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This paper provides a concise review of learning-based motion artifacts (MA)

processing methods in functional near-infrared spectroscopy (fNIRS), highlighting

the challenges of maintaining optimal contact during subject movement, which

can lead to MA and compromise data integrity. Traditional strategies often

result in reduced reliability of the hemodynamic response and statistical power.

Recognizing the limited number of studies focusing on learning-based MA

removal, we examine 315 studies, identifying seven pertinent to our focus area.

We discuss the current landscape of learning-based MA correction methods

and highlight research gaps. Noting the absence of standard evaluation metrics

for quality assessment of MA correction, we suggest a novel framework,

integrating signal and model quality considerations and employing metrics like

1Signal-to-Noise Ratio (1SNR), confusion matrix, and Mean Squared Error. This

work aims to facilitate the application of learning-based methodologies to fNIRS

and improve the accuracy and reliability of neurovascular studies.

KEYWORDS

fNIRS, brain-computer interfaces, motion artifacts, machine learning, deep learning,
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1. Introduction

Functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging technique,

leverages near-infrared light measurements scattered through cortical tissues to estimate

changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations, yielding

insights into neurovascular coupling and cortical activities (Lloyd-Fox et al., 2010; Leff et al.,

2011). The technology’s relatively high spatial resolution, cost-effectiveness, and portability

make it suitable for various applications such as cognitive neuroscience, clinical neurology,

personalized healthcare (Rahman et al., 2020), motor rehabilitation (Zhu et al., 2020),

cognitive studies (Fishburn et al., 2014; Skau et al., 2019), brain-computer interfaces (Naseer

and Hong, 2015), and studies involving subject movements (Vitorio et al., 2017; Nemani

et al., 2018, 2019; Pinti et al., 2018; Novi et al., 2020; von Lühmann et al., 2021). The

convergence of fNIRS with Brain-Computer Interface (BCI) has paved the way for trans-

formative applications, including the restoration of motor functions in individuals with

disabilities and the modulation of neuronal activities (Naseer and Hong, 2015). Augmenting

fNIRS with other modalities like electroencephalogram (EEG) amplifies its signal diversity,

capturing both electrical and hemodynamic activities (Maher et al., 2023). The infusion

of deep learning and transfer learning approaches has also augmented the capabilities of

fNIRS-based BCIs, underscoring their efficiency and adaptability (Paulmurugan et al., 2021).

Motion artifacts (MA), such as high-frequency spikes (Janani and Sasikala, 2017), slow

drifts (Jahani et al., 2018), and baseline intensity shifts (Huang et al., 2022b), can affect fNIRS

data during subject movement, compromising the accurate depiction of cortical activity.
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Current mitigation methods include trial rejection (Cooper et al.,

2012) or employing data processing tools like Homer2 (Huppert

et al., 2009). Trial rejection can compromise the data reliability

and reduce the statistical power of the hemodynamic response

(Di Lorenzo et al., 2019). Additionally, data processing tools often

require expert intervention and parameters are dependent on

specific datasets. To enhance spatial resolution, cortical sensitivity,

and robustness, a more general fNIRS MA processing method

is essential.

With the rise of learning-based approaches in biomedical

engineering, specialized, real-time tools (Wen et al., 2018; Roy

et al., 2019; Susan Philip et al., 2023) are increasingly applied to

biomedical imaging modalities, including fNIRS. However, studies

focusing on learning-based MA removal in fNIRS remain limited.

After conducting a review of 315 studies related to fNIRS, Motion

Artifact, and Machine Learning. We then pinpointed seven studies

that prioritize the processing of MA, aligning with the prevailing

research focus on MA corrections. This review aims to highlight

the current state of learning-based MA correction, pinpointing

research gaps. Notably, a unified evaluation metric for motion

correction quality is absent. We propose an evaluation framework

that blends signal and model quality, emphasizing datasets with

established ground truth.

The structure of the paper unfolds as delineated: Section

2 critically examines diverse methodologies for mitigating

motion artifacts in fNIRS, alongside the corresponding evaluative

measures. In Section 3, emphasis is placed on championing a

standardized General Evaluation Metric, which is introduced

through a weighted equation to ensure steadfast evaluations. The

conclusive insights are furnished in Section 4, complemented by a

recognition of forthcoming endeavors and prospects.

