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Abstract 18 
Background and Objective: The functional assessment of the severity of coronary stenosis 19 
from coronary computed tomography angiography (CCTA)-derived fractional flow reserve 20 
(FFR) has recently attracted interest. However, existing algorithms run at high computational 21 
cost. Therefore, this study proposes a fast calculation method of FFR for the diagnosis of 22 
ischemia-causing coronary stenosis.  23 
Methods: We combined CCTA and machine learning to develop a simplified single-vessel 24 
coronary model for rapid calculation of FFR. First, a zero-dimensional model of single-vessel 25 
coronary was established based on CCTA, and microcirculation resistance was determined 26 
through the relationship between coronary pressure and flow. In addition, a coronary stenosis 27 
model based on machine learning was introduced to determine stenosis resistance. 28 
Computational FFR (cFFR) was then obtained by combining the zero-dimensional model and 29 
the stenosis model with inlet boundary conditions for resting (cFFRr) and hyperemic (cFFRh) 30 
aortic pressure, respectively. We retrospectively analyzed 75 patients who underwent clinically 31 
invasive FFR (iFFR), and verified the model accuracy by comparison of cFFR with iFFR.  32 
Results: The average computing time of cFFR was less than 2 seconds. The correlations 33 
between cFFRr and cFFRh with iFFR were r = 0.89 (p < 0.001) and r = 0.90 (p < 0.001), 34 
respectively. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative 35 
predictive value, positive likelihood ratio, negative likelihood ratio for cFFRr and cFFRh were 36 
90.7%, 95.0%, 89.1%, 76.0%, 98.0%, 8.7, 0.1 and 92.0%, 95.0%, 90.9%, 79.2%, 98.0%, 10.5, 37 
0.1, respectively.  38 
Conclusions: The proposed model enables rapid prediction of cFFR and exhibits high 39 
diagnostic performance in selected patient cohorts. The model thus provides an accurate and 40 
time-efficient computational tool to detect ischemia-causing stenosis and assist with clinical 41 
decision-making. 42 
 43 
Keywords: fractional flow reserve, coronary computed tomography angiography, coronary 44 
zero-dimensional model, machine learning, coronary stenosis model 45 
 46 
Abbreviations 47 
CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; CFD: 48 
computational fluid dynamics; CT-FFR: fractional flow reserve derived from coronary 49 
computed tomography angiography; TAG: transluminal attenuation gradient; iFFR: invasive 50 
fractional flow reserve; ML: machine learning; Pa-res: resting aortic pressure; Pa-hyp: hyperemic 51 
aortic pressure; cFFR: computational fractional flow reserve; ICA: invasive coronary 52 
angiography; Rm-res: resting microcirculation resistance; MAP: mean arterial pressure; SBP: 53 
systolic blood pressure; DBP: diastolic blood pressure; Rm-hyp: hyperemic microcirculation 54 
resistance; MAPres: resting mean arterial pressure; MAPhyp: hyperemic mean arterial pressure; 55 
Pa: aortic pressure; BPNN: back-propagation neural network; Pd: distal coronary pressure; 56 
cFFRr: cFFR with resting aortic pressure as inlet boundary conditions; cFFRh, cFFR with 57 
hyperemic aortic pressure as inlet boundary conditions; SD: standard deviation; ROC: receiver 58 
operating characteristic; AUC: area under the receiver operating characteristic curve; PPV: 59 
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positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR−: 60 
negative likelihood ratio; CI: confidence interval. 61 
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1. Introduction 62 

It was found that the relationship between coronary stenosis and myocardial ischemia is 63 

complex [1]. The results showed that 35% of patients with a stenosis of 50-70% are ischemic; 64 

while 20% of patients with a stenosis of 71-90% are not ischemic [2]. Thus, it is particularly 65 

important to quantify the relationship between coronary stenosis and myocardial ischemia. 66 

Coronary computed tomography angiography (CCTA) can identify the anatomical severity of 67 

stenosis, but cannot evaluate the functional significance of stenosis, that is, whether the stenosis 68 

is causing ischemia [1]. Currently, the gold standard for functional assessment of myocardial 69 

ischemia is fractional flow reserve (FFR) [3], which is defined as the ratio of the maximum 70 

hyperemic flow through a stenotic artery to the maximum hyperemic flow under the 71 

assumption that the artery is normal [4]. Studies have manifested that FFR is of great 72 

significance in the diagnosis and treatment of functional stenosis, improving outcomes and 73 

reducing major adverse cardiac events [5–7]. Nevertheless, the measurement of FFR requires 74 

pressure wire and intravenous adenosine, prolonging the operation time and increasing the 75 

short-term cost, which limits its widespread clinical utility [8]. 76 

In recent years, the application of computational fluid dynamics (CFD) has made the 77 

noninvasive computation of FFR derived from CCTA (CT-FFR) possible [4,9,10]. The 78 

recognized CT-FFR (Heartflow) adopted a mathematical model, which combines a coronary 79 

anatomical model with a coronary physiological model, and uses CFD to solve the governing 80 

equation (a three-dimensional Navier-Stokes equation) for coronary pressure and flow during 81 

hyperemia [9,11]. The diagnostic performance of CT-FFR has been verified in three 82 
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prospective multicenter controlled trials [12–14]. Studies have suggested that CT-FFR has good 83 

diagnostic accuracy (73%-87.4%) with invasive FFR as the reference standard [12–14]. 84 

Compared with CCTA alone, CT-FFR exhibits higher diagnostic accuracy in distinguishing 85 

ischemic and non-ischemic stenosis (84.3% vs 58.5%) [12]. Yet, the Navier-Stokes equation 86 

describing the blood flow in CT-FFR computation is a system of nonlinear partial differential 87 

equations, which is very time-consuming to solve. It usually takes several hours (1-6 h) to 88 

analyze CT-FFR on a parallel supercomputer [12–14]. Therefore, alternative CT-FFR 89 

techniques that allow rapid execution are needed.  90 

Many studies have been carried out on the fast computing of CT-FFR, mainly including 91 

