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Highlights
Putative human metastable epialleles
(MEs) can be identified by screening
for systemic interindividual variation sug-
gesting that stochastic DNA methylation
is established before germ layer
differentiation.

Putative human MEs appear to be influ-
enced but not determined by genetic
variation, and are associated with partic-
ular classes of retrotransposon, reminis-
First identified in isogenic mice, metastable epialleles (MEs) are loci where the ex-
tent of DNA methylation (DNAm) is variable between individuals but correlates
across tissues derived from different germ layers within a given individual. This
property, termed systemic interindividual variation (SIV), is attributed to stochastic
methylation establishment before germ layer differentiation. Evidence suggests
that some putative human MEs are sensitive to environmental exposures in early
development. In this review we introduce key concepts pertaining to human MEs,
describe methods used to identify MEs in humans, and review their genomic
features. We also highlight studies linking DNAm at putative human MEs to early
environmental exposures and postnatal (including disease) phenotypes.
cent of their murine counterparts.

Several putative human MEs have been
linked to both environmental exposures
in early development and to phenotype.
ME methylation has been associated
with outcomes relating to cancer, glu-
cose metabolism, and thyroid function
in later life.

Putative human MEs are therefore useful
for exploring how stochastic and envi-
ronmental effects in early development
can influence disease risk in later life via
epigenetic mechanisms.

TheME property of correlation across di-
verse tissue types allows associations
with phenotypes and exposures to be
studied in easily accessible tissues.

1London School of Hygiene and Tropical
Medicine, London WC1E 7HT, UK
2Department of Genetics, University of
Cambridge, Cambridge CB2 3EH, UK
3UCL Genetics Institute, University
College London, LondonWC1E 6BT, UK
4Medical Research Council (MRC) Unit
The Gambia at the London School of
Hygiene and Tropical Medicine, Fajara,
Banjul, The Gambia

*Correspondence:
g.hellenthal@ucl.ac.uk (G. Hellenthal)
and
matt.silver@lshtm.ac.uk (M.J. Silver).
Murine MEs
The term ME (see Glossary) was initially coined to refer to an allele that can exist in multiple epi-
genetic states independently of the underlying genomic sequence ('epialleles') and that can prob-
abilistically switch between these states ('metastable') [1]. Although this original definition refers to
a generic epigenetic state, in practice the term ME is applied specifically to DNAm states. Meth-
ylation at MEs can be consistent across most tissues, indicating that DNAm is established in the
early embryo.

The identification of MEs in inbredmice typically involves a search for loci exhibiting SIV of DNAm.
SIV is characterised by DNAm states that correlate across tissues derived from different germ
layers (endoderm, mesoderm, and ectoderm) within a given individual ('systemic'), and by
DNAm states that vary between individuals. This property is attributed to stochastic DNAmestab-
lishment in the early embryo before germ layer differentiation.

In mice, MEs have been identified at intracisternal A particle (IAP) elements, a class of long termi-
nal repeat (LTR) retrotransposon [2]. In the paradigm Agouti viable yellow (Avy) and Axinfused
(AxinFu) models, IAP methylation correlates with the expression of nearby genes, resulting in in-
bred littermates that show a spectrum of fur colours and degrees of tail kinking, respectively.
The distribution of offspring phenotypes can be shifted by supplementing the maternal diet with
methyl donors [3–5] and by exposing mothers to endocrine disruptors such as genistein and
bisphenol A (BPA) [6–8] or to toxins such as ethanol and phthalates [9,10] during early gestation.
Several reviews of murine MEs have been published [1,11,12].

Although MEs appear to be rare in mice [2,11], their ability to drive phenotypic variation in the
absence of genetic variation, including susceptibility to metabolic diseases in later life [6,12], has
motivated efforts to identify similar methylation states in humans. We provide an overview of the
key studies that have investigated putative human MEs. Specifically, we describe the methods
used to identify MEs in humans, and review evidence on their genomic context, sensitivity to the
early developmental environment, and associations with disease. The qualified term 'putative
humanME' is used to highlight the difficulty of discounting the influence of genetic variation in stud-
ies of genetically heterogeneous human subjects.
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Glossary
Correlated regions of systemic
interindividual variation (CoRSIVs):
genomic regions comprising multiple
CpGs that show correlated patterns of
DNA methylation (DNAm) indicative of
SIV.
Developmental origins of health and
disease (DOHaD): the hypothesis first
proposed by David Barker [106] and
colleagues that environmental
exposures experienced in early
development can influence disease risk
in later life.
Metastable epiallele (ME): a SIV locus
identified in inbred mice that is indicative
of stochastic methylation establishment
in the early embryo independently of
genetic variation.
Parent-of-origin-specific
methylation (PofOm): the methylation
state of an allele is dependent on the
parent it was inherited from.
Putative human metastable
epialleles: SIV loci identified in humans
for which there is evidence that
methylation variability is not determined
by genotype alone.
Systemic interindividual variation
(SIV): loci with this property show
DNAm variation between individuals but
correlation across tissues derived from
different germ layers of the same
individual.
Identifying putative human MEs
Systemic interindividual variation
The identification of putative humanMEs requires DNAm data from tissues, derived from different
germ layers from multiple individuals, in order to identify CpGs that show (i) high interindividual
variation of DNAm, and (ii) low variation across tissues within each individual (Figure 1). Such
loci exhibit SIV, in contrast to themajority of CpGswhich show lowmethylation variability between
individuals and/or high inter-tissue variation as a result of the celltype- and tissue-specificity of
DNAm [13,14]. The term 'systemic' refers to the fact that DNAm states correlate across a diverse
range of cell types and tissues soma-wide. Supporting this, inter-tissue correlations at SIV loci
have been confirmed in additional tissues beyond those used in SIV screens [15,16]. However,
some SIV loci do show celltype- and lineage-specific effects [17–20], a phenomenon that has
also been observed at the AxinFu murine ME where DNAm in tail differs from that in other tissues
[5]. It is important to note that,although the observation of SIV in inbredmice is sufficient to identify
a locus as being an ME, this is not the case in humans. Because of the genetic variation that is
present in any group of humans [excluding monozygotic (MZ) twin pairs], the variation in DNAm
observed at SIV loci may be due to differences in genotype rather than being genuine epialleles.