2. Current work on learning-based MA
removals

Deep Neural Networks (DNNs) have recently become

prominent tools in biomedical engineering due to their resilience,

real-time capabilities, and ability to handle large amounts of

data. This section summarizes current research on learning-based

MA removal methods, particularly for fNIRS datasets. Our

review methodically examined literature based on criteria in

Table 1, which details the keyword selection. While many papers

concentrated on fNIRS signal processing, we further filtered

to focus on MA correction, identifying six relevant papers on

learning-based techniques that are particularly useful for large

fNIRS datasets. Figure 1 offers an overview of these approaches,

illustrating the network architectures proposed in the studies.

2.1. Learning-based methods

2.1.1. Artificial neural network
Lee et al. (2017) introduced a MA correction technique using

a wavelet regression neural network. The method specifically

targets unbalanced optodes, identified by an unbalance index

computed from entropy cross-correlation of neighboring channel

pairs. Building on this work, the authors proposed a multi-

channel fNIRS MA correction method using an ANN for signal

reconstruction (Lee et al., 2018). They employed entropy cross-

correlation with fNIRS signals to identify contaminated optodes

and utilized a back-propagation neural network (BPNN) for MA

correction. Experimental validation, including graphical analysis

and Contrast-to-Noise Ratio (CNR) from gait tasks, demonstrated

the effectiveness of their approach. However, the authors

acknowledged limitations in handling extremely poor fNIRS

data with prominent artifacts in many channels. The decision

algorithm’s reliance on optode/channel imbalance hindered its

ability to accurately distinguish normal from abnormal fNIRS

channels. Consequently, further research is needed to develop a

detection algorithm for classifying abnormal fNIRS channels. As

the limitations of the ANN were evident, the community moved

toward exploring a broader spectrum of algorithms, particularly

looking at traditional machine learning classifiers.

2.1.2. Machine learning classifier
Siddiquee et al. (2020) investigated the impact of MA on

vigilance level detection during walking compared to seated

conditions. Their study aimed to assess if similar results could

be obtained in both scenarios. To do this, the authors devised

an experimental protocol inducing different vigilance levels while

walking and sitting. They employed supervised classification

using brain hemodynamic signals to identify vigilance levels

and compared the accuracy of vigilance detection to evaluate

the effect of MA. Multiple machine learning models, including

Linear Discriminant Analysis (LDA), Support Vector Machines

(SVM), K-Nearest Neighbors (KNN), and Gradient Boosting Trees

(GBT), were employed to find the optimal classifier for binary

classification. The comparison revealed that MA significantly

reduced the accuracy of vigilance level detection during walking.

To address this, the authors implemented a motion sensor-based

artifacts estimation and removal method to investigate if removing

artifacts could improve vigilance level detection performance.

While traditional classifiers showed promise in addressing certain

challenges, the rapid progress in deep learning sparked interest in

harnessing their capabilities. CNNs emerged as a powerful tool for

fNIRS data processing.

2.1.3. Convolutional neural network
Kim et al. (2022) employed a CNN architecture based on

the U-net. To create a training and testing data set, variants

of the hemodynamic response functions (HRF) were combined

with experimental measurements of motion noise to generate

a large-scale data set. The neural network was then trained to

reconstruct the hemodynamic response linked to neuronal activity

while reducing MA. Through a thorough analysis, the authors

established that their proposed method yields a more accurate

estimate of the task-related HRF than the previously established

methods of wavelet decomposition and auto-regressive models.

The mean squared error (MSE) and variance of the HRF estimates

produced by the CNN were found to be the lowest among all

methods considered in the study. These findings were particularly

evident when the semi-simulated data contained HRF variants in
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FIGURE 1

Learning based methods for fNIRS MA processing. (a) Wavelet regression ANN (Lee et al., 2017). (b) Entropy based cross-correlation BPNN (Lee et al.,

2018). (c) sResFCNN and low-pass FIR filter (Huang et al., 2022c). (d) Machine learning fNIRS MA classifier (Siddiquee et al., 2020). (e) U-Net HRF

reconstruction (Kim et al., 2022). (f) Denoising auto-encoder (Gao et al., 2022).

terms of shape and amplitude. The proposed CNNmethod enables

precise estimation of HRF amplitude and shape while significantly

reducingMA and holds great promise for monitoring HRF changes

in real-life settings that are subject to excessive MA. As the deep

learning domain matured, researchers started to explore other

neural network architectures that can further enhance denoising

capabilities. Enter the Denoising auto-encoder.

