaining the second and the third source of
types, our generator consults the context, while the first set
is a constant given as an input to the generator. If the selected
type is a type constructor, our generator instantiates it by
recursively generating types with which the corresponding
type parameters are instantiated.

Generating expressions: To avoid producing ill-typed
expressions and programs, our program generator adopts a
type-driven approach for generating expressions. This means
that it first constructs a random type 𝑡 , and then creates a
random expression 𝑒 of a type 𝑡 ′, where 𝑡 ′ <: 𝑡 . Generating
such expressions helps us exercise the implementation of
subtyping rules in the compiler under test.

Object initialization: Expression generation is done up
to a certain depth provided as input to the generator. How-
ever, infinite loops may occur, especially when initializing
objects of classes with circular dependencies [27]. To prevent
this from happening, after reaching the maximum depth, the
generator initializes objects with constant values (i.e., val(𝑡)),
which are typically translated into cast null expressions.

Resolving matching methods and fields: When con-
structing a method call, a method reference, or a field access
of a type 𝑡 , the generator examines the context to resolve
existing methods and fields that match the given type 𝑡 .
Algorithm 1 illustrates the resolution process performed

when generating a method call of a type 𝑡 . When dealing
with field accesses and method references, the resolution
process works in a similar manner. Specifically, resolution
involves three steps. In the first step, we inspect the current
scope to find methods whose return type is either a subtype
of 𝑡 (line 2), or live objects containing at least one instance
method whose signature matches 𝑡 (line 3).

If the above search fails (i.e., methods = nil), we examine
all previously declared classes and checkwhether there is any
class containing such a method (line 5). To answer this ques-
tion we use the resolveMatchingClass procedure (lines
11–23). For every class 𝑐 and method𝑚, our resolution al-
gorithm unifies the return type 𝑟 of𝑚 with type 𝑡 (line 16),
and if 𝜎𝑟 <: 𝑡 , it instantiates the corresponding receiver type
that stems from class 𝑐 using the (partial) substitution ob-
tained by type unification (line 18). Finally, the procedure
picks a receiver type rt, and a method m at random (line 24),
and generates an expression of type rt corresponding to the
receiver of method call (line 25).
When the search of resolveMatchingClass fails

(line 23), resolveMethod ultimately produces a fresh
method with a return type 𝑡 , and adds it to the current scope

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Finding Typing Compiler Bugs Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Algorithm 1: Resolve methods by return type 𝑡 .
1 fun resolveMethod(𝑡, context, 𝑛)=
2 methods← resolveMatchingFunctions(t, context, n)
3 methods←

methods ∪ resolveMatchingObjects(t, context, n)
4 if methods = nil then
5 methods← resolveMatchingClass(𝑡, context, 𝑛)
6 if methods = nil then
7 (rt,method) ← generateMatchingMethod(t, context, n)
8 else (rt,method) ← random(methods)
9 return (rt, method)

10

11 fun resolveMatchingClass(𝑡, context, 𝑛)=
12 methods← []
13 for 𝑐 ∈ getClasses(context, n) do
14 for𝑚 ∈ getMethods(c) do
15 𝑟 ← getRetType(m)
16 𝜎 ← unify(𝑟, 𝑡 )
17 if 𝜎𝑟 <: 𝑡 then
18 rt← instantiate(toType(c), types, 𝜎)
19 𝜎 ′ ← 𝜎 ∪ getTypeSubstitution(rt)
20 if isParameterized(𝑚) then
21 m← instantiate(toType(m), types, 𝜎 ′)
22 methods← methods ∪ (rt,𝑚)
23 if methods = nil then return []
24 (rt,𝑚𝑒𝑡ℎ𝑜𝑑) ← random(methods)
25 return generateExpr(rt, context, n), method

or to an existing class (line 7). Otherwise, it randomly selects
a pair of a receiver and a method, which is the output of the
algorithm (line 9). Our generator then uses this output to
finish the generation of method call accordingly.

3.3 Modeling Type Information
We introduce a model for reasoning about type informa-
tion in a program written in the IR. The model is based
on the notion of a type graph (Sections 3.3.1), a program
representation that captures how type information flows
between declarations and type parameters. We present an
intra-procedural type inference analysis for building type
graphs (Section 3.3.2). Finally, based on type graph, we intro-
duce the properties of type preservation and type relevance
(Section 3.3.3) which, as we will show in Section 3.4, our
testing approaches are based on.

3.3.1 Type Graph Formulation. The type graph cap-
tures (1) the declared and inferred type of program decla-
rations, (2) how each type parameter is instantiated, and
(3) the inter-dependencies between type parameters. We de-
fine a type graph as 𝐺 = (𝑉 , 𝐸). There are nodes of two
kinds: a node 𝑛 ∈ 𝑉 is either a declaration 𝑑 ∈ Decl, or
a type 𝑡 ∈ Type. The set of edges 𝐸 ⊆ 𝑉 × 𝑉 × 𝐿, where
𝐿 = {decl, inf, def} indicate the following: given a type
graph 𝐺 , the edge 𝑛

decl→ 𝑡 denotes that the type of node 𝑛 is

type application
𝑡 = (Λ𝛼.𝑡1)𝑡2

𝐴(𝐺, 𝑡) ⇒ 𝐺 ∪ {(Λ𝛼.𝑡1)𝑡2
def→ 𝛼, 𝛼

decl→ 𝑡2}

var decl
𝑒 = val 𝑥 : 𝑡1 = 𝑒 𝑡2 = getType(e)

𝐴(𝐺, 𝑒) ⇒ 𝐺 ′ ∪ {𝑥 decl→ 𝑡1, 𝑥
inf→ 𝑡2}

var param constructor
𝑒 = val 𝑥 : 𝑡1 = new (C𝑡2) ()

Λ.𝛼 .𝑡 = toType(C) 𝜎 = unify′(𝑡1, (Λ.𝛼 .𝑡)𝑡2)

𝐴(𝐺, 𝑒) ⇒ 𝐺 ∪ {𝑥 decl→ 𝑡1, 𝑥
inf→ (Λ𝛼.𝑡)𝑡2} ∪ {𝛼

inf→ 𝜎 (𝛼) |𝛼 ∈ 𝜎}

var param method call
𝑒 = val 𝑥 : 𝑡1 = 𝑒1 .(𝑚𝑡) ()
𝑡2 = getRetType(𝑒1,𝑚)

typeParam(m) ∈ 𝑡2 𝜎 = unify′(𝑡1, 𝑡2)

𝐴(𝐺, 𝑒) ⇒ 𝐺 ∪ {𝑥 decl→ 𝑡1, 𝑥
inf→ getType(e)} ∪ {𝛼 inf→ 𝜎 (𝛼) |𝛼 ∈ 𝜎}

param call
𝑒 = 𝑒1 .(𝑚𝑡) (𝑒2)

𝑡1 = getType(𝑒2) 𝑡2 = getParamType(𝑒1,𝑚)
typeParam(m) ∈ 𝑡2 𝜎 = unify′(𝑡1, 𝑡2)

𝐴(𝐺, 𝑒) ⇒ 𝐺 ∪ {𝛼 inf→ 𝜎 (𝛼) |𝛼 ∈ 𝜎}

Figure 5. Analysis rules for building type graphs.

explicitly declared in the program as 𝑡 . For example, for a
variable declaration of the form String x = ..., there is a
x
decl→ 𝑡 edge, where 𝑡 = String. The edge 𝑛1

inf→ 𝑛2 indicates
that the type of node 𝑛1 is inferred by node 𝑛2. For example,
for an assignment of the form String x = "str", beyond
a
decl→ edge, there is also an x

inf→ 𝑡 edge, where 𝑡 = String.
This is because the type of variable x is inferred as String,
which is the type of the constant at the right-hand side of
the assignment. Finally, the edge 𝑡1

def→ 𝑡2 shows that type
𝑡1 consists of another type 𝑡2. For example, for each type
application of the form 𝑡1 = A<String>, we have the edges
𝑡1
def→ T and T

decl→ 𝑡2, where 𝑡2 = String. These edges indicate
that parameterized type A<String> contains type parameter
T, and the corresponding type argument is String.