To date, six independent SIV screens have been carried out, each varying in CpG coverage,
sample size, number of tissues, and methylation profiling platform (summarised in Table 1). SIV
loci have been identified at both the single-CpG [20,21] and regional levels [22–24], the latter
being important because regions of contiguous correlated DNAm might be of greater functional
relevance [25] (Table 1). Although most SIV loci have been identified in adult samples, several loci
have been validated in foetal tissues [15], reinforcing the notion that their methylation states are
established in early life (Figure 1).

There is strikingly little overlap between SIV loci identified in independent studies to date (Figure 2).
This may be attributable in part to the different criteria used to define SIV loci (Table 1). Another
factor is the small sample size of each screen, as the average power to detect SIV-CpGs in a
multi-tissue dataset with four individuals has been estimated to be <60% [26]. For example, the
three-tissue SIV screen with the highest sample size to date of ten individuals [24] did not detect
sufficient interindividual variation at the well-established SIV locus VTRNA2-1 [22]. This locus has
TrendsTrends inin GeneticsGenetics

Figure 1. Model linking systemic interindividual variation (SIV) to the establishment of DNAmethylation (DNAm
in the pregastrulation embryo. SIV loci show methylation differences between individuals but correlate across tissues
derived from different germ layers of the same individual. Tissues are coloured by the methylation status of the SIV-CpG
This property suggests that variable DNAm states at SIV loci are established before germlayer differentiation (gastrulation)
and are thereafter mitotically inherited through gastrulation and tissue differentiation. Figure generated with BioRender.com
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Table 1. Summary of screens to detect systemic interindividual variation (SIV) in humansa

SIV screen Tissues Number of
samples

Ethnicity Platform Regional/CpG-level Method Number
of SIV loci
identified

Waterland et al.
[29]

PBLs (M),
hair follicles
(Ec)

8 Caucasian MSAM Regional Parallel two-tissue
cohybridisation screen in which
genomic DNA is digested with a
methylation-sensitive restriction
endonuclease and amplified by
PCR. SIV regions were defined
as genomic intervals with
concordant interindividual
differences in both tissues

13

Harris et al. [20] PBLs (M),
colonic
mucosa (En)

10 Not reported Illumina
450K

CpG SIV definition:(i)
One person has the highest
methylation value in each tissue
and another individual has the
lowest value in each tissue
(ii) The average interindividual
methylation range (across
tissues) is ≥0.1 and ≤0.6
(iii) The absolute Pearson
correlation between tissues is
≥0.63

1776

Silver et al. [22]b PBLs (M),
hair follicles
(Ec)

2 Caucasian WGBS Regional 200 bp genomic bins containing
at least six CpGs with a SIV
'index' (SIVI) of ≥20; the SIVI was
designed to maximise
interindividual variation that is
consistent across both tissues
([22] for further details)

109

van Baak et al.
[21]

Gall bladder
(En),
abdominal
aorta (M),
sciatic nerve
(Ec)

4 Not reported Illumina
450K

CpG SIV definition:(i)
Average interindividual variation
at least threefold greater than
average inter-tissue variation(ii)
Interindividual methylation
range ≥0.2

1042

Kessler et al.
[23]b

Small bowel
(En), PBLs
(M), hair
follicles (Ec)

5 Four Caucasian,
one Caucasian/
African American

WGBS Regional CpGs were first tested for SIV
and then clustered into regions
defined as having at least four
SIV-CpGs and at least twice as
many SIV-CpGs as
non-SIV-CpGs
SIV definition:(i)
Interindividual variation that is at
least threefold greater than
inter-tissue variation(ii)
Interindividual methylation range
≥0.15

687

Gunasekara et al.
[24]

Thyroid (En),
heart (M),
brain (Ec)

10 Caucasian WGBS Regional 100 bp genomic bins first
grouped into correlated regions
and then tested for SIV to
generate a set of CoRSIVs
SIV definition:(i)
Inter-tissue correlation ≥0.71(ii)
Interindividual methylation range
≥0.2

