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Summary 

Structural studies of bio-complexes using single particle cryo-Electron Microscopy (cryo-

EM) is nowadays a well-established technique in structural biology and has become 

competitive with X-ray crystallography. Development of digital registration systems for 

electron microscopy images and algorithms for the fast and efficient processing of the 

recorded images and their following analysis has facilitated the determination of structures at 

near-atomic resolution.   The latest advances in EM have enabled the determination of protein 

complex structures at 1.4-3 Å resolution for an extremely broad range of sizes (from ~100 

kDa up to hundreds of MDa [1-7]). In 2022 nearly 12 hundred structures deposited to the 

EMDB data base were at a resolution of better than 3 Å [7].  

 To date, the highest resolutions have been achieved for apoferritin which comprises a homo-

oligomer of high point group symmetry (O432) and has rigid organisation together with high 

stability [5,6]. It has been used as a test object for the assessments of modern cryo-

microscopes and processing methods during the last five years. In contrast to apoferritin 

bacterial secretion systems are typical examples of multi protein complexes exhibiting high 

flexibility owing to their functions relating to the transportation of small molecules, proteins 

and DNA into the extracellular space or target cells. This makes their structural 

characterisation extremely challenging [8,9]. The most feasible approach to reveal their 

spatial organisation and functional modification is cryo-EM. During the last decade structural 

cryo-EM has become broadly used for the analysis of the bio-complexes that comprise 

multiple components and are not amenable to crystallisation [10-12].  

In this review we will describe the basics of sample preparation for cryo-EM, the principles 

of digital data collection, and the logistics of image analysis focusing on the common steps 

required for reconstructions of both small and large biological complexes together with 

refinement of their structures to nearly atomic resolution. The workflow of processing will be 

illustrated by examples of EM analysis of Type IV Secretion System. 
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1. Structural studies by cryo-EM of macro-complexes as illustrated by 

studies of Type IV Secretion Systems 

Different approaches have been used to decipher conformational changes linked to the 

functional activity of complexes. X-ray crystallography, NMR, and Electron microscopy 

(EM) combined with biochemical and biophysical methods allow deeper understanding of the 

mechanisms that underlie macromolecular complex functions. This was clearly demonstrated 

by studies of the ribosome [13-15]. Recent advances in EM such as the invention of direct 

electron detection cameras, development of automated data collection software, as well as 

progress in image processing algorithms have dramatically expanded the range of biological 

macromolecules amenable to studies by structural cryo Electron Microscopy (cryo-EM).  

The main advantage of EM is that it does not require the crystallisation of samples and can be 

used to determine the structures of bio-complexes within a large range of sizes: from ~100 

kDa to many MDa. It was found that current cryo-EM methods are the most efficient 

approaches for analysis of membrane proteins/complexes, and, as for example, for Type IV 

Secretion Systems (T4SSs).  During the last decade image processing methods have been 

extensively improved allowing the analysis of image quality more consistently and the 

assessment of distortions caused by the microscope that prevent the determination of high-

resolution structures. New approaches have been developed to reveal sample quality more 

consistently such as its homogeneity, stability, and to differentiate distinct conformations by 

enabling determination of the distributions of particles within these different states leading to 

their eventual characterisation [11,16-19]. A few different packages with state-of-the-art 

image processing algorithms are now routinely used for the analysis of macromolecular 

complexes exhibiting a range of symmetries, or asymmetry such as EMAN2, RELION, 

CryoSPARC, Ximdisp, CryoDRGN, and others [16-24]. 

Another important factor that has contributed to modern achievements is the increase in 

computing power making it possible to collect tens of thousands of micrographs and analyse 

millions of particle images from heterogeneous samples [16-24].  Nonetheless, the basic 

workflow (Figure 1) of sample imaging and image processing remains almost unchanged 

while computational tools derived from algorithms implemented in new software packages 

have been radically improved.  

The remarkable success in improving the resolution of EM structures during the last decade 

would not be possible without advances in sample preparation and data collection at 
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cryogenic temperatures in what we now refer to as “cryo-EM”. This approach for sample 

preparation and the amalgamation of methods used in X-ray crystallography and EM image 

processing have made it possible to achieve details at near atomic resolution for many protein 

complexes (1-9). This has led to the determination of structures in which the main 

components of Gram-negative bacterial secretion systems have been resolved at the levels 

approaching the atomic resolution (25-29). The most recent structures of bacterial secretion 

systems have provided important information regarding the mechanistic details of how 

bacteria assemble these highly specialised nano-machines to secrete proteins and DNA to the 

bacterial extracellular space, and to the eukaryotic or bacterial target cells. Among the Gram-

negative bacterial secretion systems, Type IV Secretion Systems (T4SSs) possess the unique 

ability to secrete proteins, DNA or protein-DNA complexes in an ATP-dependent process. 

The ability of T4SSs to secrete a variety of substrates involved in pathogenesis and the 

spreading of conjugative plasmids encoding antibiotic resistance genes made this secretion 

system an important target for structural biology studies. Recently a new structure of the 

T4SS has been published in Nature at a resolution of 3.5-6 angstrom revealing new features 

of the nearly complete complex [28].  
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Figure 1. Workflow of EM structural analysis. The biochemical components are highlighted in green 
while the computational elements are shown in light, dark blue, and purple.  The initial steps of 
processing are shown in light blue which include image frame alignment, CTF estimation and 
correction, normalisation, and filtering of images. The subsequent steps of alignment, statistical 
analysis, determination of particle orientations, three-dimensional reconstructions (3D), are shown 
in dark blue.  The final steps (in purple) are related to the interpretation and validation of the 
reconstructions obtained. 

Among all Gram-negative T4SSs, the ones encoded by the Ti plasmid of Agrobacterium 

tumefaciens together with the conjugative pR388, pKM101 and F-plasmids from E.coli are 

the best characterized. These macromolecular complexes comprise at least 11 proteins: from 

VirB2 to VirB11, and VirD4 [29]. The first main advance in the understanding of the general 

architecture of a T4SS took place when the cryo-EM structure of the so-called outer 

membrane core complex (OMCC), encoded by the conjugative pKM101 plasmid, was solved 

to a resolution of 15Å. This 1.1 MDa structure anchored to the outer membrane is composed 

of 14 copies of VirB7, VirB9 and VirB10 (Figure 2A) [27]. The  OMCC has been obtained at 

the higher resolution of 12.4Å later and has provided further details of the structural 

organization of the proteins that form this complex (Figure 2B) [26].  A more complete 

assembly of the T4SS (VirB3-VirB10) encoded by the conjugative R388 plasmid has been 

solved by NS (negative staining) EM [27]. This remarkable structure provided the first view 

of both the OMCC and bipartite inner-membrane complex (IMC) and how these are linked by 

a structure referred to as the stalk (Figure 2C) [27]. Recently a new structure of the T4SS has 

been determined at a resolution of 3.5-6 angstrom revealing new features of the nearly 

complete T4SS complex (Figure 2D) [28]. 
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Figure 2. Cryo-EM structures of different T4SS complexes. A. Cryo-EM structure of the outer-
membrane core complex (OMCC) at a resolution of 15Å [EMD-5031, 25]. B. Cryo-EM structure of the 
core complex at a resolution of 12.4Å [EMD-2232, 26]. C. Structure of the near complete T4SS 
complex (in negative stain) at overall resolution of ~ 23Å [EMD-2567, Figure adapted from Ref. 27)   
D. Composite electron density map of the R388 T4S system. This map is composed of the assembly 
of two not symmetrised maps of the OMCC and the IMC at a resolution of 3.3Å and 4 Å respectively, 
arches and stalk at a resolution of 6.2Å [28]. The OMCC, the stalk, the arches and the IMC are shown 
in green, red-brown, yellow, and dark blue, respectively [EMD-13765, EMD-13767, Figure adapted 
from Ref. 28] 

 

From the point of view of a specialist in cryo-EM single particle analysis (SPA), this review 

may not be considered complete and does not provide sufficient mathematical background for 

the experienced reader. However, the aim is to provide a general overview of imaging using 

an electron microscope and the current basic steps of SPA. It will therefore include a brief 

outline of sample preparation for cryo-EM, the effects of radiation damages, and advances in 

the procedure for data collection. We describe steps considered as pre-processing and 

methods used to obtain structures and methods for their validation. More information can be 

found in other reviews and book chapters [12, 30-32]; should the reader require more details 

on the subjects described here.  