2.1.4. Denoising auto-encoder model
Gao et al. (2022) proposed a deep learning-based MA removal

method for fNIRS data. The authors employed a DAE model,

equipped with a specialized loss function, for the purpose of

eliminating MA. In order to train this deep learning network,

they implemented an auto-regression (AR) model to generate

a substantial synthetic fNIRS dataset. The efficacy of the DAE

methodology was assessed through the utilization of this synthetic

dataset and compared against the conventional methods widely

used within the fNIRS community. Furthermore, the performance

of the DAE was effectively validated through application to

open-access experimental datasets (Yücel et al., 2014, 2015).

Building upon the successes of DAE and aiming to integrate the

benefits of various architectures, researchers turned their attention

toward fully connected neural networks, focusing on optimizing

network structures.

2.1.5. Fully connected neural network
Huang et al. (2022c) put forward a MA removal approach that

is based on a simplified residual fully connected neural network

(sResFCNN) and a low-pass finite impulse response filter. Both

the sResFCNN and the low-pass finite impulse response (FIR)

filter are amenable to online filtering. The optimal structure of the

sResFCNN was determined through an analysis of the training loss

and testing loss. The proposed filter was compared with MARA, a

wavelet-based filter, and the DSMF filter. The results demonstrate

that the proposed filter outperforms the wavelet-based filter and

is comparable to, or exhibits improved performance in specific

scenarios compared to, the dual-stage median filter (DSMF) in

terms of noise suppression and signal distortion.
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TABLE 1 Current works on learning-based MA removal.

Study Evaluation matrix Dataset Subject type Data type Method

Lee et al. (2017,

2018)

CNR, ROI fNIRS data during

ambulatory task

Healthy subject Experimental data ANN, wavelet regression

NN, BPNN

Siddiquee et al.

(2020)

Confusion matrix fNIRS data collected from

19 volunteers

Healthy subject Experimental data LDA, SVM, KNN, GBT,

Scikit-learn

Kim et al. (2022) Correlation coefficient

(CC), Area under curve

(AUC), MSE

fNIRS data collected from

42 subjects

22 male patient, 20 female

patient

Experimental data and

simulated data

U-Net, CNN

Gao et al. (2022) MSE, visual inspection Open-access fNIRS

dataset

N/A Simulated data DAE, autoregression

Huang et al. (2022c) SDR, NMSE Simulated fNIRS dataset N/A Simulated data RNN, sResFCNN

N/A, Not applicable.

2.2. Evaluation metrics

A diverse range of evaluation metrics has been established to

assess the performance of artifacts removal solutions, providing

insights into noise suppression and signal distortion.

The 1Signal-to-Noise Ratio (1SNR) in MA removal involves

analyzing the SNRs at both the input and estimation stages, and

utilizing their difference as a performance indicator (Hossain et al.,

2022). By evaluating the disparity between the SNR values before

and after MA removal, 1SNR provides valuable insights into the

efficacy of the artifacts removal process and its impact on the signal

quality.

The CNR quantifies the distinction between the fNIRS signal

prior to and during stimulation, reflecting the relative magnitude

of the signal change compared to the accompanying noise in a

spatial map (Zhou et al., 2020). Thus, the calculated results could

be represented visually, providing an intuitive means to identify the

occurrence or suppression of MA (Kohno et al., 2007). However,

the selection of an appropriate parameter, and the computational

resources required for the back-projection to form a spatial map

warrant careful consideration.

Artifact power attenuation (APA) refers to the reduction or

suppression of unwanted noise or artifacts present in a signal,

typically achieved through filtering techniques, with the aim

of enhancing the quality of the underlying information (Janani

and Sasikala, 2017). The APA method necessitates a meticulous

selection of an appropriate high-pass filter to effectively eliminate

physiological noise. It is crucial that the chosen filters are

consistently applied to both the measured and reference signals.