9926

aAbbreviations: CoRSIVs, correlated regions of systemic interindividual variation; Ec, ectoderm; En, endoderm; M, mesoderm; MSAM, methylation-specific amplification
microarray; WGBS, whole-genome bisulphite sequencing.
bThe samples used in the screens by Silver et al. [22] and Kessler et al. [23] partially overlap.
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Figure 2. Overlap between systemic interindividual variation (SIV) loci identified in independent studies. (A) Venn
diagram showing the overlap between SIV-CpG identified in two separate Illumina450K screens (van Baak et al. [21] and Harris
et al. [20]). (B) Venn diagram showing the overlap between SIV regions identified in three whole-genome bisulphite sequencing
(WGBS) screens (Silver et al. [22], Kessler et al. [23], and Gunasekara et al. [24]). Note that the total number of regions in each
screen may not exactly match those given in Table 1 owing to lifting over of genome assemblies.
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a bimodal methylation distribution, with ~25% of individuals (hypomethylated), in contrast to the
more common 50% methylation pattern. We note that the large interindividual differences
seen at this and similar loci make them strong candidates for SIV, but their population distri-
butions may make them difficult to detect in small samples. Interestingly, VTRNA2-1 and
>75% of SIV-CpGs reported in multiple screens from Table 1 exhibit high interindividual variation
in several larger (N >20) datasets that span different tissue types and ethnicities (but with only
one tissue sampled per dataset) [26]. This suggests that investigation of datasets with larger
sample sizes may result in more consistent SIV sets. Furthermore, it suggests that some SIV
loci exhibit high methylation variability in diverse ethnicities beyond the largely Caucasian datasets
that have been explored.

Influence of genotype
Genetic variation is a key driver of interindividual DNAm differences [27,28]. This raises the pos-
sibility that SIV measured in genetically heterogeneous human populations is driven by cross-
tissue genetic effects instead of by stochastic (alternatively described as random or probabilistic)
and/or environmental effects in the preimplantation embryo. Multiple approaches have been used to
assess the influence of genetics at SIV loci, including analysis of MZ twins, examination of methylation
quantitative trait locus/loci (mQTL) effects, and filtering of SNP-discordant ME regions.

MZ twin discordance and epigenetic 'supersimilarity'
MZ twin datasets can be leveraged to determine whether SIV loci show discordance betweenMZ
twins, indicative of methylation variation that is not linked to genetic variation, thereby positioning
these SIV loci as candidate MEs [20,29,30]. Of the SIV-CpGs reported by Harris et al., 14%
showed significant methylation differences (>10%) in peripheral blood leukocyte (PBL) samples
between MZ twins [20]. These SIV loci were found to be tenfold enriched in CpGs whose differ-
ential methylation between MZ twins was as high as that between unrelated individuals in another
study [31]. This effect was observed in both whole blood and adipose tissue, and these CpGs
also showed high variability in 2-year-olds and no evidence of epigenetic drift, in other words
no increase in methylation variance with age. This suggests that stochastic methylation at
these loci arises in early life and is maintained through childhood [31].
4 Trends in Genetics, Month 2023, Vol. xx, No. xx
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Although discordance in inbred mice may reflect DNAm differences that were established at any
time during development, an advantage of exploring MZ discordance is that it narrows down the
time frame of likely DNAm establishment to after MZ twinning events in the early embryo. By con-
trast, van Baak et al. focussed on loci that show excessive concordance in methylation between
MZ twins, which may be attributable to establishment before MZ twin cleavage in the very early
embryo [21]. Focussing on the top 10% most variable CpGs in adipose tissue samples, van
Baak et al. defined 'epigenetic supersimilarity' (ESS) CpGs [21] as loci that showmethylation con-
cordance between MZ twins that is more than twice that seen between dizygotic (DZ) cotwins.
Given that MZ twins share approximately double the amount of genetic sequence compared to
DZ twins, methylation similarity betweenMZ twins at ESSCpGs is higher thanwould be expected
from their shared genetic identity [21].

Overall, ~40% of the SIV loci identified by van Baak et al. overlapped with an ESS CpG [21], sug-
gesting not only that genetics plays a limited role at these SIV loci but also that these methylation
statesmay be established in the cleavage-stage embryo. The timing of methylation establishment
at these loci could be further refined using DNAm data from MZ twins that split at earlier and later
stages in development, for example, dichorionic MZ twins and monochorionic diamniotic MZ
twins [32].

Methylation quantitative trait loci
An alternative approach to investigating genetic influence at SIV-CpGs is to screen for mQTL.
SIV-CpGs are reported to be enriched for mQTL effects [21–24], in agreement with findings
that CpGs that covary between blood and brain (indicative of SIV) are also enriched for mQTL
[33,34]. However, there is some evidence that cis mQTL explain only a moderate proportion
(<25% in [23]) of methylation variance at SIV-CpGs [21,23], as well as at tissue- and ethnicity-
independent 'hypervariable' CpGs that show evidence of establishment in the early embryo
[26]. An exception is the SIV regions identified by Gunasekara et al.(Table 1) which were associ-
ated with large cis mQTL effects that explained a median of 76% methylation variance [24]. It is
unclear whether their approach, which first selects correlated genomic regions before testing
for SIV (Table 1), enriches for cis genetic effects compared to other methods for detecting SIV
loci that do not focus on regions with multiple highly correlated CpGs.

Definition of a 'putative human ME'
Together, these findings suggest that,although some reported SIV loci may be under strong
genetic control, others appear not to be. This has led to a proposal that the definition of an
ME in genetically heterogeneous human populations should be extended to include SIV loci
at which methylation is 'influenced but not determined' by genotype [23]. Apart from studies
using MZ twin data, comprehensive examination of long-range and multi-locus genetic effects
on methylation variability at SIV loci is challenging because of factors such as the limited SNP
coverage of genotype arrays and a lack of power to reliably estimate SNP effect sizes, includ-
ing trans associations. The relative influences of genetic, environmental, and stochastic
effects at SIV loci therefore remain unclear, and quantification of the genetic contribution
will require large-scale mQTL studies. We use the term 'putative human ME' to distinguish
these loci from murine MEs where the influence of genotype can be ruled out. In this review
we consider that SIV loci reported in any of the studies listed in Table 1 are candidates for pu-
tative human MEs.