 

2. Sample preparation in Cryo-EM 

While EM provides superior resolution to light microscopy, a more complex procedure for 

sample preparation has to be employed since samples need to be imaged in a vacuum.  This is 

because images are created by an accelerated beam of electrons within the electron 

microscope.  Under normal circumstances, electrons collide with the atoms that constitute air 

losing both their energy and scattering directions. To obtain a high-quality image of the 

sample it is therefore necessary to keep the electron path free of air molecules (i.e., under 

vacuum) to eliminate unwanted scattering thus enabling them to move directly to the sample. 

Biological objects (macromolecules and cells) in their native conditions are in aqueous 

solutions, they therefore have to be made rigid and stable in the microscope column under 

vacuum to avoid evaporation or changes during the time they are exposed to the electron 

beam. This requires the use of specialised preparation methods where the dehydration of the 

sample and staining will minimize molecular distortions or alternatively, stabilization using 

solidified (frozen) hydrated biological samples [30,33]. 
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Figure 3. Cryo-EM sample 
preparation. A. 3 μL of sample 
is applied to a grid covered 
with a holey carbon film. B. 
Zoomed in view of a small grid 
area showing the microscopic 
holes in carbon film. C. Cross-
section of a hole with sample 
particles embedded in vitreous 
water. D. The grid is 
transferred into a microscope 
at liquid nitrogen temperature.  

 

 

 

 

 

 

Cryo-EM methods of sample preparation allow preservation of the structural integrity of bio 

complexes keeping them in a nearly native hydrated state in the microscope vacuum. The 

method proposed by Dubochet, Glaeser and co-workers [33-36] is now used as a well-

established technique for freezing aqueous solutions of samples on cryo-EM grids.  The EM 

grid constitutes a round metallic plate (~3mm in diameter and usually made from copper 

(they can be made from gold, or tungsten) with a fine mesh (typically are used the grids with 

200, or 300, or 400 mesh/inch square grids), although the patterns of the mesh can vary [37-

40].  More often the grids containing 400 squares per inch are used in SPA (Figure 3). 

Depending on the sample, a continuous thin layer of carbon film or perforated with irregular, 

termed Lacey grids, or regular holes (such as QUANTIFOIL) should be placed on the top of 

the copper grid (Figure 3) [37-40]. The type of grid selected in terms of the size/shape of the 

holes and distances between them is dependent on the sample. All these types can be used for 

automated and manual data collection. 

The conventional procedure for freezing is the following [35,38,40]: 

https://en.wiktionary.org/wiki/%CE%BCL#Translingual
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a. Drop of the sample (~3µl) is applied onto a grid, which was glow discharged to make its 

surface more hydrophilic, or hydrophobic, depending on the properties of the molecular 

complex under the study. 

b.  Sample is rested for a short time on the grid (0.5-2 min, depending on the sample). 

c.  Grid is maintained on the plunger. 

d. Excess of the sample is blotted to make a thin layer of sample solution on the grid.  

e. Grid is rapidly plunged into liquid ethane (or propane) that has temperature of -182 °C.  

Ethane has to be cooled by liquid nitrogen in advance. Plunge-freezing in liquid ethane take 

place in ~10-5 seconds trapping the biological molecules in their native, hydrated state 

embedded in amorphous ice that has the same structure as a solid water. The amorphous ice 

does not have a crystalline structure.  Cooling by plunging into liquid ethane is much faster 

than plunging directly into liquid nitrogen because liquid ethane is used close to its freezing 

point, so it does not evaporate and produces an insulating gas layer. This fast freezing 

prevents the formation of ice crystals and keeps samples at nearly native hydrated state and 

the process is known as vitrification of samples [33,35-38,41].  

For the following cryo-EM procedures, the grids have to be kept at temperatures no greater 

than -170 °C, for transfer into the microscope using a cryo-transfer holder, and during the 

imaging, otherwise the amorphous ice will change it conformation and become crystalline, 

destroying the sample and contaminating the grid. Another important advantage of 

maintaining the sample at cryogenic temperatures is that the radiation damages induced by 

the electron beam will be significantly reduced when electrons pass through the sample [30].  

More recently automated and controlled devices have been developed (Vitrobot 

(https://www.thermofisher.com/uk/en/) or Leica EM GP (https://www.leica-

microsystems.com/products) [36], thus allowing higher reproducibility in grid preparation 

[38-42]. It is recommended that the first estimation of sample quality is made using the 

negative stain technique, which is fast, robust, and reliable [30].  It allows rapid assessment 

of sample quality, concentration, and suitability for the following cryo preparations. 

 

3.  Data acquisition  

3.1 Direct Electron Detectors 

During the last decade, digital detectors have enabled the direct detection of electrons without 

the intermediate step of transforming electrons into photons and then into an electrical signal 
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(Figure 4) replacing photographic films and CCD cameras. Direct detector devices (DDD) 

use an array of radiation hardened active pixel sensors (a pixel circuit) which are integrated 

into a silicon CMOS (complementary metal oxide semiconductor) chip [43-44]. In this case 

the electron energy is transferred directly into electrical signal. Another advance of this 

technology is that an amplifier is built into each pixel and allows fast signal readout from 

each single sensor (or pixel) nearly simultaneously (Figure 4) providing very high frame 

readout speeds [43-45]. This feature allows the possibility of recording an image during the 

overall exposure as a set of smaller sub-exposures. In cryo-EM it provides a valuable option 

for electron dose fractionation that is important in studies of radiation sensitive biological 

samples. Usage of the dose-fractionation is now provided by global direct detector 

technology.  Depending on the detector type (Gatan, DE-Direct Electron, and Thermo Fisher 

Scientific) and available software, it is possible to record from just a few to hundreds of sub-

frames per exposure [46].  

 

Figure 4. Digital 
cameras. In direct 
detectors active pixel 
sensor detectors, 
mostly based on CMOS 
technology, can 
capture the incident 
electrons [46]. 

 

 

 

The removal of the electron – photon transformation step and the fibre optics improves the 

Signal to Noise Ratio (SNR) on images registered by DDD. This can be best described in 

terms of the Detective Quantum Efficiency (DQE) [43-45]. The DQE is a measure of the 

efficiency of signal transfer by the camera and defined as a ratio of the SNR in the output 

image registered by the camera sensors to the SNR at the input image.     

DQE = (SNR out)2 /(SNR in)2 

The ratio depends on the spatial frequency (sizes of the details) of the image. A perfect 

detector would not distort the input signal and in an ideal system the output should be the 

same as the input.  Therefore, the DQE of the ideal system would be equal to one for all 
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frequencies. However, cameras distort the fine details in images, and this is reflected by 

significant decline in the DQE at high frequencies [44-48]. 

Direct detectors allow registering electrons within high range of energies and are now used in 

300 keV microscopes. The high sensitivity of these systems in sensing electrons has enabled 

scientists to create sensors of smaller size and coupled with improvements in software has 

offered a new mode in image recording which is known now as a counting mode. In this 

mode the system can record single electrons (this mode is implemented in K2, K3 (Gatan), 

Falcon 4 (Thermo Scientific™ Falcon™ 4), and DE cameras [46-50].   

3.2 Micrograph sub-frame alignment. 

Cryo-EM images recorded with DDD cameras (Falcon4 (Thermo Scientific™ Falcon™ 4), 

DE (Direct Electron) or K3 (Gatan)) represent sets of sub-frame images (movies) [51-55]. 

High rates of image recording can reveal the distortion of images induced by drift of the grid 

(sample) within the EM, which can be corrected by specifically designed procedures such as 

motion-correction [51-55].   
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Figure 5. Cryo-EM images with motion correction. A. Representative cryo-EM image of vitrified T4SS 
particles (without motion correction). B. Motion of patches in X and Y directions in successive 
frames. C. Left: the power spectrum of movie frames summed without motion correction. Right: the 
spectrum after motion correction. D. Image after correcting the frame shifts. Protein is black in the 
cryo-EM images. 