Siemens [15,16], Toshiba [17], United-Imaging [18] and so on. Siemens Healthcare used a 92 

hybrid approach to model blood flow, and enabled fast computation of CT-FFR by coupling 93 

reduced-order and full-order models [19]. This simplified calculation method has a good 94 

diagnostic accuracy [15]. In addition, Toshiba Medical developed a method using 4D-CT image 95 

tracking and structural and fluid analysis to quickly estimate CT-FFR [20,21]. The results 96 

demonstrated that the proposed 4D-CT-FFR analysis approach has the potential to evaluate the 97 

effect of coronary stenosis on blood flow [17]. Furthermore, Siemens Healthcare presented a 98 

machine-learning-based model for predicting CT-FFR as an alternative to physics-based 99 

approaches [22]. There was an excellent correlation between the machine-learning and the 100 

physics-based predictions [16]. Recently, United-Imaging Healthcare proposed a CT-FFR 101 

approach using the transluminal attenuation gradient (TAG) of each coronary to obtain the 102 

outlet boundary conditions, which also manifested good diagnostic performance in detecting 103 
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ischemia-causing stenosis [18]. Although compared with Heartflow CT-FFR, these fast 104 

calculation methods have greatly reduced the computational cost. Nevertheless, apart from the 105 

time spent on coronary segmentation, the computing time of FFR still requires 5-15 min [15–106 

18], which may still not meet the clinical timeliness requirements. 107 

On the premise of ensuring the relative accuracy of the three-dimensional reconstruction, 108 

this study proposed a fast CT-FFR calculation method with a single-vessel coronary as the 109 

region of interest, which has high accuracy compared with clinically measured invasive FFR 110 

(iFFR). We simplified the coronary three-dimensional model derived from CCTA to a single-111 

vessel coronary zero-dimensional model (circuit model), and took the stenotic single-vessel 112 

coronary artery as the region of interest to reduce the computational cost. The zero-dimensional 113 

model has been widely used in the modeling of cardiovascular mechanics [23–28]. However, 114 

the simplified zero-dimensional model will lose the local geometric features of the three-115 

dimensional model. Machine learning (ML) algorithms allow a wealth of information to be 116 

extracted from data that can be transformed into knowledge about the underlying fluid 117 

mechanics [29,30]. Hence, we trained and learned the geometric features of a large number of 118 

three-dimensional models through ML, and established a coronary stenosis model that can 119 

represent the geometric characteristics of blood vessels. Finally, the stenosis model was 120 

embedded into the simplified zero-dimensional model to ensure the accuracy of the model. In 121 

addition, we considered and compared the effects of resting aortic pressure (Pa-res) and 122 

hyperemic aortic pressure (Pa-hyp) as inlet boundary conditions on the accuracy of the model. 123 

The accuracy of the simplified model was validated by comparison the computational FFR 124 
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(cFFR) simulated in this study with the iFFR. This simplified model presented for rapid 125 

prediction of FFR may be suitable for clinical timeliness requirements, which has potential 126 

application value for the diagnosis of ischemia-causing coronary stenosis. 127 

2. Methods 128 

2.1 Study Population 129 

This was a single-center, retrospective study conducted at the Peking University People’s 130 

Hospital. A total of 75 stable patients with suspected or known coronary artery disease who 131 

had undergone CCTA, invasive coronary angiography (ICA) and iFFR measurements between 132 

March 2019 and May 2021 were enrolled. All patients were low to intermediate risk patients 133 

with visual stenosis ranging from 30% to 90%, and the diameter of vessels was ≥ 2 mm. 134 

Patients were excluded if they had a history of contraindication to adenosine, prior 135 

percutaneous coronary intervention, coronary artery bypass grafting surgery, or inability to 136 

adhere to study procedures. This study was in line with the principles of the Declaration of 137 

Helsinki and approved by the Medical Ethics Committee of Peking University People’s 138 

Hospital. Informed written consent was received from all patients participating in this study. 139 

2.2 Clinical Experiments 140 

CCTA was performed using a 256-row detector CT system. The scan parameters were: 141 

collimation 256 × 0.625 mm, gantry rotation time 280 ms, tube voltage 100 or 120 kV, and tube 142 

current 300 to 500 mA. The matrix size was 512 × 512 pixels and the pixel size within each 143 

slice was 0.5 mm × 0.5 mm. Images were reconstructed with a slice thickness of 0.625 mm 144 

under the guidance of clinical cardiologists. ICA and iFFR measurements were carried out in 145 
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accordance with standard practice. The pressure wire was positioned a minimum of 20 mm 146 

distal to the stenosis [18]. Maximal hyperemia was induced by intravenous administration of 147 

adenosine (140 μg/kg/min) [4]. FFR was calculated by dividing the mean distal coronary 148 

pressure by the mean aortic pressure during maximal hyperemia [31,32], and an FFR of < 0.80 149 

was considered hemodynamically significant. 150 

2.3 cFFR Computation 151 

Computation of cFFR requires reconstruction of a coronary anatomical model to extract 152 

geometric information; establishment of a coronary physiological model to derive boundary 153 

conditions representing cardiac output, aortic pressure, and microcirculation resistance; and 154 

application of CFD to solve the governing equations. This combination of anatomy, physiology, 155 

and CFD makes it possible to compute coronary pressure and flow.  156 

In the current study, we adopted a coronary zero-dimensional model to simulate normal, 157 

healthy coronary arteries. In addition, the coronary stenosis model based on ML we developed 158 

previously was introduced to simulate the stenosis resistance produced by the stenotic segment. 159 