The “percent root difference” (PRD) evaluation metric

determines the percentage difference between the square roots of

two signals, serving as a measure of dissimilarity or deviation

between them (Dong and Jeong, 2018). In the context of MA

removal, the reference signal is commonly selected as the simulated

motionless signal.

The within- and between-subject standard deviation method is

a statistical approach used to detect potential MA in fNIRS data.

It involves calculating within-subject standard deviations for each

chromophore to capture variability in single-trial hemodynamic

responses due to MA (Di Lorenzo et al., 2019). Comparing two

signals entails plotting their standard deviation values on a scatter

plot and assessing filtering performance by counting points above

or below a specific line.

3. Discussion

The enumeration of methods is presented in Table 1, wherein

it is observed that different fNIRS datasets were applied. Also,

evaluation metrics varied across the studies, with Gao et al. (2022)

reporting results through visual inspection and MSE using ground

truth, Lee et al. (2017) and Lee et al. (2018) employing CNR

and Region of Interest (ROI), Siddiquee et al. (2020) utilizing

MA-contaminated signal classification accuracy, Kim et al. (2022)

reporting results using CC, AUC, and MSE, and Huang et al.

(2022a) adopting Signal Distortion Ratio (SDR) and Normalized

MSE (NMSE) for result evaluation. Consequently, due to the

diversity of datasets and evaluation metrics, direct comparison

of performance across these methods is not feasible. Thus, it is

imperative to conduct a systematic comparison to analyze their

respective performance.

3.1. Model and signal evaluation

The establishment and implementation of a robust General

Evaluation Metric (GEM) for Learning-based methods is crucial

to systematically gauge the efficacy of learning-based solutions

tailored for MA removal. Such a metric would be independent of

the particular dataset employed, thereby allowing for an efficient

and holistic comparison among various methodologies. The GEM

should not merely evaluate the suppression of artifacts within

the signal but should also incorporate an assessment of the

adapted learning model in terms of robustness, adaptability and

accuracy, especially given the rising significance of such models in

this domain.

When scrutinizing learning-based models tailored for fNIRS

MA rectification, it is indispensable to amalgamate modeling-

specific metrics with conventional methodologies. Two paramount

tools in this arena are the Confusion Matrix and the MSE. The

Confusion Matrix offers a nuanced performance evaluation for

MA detection tasks by bifurcating instances into “clean” and

“contaminated by MA” based on the model’s prognostications.

This metric doesn’t merely clarify the model’s performance

but also reveals pertinent insights that could be pivotal for

model refinement, including potential enhancements in model

architecture or judicious alterations to the dataset to ensure a

balanced representation.
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In parallel, other metrics, endowed with their distinct attributes

and utilities, are instrumental for a thorough evaluation of

fNIRS signals. The MSE stands out as a pivotal metric for MA

rectification endeavors. It gains prominence when the rectified

fNIRS signal is juxtaposed with the reference signal. Particularly,

MSE is the preferred evaluation tool for contexts transcending

mere categorical classifications, such as when the output is

continuous or regression-oriented. By computing the mean

squared deviation between the predicted and the reference values,

the MSE offers an acute insight into the model’s precision and

accuracy. In tandem, the Confusion Matrix and the MSE proffer a

comprehensive comprehension of the efficiency of learning-based

fNIRS MA rectification models, elucidating potential pathways for

optimization.

While certain metrics shed light on the overall proficiency

of correction techniques, others might encounter impediments in

particular scenarios. For instance, representing the CNR’s results

in a 2D paradigm complicates its numerical integration with other

metrics for innovative evaluations. This method is typically adept

for inspecting spatial-filtering methodologies, but care must be

exercised in the selection of filters. Applying non-uniform filters

might inculcate biases, jeopardizing fair comparisons. The PRD

demands auxiliary metrics like the Root-mean-square deviation

(RMSE) to discern the congruence between signals, and CC to

fathom their resemblance. Introducing these metrics augments

computational intricacy, which isn’t propitious in this context.