 Typically, alignment of frames starts from frame N-1 that is aligned to the last frame. When 

these two images are aligned the corresponding pixels are summed, and frame N-2 will be 

aligned to this new sum. Then frames N-1 and N-2 will be summed and the frame N-3 is 

aligned to this new sum. The process is repeated in the same way towards the first frame.  

There are variations in algorithms when summation is done not for two frames for the 

following alignment, but for 4 or 5 frames or all frames. There are several algorithms for the 

motion correction of frame shifts that currently use alignments not of the entire image, but of 

regular lattice of smaller regions (for example 5x5 frame subareas). This approach helps to 

determine not only the translational shifts but also rotations of the frames under the beam 

[54,55]. Typically, the alignment is done starting from the last frames to the first ones since 

the characteristic features needed for the alignment are visible better on the last frames.  

Alignment is refined iteratively when on the next round of alignment, the total sum obtained 

during the previous round is used as a reference. The entire procedure improves firstly the 

signal-noise-ratio of the reference, and the iterative approach improves quality of the 

alignment. There are now a few software packages that can be used for the frame alignment. 

The image shown in Figure 5A represents the sum of the original frames without correction. 

The trajectory of the sub-area shifts during the successive exposures indicates that the 

movement of initial shifts of the sample is large at the beginning but then reduces, and 

different subareas move slightly differently (Figure 5B). A power spectrum from the sum of 

the frames without motion correction reveals that the Thon rings are fading rapidly due to the 

shifts in different direction indicated in Figure 5B. When the movie frames are aligned (after 

motion correction) the Thon rings became better defined and extend to nearly 3.5Å (Figure 

5C, right panel). This signifies on the presence of high-resolution details in the images. 

Summation of the motion corrected sub-frames generates the final sharper image (Figure 

5D).  

3.3 Radiation damage 

Images in EM are generated by the electron beam that illuminates the sample and then 

electromagnetic lenses form the image in the plane of the camera. While short wavelength 

electron beams significantly improve the image resolution of biological molecules it has been 
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demonstrated that bio-samples are very sensitive to high-energy electron irradiation that takes 

place during imaging [56-58].  Electrons are accelerated in the electron gun of the 

microscope and while the majority are only deflected by the electric field of the sample atoms 

(elastic scattering), some electrons collide and transfer their energy to the sample atoms 

(inelastic scattering).  These atoms became ionized and therefore can cause X-ray emission, 

form radicals resulting in rearrangements of chemical bonds [56-63]. High energy electrons 

of the beam in EM  may induce displacements, bond breakage and mass loss of low atomic 

number elements such as carbon, nitrogen, and oxygen [61,62].  These changes in biological 

complexes depend on the time of the overall exposure time to electron irradiation (cumulative 

dose) and were estimated using spot fading diffraction experiments on two-dimensional (2D) 

crystals and analysis of single particle images [59,61-63].  

The resultant sub-frames of the image recorded with DDD cameras can then be used for 

specimen drift correction and usage of first part of the frame set to see the images of the 

object at the reduced electron dose. Typically, the images on the first two or three frames 

demonstrate large shifts of the sample, which reduces as movement slows.  However, the last 

frames often indicate that the sample is damaged by the beam. A 3D structure derived from 

experiments where the sample has been overexposed can differ markedly from the structure 

of the native molecule. It has been shown using crystallography that exposure of crystals to 

X-ray induces decarboxylation of glutamate and aspartate residues, breakage of disulphide 

bonds and loss of hydroxyl-groups from tyrosine and methylthio group of methionine [61]. 

Bartesaghi and co-authors compared the density maps reconstructed from different fractions 

of the total exposure (10, 20, or 30 e−/Å2) [63]. Analysis of the high-resolution cryo-EM 

structures shows that densities for residues with positively charged and neutral sidechains are 

well resolved, while the residues with negatively charged sidechains were less resolved 

having weaker densities. Negatively charged glutamate and aspartate exhibit on average 30% 

less density than the similarly sized neutral glutamine and asparagine which is consistent with 

observations of X-ray analysis [59,61-63]. Therefore, the user can use all frames for the 

quality assessment of images and samples and only the first half or first two thirds of sub-

frames (depending on the type of the DDD used in experiments) for the reconstruction of the 

native complex. 

Cryo EM imaging has a major benefit in reducing radiation damages by keeping samples at 

cryo temperatures during imaging. Vitrified samples at liquid nitrogen temperatures preserve 

their native structure and should be imaged at these low temperatures, which increases 



 

13 
 

tolerance to ionizing radiation damage, since the free radicals generated from inelastic 

scattering events are unable to diffuse through the sample and cause secondary damage 

[57,58,61]. In addition, cryogenic temperatures (liquid nitrogen −195.8 °C) also restrict  

movements and the degrees of freedom of the molecular atoms after a bond is broken 

therefore limiting structural rearrangements induced by irradiation [60,61]. As a result, 

keeping and imaging samples at such low temperatures improves radiation tolerance from 2 

to 6 times compared to room temperature imaging [60,62,63].  

Other additional approaches that help to reduce the level of radiation damage include usage 

of low-dose mode during data collection [64]. Low-dose imaging is based on reducing the 

exposure time of the sample to electrons by focusing on an adjacent area that is sufficiently 

close to the area of interest but does not overlap it. “Search” mode requires a low-

magnification overview image that is used to identify areas of interest while the “imaging” 

(or “photo”) mode is used for actual data collection at high-magnification. The “focus” mode 

is set typically at the same magnification as imaging mode, but the beam is shifted to an 

adjacent area [65].  Such interchange between these modes is implemented in systems for the 

automated data collection and significantly allows reduction of radiation damages of the 

samples. Currently all electron microscopes used for biological studies come with pre-

installed low-dose hard- and soft- ware allowing the efficient exchange between imaging 

modes. 

 

4. Processing of 2D images 

4.1 Contrast Transfer Function 

The aim of single particle reconstruction is to provide an accurate representation of the three-

dimensional structure of a molecule using a set of 2D image projection data. The frozen 

vitrified samples of macromolecular complexes are considered to be very thin objects so their 

images can be described as linear projections of the Coulomb potential of the molecular 

complex [30-32].  This approximation is used for the subsequent reconstruction procedure.  

However, images produced by the electron microscopes do not represent projections of the 

molecules under study. Deviations from the real densities of projections are induced by 

aberrations of the optical system of the EM microscope [65,66]. The effect of these 

aberrations on the registered image of the object is described by the function termed as the 

Contrast Transfer Function (CTF) of a microscope [30-32,65,66]. The CTF is defined by the 

type of electron source (beam coherence), the acceleration voltage that regulates the electron 
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wavelength, and aberrations of the objective lens (Cs, Cc, and astigmatism). The major factors 

affecting the CTF are the degree of spherical aberration (Cs) of the objective lens and a level 

of defocus (Δf). As a result, the CTF modulates the amplitudes and phases of the registered 

image.  The effect of the microscope CTF can be clearly observed on a power spectrum 

(Fourier space) of the image registered by the camera, which demonstrates variations in the 

magnitude of the various frequency components of the image (Figure 6). The image contrast 

in EM micrographs depends on the operating conditions of the microscope such as the level 

of focus and aberrations. The overall effect of these factors on the image can be described in 

Fourier (diffraction) space  (Figure 6 A and B) by the following equation: 

𝐹{𝜓𝑜𝑏𝑠[𝑟̅]} = 𝐹{𝜓𝑠𝑎𝑚[𝑟̅]} ∙ 𝐶𝑇𝐹(𝑞̅) ∙ 𝐸(𝑞̅); 

where F{Ψobs} is the Fourier transform of the observed image; 𝑟 ̅  are the distances in the 

images; 𝑞̅ are spatial frequencies (Fourier space coordinate); F{Ψsam} is the Fourier transform 

of the specimen; CTF(𝑞̅) is the contrast transfer function of the microscope; and E(𝑞̅) is an 

envelope function, which describes  frequency-dependent attenuation of the contrast transfer 

function. E(𝑞̅) is related to the effects of various instabilities in the microscope, local spread 

in defocus, variation in the sample thickness, and specimen decay under the beam irradiation 

that lead to the loss of  high frequency information (Figure 6C) [32,33,67]. 