Such a simplified approach enables rapid and accurate prediction of pressure and flow in 160 

patient-specific coronary models. 161 

2.3.1 Model Preprocessing 162 

2.3.1.1 Coronary Anatomy Model 163 

The reconstruction and segmentation of coronary anatomical model (including the 164 

measurement of geometric parameters) was carried out using Mimics Research version 20.0 165 

under the guidance of clinical cardiologists, which ensures the accuracy of the three-166 
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dimensional model. First, the patient-specific coronary anatomical model (Fig. 1A) was 167 

reconstructed from CCTA images. The topology of the coronary tree was then extracted from 168 

the anatomical model, and the geometric parameters of the coronary artery were manually 169 

measured, including vessel length, vessel diameter and vessel cross-sectional area. Moreover, 170 

the coronary artery in which the stenosis was located was identified and segmented, and the 171 

geometric parameters related to the stenotic coronary artery were measured, including stenosis 172 

entrance length, stenosis exit length, stenosis minimum length, stenosis entrance area and 173 

stenosis minimum area (Fig. 1B). In the current study, geometric parameters such as the length, 174 

diameter, and cross-sectional area of normal and healthy coronary arteries were used to 175 

establish a personalized coronary zero-dimensional model, while the geometric parameters 176 

related to stenotic coronary arteries were used to establish a personalized coronary stenosis 177 

model. 178 

2.3.1.2 Coronary Physiological Model 179 

The coronary physiological model (Fig. 2) was derived from patient-specific data with 3 180 

main principles: 1) resting coronary flow is proportional to cardiac output; 2) microcirculation 181 

resistance is inversely proportional to vessel diameter; and 3) microcirculation resistance is 182 

reduced to simulate maximal hyperemia [4].  183 

Principle 1: Resting coronary flow is proportional to cardiac output.  184 

Total coronary flow was estimated from clinically measured cardiac output [23]: 185 

 Qcor=CO·4% (1) 186 

where Qcor represents total coronary flow and CO represents cardiac output. At rest, the flow 187 
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rate of left and right coronary artery accounted for 60% and 40% of total coronary flow, 188 

respectively [4]. According to the allometric scaling law we took Q∝d3 [9] to determine the 189 

flow rate of each coronary artery, where Q represents coronary flow and d represents vessel 190 

diameter. 191 

Principle 2: Microcirculation resistance is inversely proportional to vessel diameter.  192 

The quantification of resting microcirculation resistance (Rm-res) mainly includes the 193 

following 5 steps. 194 

1) Resistance, current and voltage simulate flow resistance, flow rate and blood pressure, 195 

respectively. Assuming that the coronary artery was healthy and normal, the coronary 196 

resistance was computed according to the measured geometric parameters: 197 

 R= 8πμL
A2

 (2) 198 

where R is the coronary resistance, μ is the dynamic viscosity with a value of 0.0035 (Pa s), L 199 

is the vessel length, and A is the vessel cross-sectional area. 200 

2) Aortic pressure was estimated by mean arterial pressure (MAP), which was obtained 201 

from clinically measured resting systolic blood pressure (SBP) and diastolic blood pressure 202 

(DBP) [33]: 203 

 MAP= SBP+2·DBP
3

 (3) 204 

3) The coronary nodal pressure was calculated by coronary resistance and coronary flow: 205 

 Pdown=Pup-R·Q (4) 206 

where Pdown is the next node pressure of the coronary artery, and Pup is the previous node 207 

pressure of the coronary artery. For example, for the coronary artery between Node 1 and Node 208 
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2 (Fig. 3), Pdown represents the pressure at Node 2 (P2), and Pup represents the pressure at Node 209 

1 (P1). 210 

4) The coronary outlet pressure was determined from coronary nodal pressure, coronary 211 

resistance and coronary flow: 212 

 Pout=Pup-R·Q (5) 213 

where Pout is the coronary outlet pressure. For example, for the coronary artery between Node 214 

1 and Outlet 1a (Fig. 3), Pout is the pressure at Outlet 1a (P1a), and Pup is the pressure at Node 1 215 

(P1).  216 

5) The resting microcirculation resistance was estimated according to the coronary outlet 217 

pressure and coronary flow [34]. 218 

 Rm-res= PoutQ  (6) 219 

Therefore, Q∝d3 implies that Rm-res∝d-3, or that the microcirculation resistance is inversely 220 

proportional to the vessel diameter [9]. 221 

Principle 3: Microcirculation resistance is reduced to simulate maximal hyperemia.  222 

The resting microcirculation resistance was reduced by 0.24 times to simulate the 223 

hyperemic microcirculation resistance (Rm-hyp) [4]. 224 

 Rm-hyp=Rm-res·0.24 (7) 225 

2.3.1.3 Boundary Condition 226 

Previous studies used aortic pressure estimated by MAP as the inlet boundary condition 227 

[9,35]. Since the result obtained by formula (3) is the resting MAP (MAPres), the estimated 228 

aortic pressure here is Pa-res. Nevertheless, the measurement of FFR was carried out in the 229 
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hyperemic state, so two inlet boundary conditions, Pa-res and Pa-hyp, were considered in this study. 230 

Considering that the Pa-hyp was unable to be obtained directly, we counted the MAPres and 231 

hyperemic MAP (MAPhyp) obtained by invasive measurement in 89 patients. It was found that 232 

