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ABSTRACT
Modern portfolio optimization is centered around creating a low-
risk portfolio with extensive asset diversification. Following the
seminal work of Markowitz, optimal asset allocation can be com-
puted using a constrained optimization model based on empirical
covariance. However, covariance is typically estimated from his-
torical lookback observations, and it is prone to noise and may
inadequately represent future market behavior. As a remedy, in-
formation filtering networks from network science can be used to
mitigate the noise in empirical covariance estimation, and there-
fore, can bring added value to the portfolio construction process. In
this paper, we propose the use of the Statistically Robust Informa-
tion Filtering Network (SR-IFN) which leverages the bootstrapping
techniques to eliminate unnecessary edges during the network
formation and enhances the network’s noise reduction capability
further. We apply SR-IFN to index component stock pools in the
US, UK, and China to assess its effectiveness. The SR-IFN network
is partially disconnected with isolated nodes representing lesser-
correlated assets, facilitating the selection of peripheral, diversified
and higher-performing portfolios. Further optimization of perfor-
mance can be achieved by inversely proportioning asset weights to
their centrality based on the resultant network.
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1 INTRODUCTION
The optimization of financial portfolios has long been a focal point
of investigation within the domains of finance and quantitative
trading. The first mathematical formulation of the problem follows
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the seminal works of Markowitz in the 1950s [15, 27]. Following
Markowitz, an optimal portfolio that minimizes variance for a given
expected return is to be found by solving a quadratic optimization
problem under linear constraint, and the closed-form solutions form
the efficient frontier. The minimum variance portfolio (MVP) lies on
the efficient frontier line minimizing the variance, and it is widely
regarded and practiced by academia and industry as the most classic
solution to the optimization problem. The MVP solution is simple
and elegant that is contingent solely on the covariance of assets’
historical return, independent of the mean. The covariance captures
the volatility of a single asset and the interdependencies (correla-
tion) between them. However, empirical covariance is notably hard
to estimate, particularly within multivariate financial time series
where the signal-to-noise ratio is exceptionally low. Consequently,
minor perturbations can trigger significant deviations in portfolio
construction. Additionally, financial markets are frequently sub-
ject to shifts and jumps, rendering historical empirical covariance
an unsatisfactory predictor of future trends, and the prediction of
future covariance a challenging task. These factors unfortunately
invalidate the mathematical optimality of the MVP.

Recent progress in network science, especially in network filter-
ing, has provided alternatives to the traditional covariance-based
methodologies. The covariance and correlation matrices can be
interpreted as a graph/network and can be condensed to essential
information under certain graphical constraints, such as the mini-
mum spanning tree (MST). The resulting filtered matrix typically
exhibits sparsity with many structural zeroes, which correspond to
statistically insignificant network components, thereby enhancing
the matrix’s robustness and generality. The resulting sparse net-
work has been demonstrated to be useful for visualization and to
aptly reflect market dynamics [14, 20]. Consequently, investment
decisions, including portfolio selection and optimization, can be
based on this network. For instance, the positive-defined sparse
inverse covariance matrix from Triangulated Maximally Filtered
Graph (TMFG) can directly substitute the original empirical inverse
covariance matrix in the Markowitz model, yielding substantial
improvements [24, 30]. Other topological information, such as cen-
trality and peripherality, and community clusters, can be used as
criteria for stock selection and portfolio weight optimization.

Information Filtering Networks (IFN) represents a robust and
computationally efficient network filtering technique. However,
due to certain topological constraints necessary for network con-
struction, superfluous edges need to be introduced, which leads to
slightly increasing the amount of noise. This paper presents a novel
method, the Statistically Robust Information Filtering Network (SR-
IFN), which employs a statistically robust bootstrapping approach
to mitigate the noise introduced during the IFN’s building pipeline.
In this method, the underlying multivariate time series is boot-
strapped multiple times and transformed into sparse sub-networks.
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These sub-networks are then ensembled, and only the key struc-
tures that occur more frequently than a predefined threshold are
retained. This strategy prunes unnecessary components, increasing
the informativeness of the remaining edges and maximizing the
likelihood of the modeled system. This enhanced sparse network
is then used for portfolio selection based on connectivity, as a pe-
ripheral portfolio is more diverse and entails lower risk. Further
optimization can be carried out using the centrality of assets as a
measure for weight calculation. We conduct experiments utilizing
the component stocks of NASDAQ, FTSE, and HS300, representa-
tive of the equity markets in the US, UK, and China, respectively,
and we include both scenarios with and without 20 basis point
transaction costs.