 

15 
 

 

Figure 6. Contrast transfer function (CTF) and corrections.  A. The CTF in an experimental spectrum 
(upper half of the panel). It is compared with a theoretically calculated CTF (bottom half of the 
panel). Image was taken relatively far from focus.  For the accurate CTF determination the Thon rings 
from both parts of the images should match. B. Comparison of the theoretical and experimental 
spectra for the image taken closer to focus. Astigmatism assessment is done by measuring ellipticity 
of Thon rings (Defocusmax and Defocusmin). C. The CTF oscillates changing the image contrast from 
negative to positive depending on frequency.   Information is lost only where the CTF is zero. Dashed 
line shows effect of the envelope function on the signal transfer suppression at high spatial 
frequencies. D. CTF correction by phase flipping: negative lobes of the CTF are flipped over to 
positive. E. Noise suppression close to CTF zeroes by calculation of CTF2 
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The major effects of spherical aberration of the objective lens on images of biological 

samples are phase changes and, therefore, alterations in the representation of densities. The 

CTF for the biological samples can be described by the formula. 

Phase CTF = -2 sin [ (fq2 - Cs3q4/2)]             

where Cs is the spherical aberration constant; f the defocus; q the spatial frequency;  the 

electron wavelength. The spherical aberration coefficient and the electron wavelength are the 

only constants and these values remain fixed for each electron microscope [30-32]. 

The effect of the CTF on the image appears as oscillations of the power spectrum that take 

the form of concentric bright and dark rings (named as Thon rings [65,66]). Dark regions 

show the positions of all zero crossings of the CTF, and bright regions correspond to areas 

where the CTF has large amplitudes that are either positive or negative (Figures 6C).  The 

CTF limits the amount of information which can be obtained from electron images. At zero 

crossings of the CTF no information is transmitted, and specimen features corresponding to 

such spatial frequencies will not be visible in the final image.  

Biological samples viewed in ice under close to focus conditions display very low amplitude 

contrast since the difference between their densities and that of water is very small [30,31].  

Consequently, the images are typically taken far from focus (in underfocus mode) to increase 

the weight of low frequencies and thus improve the visibility of particles [30,31]. It is useful 

to remember that low frequencies are responsible for the overall shape and appearance of 

particles in images, while the high frequencies are related to the fine details. High defocusing 

(images taken far from focus) induces changes in the distribution of density information 

related to fine details which could be lost due to attenuation of amplitudes at high 

frequencies. The level of defocus used for imaging depends on the size of the bio complex. 

Images of small particles (~60-200 kDa) are often collected with a large defocus, sometimes 

up to 4-6 µm while viruses with diameters of 50nm and larger can be imaged at 0.5-1.0 µm. 

4.2   Defocus Determination and Correction for the CTF effects 

 An EM projection image is only considered as a faithful representation of the registered 

projection of the object of study if it has been corrected for the CTF modulation effects of the 

microscope. To correct an image for the CTF effects and obtain the image that corresponds to 

the projection it is necessary to determine the defocus at which the image was taken and to 

assess it for astigmatism and drift. A nominal value of the defocus set on the microscope does 

not usually represent the actual defocus at which the image was recorded. Although the 
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acceleration voltage and the spherical aberration of the lens in the microscope are constant 

the typical deviations in sample thickness and variations in the hight of the supporting film in 

the holder will cause local deviations in defocus. As a result, the CTF that depends on the 

actual defocus should be determined for each image. Finding the exact defocus and level of 

astigmatism in cryo-EM images is of crucial importance when working towards producing a 

high-resolution structure.  

The CTF determination is performed by calculation of power spectra (or amplitudes) of small 

patches (256 x 256 or bigger) from the average of all aligned sub-frames. The spectrum is 

then correlated with a set of theoretically calculated CTFs in a range of possible defocus 

values. The highest correlation between the observed and one of the theoretical CTFs 

indicates the actual defocus of the image and defines frequencies where the phases have to be 

flipped (Figure 6B, C). Different software packages for automated defocus determination are 

currently used which include: CTFIND4 (implemented in RELION and CryoSPARC), 

EMAN2, IMAGIC5, CrYOLO [20,22, 67-71] 

Astigmatic images have power spectra that are not rotationally symmetric, and this can 

complicate and reduce the accuracy of the CTF determination. Generally, cryo-EM images 

which have greater than 5% astigmatism are not used for further processing. The level of 

astigmatism can be calculated as follows: 

Astigmatism = (Defocusmax – Defocusmin) / Defocusavg  

Correction of the recorded images for the CTF modulation effects of the microscope are 

carried out in Fourier space after CTF determination of the image by multiplying the 

alternating bands of phases of the CTF (in a simplified option) by a square wave function 

which has the value of -1 at positions where the contrast transfer is negative and +1 where the 

contrast transfer is positive. This has the effect of reversing or 'flipping' the negative lobes of 

the CTF into positive contrast thus restoring the correct image phases (Figure 6D, E). 

The missing information where the CTF crosses zeroes is restored by combining images at 

different defocuses so that where some images lack spatial information at a particular 

frequency others will provide the complementary missing information. High spatial 

frequencies are suppressed by the envelope decay, so amplitude correction is also important 

for maximising high-resolution details. This operation usually involves applying a Wiener 

filter to remove noise from the CTF [71-73].  

4.3   Particle selection 
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Figure 7. Particle picking.  A. Cryo-EM micrograph of the R388 T4SS sample.  B. Red circles designate 
examples of particles selected for the processing. The images were collected with a post-GIF K2 
Summit direct electron detector (Gatan) operating in counting mode, at a magnification of 130,000 
corresponding to a pixel size of 1.048 Å. The image has been taken far from defocus to increase the 
contrast and allowing visualisation of the lipidic bi-layer belt around T4SS transmembrane domains 
[Figure adapted from Ref. 28]. 

 

The structural analysis process in EM begins with selecting images of individual particles 

from micrographs. This involves defining their unique locations (x,y) within the image field 

and saving these coordinates in a data file that is used in the following steps of processing. 

This can be done using packages like RELION, CryoSPARC, EMAN2, Ximdisp, and some 

others [20-22, 69,74-80]. The initial approach often used is for the user to select single 

particle images by clicking on the image area that looks like a particle using a mouse. The 

coordinates of these points will be stored and then used to extract individual particles within a 

square box of designated dimension. The cut-out area must be large enough to retain some 

field around the object with some background. It is recommended that it  should be twice the 

maximum size of the molecule under the study.  Images of the selected particles must not be 

overlapping, squashed, distorted, fragmented or in direct contact with other particles. 

Particles can also be selected automatically with particle identification/picking programs such 

as Gautomatch, Autopicker, BShow, FindEM, blob picking [76-80].  These programs utilise the 

local correlation between a template (an initial reference) and a small image  area (of the size 

corresponding to the size of the reference) to measure the degree of similarity between them. Areas 

which show maximum correlation with the references are boxed out. The poor contrast in ice images 
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and the presence of artefacts which could resemble target particles generally decrease the accuracy of 

automatic selection. New approaches for particel picking based on  deep learning have been 

implemented in crYOLO, TOPAZ, and some other packages [71,81-83]. An example of a micrograph 

of vitrified sample of the T4SS core-outer membrane complex is shown in  Figure 7    

 4.4   Normalization of data  

Normalisation of all images is an essential pre-processing step. The contrast and intensity can 

vary from image to image during data acquisition even when all the EM settings are the 

same. This effect arises due to a few factors which include differences in the thickness of the 

carbon support film or ice, particle orientations, uneven staining, or merging images from 

different data collection sessions. Normalisation of particle images is done by setting the 

mean pixel grey value of each image to the same level, commonly zero and rescaling the 

standard deviation to an equal value for every particle image. Without normalisation the 

density variations such as very bright or very dark regions within an image can bias the cross-

correlation procedures which are later used for alignment and calculation of particle classes. 

Typically, normalisation is based on the following formula:   

ρnorm
i,j = ((ρ i,j – ρ avg)/ σold) σnew 

σold and σnew are the standard deviations of the original and target images respectively, ρi,j is 

the density of a pixel in the image array coordinates . 

4.5   Classification of particle images 

To resolve problems related to radiation damages, signal/noise ratio, possible heterogeneity 

of the sample, presence of different conformation, and reveal structure/function relationship 

researchers a researcher needs to examine up to several millions of molecular particle images.  