MAPhyp (82.19 ± 11.80 mmHg) was approximately 0.81 times of the MAPres (100.98 ± 13.50 233 

mmHg). This was consistent with the estimate of Pa-hyp by 0.8 times of Pa-res described in the 234 

literature [18]. Accordingly, we simulated Pa-hyp by 0.81 times of MAPres. 235 

2.3.2 Coronary Zero-Dimensional Model 236 

The model parameters obtained in Section 2.3.1 were used to establish the personalized 237 

coronary zero-dimensional model. The stenotic single-vessel coronary artery was taken as the 238 

region of interest (Fig. 4A). Pa-res and Pa-hyp were respectively set as the inlet boundary 239 

conditions, and the Rm-hyp was set as the outlet boundary condition. Thus, the personalized 240 

coronary zero-dimensional model for simulating hyperemia is (Fig. 4B): 241 

 Qs=
Pa

Rm-hyp+Rs
 (8) 242 

where Qs is hyperemic coronary flow, Pa is aortic pressure, and Rs is stenosis resistance. For 243 

the personalized coronary zero-dimensional model, Pa and Rm-hyp are constant, while hyperemic 244 

coronary flow changes with the change of stenosis resistance. Hence, the coronary zero-245 

dimensional model can be expressed as: 246 

 Qs=f(Rs) (9) 247 

2.3.3 Coronary Stenosis Model 248 

The previously established coronary stenosis model was adopted to simulate the resistance 249 

generated by the stenotic coronary artery (Fig. 4C-D) [36]. In order to model a stenosis 250 
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resistance similar to that of the three-dimensional CFD, we first computed the stenosis 251 

resistance of 3028 ideal stenosis models using the three-dimensional CFD approach, which was 252 

divided into training, validation and test sets with approximate ratios 8:1:1 [36]. Then, we 253 

adopted a back-propagation neural network (BPNN) architecture to describe complex 254 

nonlinear relationships between input and output variables. The input characteristic parameters 255 

of the model were six stenotic geometric parameters (including stenosis degree, stenosis 256 

entrance length, stenosis exit length, stenosis minimum length, stenosis entrance area and 257 

stenosis minimum area, Fig. 4C) and hyperemic coronary flow, and the output characteristic 258 

parameter was stenosis resistance (Fig. 4D). Six stenotic geometric parameters, hyperemic 259 

coronary flow and stenosis resistance calculated by three-dimensional CFD were used for 260 

training. Mean squared error was used as the loss function to evaluate the error between the 261 

predicted values from the network and the actual output data during the training process. Finally, 262 

the BPNN (i.e., coronary stenosis model, Fig. 4D) was established instead of three-dimensional 263 

CFD to predict stenosis resistance, and the accuracy of the BPNN had been verified by 30 264 

personalized models [36]. The developed BPNN architecture consisted of one input layer, six 265 

hidden layers and one output layer, which was determined after hyperparameter adjustment 266 

[36]. For the personalized coronary stenosis model, the geometric parameters are constant, 267 

while stenosis resistance changes with the change of hyperemic coronary flow. Hence, the 268 

coronary stenosis model allowed to be expressed as: 269 

 Rs=f(Qs) (10) 270 

2.3.4 Numerical Simulation 271 
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Coupling of coronary zero-dimensional model and coronary stenosis model enabled the 272 

determination of individualized stenosis resistance and hyperemic coronary flow. As 273 

mentioned above, the coronary zero-dimensional model was able to be expressed as Qs=f(Rs), 274 

while the coronary stenosis model was able to be represented as Rs=f(Qs). For the two models, 275 

the coronary zero-dimensional model provided hyperemic coronary flow for the coronary 276 

stenosis model, while the coronary stenosis model provided stenosis resistance for the coronary 277 

zero-dimensional model. Hence, the two models were iteratively calculated, and convergence 278 

was reached when |Qs’-Qs| ≤ 0.0001 ml/s, where Qs’ is the new hyperemic coronary flow and 279 

Qs is the previous hyperemic coronary flow. This allowed simultaneous determination of 280 

individualized stenosis resistance and hyperemic coronary flow to simulate patient-specific 281 

coronary pressure and flow. 282 

Further, the distal coronary pressure (Pd) was computed according to hyperemic 283 

microcirculation resistance and hyperemic coronary flow. 284 

 Pd=Qs·Rm-hyp (11) 285 

Finally, cFFR was calculated by distal coronary pressure and aortic pressure: 286 

 cFFR= Pd
Pa

 (12) 287 

The cFFR calculated with Pa-res and Pa-hyp as inlet boundary conditions were denoted as cFFRr 288 

and cFFRh, respectively. The reconstruction and segmentation of coronary anatomical model 289 

(including the measurement of geometric parameters) was carried out using Mimics Research 290 

version 20.0 under the guidance of clinical cardiologists. The coronary stenosis model was 291 
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implemented in Python 3.7, using Keras and Tensorflow libraries. Other modeling and 292 

simulation were performed using Matlab version R2018b. 293 

2.4 Statistical Analysis 294 

All statistical analyses were carried out using IBM SPSS Statistics version 25.0 and 295 

MedCalc version 19.4.0. Normal distribution was tested using the Shapiro-Wilk test. 296 

Categorical variables are represented as frequencies and percentages, with continuous variables 297 

as mean ± standard deviation (SD). Pearson correlation coefficient was used to analyze and 298 

evaluate the relationship between cFFR and iFFR. Bland-Altman analysis and 95% limits of 299 

agreement were adopted to assess the agreement of cFFR and iFFR. The receiver operating 300 

characteristic (ROC) curves were compared using iFFR < 0.80 as the reference standard. The 301 

area under the receiver operating characteristic curve (AUC) was computed using the DeLong 302 

method to evaluate the diagnostic performance of cFFR and CCTA. Diagnostic accuracy, 303 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 304 

positive likelihood ratio (LR+), and negative likelihood ratio (LR−) with 95% confidence 305 

interval (CI) were calculated for cFFR < 0.80 and CCTA stenosis degree ≥ 70%. 306 