Genomic context
Characterising genomic features that distinguish putative human MEs from other loci may give
insights into the molecular mechanisms that underpin the establishment of variable DNAm
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states in early development. Notable features that have been associated with putative human
MEs include proximal transposable elements (TEs) and regions of parent-of-origin-specific
methylation (PofOm).

Transposable elements
TEs are mobile genetic elements that comprise ~50% of mammalian genomes [35]. They can be
categorised into DNA transposons which transpose through a cut-and-paste mechanism, and
retrotransposons which copy via an RNA intermediate [36]. When activated, TEs can harm the
host though several mechanisms, including genome damage via transposition [37–39] and acti-
vation of aberrant expression of nearby genes [39–41]. TEs are epigenetically silenced in early de-
velopment to prevent their activation during the global wave of demethylation that occurs shortly
after fertilisation [40,42–46]. Krüppel associated box (KRAB) zinc-finger proteins (KZFPs) silence
TEs in embryonic stem cells by recruiting the cofactor KAP1 (KRAB-associated protein) which
acts as a scaffold for proteins that deposit DNAm and histone H3 lysine 9 trimethylation
(H3K9me3) marks [47,48].

Murine MEs have been associated with IAPs [2], an evolutionarily young class of rodent-specific
endogenous retroviruses (ERVs) – retrotransposons that contain LTRs. The evidence suggests
that stochastic methylation establishment at murine MEs may result from competition between
KZFP/KAP1 binding that promotes DNAm and CTCF (CCCTC-binding factor) and ZF (zinc finger)
CxxC domain-containing proteins that prevent DNAm [49,50].

Although IAPs are not present in the human genome, putative human MEs are enriched for prox-
imity to ERVs [23,49]. Putative humanMEs are also enriched for proximity to non-LTR-containing
long interspersed nuclear elements (LINEs) [22] and have been associated with primate-specific
Alu-type short interspersed nuclear elements (SINEs) [51,52]. Several studies have also reported
an enrichment of putative MEs in subtelomeric regions [23,26] which are known to contain many
repeat sequences and TEs.

Putative human MEs are enriched for proximal KAP1 and CTCF binding sites [23], suggesting
that mechanisms driving methylation variability at these loci may in some cases be similar to
those at murine MEs. The association with CTCF is also noteworthy because it has been linked
to stochastic switching between epigenetic states in humans [53].

Parent-of-origin specific methylation
Putative human MEs are also enriched in regions with evidence of PofOm, at which methylation
differs between the maternal and the paternally inherited alleles [54,55]. PofOm can arise from
differential DNAm between gametes that is maintained during epigenetic reprogramming events
in the early embryo. In accord, putative human MEs are enriched for regions that are
hypermethylated in the oocyte relative to sperm (termed oocyte germline differentially methylated
regions, DMRs) [54]. Several putative MEs also overlap with imprinted genes [21,54], at which
PofOm regulates monoallelic expression of the maternal or paternal allele in the offspring. Meth-
ylation variability at imprinted genes is noteworthy because of the established role of imprinted
genes in foetal growth and development [56,57].

These associations raise the possibility that DNAm variation at some putative human MEs is
caused by incomplete maintenance of PofOm in the early embryo, whereby stochastic and/
or environmental effects could cause a gain of methylation at the normally unmethylated allele
and/or loss of methylation at the methylated allele. Methylation variability could also arise due to
the variable establishment of gamete-specific DNAm states that evade reprogramming at
6 Trends in Genetics, Month 2023, Vol. xx, No. xx
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fertilisation [58]. The environmental lability of regions of PofOm is further supported by growing
evidence that the early developmental nutritional environment can influence DNAm at imprinted
genes [59–63].

The link between putative human MEs and PofOm is strengthened by their enrichment for
proximity to binding sites for ZFP57 [23], a KZFP that maintains PofOm in early embryogen-
esis [64]. Individuals homozygous for a ZFP57 mutation that is associated with dysregulation
of imprinting maintenance showed an altered methylation status at putative MEs compared
to wild-type individuals [23], indicating that ZFP57 may directly influence putative ME meth-
ylation. Interestingly, ZFP57 promoter methylation is associated with season of conception
(SoC) in Gambian 2-year-olds [22] and with periconceptional and gestational maternal
plasma folate during the late stages of pregnancy [65–67], suggesting that ZFP57 DNAm dif-
ferences associated with the early nutritional environment may be linked to DNAm changes
at ZFP57 targets [54]. In addition, methylation variance at ZFP57 has been linked to a prox-
imal genetic variant [21], and allele-specific methylation at this locus has been attributed to
an upstream polymorphic CTCF binding site [21,68], suggesting that ZPF57 may mediate
both genetic and environmental effects on DNAm at regions of PofOm and at some putative
human MEs [21].

Influence of the environment
Examination of the potential influence of the early developmental environment on putative human
MEs has involved observational studies of cohorts subjected to naturally occurring exposures
[21,23,29,30,54,69], retrospective studies of cohorts subject to gestational exposures such
as famine [70,71] or smoking [15], randomised supplementation trials [72,73], and in vitro ap-
proaches [70,74,75]. Although environmental lability is not a prerequisite for metastability [76],
evidence of sensitivity to the early environment supports the notion that DNAm variability at
putative human MEs is established in early development and is not explained by genetic
variation alone.