The images extracted from micrographs should be examined for their quality, consistency of 

the molecular assemblies, and their structures represented in images.  Manual inspection of 

this vast number of individual images is neither practical nor realistic since it is time 

consuming, and users are prone to errors and some subjectivity. Routinely, automated particle 

picking is followed by the 2D classification of selected particle data sets. The essence of this 

procedure is the comparison of particle images within a data set and cluster similar particle 

images into groups. Typically, 2D classification consists of several rounds. The initial step of 

classification aims to establish if images correspond to the object of interest or they represent 

fragments of micrographs mistakenly selected, disintegrated particles, unspecified blobs, 

bright spots, or edges of the carbon films.  This step is often referred to as data cleaning. This 
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comparison is initially performed on a small subset of the data (just a few thousand images) 

and then gradually expanded to the entire data set eventually producing a few tens or two 

hundred classes. Visual inspection of classes is feasible and consequently allows the use 

images comprising selected classes in the next steps of processing. Images composing classes 

that are inconsistent in appearance (i.e., junk images not related to the sample) should be 

removed from subsequent steps of processing. 

The next step is typically used to assess characteristic views of bio-complexes and initial 

distribution of their orientations.  High percentage of classes having the similar appearance 

indicates strong preferences in the particle orientations. If the 2D classes do not demonstrate 

well-resolved features, it may indicate that a sample is unstable, or it overconcentrated and 

images contain adjacent particles that are overlapping with the central particle image, or the 

particles have strong specific interactions with the carbon support film, or with the water/air 

surface which produces a strong preference in the orientation of particles. Images comprising 

classes that have well-defined features and show different views have to be chosen for the 3D 

reconstruction analysis.  

4.5.1 Principal component analysis 

Principal component analysis (PCA) reduces the number of variables in order to find the most 

significant variations in the measurements [70,84]. The essence of the procedure is a 

transformation of a set of observations of possibly correlated variables (in our case images or 

reconstructed volumes) into a set of values of uncorrelated variables called principal 

components. In theory the number of the principal components should be equal to the number 

of original variables. However, since images contain a high level of noise the number of the 

meaningful components became much smaller. The principal components are described by 

the eigenvectors of the data matrix. PCA is the simplest of the true eigenvector-based 

multivariate analyses [70,84]. It is now used in the 3D classification (24).  

4.5.2 Maximum likelihood estimation 

Maximum likelihood estimation (MLH) is a method that assesses parameters that would 

correspond to a statistical model [85]. When applied to a data set (such as the image data set) 

and given a statistical model (the initial 3D model), MLH provides estimates of how another 

new reconstruction would correspond to the suggested model and what sort of deviations 

could be observed. This concept can be rephrased: once a model is specified in relation to a 

certain set of parameters (e.q. such as orientations, positions of the mass centre, distribution 
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of domains, and overall sizes the MLH evaluate how well the suggested model fits to the data 

collected (EM images). The quality of this correlation is assessed by finding parameter values 

of a model that best fits the data - a procedure called parameter estimation.  In the EM case 

that would be a 3D model that maximally corresponds to the data set otherwise the model has 

to be modified. If there are several models, then the data set will be divided during processing 

into groups corresponding to the models. MLH has many properties that should be taken in 

account during estimation, these include sufficiency (complete information about the 

parameter reflecting features of interests); consistency (numbers of images relating to this or 

other 3D models), efficiency (the lowest-possible variance of parameter estimates), and could 

be other practical parameters [85-88]. This MLH method is used in the analysis of 3D 

reconstructions and implemented in RELION [20].  

4.5.3 K-means 

Cluster (or classification) analysis is a tool to identify groups of similar objects. This type of 

analysis is used for grouping similar images (particles in the same orientations). The aim of 

the K-means approach is to create groups (classes) of data subsets that are as similar as 

possible while also keeping the classes as far (different) as possible [89,90]. It ascribes data 

objects to a class in such way that the sum of the squared distances between the objects and 

the centroid of the class (arithmetic mean of all the sub data in this group) are at the 

minimum, and the distances between members of the class are minimal. The lower variations 

within the classes, the more similar are members of this group of the data set. The starting 

points are selected at random and named as the seeds.  The seeds should be placed as far from 

each other as possible. The next step is to take each point belonging to a given data set and 

associate it with the nearest centroid. Averages are calculated for each class (initially using a 

subset of the data) and the distance between each image and the obtained averages are 

calculated. A new class will be formed by the images that were the closest to one of the 

averages. Then the class averages are recalculated again. This process is done iteratively with 

increasing numbers of images used for calculations of averages until the images cease to 

move between classes [89-91]. In this method (used in RELION, XMIPP, EMAN 

[20,21,23,69]) the user defines a number of classes  as K, it is often not bigger than ten, but 

with improved algorithms and  GPU usage, up to 200 classes can be defined (see the last 

versions of RELION).  Here the algorithm randomly assigns at the beginning a few images as 

initial classes [20], the next step increases the number of images, compares them with the 

initially selected images and calculates the averages. The iterations include gradually 
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increasing the number of images and reassessments of distances between images comprising 

the averages and distances between the averages.  The K-means method is reasonably fast, 

and it works better in low dimensional space since dimensionality increases the time and a 

local minima problem may occur. If we are using several millions of images the last iterations 

may take significant time. However, the multi-processor computers can help to make this task 

sufficiently rapid.    

4.5.4. Modification and new developments in classification.  

Processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 

3D maps to high resolution requires analysis of large data sets. The stochastic gradient 

descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit 

the major steps in cryo-EM structure determination to be performed in significantly shorter 

time. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, 

enabling fast automated analysis and identification different conformations of protein 

complexes without bias from a reference map. These algorithms are implemented in 

CryoSPARC [91,22]. 

Recently new approaches have been suggested for the fast classification of images that are 

based on usage of denoised images. The essence of these methods is based mainly on three 

techniques: spatial filtering, temporal accumulation, and deep learning. Deep learning uses a 

neural network to reconstruct the signal. The neural network is trained using various noisy 

and reference signals such as data from known test objects that can be applied to the new data 

[22, 91-95].   

4.6 Determination of particle orientation 

In order to obtain the 3D structure of a biocomplex from EM images, the orientation of each 

of the individual particle image must be determined. The location of an individual molecule 

can be identified by X,Y,Z coordinates and the shifts of different particles with respect to 

each other can be described in the same way as shifts in X,Y, and Z.  The particles can also 

be rotated by α, β, γ angles that are defined as  Euler angles. This means that a molecule has 

six degrees of freedom in space. In the microscope projection images are taken along the Z-

axis of the translational system of coordinates, therefore the shift in Z direction is not 

significant (we assume that the electron beam is parallel) but the shifts in the X and Y 

directions need to be determined. During translational alignment, the centre of the molecule 

is set to X=0 and Y=0. In order to calculate the 3D map from individual images or class-
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sums, it is necessary to determine the orientations of the characteristic views (classes) relative 

to each other. 

The angular distribution of different images should evenly cover the Euler sphere or the 

asymmetric triangle (the independent asymmetrical part of Euler sphere for particles with 

symmetry). This is essential to achieve an even representation of all details in the structure, or 

at least a set of images chosen for the reconstruction should have such a distribution of angles 

that cover a big circle of the Euler sphere [96]. If the distribution of angles is patchy this 

leads to the appearance of stripes in the 3D electron density map. The size of the trustworthy 

details that might be resolved can be assessed using a formula derived by A. Crowther [97] 

assuming that projections are evenly distributed:  

R = D/N 

 N - number of views, D - diameter of particle, R - target resolution. The N number can be 

significantly decreased for the same resolution if the complex has high order of the point 

group symmetry. 
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Figure 8. Projection matching procedure. A. Projection matching in real space. A set of images is 
compared to a set of references calculated from an initial model (low resolution). Once the best 
match is found between the image and one of the model projections, based on the height of the 
correlation peak, the shift relative to the matching reference and angles of that reference are 
assigned to the image. Images 1 and 6 have the best correlation with model projection a (red 
arrows), while images 2 and 5 match image e (blue arrows). Image 3 corresponds to the tilted view c 
(yellow arrow). A new 3D map is calculated using images with the assigned angles. The refined 3D 
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reconstruction is then reprojected with a smaller angular increment to generate new references for 
the next iteration of refinement. B. Projection matching in Fourier space. Fourier transforms are 
calculated from a set of images and compared successively to a set of central sections of a 3D 
Fourier transform from an initial model. Once the best match is found between the FT of the image 
and one of the references, based on the height of the correlation peak, the shift relative to the 
matching reference and angles of that reference are assigned to the image. A new 3D map is 
calculated using the FT of images with the assigned angles. The 3D FT is calculated from the refined 
3D reconstruction and the new central sections are used as references for the next iteration of 
refinement [12]. 