3. Results 307 

3.1 Patient Characteristics 308 

The study population consisted of 75 patients (75 vessels). Baseline characteristics of 309 

patients and lesions are summarized in Table 1. The average age of patients was 61.6 ± 10.1 310 

years old, including 46 males and 29 females. Among the 75 vessels, 62 (82.7%) lesions were 311 

located in left anterior descending arteries, 3 (4.0%) were in left circumflex arteries, and 10 312 
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(13.3%) were in right coronary arteries. Among the 75 lesions, 16 (21.3%) coronary stenosis 313 

was caused by non-calcified plaques, 30 (40.0%) coronary stenosis was caused by calcified 314 

plaques, and the rest were caused by mixed plaques. CCTA stenosis degree ≥ 70% was mostly 315 

caused by non-calcified plaques and mixed plaques, which may be because stable plaques 316 

(calcified plaques) generally less susceptible to increasing stenosis, while unstable plaques 317 

(non-calcified plaques and mixed plaques) are more likely to lead to acute stenosis and even 318 

vessel occlusion. Excluding the time spent on reconstruction and segmentation of the coronary 319 

anatomical model (about half an hour), the average calculation time of cFFR was less than 2 320 

seconds. 321 

3.2 Correlation and Agreement of cFFR to iFFR 322 

Four representative examples are displayed in Fig. 5, and details of the four cases are 323 

shown in Table 2. As shown in Fig. 5, Cases 1-3 demonstrate the success of prediction, where 324 

the clinical measurement results are consistent with the simulation results (both either show 325 

ischemia, or both show no ischemia). Case 4 shows the failure of prediction, where the clinical 326 

measurement results (iFFR > 0.8, no ischemia) are inconsistent with the simulation calculation 327 

results (cFFR < 0.8, ischemia).  328 

The scatterplot reveals a good correlation between cFFR and iFFR (Fig. 6). Pearson 329 

correlation coefficients of cFFRr and cFFRh with iFFR were r = 0.89 (p < 0.001) and r = 0.90 330 

(p < 0.001), respectively. The Bland-Altman analysis demonstrates a slight systematic 331 

difference between cFFR and iFFR (Fig. 7). The mean differences between cFFRr and cFFRh 332 

with iFFR were 0.003 (95% limits of agreement: -0.21 to 0.14) and -0.009 (95% limits of 333 
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agreement: -0.25 to 0.17), respectively. 334 

3.3 Diagnostic Performance of cFFR versus CCTA for Diagnosis of Ischemia-Producing 335 

Lesions 336 

Fig. 8 illustrates the ROC curve of cFFR and CCTA in the diagnosis of ischemic coronary 337 

stenosis. The results demonstrated that the AUC of cFFRr, cFFRh and CCTA were 0.960 (95% 338 

CI: 0.888 to 0.992, P < 0.001), 0.960 (95% CI: 0.888 to 0.992, P < 0.001) and 0.889 (95% CI: 339 

0.795 to 0.950, P < 0.001), respectively. Figs. 8B-D show that in selected samples, the proposed 340 

simplified model exhibited better diagnostic performance for coronary stenosis caused by non-341 

calcified plaques and mixed plaques. Table 3 lists the diagnostic characteristics of cFFR < 0.80 342 

and CCTA stenosis degree ≥ 70% for detecting significant stenosis. The diagnostic accuracy, 343 

sensitivity, specificity, PPV, NPV, LR (+), LR (−) of cFFRr and cFFRh were 90.7%, 95.0%, 344 

89.1%, 76.0%, 98.0%, 8.7, 0.1 and 92.0%, 95.0%, 90.9%, 79.2%, 98.0%, 10.5, 0.1, respectively. 345 

The performances of cFFRr and cFFRh were superior to CCTA for diagnosing ischemic lesions, 346 

the latter of which demonstrated an accuracy, sensitivity, specificity, PPV, NPV, LR (+), LR (−) 347 

of 78.7%, 80.0%, 78.2%, 57.1%, 91.5%, 3.7, 0.3, respectively. 348 

4. Discussion 349 

We successfully developed a simplified model to rapidly predict FFR and verified the 350 

accuracy of the model. The novelty of the model mainly lies in taking the stenotic coronary 351 

artery as the region of interest, simplifying the process of model analysis, and reducing the 352 

computational cost by simplifying the three-dimensional model to a zero-dimensional model. 353 

In addition, considering that ML technology is capable of extracting rich information from data, 354 
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we combine a zero-dimensional model with the stenosis model based on ML to ensure the 355 

accuracy of the model. The average computation time is less than 2 seconds, which is feasible 356 

in a clinical environment. It is suitable for individualized patients with a stenosis of 30%-90%. 357 

The proposed simplified model thus has potential in clinical application for the detection of 358 

ischemic stenosis. 359 

4.1 Model Analysis 360 

4.1.1 Boundary Conditions 361 

In the current study, two inlet boundary conditions, Pa-res and Pa-hyp, were considered, and 362 

the outlet boundary condition adopted Rm-hyp, which is commonly used in the literature [9,23]. 363 

To ensure the accuracy of the model, the actual measured pulsatile aortic pressure should be 364 

used as the inlet boundary condition. Previous studies have naturally produced pulsatile aortic 365 

pressure through the interaction between heart model and systemic circulation model [9,23,24]. 366 