Periconceptional exposures
DNAm states established in the periconceptional period may show heightened sensitivity to en-
vironmental perturbations through the extensive reprogramming of the epigenome and rapid
rates of DNA synthesis that occur after fertilisation [77]. A natural experiment in rural Gambia pro-
vides an interesting setting to investigate the effects of periconceptional environment on methyl-
ation at putative human MEs. In this region of Gambia, a community of subsistence farmers
experiences differences in environmental exposures, including diet and infection levels, between
the rainy ('hungry') and dry ('harvest') seasons [78]. Methylation levels at putative MEs are higher
in individuals conceived during the rainy season versus the dry season, a finding that has been
robustly replicated across several studies and cohorts [22,29,30,69]. This effect is observed in
both blood and hair follicle tissues [22,30], suggesting that perturbed DNAm states in the early
embryo can be maintained in different cell types.

Sensitivity to the periconceptional environment is further supported by a study that investigated
the influence of reproductive technologies (ART) on MEmethylation [74]. Estill et al. [74] examined
DNAm states at 22 putative MEs covered by the Illumina 450K array in bloodspots of newborns
conceived naturally and through different ART methods, including intrauterine insemination (IUI)
and intracytoplasmic sperm injection (ICSI) with fresh or frozen embryos. The majority of putative
MEs (19/22) were differentially methylated between individuals conceived in at least one
conception-type comparison [74]. However, the association with ART was not replicated in re-
cent epigenome-wide association studies (EWAS) with large sample sizes [79,80].
Trends in Genetics, Month 2023, Vol. xx, No. xx 7
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Later gestation and postnatal exposures
Methylation states at putative human MEs have also been studied in individuals exposed to ma-
ternal gestational famine lasting at least 7 months in rural Bangladesh [71]. Although this targeted
study was relatively small, threeof 16 putative MEs (PAX8, PRDM-9, and ZFP57), that were pre-
viously associatedwith SoC in Gambians, were also associatedwith exposure to gestational fam-
ine. Other studies have found associations between several putative ME loci and maternal
gestational diabetes (CYP2E1) [81], maternal tobacco smoke exposure (PAX8) [15], and prenatal
exposure to alcohol (POMC) [82], antidepressants (CYP2E1) [83], or perfluoroalkyl substances
(ZFP57) [84]. Although the exact timing of the exposure effect on DNAm is not pinpointed in
these studies, there is evidence that MEs are sensitive to maternal folic acid supplementation at
a gestational age of 16 weeks (mid-gestation) (VTRNA2-1, PAX8) [85], suggesting that environ-
mental sensitivity at MEs may extend beyond the periconceptional period.

Several putative MEs have also been associated with postnatal environmental exposures includ-
ing smoking (POMC, VTRNA2-1) [86,87], psychosocial deprivation in childhood (CYP2E1) [88],
and exposure to pesticides (VTRNA2-1) [89], air pollution (VTRNA2-1) [90], ortoxic aromatics
(CYPE21) [91,92]. Because these studies were carried out in a single tissue type (largely
blood), the extent to which these effects are tissue-specific is unknown.

Parental and germline exposures
Exposures before conception may also influence methylation patterns in offspring if environmen-
tally sensitive DNAm states established in gametes are able to evade the global epigenetic repro-
gramming that occurs after fertilisation [93,94]. As an example, the putative ME VTRNA2-1 is an
imprinted gene that is usually hypomethylated on the paternal allele and variably methylated on
the maternal allele [19,58]. These methylation states show evidence of establishment in the oo-
cyte, and VTRNA2-1methylation on the maternal allele in offspring has been associated with ma-
ternal age and alcohol consumption during the oocyte maturation period [58], suggesting that
environmentally labile methylation states in the oocyte may be maintained in the zygote.

A further example is provided by a putative ME at the POMC (proopiomelanocortin) gene where
DNAm states measured in offspring correlated with those in paternal somatic cells [51]. However,
putative human MEs including POMC show marked hypomethylation in sperm [23,95], suggest-
ing that paternal transmission of this epigenetic state does not occur via DNAm. This raises the
possibility that other factors such as sperm RNAs [96] and histone modifications or chromatin ar-
chitecture [97] may mediate any paternal inheritance of DNAm status at POMC.

Nutritional exposures and 1-carbon metabolism
MEmethylation has been associated with nutritional biomarkers involved in 1-carbon (1C) metab-
olism. 1C metabolic pathways use diet-derived methyl donors such as folate, choline, and beta-
ine, and cofactors such as vitamins B2, B6, and B12, to synthesise S-adenosyl methionine
(SAM). DNA methyltransferases (DNMTs) transfer the methyl group from SAM to cytosine to es-
tablish and maintain DNAm [98,99].

Blood plasma concentrations of key 1C metabolism biomarkers measured in pregnant Gambian
women have been back-extrapolated to the time of conception to give an estimate of
periconceptional 1C metabolism biomarker levels [30]. The concentrations of several 1C bio-
markers were found to be higher in the rainy season, and were predictive of DNAm at several pu-
tative MEs [30,51,69,100]. Methylation status at the putative ME PAX8 is altered in offspring born
to mothers who were periconceptionally supplemented with micronutrients that provide methyl
groups and cofactors involved in 1C pathways [72], and PAX8 methylation has also been
8 Trends in Genetics, Month 2023, Vol. xx, No. xx
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associated with maternal periconceptional levels of amino acids linked to 1C metabolism
[18,101,102]. These findings suggest that 1Cmetabolites may contribute to Gambian SoC asso-
ciations at putative human MEs. 1C metabolism may also underpin the association between to-
bacco smoke exposure and ME methylation [15] because tobacco exposure has been
associated with reduced 1C metabolism micronutrients (folate, B12, and B6) [15,103].