4.6.1 Projection matching 

Projection matching requires an initial model and it is based on a simple principle of 

comparison of the images with projections of the model (Figure 8)  [30]. As a 3D template 

(an initial map), one can use the low-resolution negative-stain EM 3D reconstruction, the 

low-pass filtered X-ray model, or the EM map of a homolog.  This template is projected in all 

possible directions covering the entire Euler sphere with a certain angular increment. Then 

the images or class averages of the data set are compared with these references, and the 

angles corresponding to the reference with the best cross-correlation will be assigned to the 

image [12]. Projection matching helps to determine the out of plane rotations of the object. 

During the angular refinement, the angular increment between projections of the model is 

reduced, or more projections with a small increment can be calculated around the initial 

angle, so the orientation angle will be more accurately defined.  This method is easy to use, 

however, it is extremely time-consuming due to the long computation during which it is 

necessary to try all possible in-plane alignments and to compare each image to a set of 

references. Nonetheless the usage of multi-processor computers helps to speed up the 

process.  Once the Euler angles are assigned to all images or class averages, a new 3D 

reconstruction will be calculated, and a new set of refined higher resolution model projections 

will be computed for the next round of projection matching.  

Projection matching can be done both in real space (space of projection images) and in 

Fourier space (Figure 8) [30, 97,98]. Software packages currently favour Fourier space due to 

the advent of fast algorithms to calculate correlations between images and model projections. 

Most current programs such as RELION, CryoSPARC, EMAN2 are based on projection 

matching procedures which are performed in Fourier space [20,21,22,69]. 

4.6.2    Angular reconstitution 

The EM images represent projections of embedded molecules in random orientations. If there 

is no initial model, the angular reconstitution technique is the method of choice to determine 
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the relative orientation of images. The common line projection theorem postulates that every 

pair of 2D projections of the same 3D object has, at least, one mutual 1D line projection that 

is called a common line projection [70,99,]. Thus, matching of 1D line projections for 

different images allows to establish the relationship between the 2D projections and 

determine angles between the common lines and, therefore the relative Euler angles of the 

images. 

It is also possible to determine orientations using common lines in Fourier space [97,98,100]. 

The theorem of the central section states that the 2D Fourier transform of a 2D projection 

represents a 2D central section through the 3D Fourier transform of the 3D density. In Fourier 

space, a common line corresponds to the cross-section of Fourier transforms of images. It 

means that two Fourier transforms from two different 2D projections of the same 3D object 

have at least one common central line [97,98,100].  Here a comparison of the radial lines of 

the Fourier transforms of one image with all possible radial lines of the Fourier transform of 

the other image is performed. Again, similar to the real space, the angle between common 

lines of the two images with respect to the third one gives the angle between these two views.   

 

5. 3D analysis of EM structures  

EM images are considered as 2D projections of the 3D object [30,101-104]. This is due to the 

large depth of focus in TEMs. The depth of defocus is related to the acceleration voltage: the 

higher voltage the greater the depth of focus which can be up to 200 nm. Therefore, the 

image should represent a projection (the total sum of electron densities along the beam rays) 

in the image plane produced.  However, for the images to be considered as projections, they 

have to be corrected for the CTF effects (see above).  Once the CTF correction is done, and 

the Euler angles have been assigned to each projection image, then the 3D electron density 

for the particle can be determined. 

Several approaches are used to calculate 3D densities of the molecules from their projections. 

Since the current trend is towards complete automation of the image processing, two 

approaches are now commonly used in EM due to the efficiency of their implementations.  

One is where the reconstruction is calculated in Fourier space; the other performs 

reconstructions in real space and based on the filtered back-projection algorithms [12, 

30,101-104]. 

5.1 3D reconstruction in Fourier space. 
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This approach is based on the theorem which states that the Fourier transform of a 2D 

projection of a 3D object constitutes a central section of the 3D Fourier transform of the 

object [97,98]. This means that the Fourier transform of projections from different angular 

views can be merged to fill up the Fourier space with different 2D sections that are calculated 

from the images. Recovery of the 3D structure of the object in real space is done by reverse 

transformation of its 3D Fourier transform (Figure 9) [100,101,104,105]. 

 

Figure 9. Reconstruction using Fourier transform of images.  A. T4SS outer-membrane core complex 
(14-fold symmetry) is observed in different orientations on the supporting film. B. Projections of 
these particles that are equivalent to EM images in the direction of the electron beam. C. Fourier 
transforms (2D FT) of the projections shown in B. s – is the FT of the side view and e - the FT of the 
end view. The corresponding Fourier transforms of are shown in the panel C. D. 2D transforms that 
share at least one common line in reciprocal space. Common lines between the side view 
projection(s) and the end view projection (e) are shown in green lines. Orange lines indicate 
common lines between symmetry related side projections. The angles between pairs of common 
lines determine the relative Euler angle orientations. E. An inverse Fourier transformation of the 
combined 2D transforms generates an improved real space structure seen as electron density. 
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In Fourier space the large number of central sections used causes them to overlap at and close 

to the point of the origin. This leads to overweighting of the low frequency components in the 

Fourier transform and to the effect of blurring similar to the simple back projection in real 

space. So currently used algorithms based on Fourier methods employ down weighting of 

low or high frequencies by applying a weighting filter to the resultant map. 

5.2 3D reconstruction in real space.  

 

Figure 10. 3D reconstruction in real space. Different images of 
the core OMC are shown and situated around the Euler sphere. 
Each particle image is back projected along its assigned Euler 
angle in real space. As the back projected density from each 
class average intersects the 3D electron density of the entire 
object, it is captured as a 3D map. 

 

 

These methods calculate the 3D distribution of densities in 

the space of the object (Figure 10). The exact filtered back 

projection algorithm  is implemented in many software 

packages related to EM tomography [102,103]. In this 

method each image of the data set (or classes) is stretched along a direction defined by the 

determined orientations of images. Electron densities in 3D are obtained by summation of 

rays from stretched projections.  The electron density generated by these summations 

produces densities for each voxel. As more projections are included in the 3D reconstruction 

the voxels become better defined (Figure 10F). To avoid additional low frequency 

background induced by the procedure of projection stretching, images are filtered in advance 

(although in some packages the filter is applied to the resulting 3D reconstruction). A high 

pass filtering of the input 2D projections corrects the overweighting of the low frequency 

components thus restoring amplitude balance and so blurring is minimised.  

 

5.3 Structure Refinement  

All single-particle EM packages use nearly the same procedure for the refinement of 

structures after the first 3D model has been obtained (Figure 1). It is done by realignment of 

single-particle images with new references obtained from the new model.  It is often 
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combined with determination of angles:  projection matching using a smaller angular 

increment and/or a local refinement of the angles [12,98,99].  The new 3D model is used to 

calculate a fresh set of re-projections the number of which is increased according to the 

reduced angular increment. This enlarged set is used in projection matching to refine the 

orientation of the particle images. As soon as new angles are determined they are assigned to 

the images that have the best correlation with the model projections. While all 

implementations share the same principles of refinement, the details of the algorithms and the 

degree to which the user can control the process vary significantly .  

5.4 3D classification for analysis of heterogeneity molecular complexes  

The dynamics of structural changes can be assessed quantitatively using an iterative 3D 

classification procedure, which is based on one or a combination of 3D PCA, SDG, K-mean, 

MLH approaches [22, 23,24,70, 85-88,91,106,107] (Figure 1). The structures obtained can be 

ordered according to the degree of their conformational changes according to the values of 

the principal components or extent of displacements between corresponding domains. This 

aids the visualisation of motions involving flexible domains enabling determination of their 

phases and links to other domains within the complex. Evaluation of the particle numbers that 

correspond to each conformation allow quantitative assessment of the probability of the 

intermediate states. The best-resolved regions of the structures typically correspond to more 

stable elements where more flexible or peripheral components have significantly lower 

resolution.  