However, the pulsatile aortic pressure cannot be obtained non-invasively. Therefore, this study 367 

only used the stable aortic pressure for simulation. It is feasible to use the aortic pressure 368 

estimated by MAP (i.e., Pa-res) as an inlet boundary condition, which has been verified by 369 

previous studies [9,35]. Yet, the measurement of clinical FFR is performed under hyperemic 370 

conditions [37]. To be physiologically realistic, the Pa-hyp was also considered as the inlet 371 

boundary condition in this study.  372 

In theory, there is a pressure drop in the coronary segment from the aorta to the inlet of 373 

the stenosis, meaning that the pressure at the inlet of the stenosis is actually lower than the 374 

aortic pressure. In this study, the aortic pressure was set as the inlet boundary condition, which 375 
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may lead to a higher simulated distal pressure of the stenosis, resulting in a higher simulated 376 

FFR. Nevertheless, compared with the pressure drop caused by the stenosis, the pressure drop 377 

caused by the coronary artery from the aorta to the inlet of the stenosis can be considered 378 

negligible. Our results also showed that the effect of this part of the pressure drop is negligible.  379 

We compared the diagnostic performance of two stable inlet boundary conditions, Pa-res 380 

and Pa-hyp. Results manifested that the accuracy, specificity and PPV of Pa-hyp were slightly 381 

higher than those of Pa-res in the selected patient cohort (accuracy: 92.0% vs 90.7%; specificity: 382 

90.9% vs 89.1%; PPV: 79.2% vs 76.0%). Although using a stable aortic pressure boundary 383 

condition may reduce the accuracy of the model compared to the actual pulsatile aortic pressure 384 

waveform, the stable blood flow model still guarantees the accuracy of the cFFR calculation 385 

as shown by our results. 386 

4.1.2 Coronary Zero-Dimensional Model 387 

The zero-dimensional model has been widely used in the modeling of cardiovascular 388 

mechanics, which allows simulation of coronary flow and pressure [23–28]. In the present 389 

study, we took the stenotic single-vessel coronary artery as the region of interest, assuming that 390 

the coronary artery was healthy and normal, and adopted a coronary zero-dimensional model 391 

to describe the healthy coronary artery. Flow resistance is simulated by resistance, flow rate is 392 

simulated by current and blood pressure is simulated by voltage. Furthermore, the coronary 393 

resistance computation and flow distribution adopted the methods proposed by Taylor et al. [9]. 394 

The coronary three-dimensional model was simplified to coronary zero-dimensional model, 395 

which avoided the solution of the three-dimensional flow field and greatly reduced the time 396 
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required for analysis.  397 

In a previous study, in order to simulate various parts of physiologically realistic 398 

circulatory system, a complete lumped parameter model of the coronary artery and 399 

cardiovascular system was established, which permitted simulating physiologically realistic 400 

pressure and flow of the coronary artery [24]. In this study, on the one hand, we considered that 401 

the topology of the coronary artery is parallel, which means that the parallel branches do not 402 

affect each other, and the downstream coronary arteries have almost no effect on the upstream 403 

coronary arteries. On the other hand, the blood vessel of interest is the stenotic coronary artery. 404 

Therefore, it is feasible to take the stenotic single-vessel coronary artery as the region of interest. 405 

Only the stenotic coronary artery is analyzed, avoiding calculation of the solution of other 406 

branches, thus greatly reducing the simulation time. 407 

4.1.3 Coronary Stenosis Model 408 

Since the zero-dimensional model cannot describe the geometric characteristics of the 409 

three-dimensional coronary artery, we additionally evaluated the stenosis resistance generated 410 

by the stenotic coronary artery to accurately simulate the coronary flow. In a previous study, 411 

we employed an experimentally validated analytical model related to stenotic geometric 412 

parameters and flow rate [38]. In this analytical model, the stenosis resistance was estimated 413 

by a theoretical formula. In it the geometric parameters of stenosis were obtained by manual 414 

measurement of the stenotic coronary artery from a three-dimensional reconstruction. To 415 

simulate the stenotic resistance consistent with the three-dimensional CFD to ensure the 416 

accuracy of the calculation model, this study adopted a BPNN (i.e., coronary stenosis model) 417 
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to simulate the hemodynamics of stenotic coronary arteries [36]. This BPNN was trained on a 418 

large number of stenotic geometric parameters, hyperemic coronary flow and stenosis 419 

resistance predicted by the three-dimensional CFD, and allowed simulation of the stenosis 420 

resistance similar to the three-dimensional CFD, which had been verified by 30 personalized 421 

models [36]. Accordingly, the coronary stenosis model allows prediction of the stenosis 422 

resistance instead of the three-dimensional CFD, thereby ensuring a physiologically realistic 423 

simulation of the coronary flow. 424 

4.2 Model Comparison 425 

Previous studies of fast computed CT-FFR exhibited good diagnostic performance. 426 

Siemens Healthcare used a hybrid reduced-order CFD model to quickly calculate CT-FFR 427 

(cFFR, Siemens) from CCTA images [19]. The cFFR demonstrated a moderate correlation with 428 

iFFR, with the Pearson correlation coefficient ranging from 0.59 to 0.74, and the range of AUC 429 

for detected ischemia-causing stenosis was 0.83 to 0.91 [15,39–42]. The analysis time of cFFR 430 

varied from 30 to 120 min [15,39–42]. Subsequently, Toshiba Medical proposed a CT-FFR 431 

(CT-FFR, Toshiba) technology using a reduced-order model for structure and fluid analysis 432 

with a non-Newtonian fluid model [20,21]. The correlation between CT-FFR and iFFR was 433 

0.57, the accuracy of CT-FFR was 83.9%, and AUC was 0.88 [17]. The mean analysis time 434 

was 27.07 ± 7.54 min [17]. In addition, Siemens Healthcare presented a new version of CT-435 