3.3.2 Constructing Type Graphs. To construct type
graphs, we design an intra-procedural, flow-sensitive analy-
sis that operates on programs written in the IR. The analysis
𝐴(𝐺,𝑛) constructs a type graph 𝐺 by visiting every dec-
laration and expression 𝑛 of the given program. Figure 5
summarizes our analysis rules. For what follows, unify′ is a
variant of type unification that adds the following rules:

unify((Λ𝛼.𝑡)𝑡1, (Λ𝛼)𝑡2) = [𝛼 ↦→ 𝛼] if 𝑡1 = 𝑡2

unify′((Λ𝛼1 .𝑡1)𝑡2, (Λ𝛼2.𝑡3)𝑡4) = [𝛼2 ↦→ 𝛼1]
if unify(𝑆 (𝑡3),[𝛼1 ↦→ 𝑡1]𝑡2) ≠ ∅∧
∧[𝛼2 ↦→ 𝑡4]𝑡3 <: [𝛼1 ↦→ 𝑡2]𝑡1
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In essence, this modification finds dependent type parame-
ters between two type applications. For example, suppose
we have (1) two parameterized classes: class A<T> and
class B<T> extends A<T>, and (2) two type applications
derived from these classes, namely, 𝑡1 = A<String> and
𝑡2 = B<String>. In this scenario, unify′(𝑡1, 𝑡2) returns
[𝛼2 ↦→ 𝛼1], where 𝛼1 and 𝛼2 are the type parameters of
type constructors A and B respectively. This dependency in-
formation indicates that instantiating the type parameter 𝛼2
with a type 𝑡 also instantiates 𝛼1 with the same type, as 𝛼2
flows to the type parameter of superclass.
[type aplication]: For each type application 𝑡 =

(Λ𝛼.𝑡1)𝑡2, the resulting type graph contains two edges. The
first edge (

def→) connects type application with the underlying
type parameter 𝛼 , and the second edge (

decl→ ) connects 𝛼 with
type argument 𝑡2.

[var decl]: For a variable declaration, we connect variable
x with two types: 𝑡1 is the declared type of x, and 𝑡2 is the
type inferred by the right-hand side of declaration.
[var param constructor]: For a variable initialized

by a parameterized constructor (e.g., A<String> x = new
A<String>()), beyond adding the edges for the declared
and inferred type of variable x, we unify the type of the
right-hand side with that of the left-hand side to identify any
dependent type parameters. If this is the case, we add the
corresponding

inf→ edges. This rule models the case where the
type parameter of a constructor invocation is instantiated
by using type information from the variable’s declared type
(e.g., A<String> x = new A<>()).

[var param method call]: When initializing a variable
with the value of a parameterized method call, the type
graph contains an

inf→ edge, which connects the method’s
type parameter (in case it appears in the method’s return
type) with any dependent type or type parameter included
in the declared type of x. This edge captures the case where
a method’s type parameter is instantiated based on the de-
clared type of the target variable x.
[param method call]: When calling a parameterized

method with arguments, the method’s type parameter in-
cluded in the type of the formal parameter is instantiated by
the type of the expression 𝑒2 passed as a call argument.

We treat any other case using one of the rules above. For
example, a return value of a method is treated as the ini-
tial value of a virtual variable named ret. We model this
using one of the [var .*] rules depending on the body of
the method. Invoking a parameterized constructor with call
arguments (i.e., A<String>("f")) is modeled as calling a
parameterized method (i.e., [param method call]).

Example Type Graph: Figure 6 shows an example pro-
gram and its type graph. The program consists of two param-
eterized classes with a parent-child relationship (lines 1–4),
and a function m that returns a value of type A<String>.
The produced type graph contains two declarations depicted

1 open class A<T>
2 class B<T>(
3 val f: A<T>
4 ): A<T>()

5
6 fun m(): A<String> {
7 return B<String>(
8 A<String>()
9 )

10 }

m.ret

A<String>:6

decl

B<String>:7

inf

A.T:6

def

String

decl

B.T:7

def

inf

decl A.T:8

inf

A<String>:8

def

decl

A.T:3

inf

A<String>:3

definf

B<String>.f

inf decl

Figure 6. A Kotlin program and its type graph. Red nodes
represent declarations and blue nodes are types. Types are
annotated the line they come from. Double circled nodes are
candidate nodes for the type erasuremutation, and shadowed
nodes are candidate nodes for the type overwriting mutation.

with red color. The one declaration stands for the return
value of function m, and the other corresponds to the field
f, after initializing its receiver object at line 7. Observe the
dependencies between type parameters. For example, the
edge from node B.T:7 to node A.T:3 demonstrates that
the type parameter of the parameterized constructor call on
line 7 is instantiated by the type parameter coming from the
call argument at line 8. This edge is captured by the [param
method call] rule.

3.3.3 Type Preservation and Type Relevance. As-
sume that ⊔ is the least upper bound operator, and
visitedTypes(G, n) returns all type nodes in 𝐺 that are reach-
able from the given node 𝑛 through either

decl→ or
inf→ edges.

Definition 3.3. (Type inference) Type inference (𝐺 ×𝑉 −→
Type) is an operation that takes a type graph𝐺 = (𝑉 , 𝐸) and
a node 𝑛 ∈ 𝑉 , and returns a type. It is defined as:

infer(𝐺,𝑛) =
⊔

𝑡 ∈visitedTypes(G, n)
𝑡

This definition gives the type of a particular node 𝑛. This
type stands for the least upper bound of all types that are
reachable from 𝑛.

Definition 3.4. (Type erasure) Type erasure (𝐺 ×𝑉 −→ 𝐺)
operates on a type graph 𝐺 = (𝑉 , 𝐸) and a node 𝑛 ∈ 𝑉 and
returns a new type graph. It is defined as:

erasure(𝐺, 𝛼) = 𝐺 \ {𝛼 decl→ 𝑛}, 𝑛 ∈ 𝐺
erasure(𝐺, (Λ.𝛼 .𝑡1)𝑡2) = erasure(𝐺, 𝛼)

erasure(𝐺, 𝑡) = 𝐺 if 𝑡 ∉ TypeParam

erasure(𝐺,𝑑) = (𝐺 \ {𝑑 decl→ 𝑡}) ∩ erasure(𝐺, 𝑡), 𝑡 ∈ 𝐺

Type erasure takes a node 𝑛 and a graph 𝐺 , and removes
all

decl→ edges associated with the given node 𝑛. Conceptually,
6
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Algorithm 2: Algorithm for type erasure mutation.
1 fun typeErasureMutation(𝑃)=
2 for𝑚 ∈ Methods(𝑃) do
3 𝐺 ← 𝐴(∅,𝑚) // Builds type graph

4 nodes← findCandidateNodes(𝐺)
5 nodes← {𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 |𝑛 preserves its type on G}
6 for 𝑘 = len(nodes)to1 do
7 for ⟨𝑛1, 𝑛2, . . . , 𝑛𝑘 ⟩ ∈ combination(nodes, k) do
8 if ⟨𝑛1, 𝑛2, . . . , 𝑛𝑘 ⟩ preserve their type on 𝐺 then
9 erase ⟨𝑛1, 𝑛2, . . . , 𝑛𝑘 ⟩

10 break

type erasure removes variables’ declared types, or types used
as type arguments from the corresponding type parameters.