The link to 1Cmetabolism aligns with similar findings in Avymousemodels in which offspring born
to dams supplemented with B12, folate, and choline during pregnancy show altered methylation
profiles at the Agouti IAP [104,105]. However, the 1Cmetabolic pathway is complex, making elu-
cidation of the influence of specific 1C metabolites on DNAm at putative MEs in human popula-
tions challenging. These effects are also likely to be context-specific, as evidenced by the
finding from a Gambian study of an interaction between SoC and maternal 1C biomarkers that
influence offspring ME methylation [69].

We note that several studies reporting associations with environmental exposures employed
small sample sizes, particularly where genome-wide DNAm data were analysed, reinforcing the
need for replication in independent studies.

MEs and the developmental origins of health and disease
The developmental origins of health and disease (DOHaD) hypothesis posits that environ-
mental exposures in early life can impact on health outcomes in later life [106]. Barker and col-
leagues formulated this hypothesis based on observations that low birth weight is associated
with adverse health outcomes in adults, such as high blood pressure and cardiovascular disease
[106–109]. The evidence suggests that epigenetic mechanisms may underpin some DOHaD ob-
servations [105,110]. For example, maternal and foetal exposures during gestation, such as to
dietary folate [60,66,85,111], famine [59,79,112–115], alcohol [116–118], aflatoxins [119], and
smoking [120–123], have been associated with offspring DNAm and, in several cases, DNAm
changes induced by such exposures were associated with offspring phenotype [112,114,117].

Although environmental lability it not a defining feature of MEs, putative human MEs are particularly
useful for exploring DOHaD effects because the timing of the establishment of DNAm states is pre-
sumed to be limited to the pregastrulation embryo. Furthermore, DNAm states can be easily studied
in accessible tissues (e.g., blood, saliva). This is because DNAm states are consistent across tissues
within an individual, allowing population-scale sampling of DNAm at human MEs.

ME methylation and disease
Prospective studies in longitudinal cohorts have indicated that methylation at putative human MEs
in accessible tissues such as blood predicts health outcomes including cancer (VTRNA2-1,
SPATC1L, DUSP22, ZFP57, ORL13, HCG4B, and PF4) [21], body mass index (BMI; VTRNA2-
1) [124], bodyweight (MEST) [75], and thyroid function (PAX8) [18] in later life. Several well-
characterised putative human MEs show evidence of stability with age in longitudinal cohorts,
supporting their potential utility in disease prognosis. For example, DNAm at VTRNA2-1 is stable
over a 10 year period from childhood to early adolescence [22] and over 25 years in adulthood
[125], POMC DNAm is stable from birth to at least 12 years of age [51,126], and PAX8 DNAm is
stable from ages 7 to 17 years [18]. These three putative human MEs are associated with multiple
health-related phenotypes, despite being under-represented on the commonly used Illumina
methylation arrays (Table 2).

DNAm at the putative MEs CYP2E1 and DUSP22 (dual specificity phosphatase 22) measured in
four immune cell blood types is associated with active and erosive rheumatoid arthritis,
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Table 2. Examples of putative human MEs at which DNAmethylation variation has been associated with both
phenotypes and early developmental exposures.a

Putative
human ME

Phenotype/exposure Tissue Nb Refs

VTRNA2-1
(alias
nc886)

Phenotype Childhood BMI Whole blood 442 [134]

Glucose and insulin
levels in adolescence,
adiposity in childhood

Whole blood 1654 [125]

Lung cancer, mature B
cell neoplasm

Whole blood 351c, 435c [21]

Preterm birth Whole blood 92 [148]

HCC and tumour
aggressiveness

HCC tumour and normal
tissues

92c [149]

Breast cancer Whole blood 1738 [150]

Exposure Gambian
season-of-conception

Whole blood, hair follicle 120 [22]

Gestational folate
supplementation

Saliva 111 [85]

Maternal age and
maternal
socioeconomic status

Whole blood 1646c,
1594c

[125]

Maternal age and
preconceptual alcohol
use

Whole blood 1132c [58]

POMC Phenotype BMI and obesity risk MSH-positive neurons,
whole blood

82c, 228c [51]

Adolescent depressive
disorder

Whole blood 30c [151]

Exposure Gambian season of
conception and
maternal 1C
metabolites

MSH-positive neurons,
whole blood

144c [51]

Prenatal alcohol
exposure

Saliva 107 malesc,
87 femalesc

[82]

PAX8 Phenotype Child thyroid volume
and thyroid hormone
levels

Whole blood 118c [18]

Sleep duration Saliva 28c [152]

Sperm concentration,
morphology, motility

Sperm 65c [153]

Exposure Gambian season of
conception

Whole blood 50c, 120 [22,29]

Maternal
periconceptional amino
acid levels

303c [18]

Gestational famine Whole blood 61c [71]

Gestational folate
supplementation

Saliva 111 [85]

Maternal smoking Cord blood 236c [15]

CYP2E1 Phenotype Autism Placenta 41 [142]

Active rheumatoid
arthritis

CD14+ monocytes, CD4+

naïve T cells
58 [127]

Parkinson’s disease Brain 24 [154]
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Table 2. (continued)

Putative
human ME

Phenotype/exposure Tissue Nb Refs

Exposure Maternal gestational
diabetes

Cord blood 3677 [81]

Psychosocial
deprivation in early
childhood

Buccal cells 65 [88]

Prenatal antidepressant
exposure

Cord blood white blood cells 43 [83]

DUSP22 Phenotype Schizophrenia Whole blood, PFC 214 [70]