There are several new packages such as cryoDRGN (Deep Reconstructing Generative 

Networks), which uses a method for heterogeneous cryo-EM reconstruction based on deep 

neural networks. The neural networks, which are known for their ability to model complex, 

can learn to identify heterogeneous ensembles within cryo-EM maps. It has been shown that 

a representation of structure by this approach can model density maps at high resolution as 

precursors, before revealing the full cryoDRGN framework usage for unsupervised 

heterogeneous reconstruction analysis [18,19,22,88,94].  

 

6. Evaluation of the structure quality 

When the map of a new structure is obtained, the molecular mass and its oligomeric state 

should be estimated. The map needs to be inspected at a 1σ threshold of density level (that 

may vary depending on the software used) that corresponds typically to the molecular weight 
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of the complex in the study. If the complex consists of several interacting proteins the map 

should not have disconnected fragments of densities, they should be continuous as well as 

above the background noise. The concept of resolution is based on assessment of the minimal 

distance between two points in the image at which they can still be distinguished from one 

another. That criterion was formulated as the Rayleigh criterion: when the centre of a peak of 

a one-point image falls exactly on the first zero of the second point [108]. In electron 

crystallography, the signal-related Fourier components of the image are linked to the 

reflections on a regular lattice, the reciprocal lattice, and a resolution is defined by the 

frequencies of the reflections that are above background noise and therefore available for the 

Fourier synthesis [108]. This crystallographic resolution Rc and Raleigh's point-to-point 

resolution distance d are related by d = 0.61/Rc. How can this be done in an objective manner 

in single particle analysis? For several decades we have used the concept of Fourier shell 

correlation (see below). However, during the last few years due to the tremendous 

achievements of single particle cryo-EM several modified approaches have been suggested, 

and these methods of the resolution assessment became closer to the criteria used in X-ray 

crystallography. 

6.1 Fourier shell correlation and the Gold Standard approach 
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Figure 11. Examples of Fourier shell correlation (FSC) and resolution assessments. A.  FSC curves for 
two independent 3D structures that have been aligned and masked with a loose soft mask shown as 
a halo around the particle images. A resolution assessed at the 0.143 level is 3.4 Å.  B.  The second 
structure is rotated by 10° around the rotational axis.  While the overall shape still coincides well 
small details are no longer in the register. This is reflected in the FSC curve which falls rapidly, and 
the resolution is only 26.5 Å. This corresponds to the size of major domains within the structure. C.  
The structures are not aligned. FSC falls even more rapidly and indicates only the consistency in the 
overall sizes ~ 53 Å. D.  FSC between two aligned 3D structures with the same tight mask.  Good 
correlation at high frequencies indicates on the correspondence between masks imposed on the 
structures and therefore, a resolution is overestimated.  

In single-particle analysis there is no well-defined periodical pattern in the Fourier spectra. 

Common practice is to look for data consistency by splitting the data set randomly in half and 

comparing the two resulting averages (3D reconstructions). The resolution of a 3D map (a 
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size of the reliable details) can be assessed by Fourier shell correlation (FSC). Two Fourier 

transforms are calculated, and the corresponding spherical shells are compared using 

normalised cross-correlation as a function of spatial frequency (R) (radius in the Fourier 

space). The value of the cross-correlation is used to assess at which frequencies (or level of 

detail size) these two maps begin to differ. It important to note that the resolution implied by 

Fourier shell correlation (FSC) resolution depends on how the data were divided and which 

threshold of FSC has been used for the assessment. Previously it was considered if the 

correlation falls below the 0.5 threshold, then the details are different [109].  Currently, there 

are several criteria to determine the threshold used in FSC and nowadays the threshold of 

0.1432 has become increasingly popular, since it is closer to the measurements used in X-ray 

crystallography  [110-111]. Scheres and Chen proposed a “gold standard” method for 

evaluation of structure quality [111]. According to this approach, the initial dataset is divided 

into two halves from the very beginning, and two models are refined independently. This 

approach helps in the refinement of structures to avoid biasness towards the same model used 

for the alignment and determination of angles. Once the structures have been obtained, the 

FSC curves can be determined as usual. If one would like to compare the structure obtained 

with some other known structure it is critical that both structures should be aligned for a 

correct FSC estimation (Figure 11).  

 The main disadvantage of FSC is that for the resolution assessment it is required to divide 

data into two halves and that significantly reduces the data set used for the final 3D 

reconstruction. An alternative approach for the evaluation of the reliability of details in 3D 

reconstructions (using the complete data set) is the randomisation of phases (or the 

randomisation of both randomisation of phases and amplitudes) above the frequencies critical 

for the assessment of details.  The main concept of the approach is to modify an original data 

set of particle images in such a way that the amplitudes and phases beyond a certain chosen 

frequency are substituted by random values. This randomisation of phases (and sometimes 

amplitudes) at high frequencies is equivalent to the replacement of high frequency structural 

details by noise. The modified data set is subsequently subjected to the same image 

processing procedure used for the original experimental data.  The FSC between these two 

structures usually demonstrates a sharp drop at the same frequency where the substitution of 

phases and amplitudes has occurred [112]. Any non-zero FSC values beyond the resolution 

where the noise was introduced reflects a level of bias during image processing. It is 

important to note that data sets with high frequency noise contains little information about the 



 

33 
 

real structure compared to the original data set. This may mean that particle orientations will 

be less accurately defined and may affect the value of FSC at the frequencies close to the 

selected threshold chosen for the phase substitution. 3D masking may also affect the 

behaviour of the FSC curves at high frequencies. The FSC can be improved if the featureless 

regions are masked out. A tight mask with a very sharp boundary can produce strange 

artefacts in FSC such as increasing up to the highest frequency defined by the sampling of 

images (Nyquist frequency, https://www.gatan.com/nyquist-frequency) indicating that details 

in the structure are related to the mask but not to the sample structure. (Figure 11).  

6.2 Local estimation of resolution  

 

Figure 12. Local resolution of IMC-Arches-Stalk domain of T4SS [EMD-13767, 28]. A. The overall 
resolution derived from Fourier Shell Correlation (FSC). FSC curves show the correlation between 
two independently refined half-maps as a function of frequency; the various curves are colour coded 
as follows: without masking (blue), spherical mask (green), loose mask (red), tight mask (cyan) and 
corrected (purple). A cut-off 0.143 (blue line) was used for resolution estimation. B. The angular 
distribution of images used during refinement of the IMC-Arches-Stalk structure. C. The density map 
is coloured by local resolution (σ = 0.06). Local resolution was calculated using CryoSPARC and 
coloured as indicated in the table below the map. The values indicated are in Angstroms. [Figure 
adapted from Ref. 28] 
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Another approach that has become popular during the last years is resolution analysis of the 

3D density maps obtained from the whole data sets through computing the cross-correlation 

between neighbouring voxels in the Fourier domain. The ResMap algorithm [113] is based on 

assessing a local-sinusoidal model at r = 2d (where d is the voxel spacing in Å) that has the 

best fit within a small window of the image. As the small window moves through the map the 

Fourier neighbour correlation  computes the correlation between neighbouring voxels in the 

Fourier domain and the sinusoidal model  [113]. The likelihood ratio tests are conducted for 

all voxels in the volume. At a fixed wavelength equal to d, the standard likelihood-ratio test 

can detect whether a local-sinusoid is a meaningful part of the model approximation. The test 

requires an estimate of the noise variance, which can be evaluated from the region 

surrounding the structure.  The smallest r at which the likelihood-ratio test passes at a given 

p-value (probability) defines the resolution. The p-value is the measure of whether the 

outcome of the test is due to an actual effect or mere a random chance. Voxels that satisfy the 

test are assigned a resolution r, while those that fail will be examined at a larger r (bigger 

wavelength of the sinusoidal model). The algorithm produces a local resolution map with a 

resolution assigned to every voxel in the density map (Figure 12). 

 

7. Interpretation and fitting of atomic models 

Final verification of the quality of the obtained EM map, is done by analysis of the quality of 

fitting of known atomic structures, homologous atomic models, or results obtained by de 

novo tracing of the polypeptide chain into subunits or protein component domains. 