Based on the infer and erasure operations, we now present
the type preservation and type relevance properties.

Definition 3.5. (Type preservation) Given a type graph
𝐺 = (𝑉 , 𝐸), and a node 𝑛 ∈ 𝑉 , we say that 𝑛 preserves
type 𝑡 ∈ Type, when infer(G, n) = 𝑡 , 𝐺 ′ = erasure(𝐺,𝑛)
and infer(𝐺 ′, 𝑛) = 𝑡 .

Definition 3.5 says that a node 𝑛 preserves its type 𝑡 , when
even after erasing type information from 𝑛 (e.g., a variable’s
declared type), the inferred type for 𝑛 is still 𝑡 . We can gen-
eralize the type preservation property for multiple nodes.

Definition 3.6. (Generalized type preservation) Given a
type graph 𝐺 = (𝑉 , 𝐸) and nodes 𝑛1, 𝑛2 . . . 𝑛𝑘 ∈ 𝑉 ,
we say that these nodes preserve their type when 𝑡1 =

infer(𝐺,𝑛1), . . . , 𝑡𝑘 = infer(𝐺,𝑛𝑘 ), 𝐺 ′ =
⋂𝑘

𝑖=0 erasure(𝐺,𝑛𝑖 )
and 𝑡1 = infer(𝐺 ′, 𝑛1), . . . , 𝑡𝑘 = infer(𝐺 ′, 𝑛𝑘 ).

Definition 3.7. (Type relevance) Given a type graph 𝐺 =

(𝑉 , 𝐸) and a node 𝑛 ∈ 𝑉 , we say that 𝑛 is relevant to type
𝑡 ∈ Type, when 𝐺 ′ = erasure(𝐺,𝑛) and infer(𝐺 ′, 𝑛) <: 𝑡 .

The definition above says that a type 𝑡 is relevant to a node
𝑛, when, after performing type erasure, 𝑡 is a supertype of
the inferred type of 𝑛.

3.4 Mutations
We now introduce our novel testing approaches for detecting
inference and soundness bugs. The input of both approaches
is a program produced by the generator. Our techniques mu-
tate the input program by leveraging the type preservation
and type relevance properties presented earlier.

3.4.1 Type Erasure Mutation. The insight of the type
erasure mutation (hereafter TEM) is that omitting types
(wherever is possible) exercises the implementation of com-
pilers’ inference algorithms. Given an input program 𝑃 , TEM
removes type information from 𝑃 in a way that this modifica-
tion does not change the semantics of 𝑃 . Our IR supports type
removal for the following cases: (1) removing a variable’s de-
clared type (e.g., var x = 1), (2) removing type arguments
from a parameterized constructor or method call (e.g., new

A<>("")), (3) removing a return type from a method’s signa-
ture, (e.g., fun m() = "f"), and (4) removing a type from a
parameter of a lambda (e.g., (x) -> x + 1).
Removing types is not always benign, as it may lead to

cases where type inference is impossible or the compiler
infers a different type from the one initially declared, some-
thing that may cause type errors. For example, consider the
following code snippet:

1 class A<T>(val f: T)

2 val x: Any = "str"

3 val y: A<Any> = A<Any>(x)

Removing the declared type of variable x (i.e., val x =
"str"), and the type argument of the constructor call
(i.e., val y: A<Any> = A(x)) makes the program ill-typed.
This is because the compiler now infers the type of x as
String and the type of the right-hand side of line 3 as
A<String>. Therefore, there is a type mismatch while type-
checking line 3, as we assign something of type A<String>
to a variable of type A<Any>.
To prevent such situations from happening, we need to

identify which types and which combinations of them can
be safely disregarded. To answer this question, TEM lever-
ages the type graph of the input program. In particular, TEM
chooses to erase the types of nodes for which the type preser-
vation property (Definition 3.6) holds.

Algorithm 2 summarizes the implementation of TEM,
which we describe using the example program and the type
graph shown in Figure 6. The algorithm takes an input pro-
gram 𝑃 , and for every method in 𝑃 , TEM builds the corre-
sponding type graph (lines 2, 3). On line 4, the algorithm
examines the type graph to identify candidate nodes where
type erasure is permissible (recall the four cases enumerated
in the beginning of Section 3.4.1). In the example of Figure 6,
there are three candidate nodes shown with double circles.
Next, TEM excludes every candidate node that does not pre-
serve its type based on Definition 3.5 (line 5). In our example,
TEM filters out node m.ret, as after type erasure the return
type of method m becomes B<String>. For the remaining
set of nodes, our algorithm finds the maximal set of nodes
that is omittable, meaning that the generalized type preser-
vation property holds for the included nodes (lines 6–9). The
intuition is that removing the maximal set of types allows
us to explore more paths in the compiler, as there is much
hidden type information that the compiler needs to infer.
Back to our example, TEM checks whether the combina-

tion of nodes B<String>:7 and A<String>:8 can be erased.
Indeed, this is the case, as after type erasure both B.T:7
and A.T:8 are still instantiated with type String (observe
that type node String is reachable from both nodes, using
the graph produced by the erasure operation, where dotted
edges are removed). As a result, TEM mutates the program
accordingly, namely, it transforms the body of method m from
return B<String>(A<String>()) to return B(A()).
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Remarks: By construction, TEM yields well-typed pro-
grams. Based on the type preservation property (Defini-
tions 3.5 and 3.6), TEM considers only types for which it
knows that their removal does not affect the typing of decla-
rations and type parameters.
TEM has a worst case exponential complexity, as it enu-

merates the combinations of candidate nodes of any size 𝑘 (
Algorithm 2, lines 6–7). However, such an exponential behav-
ior does cause performance problems in practice, because (1)
our algorithm disregards any candidate node that is trivially
non-omittable (i.e., the node does not preserve its type on
its own), (2) our algorithm stops the enumeration when it
finds the maximal combination of nodes.

3.4.2 Type Overwriting Mutation. The goal of the type
overwriting mutation (hereafter TOM) is to find soundness
compiler bugs. To trigger such bugs, TOM provides the com-
piler under test with wrongly-typed programs. Specifically,
TOM takes a well-typed program as input and mutates it
by injecting a type error. Accepting and compiling such an
invalid program indicates a potential soundness bug in the
compiler. In particular, TOM introduces a type error in the
input program by replacing a type 𝑡1 with another type 𝑡2
so that type mismatches arise. TOM performs these types
of replacements on either the declared types of variables, or
upper bounds and type arguments of type parameters.