FFR (cFFR, Siemens) based on ML [22]. These studies showed that the accuracy of ML-based 436 

cFFR ranged from 78% to 93%, and the correlation between ML-based cFFR and iFFR ranged 437 

from 0.62 to 0.85. The AUC of ML-based cFFR ranged from 0.84 to 0.94. The operating time 438 
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of ML-based cFFR varied from 10 to 50 min [16,43,44]. Moreover, United-Imaging Healthcare 439 

developed a CT-FFR (uCT-FFR, United-Imaging) method using TAG to define the outlet 440 

boundary conditions [18]. The diagnostic accuracy, sensitivity, specificity, PPV and NPV of 441 

uCT-FFR were 91%, 89%, 91%, 86% and 94%, respectively. The mean operation time of uCT-442 

FFR was 11.0 ± 2.8 min [18]. 443 

Similar to these previous methods, our approach provides a non-invasive evaluation of 444 

FFR based on conventional CCTA images. Excluding the time spent on the generation of 445 

coronary anatomical model in the preprocessing stage, the previous Heartflow CT-FFR 446 

required several hours of simulation on a supercomputer to obtain the FFR, with diagnostic 447 

accuracy between 73% and 87.4%, and AUC between 0.81 and 0.92 [12–14]. The previous fast 448 

algorithm used a standard desktop computer with a computing time of 5-15 min, AUC of 0.83 449 

to 0.94, and diagnostic accuracy of 74.6% to 93% [15–18]. Our method only needed a 450 

simulation on an ordinary computer (Intel Core i7-7700 CPU at 3.6 GHz) and obtained the 451 

FFR in less than 2 seconds. This may be due to the reduction of the region of interest to include 452 

only the stenotic coronary artery and the simplification of the model to a zero-dimensional 453 

circuit structure for analysis, thus greatly reducing the computational cost. Compared with 454 

previous methods, our approach is computationally efficient in terms of execution speed and 455 

hardware requirements, which may be suitable for clinical timeliness requirements. In addition, 456 

the diagnostic accuracy of our algorithm (90.7% for cFFRr and 92.0% for cFFRh) is in the same 457 

range as that of the previously published results. This may be because we used a coronary 458 

stenosis model based on ML to simulate the resistance generated by stenotic segments. The 459 
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existing results prove that our method not only meets the clinical timeliness requirements 460 

(calculation speed), but also ensures the accuracy of FFR prediction (calculation accuracy), 461 

which means that this study has potential application value for clinical non-invasive diagnosis 462 

of ischemia-causing coronary stenosis. 463 

4.3 Limitations and Perspectives 464 

This study has several limitations. First, this study was a single-center retrospective study 465 

with a limited sample size for model validation. Moreover, since it has not been formally used 466 

in clinical practice, this study lacks follow-up data regarding the use of efficient CT-FFR to 467 

guide patient treatment. Multicenter prospective studies are needed to verify the feasibility of 468 

the model for application in large-scale experiments. In addition, the geometric features of the 469 

three-dimensional model were obtained by manual measurement, which may produce errors 470 

and lead to the reduction of the accuracy of the model. Furthermore, statistical assumptions 471 

were used in the determination of coronary model parameters, such as application of allometric 472 

scaling law (flow rate is proportional to the cubic of diameter) and quantification of Rm-hyp 473 

(resistance is reduced to 0.24 times of Rm-res). These parameters vary across patients. Finally, 474 

the current method of segmentation is still time consuming, thus, it is necessary to develop an 475 

automatic model segmentation, avoid errors caused by manual intervention, and enable fast 476 

segmentation while ensuring model accuracy. 477 

5. Conclusions 478 

We have proposed a simplified model for the calculation of FFR, which improves the 479 

calculation speed by simplifying the coronary model and ensures the model accuracy by 480 
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applying ML to predict stenosis resistance. The feasibility and accuracy of the simplified model 481 

were validated by comparison with invasive clinical measurements. The results demonstrate 482 

that the model not only guarantees the accuracy of FFR calculation, but also produces the fast 483 

prediction of FFR. This has potential application value in the diagnosis of clinical myocardial 484 

ischemia, and may be used to assist the detection of stenotic coronary artery with hemodynamic 485 

significance in the future. 486 
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Figure Legends 706 

Fig. 1 Coronary anatomical model 707 

A Coronary artery tree; B Geometric model describing the anatomical features of stenosis 708 

Fig. 2 Coronary physiological model 709 

Qcor indicates total coronary flow; CO, cardiac output; Rm, coronary microvascular resistance; 710 

and d, coronary vessel diameter 711 

Fig. 3 Schematic diagram of coronary artery structure 712 

A represents the inlet of coronary branch, 1 and 2 represent the nodes of coronary branches, 713 

and 1a, 2a, 2b represent the outlets of coronary branches 714 

Fig. 4 Computational model of cFFR 715 

A Schematic diagram of three-dimensional stenotic coronary artery; B Coronary zero-716 

dimensional model (electrical analog model); C Geometric model describing the anatomical 717 

features of stenosis; D Coronary stenosis model (BPNN). The input features of the BPNN are: 718 

stenosis degree, stenosis entrance length, stenosis exit length, stenosis minimum length, 719 

stenosis entrance area and stenosis minimum area and hyperemic coronary flow, and the output 720 

feature is stenosis resistance. 721 

Pa indicates aortic pressure; Pd, distal coronary pressure; Pv, venous pressure; Qs, hyperemic 722 

coronary flow; Rs, stenosis resistance; Rm, coronary microvascular resistance; Pa-res, resting 723 

aortic pressure; Pa-hyp, hyperemic aortic pressure; Rm-hyp, hyperemic coronary microvascular 724 

resistance; and BPNN, back-propagation neural network model 725 

Fig. 5 Representative cases of cFFR simulation 726 
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cFFR indicates computational fractional flow reserve; iFFR, invasive fractional flow reserve; 727 

cFFRr, cFFR with resting aortic pressure as inlet boundary conditions; and cFFRh, cFFR with 728 

hyperemic aortic pressure as inlet boundary conditions 729 

Fig. 6 Scatter plots show correlation between cFFR and iFFR 730 

Pearson correlation coefficient of cFFR and iFFR with A resting aortic pressure and B 731 

hyperemic aortic pressure as inlet boundary conditions. Abbreviations as in Fig. 5 732 