Erosive rheumatoid
arthritis

CD14+ monocytes, CD19+ B
cells, CD4+ naïve T cells,
CD4+ memory T cells

58, 57, 56,
58

[127]

Alzheimer’s disease Hippocampus 20 [155]

Mature B cell neoplasm,
urothelial cell carcinoma

Whole blood 862c [21]

Exposure Gestational famine Whole blood, PFC 79 [70]

ART NA 137c [74]

SPATC1L Phenotype Colorectal cancer,
prostate cancer

Whole blood 834c,
863c

[21]

BMI z-score across
childhood

Placenta 426c [140]

Post-traumatic stress
disorder

Blood 554 [156]

Exposure ART NA 137c [74]

MEST Phenotype BMI at age 1 year, and
longitudinal weight gain

Cord blood 408 [75]

Adult obesity Blood 74c [157]

BMI z-score across
childhood

Placenta 426c [140]

Birthweight Placenta 211c [141]

Exposure Bisphenol-A Cord blood 408 [141]

Maternal gestational
diabetes

Cord blood 211c [157]

Periconceptional
micronutrient
supplementation

Cord blood 58c [73]

PLAGL1 Phenotype Estimated foetal weight
and weight at age 1 year

Cord blood 254c [158]

Sperm concentration
morphology motility

Sperm 65c [153]

Exposure Maternal alcohol,
vitamin B2, vitamin B12

Cord blood 254c [158]

Maternal erythrocyte
folate levels

Cord blood 438c [61]

ZFP57 Phenotype Colorectal cancer Whole blood 834c [21]

Exposure Gambian season of
conception

Whole blood 120 [22]

Gestational famine Whole blood 61c [71]

(continued on next page)
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Table 2. (continued)

Putative
human ME

Phenotype/exposure Tissue Nb Refs

Gestational folate
supplementation

CD4+ and antigen-presenting
cells from cord blood

23 [66]

Prenatal perfluoroalkyl
substance exposure

Cord blood 380c [84]

aAbbreviations:1C, 1-carbon; ART, artificial reproductive technology; BMI, body mass index; CYP2E1, cytochrome P450 2E1;
DUSP22, dual specificity protein phosphatase 22; HCC, hepatocellular carcinoma;MEST,mesoderm-specific transcript; MSH,
melanocyte-stimulating hormone, NA, not available; PAX8, paired box8; PFC, prefrontal cortex; PLAGL1, pleomorphic ade-
noma gene-like 1;POMC, proopiomelanocortin;SPATC1L, spermatogenesis and centriole associated 1-like; VTRNA2-1, Vault
RNA2-1; ZFP57, zinc finger protein 57.
bN refers to the total number of individuals (some values are combined across sample categories; e.g., for case–control studies).
cIndicates studies that used a candidate gene approach; the other studies employed epigenome-wide association studies
(EWAS).
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respectively [127]. Furthermore, DUSP22methylation measured in whole blood and brain tissue is
associated with schizophrenia risk [70], and VTRNA2-1 methylation was the most significant re-
ported DMR associated with orofacial clefts [128]. However, despite the potential early establish-
ment of ME methylation states, it should be noted that cross-sectional EWAS are prone to
confounding and there is the potential for reverse causation effects, making it difficult to infer causal
relationships [129]. We note that some EWAS assume that DNAm has a continuous distribution,
leading to the possibility of false findings in cases where methylation values are multimodal [130].

MEs as mediators of environmental influences on phenotype
Methylation at several MEs has been associated with gene expression in various cell/tissue types
[21,52,75,123,125], and methylation at many putative MEs has been associated with both
environmental exposures and phenotypes, using either a candidate gene or EWAS approach
(see Table 2 for examples). Although many of these associations are from studies with relatively
small sample sizes that require replication, some patterns are beginning to emerge. In particular,
joint analysis of exposure, methylation, expression, and phenotype data is beginning to elucidate
potential causal pathways through which putative human MEs could mediate the effects of envi-
ronmental exposures on phenotypes.

For example, hypomethylation at a putative ME in theMEST gene measured in cord blood is asso-
ciated with gestational exposure to BPA, a chemical agent found in polycarbonate plastics, and
with BMI at ages 1 and 6 years among the same individuals [75]. Notably,MEST expression is up-
regulated upon BPA exposure of humanmesenchymal stem cells in vitro, resulting in increased ad-
ipogenesis [75]. These findings indicate that hypomethylation ofMEST in response to prenatal BPA
exposure may increase obesity risk in later life by increasing MEST expression.

A second example is POMC, a key component of the satiety-regulating melanocortin signalling
pathway [131]. Hypermethylation of a variably methylated region at the POMC intron2/exon3
boundary in blood is associated with conception in the rainy ('hungry') season in Gambian chil-
dren and with increased obesity risk and BMI in European children and adults [51,132]. POMC
methylation is associated with BMI in melanocyte-stimulating hormone (MSH)-positive neurons
from the hypothalamus that are involved in regulating the satiety response [51]. Taken together
with evidence that hypermethylation of the intron2/exon3 boundary is associated with de-
creased POMC expression [132], these findings suggest that hypermethylation of POMC in
early development may increase obesity risk by decreasing POMC gene expression in MSH-
positive neurons [51].
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PAX8, a transcription factor that regulates thyroid cell differentiation and function, provides another
notable example [133]. PAX8 hypermethylation is observed in Gambian infants and 2-year-old
children conceived during the rainy season [22,29], and predicts decreased thyroid volume and
decreased levels of the thyroid hormone free thyroxine (T4) in mid-childhood [18]. Lower free T4
levels were in turn associated with increased adiposity and bone mineral density in the same co-
hort. This raises the possibility that PAX8 hypermethylation in early development may increase
the propensity to develop metabolic disorders in later life via downregulation of thyroid hormones,
although a direct causal relationship could not be established in this study [18].