The algorithm of TOM is similar to Algorithm 2. It starts
by randomly picking one method from 𝑃 and producing its
type graph 𝐺 . As in the case of the TEM algorithm, TOM
examines 𝐺 to identify nodes where the mutation is applica-
ble. In the context of TOM, such nodes reflect either variable
declarations or type parameters. Next, TOM selects a node 𝑛
at random, and exploits the type relevance property (Defini-
tion 3.7) to generate a type 𝑡 so that the selected node 𝑛 is not
relevant to type 𝑡 . Rather than creating an incompatible type
from scratch (i.e., creating class A {}), our algorithm gen-
erates 𝑡 at random using the available types at the current
scope. In this way, the compiler compares types with diverse
shapes and characteristics, which in turn, triggers more sub-
typing checks and type-related operations in the compiler
codebase. After generating such a type, TOM substitutes
the declared type of 𝑛, with the newly created type 𝑡 . When
𝑛 is a type parameter, this replacement occurs in the type
parameter’s upper bound or explicit type argument.

Consider again the example in Figure 6, and suppose that
among candidate nodes (shadowed nodes), TOM chooses to
mutate node A.T:8. TOM generates a random type 𝑡 (e.g.,
type Int) such that the type relevance property does not
hold for the selected node (i.e., infer(G, n) = String ̸<: Int).
The output of TOM is then an updated program where the
body of m is return B<String>(A<Int>()). We expect
the compiler to reject the mutated program by raising a
diagnostic message of the form: “type mismatch: inferred
type is A<Int> but A<String> was expected”.

3.5 Implementation
We have implemented our techniques as a tool named Hep-
haestus, which contains roughly 15k lines of Python code.
We observed that most of the testing time is spent on

compiling the generated test programs. To mitigate this bot-
tleneck, instead of generating and compiling one program
at a time, Hephaestus generates and compiles programs in
batches, where each batch contains a user-specified number
of programs. Compiling programs in batches significantly
boosts the performance of testing, as we avoid bootstrapping
a JVM per generated program. Finally, for better throughput,
Hephaestus generates and compiles programs using multi-
ple processes via the multiprocessing module of Python.

Hephaestus can be extended with only little engineering
effort. Specifically, supporting a new target language can
be achieved by implementing: (1) a translator to convert a
program in IR into a concrete program written in the tar-
get language, and (2) a regular expression that distinguishes
compiler crashes from compiler diagnostic messages. Hep-
haestus currently supports Java, Kotlin, and Groovy, and
each translator consists of around 800 LoC.

4 Evaluation
Our evaluation is based on the following research questions:
RQ1 Is Hephaestus effective in finding typing bugs in JVM

compilers? (Section 4.2)
RQ2 What are the characteristics of the discovered bugs and

the bug-revealing test cases? (Section 4.3)
RQ3 Are the type erasure and type overwriting mutations

effective in detecting inference and soundness bugs
respectively? (Section 4.4)

RQ4 Can Hephaestus improve code coverage? (Section 4.5)
To answer these questions, we used Hephaestus between

February 2021 and mid-November 2021 to systematically test
the selected JVM compilers. During this period, we ran Hep-
haestus for three months of CPU time, in total.

Result summary: Our key experimental results are
• RQ1: Hephaestus has found many bugs. Within nine
months of testing, Hephaestus has detected 153 bugs,
of which 128 are confirmed, and 71 have been already
fixed by developers. Interestingly, Hephaestus was able
to find bugs in all the examined compilers: 110 bugs in
groovyc, 32 bugs in kotlinc, and 11 bugs in javac.
• RQ2: Hephaestus finds typing bugs. Hephaestus
found 144 typing bugs, 2 parser/lexer bugs, and 7 back-end
bugs. Most of these bugs are defects in the implementation
of parametric polymorphism and type inference.
• RQ3: The type erasure and type overwriting mutations are
effective in revealing type inference and soundness bugs.
TEM has found 50 type inference-related bugs, while TOM
discovered 24 bugs. Moreover, our mutations can exercise
deep compiler code associated with type inference and
other type-related operations, e.g., TEM has covered up
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to 5,431 more branches, and invoked up to 217 more func-
tions, when compared with our program generator.
• RQ4: Similarly to prior work [28, 47], the incremental
code coverage improvement due to Hephaestus is small.

4.1 Experimental Setup
Compiler versions: To avoid reporting previously known
bugs, our efforts have focused on testing the latest develop-
ment version of each compiler. Note that our testing efforts
were incremental, i.e. we concurrently developed Hephaes-
tus and tested the compilers. Hence, we have run Hephaes-
tus in its full capabilities for only one month.

Baseline: There is no relevant baseline to which we could
compare Hephaestus. The fuzzer presented by Dewey et
al. [14], which detects bugs in the type-checker of Rust, is the
closest related work. Still, their tool is language-specific and
probably outdated. Stepanov et al. [42] have developed a tool
focusing on back-end crashes in the Kotlin compiler. How-
ever, their tool is not publicly available. Similarly, AFL [31]
and the AFL compiler fuzzer [1] can only detect crashes.

Test case reduction: Hephaestus produces programs
that trigger compiler bugs with three different manifesta-
tions [5]: unexpected-compile time error (UCTE), unexpected
runtime behavior (URB), and compiler crashes. Unlike prior
work [21, 28, 42, 47, 48], in most cases, test programs gener-
ated by Hephaestus are easy to reduce. For UCTE, the com-
pilers emit informative diagnostic messages that help us lo-
cate the expression that is responsible for the bug, and reduce
the test case effortlessly. URB errors are an outcome of the
type overwriting mutation. Henceforth, Hephaestus logs
the mutated program points; thus, we know precisely what
line and instruction introduces the error. Nevertheless, mini-
mizing programs that cause compiler crashes could benefit
from an automated program reducer, such as C-Reduce [41].

Interaction with compiler developers: Groovy devel-
opers responded to most of our bug reports soon after re-
porting them, and typically patched easy-to-fix bugs within
a week. Kotlin developers were also very responsive. Despite
Kotlin developers being more interested in compiler crashes
(as they fixed them immediately), they also answered other
bug reports within a few days. For the OpenJDK’s Java com-
piler, bug reports were verified within a week by developers.
Unfortunately, OpenJDK’s issue tracker is not open to the
public. Although we tried to contact OpenJDK developers
through email, we could not get any details beyond what is
visible on their Jira deployment [37]. Furthermore, we could
not interact directly with the bug tracker and comment on
the reports. Therefore, we focused our testing efforts on
Groovy and Kotlin compilers.

4.2 RQ1: Bug-Finding Results
Figure 7a summarizes the bugs we identified during our test-
ing campaign. Overall, we reported 153 bugs. The developers

confirmed most of them (128/153) as previously unknown,
real bugs, while they have already fixed 71 bugs. This high-
lights the correctness and importance of the reported issues.
As shown in the study of Chaliasos et al. [5], the relatively
high number of unfixed bugs could be attributed to the fact
that some of the submitted bugs required much time to be
resolved, as they are challenging and need careful examina-
tion. Notably, one compiler developer commented on our
bug reports: “The generics bugs are tough and so it was like
working on a difficult crossword or Sudoku puzzle every day.”

Before submitting a new bug report, we always performed
two steps. First, we waited for developers to fix existing bugs
that may had the same root cause as the bug we wanted
to report. Second, we searched in the issue trackers to find
potential duplicate bugs. Overall, 4 out of 153 reported bugs
were marked as duplicates. Specifically, two of them have
already been opened by other users, and the other two had
the same root causes with bugs we have already submitted.