Fig. 7 Bland-Altman plots of cFFR and iFFR 733 

Agreement between cFFR and iFFR with A resting aortic pressure and B hyperemic aortic 734 

pressure as inlet boundary conditions. Abbreviations as in Fig. 5 735 

Fig. 8 ROC curves of cFFR and CCTA 736 

The AUC of cFFRr, cFFRh, and CCTA for discrimination of ischemic coronary stenosis (iFFR 737 

< 0.80). A All lesions; B Non-calcified plaque; C Calcified plaque; D Mixed plaque. 738 

ROC indicates receiver operating characteristic; CCTA, coronary computed tomography 739 

angiography; AUC, area under the receiver-operating characteristic curve; other abbreviations 740 

as in Fig. 5 741 
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Fig. 1 742 

 743 
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Fig. 2 744 

 745 
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Fig. 3 746 
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Fig. 4 748 
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Fig. 5 750 
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Fig. 6 752 
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Fig. 7 754 
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Fig. 8 756 
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Tables 758 

Table 1 Baseline characteristics 759 

Parameter 
All patients/lesions 
(N = 75) 

Non-calcified plaque 
(N = 16) 

Calcified plaque 
(N = 30) 

Mixed plaque 
(N = 29) 

Age (years) 61.6 ± 10.1 56.1 ± 13.0 62.5 ± 8.2 63.8 ± 9.3 

Female 29 (38.7) 6 (37.5) 14 (46.7) 9 (31.0) 

SBP (mmHg) 132.4 ± 15.5 130.4 ± 15.5 132.2 ± 15.5 133.7 ± 15.9 

DBP (mmHg) 78.4 ± 11.6 77.4 ± 6.9 81.0 ± 12.8 76.2 ± 12.1 

HR (beats/min） 72.2 ± 12.8 77.1 ± 13.3 69.6 ± 12.0 72.3 ± 13.0 

CO (L/min) 4.6 ± 1.1 4.6 ± 1.2 4.7 ± 1.1 4.4 ± 1.1 

Lesion location     

LAD 62 (82.7) 13 (81.3) 26 (86.7) 23 (79.3) 

LCX 3 (4.0) 1 (6.3) 1 (3.3) 1 (3.4) 

RCA 10 (13.3) 2 (12.5) 3 (10.0) 5 (17.2) 

CCTA stenosis degree ≥ 70% 28 (37.3) 10 (62.5) 5 (16.7) 13 (44.8) 

iFFR < 0.80 20 (26.7) 5 (31.3) 7 (23.3) 8 (27.6) 
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Values are mean ± SD or n (%). 760 

SBP indicates systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CO, cardiac output; LAD, left anterior descending artery; 761 

LCX, left circumflex artery; RCA, right coronary artery; CCTA, coronary computed tomography angiography; and iFFR, invasive fractional flow 762 

reserve 763 
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Table 2 Physiological parameters and simulation results of representative examples 764 

Patient Gender 
Age 
(years) 

HR 
(beats/min) 

SBP 
(mmHg) 

DBP 
(mmHg) 

CO 
(L/min) 

Lesion 
location 

CCTA 
stenosis 
degree 

iFFR cFFRr cFFRh 

Case 1 Male 64 66 106 66 3.43  LAD 0.6 0.84 0.87  0.86  

Case 2 Female 64 88 137 77 3.90  RCA 0.9 0.65 0.64  0.65  

Case 3 Male 75 70 115 71 4.21  RCA 0.9 0.33 0.30  0.24  

Case 4 Male 61 68 123 77 3.81  LAD 0.75 0.82 0.66  0.64  

cFFR indicates computational fractional flow reserve; cFFRr, cFFR with resting aortic pressure as inlet boundary conditions; cFFRh, cFFR with 765 

hyperemic aortic pressure as inlet boundary conditions; other abbreviations as in Table 1 766 

 767 
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Table 3 Diagnostic characteristics of cFFR and CCTA compared with iFFR 768 

 cFFRr < 0.80 cFFRh < 0.80 CCTA Stenosis Degree≥ 70% 

TP 19 19 16 

FP 6 5 12 

TN 49 50 43 

FN 1 1 4 

Accuracy (%) 90.7 (81.7-96.2) 92.0 (83.4-97.0) 78.7 (67.7-87.3) 

Sensitivity (%) 95.0 (75.1-99.9) 95.0 (75.1-99.9) 80.0 (56.3-94.3) 

Specificity (%) 89.1 (77.8-95.9) 90.9 (80.0-97.0) 78.2 (65.0-88.2) 

PPV (%) 76.0 (59.6-87.2) 79.2 (62.1-89.8) 57.1 (43.6-69.7) 

NPV (%) 98.0 (87.9-99.7) 98.0 (88.1-99.7) 91.5 (81.6-96.3) 

LR (+) 8.7 (4.1-18.7) 10.5 (4.5-24.2) 3.7 (2.1-6.3) 

LR (−) 0.1 (0.0-0.4) 0.1 (0.0-0.4) 0.3 (0.1-0.6) 

Values in parentheses are 95% confidence interval. 769 

TP indicates true positive; FP, false positive; TN, true negative; FN, false negative; PPV, positive predictive value; NPV, negative predictive value; 770 

LR (+), positive likelihood ratio; and LR (–), negative likelihood ratio; other abbreviations as in Tables 1 and 2 771 