The within- and between-subject standard deviation methodology,

though capable of differentiating neural response variations from

MA fluctuations, makes assumptions that may not always hold,

rendering it less than ideal as a standalone approach.

Acknowledging the complexity of the evaluation landscape,

the 1SNR metric stands out as especially pertinent for tasks

focused on signal regression. In the context of the GEM framework,

1SNR serves as an instrumental metric for quantitatively assessing

the efficacy of artifact removal techniques, thereby facilitating

numerically grounded comparisons among various methods.

Importantly, 1SNR is optimally suited for evaluating performance

on simulated data, given that these datasets come with ground-

truth information, enabling more accurate and reliable assessment.

Conversely, for the evaluation of classification models, the 1SNR

metric is not applicable. Instead, the use of a confusion matrix is

advocated, as it provides a comprehensive and tailored evaluation

criterion explicitly designed for classification tasks. It is crucial

to recognize that classification models typically require ground-

truth datasets for training and validation, necessitating evaluation

methodologies that are synergistic with the intrinsic properties of

simulated data.

3.2. GEM equation

In the realm of learning-based techniques for mitigating MAs,

the evaluation of both signal fidelity and model efficacy stands

as a pivotal pursuit. In the work delineated by Yamada et al.

(2017), paramount importance is accorded to the SNR as a pivotal

metric within the purview of fNIRS-based learning methodologies.

Conversely, Gao et al. (2020) accentuate the import of the MSE as a

prominent yardstick for evaluating the efficacy of such techniques.

Additionally, the salience of the Confusion Matrix in the appraisal

of machine learning approaches finds resonance in the exposition

by Gabrieli et al. (2021) in the context of fNIRS.

While the MSE metric is frequently utilized to assess the

performance of learning-based models, it may also exhibit a

correlation with the change in SNR, thereby possibly serving

as an ancillary indicator of signal fidelity. The decoupling of

these metrics might be considered to mitigate the risk of skewed

evaluations of a learning algorithm’s effectiveness, especially when

both metrics carry positive weightings. For tasks not oriented

toward classification, MSE may suffice as the singular evaluation

criterion. Considering the scarcity of well-established guidelines

regarding the proportional weighting of these evaluation aspects

in the realm of classification problems, we suggest the possible

introduction of a novel parameter, denoted as “α”. This parameter

could be allocated the role of balancing the assessment of signal

fidelity, while the remaining weightings may dictate the proportion

of focus given to the model’s performance evaluation. This nuanced

approach might offer a way to harmonize essential facets of signal

quality and model performance within the scope of MA removal

techniques. Based on these considerations, we tentatively propose

a novel evaluation metric, which might be termed the GEM for

learning-based methods, and would be mathematically formulated

as follows:

GEM =











α × 1SNR+ (1− α)× ConfusionMatrix if the model

is purposed for classification

MSE otherwise

(1)

where α is in range [0, 1]

This tentative evaluation criterion outlines a possibly balanced

framework for considering both signal refinement and model

effectiveness. However, achieving a universal comparison across

various learning-based approaches may remain an elusive goal,

considering the plausible variability in weight allocations between

the two evaluation dimensions. It is our hope that future

research might explore standardized weighting schemes to enable

more direct performance comparisons among diverse learning-

based methods.

4. Conclusion

This review accentuates the burgeoning interest in employing

deep learning techniques for mitigating MAs in fNIRS data

analyses, attributed to their adaptability and capabilities for

real-time processing. These methodologies have shown potential

effectiveness across a range of fNIRS datasets, spanning both

empirical and simulated data. However, the task of evaluation is

rendered complex by the metrics designed for traditional signal

processing. This work cautiously suggests an exploratory evaluation

approach that amalgamates signal and model metrics through a

weighted formula. This may facilitate concurrent assessment ofMA

suppression and model performance. Despite these advances, the

lack of a universally accepted evaluation framework underscores an
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important avenue for future research. Accordingly, it is imperative

that future investigations undertake quantitative evaluation and

rigorous statistical analysis to validate the efficacy of this newly

proposed metric, thereby fostering a more robust, universally

accepted framework for assessment.
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