Finally, only nine bugs were marked by developers as “not
an issue” or “won’t fix”. Most of these “won’t fix” issues
are associated with cases where either the corresponding
type inference engines are underimplemented, or there are
decidability issues in the underlying type systems [20, 32, 40].
We discuss one such example in Section 4.6 (Figure 11c).

Importance of bug-finding results: In general, com-
piler developers welcomed our testing efforts and bug reports.
A developer mentioned that: “Thanks for your high-quality
bug reports. I have been finding them quite complete in terms
of recreating the issue. And the inclusion of variations that
work as expected gives a nice basis of comparison when inves-
tigating the root cause”. Furthermore, we identified issues in
fundamental compiler components. For example, seven out
of 32 bugs in kotlinc were classified as “major” by develop-
ers. A groovyc developer commented on our reports: “Static
compilation and static type-checking is, for me, one of the most
important features that must work with most other features
of the language”. All the above demonstrate the practical
implications of our testing efforts.

Affected compiler versions: We also ran the test cases
that accompany our bug reports on all stable compiler ver-
sions. Figure 8 presents how many stable compiler versions
are affected by the discovered bugs. It is clear that Hephaes-
tus is able to find both long-standing and regression bugs.
In particular, 35 groovyc and 14 kotlinc bugs occur in all
stable compiler versions, while there is also a non-trivial
number of bugs that affect numerous versions (i.e., 10–12
affected versions). Such long-standing issues remain unno-
ticed for years, as the groovyc bug we discussed in Section 2.
Also observe that a large portion of groovyc bugs (50/110—
45%) are triggered only in the master branch of the compiler.
These issues indicate that a feature that worked properly in
previous versions, is broken in the current implementation
groovyc. Regression bugs are often introduced by fixes of
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Status groovyc kotlinc javac Total
Reported 0 12 0 12
Confirmed 46 8 3 57
Fixed 60 9 2 71
Duplicate 2 1 1 4
Won’t fix 2 2 5 9
Total 110 32 11 153

(a)

Symptom groovyc kotlinc javac Total
UCTE 77 17 7 101
URB 19 3 0 22
Crash 14 12 4 30

(b)

Component groovyc kotlinc javac Total
Generator 54 16 7 77
TEM 35 12 3 50
TOM 20 3 1 24
TEM & TOM 1 1 0 2

(c)

Figure 7. (a) Status of the reported bugs in groovyc, kotlinc, and javac, (b) number of bugs with unexpected compile-time
error (UCTE), unexpected runtime behavior (URB), and crash symptom, (c) bugs revealed by the generator, the type erasure
mutation (TEM), the type overwriting mutation (TOM), and their combination (TEM & TOM).
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Figure 8. Number of bugs along with the number of stable
versions they affect.

other bugs; their discovery reduces the friction and risk of
development work.

4.3 RQ2: Bug and Test Case Characteristics
Figure 7b characterizes the bugs by their symptoms. Most
of the discovered bugs (101/153) result in a UCTE, followed
by 30 crashes, and 22 URBs. UCTE errors are triggered by
well-formed programs produced by either our generator
or the type erasure mutation. URB errors are an outcome
of the type overwriting mutation that yields ill-typed pro-
grams. Finally, 26 crashes are caused by well-formed test
cases, while four crashes are triggered by wrongly-typed
code. The above results indicate that our approach enables
the discovery of bugs with diverse manifestations.

We also identified what language features are involved in
every minimized bug-revealing program that accompanies
our bug reports. Features related to parametric polymor-
phism (e.g., parameterized class) are in the list of features
with the most bug-revealing capability. In total, 104/153 bugs
are caused by programs containing at least one such fea-
ture. This confirms a comment by a compiler developer who
wrote: “generics are the feature with the most latent concerns”.
Type inference is another category of features that is hard to
get right, as type inference features appear in 61 test cases.
We further observed that some features are often combined
with other individual features. For instance, in 47% of test
cases that use conditionals, type inference features are also
included. These results (1) validate our design decision to
focus our efforts on parametric polymorphism and type in-
ference (Section 1), and (2) are consistent with the study
of Chaliasos et al. [5] who first pointed out the impact of
specific language features on triggering typing bugs.

Compiler Line Function Branch
Coverage Coverage Coverage

groovyc

Generator 42.68 % 41.77 % 42.07 %
TEM change +167 (0.46 %) +27 (0.37 %) +752 (0.45 %)
TOM change +99 (0.27 %) +10 (0.14 %) +447 (0.27 %)
TEM stc.* +106 (4.6%) +13 (3.6%) +531 (4.58%)

kotlinc

Generator 30.92 % 30.60 % 30.32 %
TEM change +787 (0.46 %) +217 (0.39 %) +5,431 (0.46 %)
TOM change +572 (0.33 %) +166 (0.30 %) +4,171 (0.35 %)
TEM resolve.calls.inference.* +238 (17.8%) +63 (14.9%) +1,865 (20.1%)
TEM resolve.* +572 (3.93%) +135 (3.3%) +4,086 (4.2%)
TEM types.* +147 (4.5%) +69 (6.5%) +957 (4.3%) %

javac

Generator 36.99 % 39.68 % 34.56 %
TEM change +396 (0.68 %) +87 (0.81 %) +2,150 (0.62 %)
TOM change +362 (0.62 %) +79 (0.74 %) +1,990 (0.57 %)
TEM comp.Resolve +100 (14.1%) +27 (14.2%) +613 (15.7%)
TEM comp.* +204 (2.67%) +47 (3.6%) +1,200 (3.1%)
TEM code.Types +113 (8.1%) +23 (7.7%) + 558 (7.5%)
TEM code.* +131 (3.3%) 31 (3.2%) 636 (3.3%)

Figure 9. Coverage increase by type erasure (TEM) and type
overwriting (TOM) mutations.

4.4 RQ3: Effectiveness of Mutations
Figure 7c shows the number of bugs triggered by the genera-
tor, the mutators, and their combination. Our mutations led
to the identification of 76 out of 153 bugs, about half of the
total discovered bugs. Our generator fails to detect these 76
bugs, as they are all related to either type inference issues or
other issues triggered by wrongly-typed code. TEM is an ef-
fective approach, able to identify 50 type inference bugs. This
suggests that beyond compiler optimizations, type inference
is another compiler procedure that can cause problems and
deserves the attention of researchers. Finally, TOM either by
itself or in combination with TEM has uncovered 26 bugs,
of which 22 bugs are soundness issues. Detecting soundness
bugs is of particular importance because such bugs can lead
to unexpected runtime errors and security issues.