Previously, the resolution of most density maps produced by SPA was between 20 Å to 30 Å. 

At such a low resolution, large domains can be recognised according to their overall shape. 

This level of detail does not provide sufficient information relating to the interaction between 

proteins and possible active sites for example or the locations of specific domains in multi-

domain assemblies. The usage of antibodies and different methods of labelling specific 

domains, or construction from reasonable pseudo atomic models based on the EM maps 

themselves, however, have allowed their identification and positioning. Nonetheless, 

additional (often substantial) biochemical research is required to verify interpretations. In 

sub-nanometre resolution maps (6 Å to 9 Å range) densities corresponding to α-helices are 

characteristically cylindrical with an obvious “twist” that aids accurate fitting and the 

determination of overall structural handedness. At 4.5 Å, -strands in  sheets begin to 
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resolve while at 4 Å, densities corresponding to large amino acid side chains become visible. 

At resolutions of ~ 3.7 Å or higher, the de novo tracing of polypeptide chains can be 

performed using methods developed in X-ray crystallography [114-116]. The highest 

resolution achieved using cryo-EM has currently been reported as approaching 1.5Å where 

the atoms of individual amino-acid are visible [1-7].  

An efficient approach is when pseudo atomic models obtained by homology modelling are 

fitted into cryo-EM density maps to build atomic models of the individual proteins. The basic 

principle of the fitting procedure is assessment of the correlation between a density map and 

the model. The optimal cross correlation between the EM map and modelled densities of the 

atomic structure localises the best fit of the model. Such fitting is performed using the maps 

at a resolution greater than 3.7 Å. Depending on the software used the search can be 

accomplished in reciprocal or real space. The initial stage of the fitting procedure is carried 

out manually or automatically as a 'rigid-fit’ if a homologous model exists. These can be 

constructed using the programs Phyre, I-Tasser, RoseTTAfold and AlphaFOLD2 [117-120]. 

Regions of the protein that are naturally flexible and do not immediately fit into the electron 

density can  be adjusted manually in Chimera [121] or Coot [122] or in a more automated 

manner using FlexEM [115], IMODFIT [123] or other available packages. The flexibly fitted 

structure can be optimised and checked for clashes using Phenix [124]. This last step allows 

fixing the positions of secondary elements while simultaneously applying geometrical 

restraints. 

There are specific strategies that directly relate to the fitting of homology models [125] into 

EM density. EM-IMO (electron microscopy – iterative modular optimization) methods allow 

the refinement of protein models based on homology modelling [126]. These methods 

endeavours to build, modify and refine the local structures of protein models using cryo-EM 

maps as constraints. A multi-parameter refinement strategy that combines EM-IMO and 

molecular dynamics with the fine-tuning of parameters permits building backbone models for 

different conformations of proteins at the near- atomic-resolution. The use of EM-IMO 

demonstrates that homology modelling and multi-parametric refinement protocols offer a 

practical strategy for building atomic models based on medium- to high- resolution cryo-EM 

density maps [125]. Recent developments in single-particle electron cryo-electron 

microscopy now allow structures to be routinely solved at a resolution close to 3 Å. To 

facilitate the interpretation of EM reconstructions X-ray packages such as REFMAC have 

been modified for the optimal fitting of atomic models into EM maps [127]. External 
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structural information such as interaction between domains and links to their function can 

also enhance the reliability of the derived atomic models, stabilize refinement and reduce 

overfitting [116].  

Atomic models obtained as a result of flexible fitting should also be evaluated for their 

correctness and consistency. A Ramachandran plot [128] is routinely used to visualise the 

distribution of dihedral torsion angles. These angles of a polypeptide backbone are the most 

dominant local structural parameters that dictate protein folding. Geometrical constraints and 

steric clashes between atoms of the main chain and sidechains of each residue make some 

angles disallowed.  The assessment of atomic model quality generated using MolProbity 

[129], and their correlation with the EM density maps with which they are associated need to 

be provided in publications. 

 

8. Application of the 3D analysis to the T4SS. 

Here the focus will be on the analysis of a component of the T4SS structure that will be used 

as an example of 3D analysis. The structural model of the T4SS was constructed using four 

electron density maps obtained at resolutions ranging from 2.5 to 6.7 Å [28].  Heterogeneity 

analysis through classification of 1,300,000 particle images led to a selection of 566,815 

particles that were subjected to 3D homogeneous refinement in the absence of symmetry 

constraints. Тhе largest component of the T4SS that consisted of the IMC-Arches-Stalk 

complex was first tackled at medium resolution. As a result, the overall structure was 

obtained at a resolution of 6.18 Å (Figure 13, upper part of the workflow outlined in grey).  

From this map two flexible, multi-domain sub-complexes were selected for the further focus 

refinement involving one of the three “large bulks” of densities (the IMC protomers) located 

around the central part of the complex, and the central cone shape structure termed the Stalk 

(Figure 2D). The first task was the analysis of IMC density within the T4SS system based on 

the identification of a single IMC protomer (shown as a light-yellow oval on the left-hand 

side of Figure 13). This was achieved by computationally subtracting the remainder of the 

T4SS (highlighted in blue) from the experimental images resulting in the generation of a 3.7 

A map. When computed at lower contour levels (2sigma), substantial density for a further 

two IMC regions was revealed. A total of five IMC domains were ultimately identified that 

all appeared to be related by 6-fold symmetry although a sixth subunit was absent. 
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Figure 13. Workflow used to generate the IMC-Arches-Stalk map and the local-refined maps of the 
single IMC-protomer and Stalk. C1 symmetry was used to obtain a 6.18 Å resolution structure of the 
complex (EMD-13767). The initial steps used in processing are shown in the grey box. A model was 
built and used for symmetry analysis of the IMC-Arches, and Stalk. Parts of the structure (outlined 
with the yellow ovals) were used for refinements after signal subtraction indicated by blue shading. 
The IMC protomer (EMD-12933) was refined by signal subtraction to 3.75 Å resolution (outlined in 
the blue box on the left site).  The Stalk was refined to 3.71 Å in the absence of symmetry constraints 
(EMD-12709) and subsequently refined with C5 symmetry to a resolution of 3.28 Å (outlined in 
reddish-brown on the right of the figure, EMD-12968). The data processing steps (described in the 
blue rectangles) were done using CryoSPARC, while the grey rectangle indicates processing 
performed using RELION. [Figure adapted from Ref. 28] 
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The route for analysis of the Stalk is shown on the right side of Figure 13 (outlined in 

reddish-brown color). Here the Stalk domain is highlighted by a light-yellow oval where the 

region highlighted in blue within the complex was "subtracted” to enable its analysis. This 

resulted in a structure at a resolution of 3.71Å.  Usage of the 5-fold rotational symmetry aided 

refinement of the Stalk structure to 3.28 Å. The combination of these refined elements of 

T4SS and other elements such as the O and I layer of the OMCC provided important 

information on the structural organization of the complete complex (Figure 2D) [28].    

9. Conclusions 

Despite the impressive recent achievements within the EM field, there are still many 

challenges in areas such as the structural studies of large multi-protein complexes with low or 

no symmetry. Such complexes are typically flexible or can be unstable resulting in a need for 

better approaches to deal with sample heterogeneity, which invariably means that greater 

computer power will be required. Cryo-EM and methods of image analysis have become 

important and powerful tools in the analysis of these forms of bio complexes. Recent 

advances in the EM field have greatly contributed to unravelling the so far elusive structural 

and mechanistic details of Gram-negative bacterial secretion systems. This level of details 

has not only led to a better understanding of the mechanics underling the process of substrate 

secretion through the T4SS apparatus but has also provided a unique opportunity to visualize 

how this bacterial nano-machine is structurally organized within both the outer and inner-

membranes.  

New methods of data and structure classification, remarkable achievements in the prediction 

of protein atomic models combined with accomplishments in cryo-EM now provide great 

opportunities for accumulating valuable structural and mechanistic knowledge. These are 

required for the design and assembly of new bio complexes of medical relevance. Fitting of 

the predicted models into biologically active EM structures such as previously 

uncharacterised bacterial complexes will aid in the understanding of host-pathogen 

interactions and how they can be modulated to curb the spread of pathogenicity and antibiotic 

resistance. 
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