Finally, atVTRNA2-1, methylation is lower inGambian individuals conceivedduring the dry relative to the
rainy season [22]. Lowermethylation at this locus has also been associatedwith increasedBMI and ad-
iposity in childhood [134], as well as with increased expression of VTRNA2-1RNA in European cohorts
[125]. These RNAs can in turn predict glucose levels in childhood and adulthood, thus providing a plau-
sible causal pathway through which VTRNA2-1 methylation might influence metabolism in later life
[125]. VTRNA2-1 is also a putative tumour suppressor that inhibits protein kinase RNA-activated
(PKR) [123], and increased methylation of this small non-coding RNA gene is associated with
decreased survival in patients with leukaemia [135], lung [136], or oesophageal [137] cancers.

Taken together, these studies position putative human MEs as interesting candidates for explor-
ing epigenetic mechanisms linking the early developmental environment to disease risk in later life
[113]. It is possible that some MEs may exert their effects on gene expression in early develop-
ment (rather than in postnatal tissues) and influence later disease risk by altering developmental
trajectories. The study of MEmethylation in the placenta may offer particular insights in this regard
because of its role in regulating foetal growth and development [138,139]. A study analysing the
association between placental DNAm and BMI identified several MEs annotated to growth and
metabolism genes [140]. Placental methylation status of MEs has also been linked to offspring
weight and autism spectrum disorder [141,142].

Developmental plasticity as an adaptive mechanism
The association between several environmentally sensitiveMEs and lowbirth weight (Table 2) aligns
with the thrifty phenotype hypothesis first proposed by Hales and Barker [143]. This postulates that
reduced foetal growth and altered metabolism can be a survival strategy for offspring exposed to
high levels of nutritional deprivation in early life by focussing on the growth of key organs instead
of on tissues such as pancreas and muscle [143,144]. However, when offspring transition from
an energy-poor to an energy-rich environment, these adaptations (e.g., reduced insulin secretion)
will be maladaptive, rendering individuals at increased risk of developing metabolic disorders [143].

By contrast, the predictive adaptive response (PAR) hypothesis suggests that developmental
plasticity in utero primes the developing embryo to its future environment, without necessarily
having an immediate effect on phenotype (e.g., reduced foetal growth) in early life [145,146].
In cases where the postnatal environment is different from the anticipated environment, this
'prediction' will be incorrect and result in increased disease risk.

The association between the putative MEs, POMC and PAX8, and metabolic outcomes in later
life may reflect PAR, whereby offspring born to mothers with compromised nutritional status
would be epigenetically programmed to conserve energy and store fat in later life despite showing
no clear phenotypes at birth.

It has been suggested that these adaptive mechanismsmay be evolutionarily maintained; in other
words, that epigenetic variability at environmentally responsive loci is under genetic control. This
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Outstanding questions
The true prevalence of putative human
MEs in the human genome is unknown
because approaches to identify them
have relied on rare and difficult-to-
acquire multi-tissue datasets with
small sample sizes.

The relative influences of genetic,
stochastic, and environmental effects on
DNAm at putative human MEs, and the
molecular mechanisms underpinning
their establishment, remain to be fully
elucidated.

Further investigation of the causal
nature of links between ME methyla-
tion and later health outcomes is
required.

The extent to which putative human
MEs are selectively maintained in the
human genome is unknown.
would provide a heritable mechanism to allow phenotypic plasticity in response to rapidly chang-
ing local environments [147]. The putative MEs ZFP57 and PAX8 offer tentative evidence of this
phenomenon, in that they appear to be environmentally responsive, with DNAm variance associ-
ated with a specific genetic variant [18,21].

Concluding remarks and future perspectives
Putative humanMEs exhibit interindividual variation that is not completely explained by genotype.
They also exhibit consistent methylation across tissues, which (i) suggests establishment in the
early embryo before tissue differentiation, and (ii) indicates that DNAm levels measured in acces-
sible tissues are likely to reflect those in inaccessible, but phenotypically potentially more relevant,
tissues. These characteristics, together with reported associations between ME methylation,
early environmental exposures, and postnatal disease traits, make them interesting candidates
for studying the epigenetic mechanisms that underpin the DOHaD.

The study of human MEs is in its infancy, and many open questions remain. Larger cohorts
with DNAm data spanning tissues derived from multiple germ layers and from diverse ances-
tries will provide a more definitive list of putative human MEs and will give insight into the extent
to which these features are conserved in the human genome. The molecular mechanisms
driving ME establishment in early development (in humans and in other organisms) are un-
clear, and causal pathways linking ME methylation to diverse exposures and phenotypic traits
remain to be elucidated. This will require integration of multiomic data from longitudinal epide-
miological cohorts coupled with in vitro and in vivo functional studies using cell and animal
models, although we note that many putative human MEs do not align with those reported
in rodents.

Finally, more detailed analysis of the influence of genetic variation will be necessary to fully eluci-
date the factors driving DNAm variation at MEs. Further insights may be gained from analysis of
long-read sequencing data to map repetitive regions of the genome that are implicated in epige-
netic silencing of TEs in early development (see Outstanding questions). Progress on all these
fronts will ultimately advance our understanding of the relevance of this intriguing epigenetic phe-
nomenon to human health and disease.
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