We also conducted an experiment to estimate the impact
of mutations on code coverage. To do so, (1) we instrumented
each compiler using the JaCoCo code coverage library [17],
(2) we generated 10k random programs via Hephaestus, (3)
for each generated program, we produced two mutants using
TEM and TOM respectively, and (4) we measured the code
coverage increase that comes from compiling each mutant.
Figure 9 shows the results of this experiment. In all com-

pilers, TEM and TOM increase line, function, and branch
coverage when compared to our generator. In all cases,
TEM is more effective in exercising new code than TOM.
Also, kotlinc testing exhibits the most noticeable increase
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Compiler Line Function Branch
Coverage Coverage Coverage

groovyc
test suite 82.00 % 71.77 % 78.38 %
test suite & random 82.06 % 71.79 % 78.44 %
% change +0.06 % +0.02 % +0.05 %

kotlinc
test suite 75.80 % 64.11 % 70.01 %
test suite & random 75.88 % 64.17 % 70.08 %
% change +0.08 % +0.06 % +0.07 %

javac
test suite 80.82 % 80.14 % 81.29 %
test suite & random 81.00 % 80.16 % 81.50 %
% change +0.18 % +0.02 % +0.21 %

Figure 10. Coverage on compilers’ test suites plus 10K
randomly-generated programs.

in terms of absolute numbers. For example, TEM cov-
ers 787 (0.46%) additional lines of code, triggers 5,431 (0.46%)
additional branches, and calls 217 (0.39%) more functions.
At a first glance, the percentage increase may seem

low (<1%). However, we should clarify that the goal of our
mutations is to exercise the inference engines and other
type-related operations, and not explore the entire compiler
codebase. To validate this we further investigated the re-
sults. Indeed, when examining kotlinc results, we observe
that TEM mostly exercises code in resolve.* and types.*
packages, e.g., 204 / 217 (94%) of the additionally invoked
functions belong to one of these packages. Specifically, these
packages contain code responsible for inferring types and
resolving method calls by building and solving a type con-
straint problem (e.g., see resolve.calls.inference pack-
age). In groovyc, TEMmostly covers code in the package re-
sponsible for static typing (namely, stc.*). Finally, in javac,
TEM exercises much code in the code.* and comp.* pack-
ages, which among other things, contain the implementation
of (1) javac’s name resolution algorithm (comp.Resolve),
and (2) type-related operations, such as type variable substi-
tution (code.Types). Similarly, TOM mainly exercises code
in the aforementioned packages.
The above results clearly suggest that our mutations can

effectively find bugs through increased coverage of relevant
compiler procedures, such type inference.

4.5 RQ4: Code Coverage
To answer this research question, we employed the JaCoCo
code coverage tool. Specifically, we measured for each com-
piler the code coverage of its test suite, plus 10K programs
produced by Hephaestus. Figure 10 summarizes our results.
We observe that in all cases, the code coverage improve-
ment is negligible. Nevertheless, Hephaestus is still able to
trigger numerous bugs in all studied compilers. For exam-
ple, although the line coverage improvement on groovyc
is only +0.06 %, Hephaestus was able to find 110 groovyc
bugs. Thus, we find that traditional code coverage metrics
are too shallow to capture the efficacy of our approach (as
also observed in testing optimizing compilers [28, 47]).

4.6 Examples of Reduced, Bug-Triggering Programs
We discuss a selection of bugs discovered by Hephaestus.

Figure 11a: While type-checking the variable declaration
on line 7, groovyc checks whether the call of the parame-
terized method foo returns a subtype of C<String>. The
problem here is that due to a bug in its inference algorithm,
groovyc fails to infer the correct type for instantiating type
variable T of function foo. Consequently, groovyc infers the
return type of foo as Object instead of C<String>. This
bug was found by TEM.

Figure 11b: This program triggers a bug in the Kotlin
compiler that leads to a compiler crash. The program defines
a parameterized class B that contains a parameterized func-
tion m, which in turn declares a bounded type parameter X.
When calling method m at line 3, we instantiate it with C<out
number> as the type argument (note that out Number is the
equivalent of ? extends Number in the Java world). The
compiler then tries to compute the captured type for X but it
crashes due to a missing condition in the implementation of
type capturing. This bug was found by TOM.

Figure 11c: This program presents a “wont’fix” javac
issue. Although the least upper bound of the conditional
(line 7) is type T, the compiler infers the type of local vari-
able v as type double. This in turn causes a type mismatch
as a double cannot be converted to type T (see line 7). A
Java developer commented that type inference is not possi-
ble in this case, as the target variable v does not contain all
required constraints to compute an “optimal” solution. Us-
ing T extends Double (line 1) is the cause of this issue, as
using T extends Number or any other type leads to a suc-
cessful compilation. Beyond that, replacing the expression
at line 7 with (true) ? (T) null : (K) null results in
a correct compilation. All the above suggest that this is a
broader issue in javac’s type inference algorithm design
and implementation; this issue was found by TEM.

5 Related Work
Program Generators. Csmith [47] is a program generator
for C programs, that has found hundreds of bugs in GCC
and Clang. Csmith generates programs that are free from un-
defined behavior. Relying on Csmith, several other program
generators have emerged for (1) testing other compilers (e.g.,
OpenCL) [26], or link-time optimizers [23], and (2) generat-
ing more expressive programs [18].
Epiphron [43] is a program generator for C that aims to

uncover defects in the error reporting mechanisms of compil-
ers. Unlike Csmith, Epiphron does not necessarily generate
programs that are free from undefined behavior. Targeting
optimizations bugs, Orange [36] creates programs that in-
volve longer and more complex arithmetic expressions, such
as floating-point arithmetics. YARPGen [28] is a program
generator for C/C++ programs that comes with a set of gen-
eration policies aiming to trigger certain optimizations.

Most of the aforementioned program generators focus on
the detection of crashes or miscompilations caused by opti-
mization bugs. Finding miscompilations requires differential
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1 class A {
2 static <T> T foo(C<T> t) { ... }
3 }

4 class C<T> {}
5 class B {
6 void test() {
7 C<String> x = A.foo(new C<>())
8 }

9 }

(a) Groovy-XXXX: A bug in the inference
engine of groovyc that leads to an UCTE.

1 class A<T: B<out Number>>(val x: T) {
2 fun test() {
3 val y: Int = x.m<C<out Number>>()
4 }

5 }

6 class B<T> {
7 fun <X: C<T>> m(): Int = 1
8 }

9 class C<T>

(b) KT-XXXX: A crash found in kotlinc due
to a bug in type constructor projection.

1 class A<T extends Double,
2 K extends T> {
3
4 public T test() {
5 T foo = null;
6 var v = (true) ? foo : (K) null;
7 return v;
8 }

9 }

(c) JDK-XXXX: javac infers the type of v as
double. This leads to an UCTE.

Figure 11. Sample test programs that trigger typing bugs.

testing [34]. Contrary to this work, our program generator
does not involve differential testing and focuses on typing
compiler bugs where test cases act as their own oracle.
Dewey et al. [13, 14] have introduced a constraint logic

programming (CLP) approach for synthesizing programs for
JavaScript and Rust. The idea of the CLP-based program
generation is to encode all syntactic and semantic rules (e.g.,
type system) of the language to logic predicates, and then use
a constraint solver to generate test programs. Like Hephaes-
tus, their fuzzing approach finds precision and soundness
bugs. However, as stated by the authors, one of the fun-
damental shortcomings of CLP-based program generation
and encoding typing rules into logic predicates, is poor per-
formance. Moreover, our approach is (1) adaptable (already
applied to three languages), (2) more effective (it identified
more bugs than the fuzzer of Dewey et al. [14]), and (3) the
first to validate type inference algorithms.

Transformation-Based Compiler Testing: Equiva-
lence Modulo Inputs (EMI) [21, 22, 44] is an effective meta-
morphic testing [9] approach for finding bugs in optimizing
compilers. EMI transforms a given program in a way that
does not change its output under the same input. This is
achieved by deleting dead statements [21], inserting code in
dead regions [22], or even updating live parts [44]. EMI test-
ing has been also ported to testing OpenCL compilers [26],
and simulation software [12].
GLFuzz and spirv-fuzz [15, 16] repeatedly apply a set of

semantics-preserving transformations (e.g., dead code injec-
tion) to an initial corpus of programs for finding bugs in
graphics shader compilers. classfuzz [11] and classming [10]
employ a set of transformations on existing Java bytecode
programs to test JVM implementations through differential
testing. Given a specific program structure, skeletal program
enumeration (SPE) [48] enumerates all variant programs that
expose different variable usage patterns.
SPE is complementary to our mutations. For example,

instead of removing the maximal set of types, our type era-
sure mutation could employ SPE to enumerate all variant
programs that manifest different patterns of omitted type
information. Similarly, we could combine SPE with fault-
injecting mutations (e.g., TOM), to identify what program
points are promising to inject the error.

Inspired by SPE, Stepanov et al. [42] have designed type-
centric enumeration (TCE). TCE produces variants by assign-
ing different values to variables or call arguments, while
preserving the same type information as the original pro-
gram. Unlike our work, TCE is effective in primarily finding
crashes caused by back-end bugs. Another similar approach
to TCE is generative type-aware mutation [38], which has
been recently used for testing SMT solvers. Like TCE, gen-
erative type-aware mutation replaces an expression of an
SMT formula with a newly-generated expression of the same
type. A variant of this is type-aware operator mutation [46],
which substitutes an SMT operator with another compatible
operator. Instead of replacing expressions and operators, our
type overwriting mutation replaces types. Also, the existing
approaches (e.g., TCE) respect the semantics of the input
program, while TOM is the first to adopt a fault-injecting
approach, as an effort to find soundness bugs.

6 Conclusion
We have presented a systematic and extensible approach
for finding typing bugs in diverse JVM compilers. We have
introduced a program generator that constructs programs
that are more likely to trigger typing bugs. Based on this gen-
erator, we have designed two novel transformation-based
approaches for uncovering type inference and soundness
compiler bugs. Within nine months of testing, our imple-
mentation, Hephaestus, has found 153 bugs (128 confirmed
and 71 fixed) in the compilers of Java, Kotlin, and Groovy.

To reveal soundness or other types of bugs, additional so-
phisticated mutators can be developed on top of Hephaestus
utilizing our analysis for capturing type information flow.
For example, a promising direction could be the development
of a mutation that targets bugs in the resolution algorithms
of compilers, a category of bugs that is quite frequent [5].
Also, it would be interesting to apply our approach to other
compilers, e.g., we already plan to extend Hephaestus to
test the Scala and TypeScript compilers.

Our work is the first step towards more holistic compiler
testing, as it fills the research gap in automated testing of
static typing, a compiler procedure that deserves more at-
tention by researchers.

12



1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Finding Typing Compiler Bugs Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

References
[1] 2019. AFL compiler fuzzing. https://github.com/agroce/afl-compiler-

fuzzer. Online accessed; 23-10-2021.
[2] 2021. Fuzzing LLVM libraries and tools. https://llvm.org/docs/

FuzzingLLVM.html. Online accessed; 07-11-2021.
[3] 2021. Kotlin development stories. https://developer.android.com/

kotlin/stories?linkId=94116374. Online accessed; 07-11-2021.
[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.

1998. Making the Future Safe for the Past: Adding Genericity to the
Java Programming Language. In Proceedings of the 13th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Vancouver, British Columbia, Canada) (OOPSLA ’98).
Association for Computing Machinery, New York, NY, USA, 183–200.
https://doi.org/10.1145/286936.286957

[5] Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos,
Charalambos Mitropoulos, Dimitris Mitropoulos, and Diomidis Spinel-
lis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-
Related Bugs in JVM Compilers. Proc. ACM Program. Lang. 5, OOPSLA,
Article 123 (Oct. 2021), 30 pages. https://doi.org/10.1145/3485500

[6] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Bing Xie. 2017. Learning to Prioritize Test Programs for Compiler
Testing. In Proceedings of the 39th International Conference on Software
Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, 700–711.
https://doi.org/10.1109/ICSE.2017.70

[7] Junjie Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie.
2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST). 266–277. https://doi.org/10.1109/
ICST.2016.19

[8] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu
Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of Compiler Testing.
ACM Comput. Surv. 53, 1, Article 4 (Feb. 2020), 36 pages. https://doi.
org/10.1145/3363562

[9] Tsong Y Chen, Shing C Cheung, and ShiuMing Yiu. 1998. Metamorphic
testing: a new approach for generating next test cases. Technical Report
HKUST-CS98-01 (1998).

[10] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential
Testing of JVM Implementations. In Proceedings of the 41st International
Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE
’19). IEEE Press, 1257–1268. https://doi.org/10.1109/ICSE.2019.00127

[11] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao.
2016. Coverage-Directed Differential Testing of JVM Implementations.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 85–99.
https://doi.org/10.1145/2908080.2908095

[12] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson,
and Christoph Csallner. 2020. SLEMI: Equivalence modulo Input
(EMI) Based Mutation of CPS Models for Finding Compiler Bugs
in Simulink. In Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering (Seoul, South Korea) (ICSE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 335–346.
https://doi.org/10.1145/3377811.3380381

[13] Kyle Dewey, Jared Roesch, and BenHardekopf. 2014. Language Fuzzing
Using Constraint Logic Programming. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering
(Vasteras, Sweden) (ASE ’14). Association for Computing Machinery,
New York, NY, USA, 725–730. https://doi.org/10.1145/2642937.2642963

[14] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the
Rust Typechecker Using CLP. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (Lincoln,
Nebraska) (ASE ’15). IEEE Press, 482–493. https://doi.org/10.1109/ASE.
2015.65

[15] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thom-
son. 2017. Automated Testing of Graphics Shader Compilers. Proc.
ACM Program. Lang. 1, OOPSLA, Article 93 (Oct. 2017), 29 pages.
https://doi.org/10.1145/3133917

[16] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia,
André PerezMaselco, and Antoni Karpiński. 2021. Test-Case Reduction
and Deduplication Almost for Free with Transformation-Based Com-
piler Testing. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (Vir-
tual, Canada) (PLDI 2021). Association for Computing Machinery, New
York, NY, USA, 1017–1032. https://doi.org/10.1145/3453483.3454092

[17] EclEmma. 2021. EclEmma Jacoco. https://www.eclemma.org/jacoco/.
Online accessed; 26-10-2021.

[18] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson.
2020. Closer to the Edge: Testing Compilers More Thoroughly by
Being Less Conservative about Undefined Behaviour. In Proceed-
ings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (Virtual Event, Australia) (ASE ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 1219–1223.
https://doi.org/10.1145/3324884.3418933

[19] Github Inc. 2021. The state of the Octoverse. https://octoverse.github.
com/. Online accessed; 05-03-2021.

[20] Radu Grigore. 2017. Java Generics Are Turing Complete. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (Paris, France) (POPL 2017). Association for Computing Ma-
chinery, New York, NY, USA, 73–85. https://doi.org/10.1145/3009837.
3009871

[21] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Val-
idation via Equivalence modulo Inputs. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Edinburgh, United Kingdom) (PLDI ’14). Association
for Computing Machinery, New York, NY, USA, 216–226. https:
//doi.org/10.1145/2594291.2594334

[22] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Com-
piler Bugs via Guided Stochastic Program Mutation. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Pittsburgh, PA,
USA) (OOPSLA 2015). Association for Computing Machinery, New
York, NY, USA, 386–399. https://doi.org/10.1145/2814270.2814319

[23] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-
Testing of Link-Time Optimizers. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis (Baltimore, MD,
USA) (ISSTA 2015). Association for Computing Machinery, New York,
NY, USA, 327–337. https://doi.org/10.1145/2771783.2771785

[24] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,
and Nuno P. Lopes. 2018. Reconciling High-Level Optimizations and
Low-Level Code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA,
Article 125 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276495

[25] Xavier Leroy. 2006. Formal Certification of a Compiler Back-End
or: Programming a Compiler with a Proof Assistant (POPL ’06). As-
sociation for Computing Machinery, New York, NY, USA, 42–54.
https://doi.org/10.1145/1111037.1111042

[26] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F.
Donaldson. 2015. Many-Core Compiler Fuzzing. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Portland, OR, USA) (PLDI ’15). Association for
Computing Machinery, New York, NY, USA, 65–76. https://doi.org/10.
1145/2737924.2737986

[27] Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso,
and Martin Odersky. 2020. A Type-and-Effect System for Object Ini-
tialization. Proc. ACM Program. Lang. 4, OOPSLA, Article 175 (Nov.
2020), 28 pages. https://doi.org/10.1145/3428243

[28] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random
Testing for C and C++ Compilers with YARPGen. Proc. ACM Program.

13

https://github.com/agroce/afl-compiler-fuzzer
https://github.com/agroce/afl-compiler-fuzzer
https://llvm.org/docs/FuzzingLLVM.html
https://llvm.org/docs/FuzzingLLVM.html
https://developer.android.com/kotlin/stories?linkId=94116374
https://developer.android.com/kotlin/stories?linkId=94116374
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/3485500
https://doi.org/10.1109/ICSE.2017.70
https://doi.org/10.1109/ICST.2016.19
https://doi.org/10.1109/ICST.2016.19
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1145/3377811.3380381
https://doi.org/10.1145/2642937.2642963
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3453483.3454092
https://www.eclemma.org/jacoco/
https://doi.org/10.1145/3324884.3418933
https://octoverse.github.com/
https://octoverse.github.com/
https://doi.org/10.1145/3009837.3009871
https://doi.org/10.1145/3009837.3009871
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/3276495
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3428243


1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Lang. 4, OOPSLA, Article 196 (Nov. 2020), 25 pages. https://doi.org/
10.1145/3428264

[29] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada)
(PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 65–79. https://doi.org/10.1145/3453483.3454030

[30] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Portland, OR, USA) (PLDI ’15).
Association for Computing Machinery, New York, NY, USA, 22–32.
https://doi.org/10.1145/2737924.2737965

[31] M. Zalewski. 2013. American fuzzy lop. https://lcamtuf.coredump.cx/
afl/. Online accessed; 05-08-2021.

[32] Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves.
2020. Syntactically Restricting Bounded Polymorphism for Decidable
Subtyping. In Programming Languages and Systems, Bruno C. d. S.
Oliveira (Ed.). Springer International Publishing, Cham, 125–144.

[33] Bruno Gois Mateus andMatias Martinez. 2020. On the Adoption, Usage
and Evolution of Kotlin Features in Android Development. In Proceed-
ings of the 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (Bari, Italy) (ESEM ’20).
Association for Computing Machinery, New York, NY, USA, Article
15, 12 pages. https://doi.org/10.1145/3382494.3410676

[34] William M McKeeman. 1998. Differential testing for software. Digital
Technical Journal 10, 1 (1998), 100–107.

[35] Robin Milner. 1978. A Theory of Type Polymorphism in Programming.
J. Comput. System Sci. 17, 3 (1978), 348–375.

[36] Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing
Random Testing of Arithmetic Optimization of C Compilers by Scaling
up Size and Number of Expressions. IPSJ Transactions on System LSI
DesignMethodology 7 (2014), 91–100. https://doi.org/10.2197/ipsjtsldm.
7.91

[37] OpenJDK. 2021. OpenJDK Jir deployment. https://bugs.openjdk.java.
net. Online accessed; 26-10-2021.

[38] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su.
2021. Generative Type-Aware Mutation for Testing SMT Solvers. Proc.
ACM Program. Lang. 5, OOPSLA, Article 152 (Oct. 2021), 19 pages.
https://doi.org/10.1145/3485529

[39] Moritz Pflanzer, Alastair F. Donaldson, and Andrei Lascu. 2016. Auto-
matic Test Case Reduction for OpenCL. In 4th International Workshop
on OpenCL (IWOCL’16) (Vienna, Austria).

[40] Benjamin C. Pierce. 1992. Bounded Quantification is Undecidable. In
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (Albuquerque, New Mexico, USA)
(POPL ’92). Association for Computing Machinery, New York, NY, USA,
305–315. https://doi.org/10.1145/143165.143228

[41] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-Case Reduction for C Compiler Bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (Beijing, China) (PLDI ’12). As-
sociation for Computing Machinery, New York, NY, USA, 335–346.
https://doi.org/10.1145/2254064.2254104

[42] Daniil Stepanov, Marat Akhin, and Mikhail Belyaev. 2021. Type-
Centric Kotlin Compiler Fuzzing: Preserving Test Program Correctness
by Preserving Types. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 318–328.

[43] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Ana-
lyzing Compiler Warning Defects. In Proceedings of the 38th Interna-
tional Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 203–213.
https://doi.org/10.1145/2884781.2884879

[44] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler
Bugs via Live Code Mutation. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016).
Association for Computing Machinery, New York, NY, USA, 849–863.
https://doi.org/10.1145/2983990.2984038

[45] TIOBE Software BV. 2021. TIOBE index. https://www.tiobe.com/tiobe-
index/. Online accessed; 05-03-2021.

[46] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the
Unusual Effectiveness of Type-Aware Operator Mutations for Testing
SMT Solvers. Proc. ACM Program. Lang. 4, OOPSLA, Article 193 (Nov.
2020), 25 pages. https://doi.org/10.1145/3428261

[47] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and Understanding Bugs in C Compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (San Jose, California, USA) (PLDI ’11). Asso-
ciation for Computing Machinery, New York, NY, USA, 283–294.
https://doi.org/10.1145/1993498.1993532

[48] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal
Program Enumeration for Rigorous Compiler Testing. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Barcelona, Spain) (PLDI 2017). As-
sociation for Computing Machinery, New York, NY, USA, 347–361.
https://doi.org/10.1145/3062341.3062379

14

https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3382494.3410676
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.2197/ipsjtsldm.7.91
https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://doi.org/10.1145/3485529
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2983990.2984038
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3428261
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3062341.3062379

	Abstract
	1 Introduction
	2 Illustrative Examples
	3 Techniques
	3.1 IR and Preliminary Definitions
	3.2 Program Generation
	3.3 Modeling Type Information
	3.4 Mutations
	3.5 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Bug-Finding Results
	4.3 RQ2: Bug and Test Case Characteristics
	4.4 RQ3: Effectiveness of Mutations
	4.5 RQ4: Code Coverage
	4.6 Examples of Reduced, Bug-Triggering Programs

	5 Related Work
	6 Conclusion
	References