The remainder of this paper is structured as follows. Section 2
presents a review of existing literature on network-based portfolio
and information filtering networks. Then, a detailed explanation
of SR-IFN is introduced in Section 3.1, and the associated methods
for portfolio selection and optimization are included in Section 3.3.
Implementation details are shown in Section 4. Final results for
selection and optimization are showcased and discussed in Section
5.1 and Section 5.2.

2 LITERATURE
2.1 Network-based Portfolio Optimization
Traditional methods of portfolio optimization largely rely on em-
pirical covariance and correlation, which predominantly capture
linear dependencies among assets. Nevertheless, financial market
networks synthesized from historical data, tend to encapsulate the
entire system’s complexity, including non-linearities, and often
yield superior outcomes in terms of portfolio construction. Pozzi et
al. [22] in 2013 found that risk is not uniformly distributed across
the market, with peripheral assets of a financial network demon-
strating greater success in diversification and leading to superior
performance. This finding has subsequently led research to focus
on quantifying peripherality and constructing highly diversified,
low-risk portfolios. To quantify peripherality, a graph must be
initially treated using network filtering methodologies, such as in-
formation filtering networks, which transform the complete graph
constructed from the correlation matrix or other linear [11] and
non-linear [26] similarity measures to a sparse network retain-
ing only strongest relationships. Subsequently, different centrality
measures, including degree centrality, betweenness centrality, ec-
centricity, and closeness centrality, are computed for each node.
Nodes are then ranked in ascending order to be incorporated into
the portfolio with equal or Markowitz weights [12], or weights that
are calculated based on the centrality measures [21]. Additional
research includes network-based allocation with machine learning
[7], cross-sectional equity sector portfolio construction [13], and
graph clustering-based portfolio construction [5].

2.2 Information Filtering Network (IFN)
In recent years, substantial advancements have been observed in
complex systems-driven data scrutiny through the utilization of
information-filtering networks. This methodology depicts the inter-
actions within intricate systems as network architectures composed

of elements, or vertices, and interactions, or edges. A renowned tech-
nique initially proposed by Boruvka in 1926, theMinimumSpanning
Tree (MST), can be accurately resolved via diverse methodologies
[8, 19, 23]. The MST condenses the architecture into a connected
tree while preserving the more significant correlations.

With an intent to extract higher value data more efficaciously,
both Tumminello et al. [29] and Aste and Di Matteo [2] suggested
the incorporation of planar graphs within the Planar Maximally
Filtered Graph (PMFG) algorithm. A planar graph can be embed-
ded in the Euclidean plane so that no edges intersect. Subsequent
research has extended this strategy to include chordal graphs, a
type of graph in which all cycles of four or more vertices have a
chord, which is an edge that is not part of the cycle but connects
two vertices of the cycle, that exhibits variable sparsity [16, 18].
This approach has found applications in a variety of research fields,
such as finance [3] and neural systems [28], offering a robust mech-
anism for deciphering high-dimensional dependencies and building
sparse representations. It has been empirically proven that chordal
information filtering networks, inclusive of the Triangulated Max-
imally Filtered Graph (TMFG) [18], can yield a sparse precision
matrix that is positive definite and encapsulates the network’s struc-
ture, thereby enabling effective 𝐿0-norm topological regularization
[1]. Further explorations of the Maximally Filtered Clique Forest
(MFCF) [17] have extended the technique’s range of application by
adapting it to cliques of various dimensions. This methodology has
been demonstrated to be more computationally efficient and stable
than Graphical LASSO [6] and covariance shrinkage approaches
[4, 9, 10], particularly in situations where data points are scarce
[2, 3, 25, 30].

3 METHODOLOGIES
3.1 Statistically Robust IFN (SR-IFN)
The application of Information Filtering Networks (IFNs) has been
extensively explored within the field of finance, particularly for
the purpose of correlation/covariance sparsification and filtering.
Nevertheless, given that IFNs specify a complete network/graph
under certain topological constraints, e.g., planarity for PMFG, and
chordality for TMFG, the resultant network structure incorporates
elements that, while necessary to uphold these constraints, are
irrelevant to the original information. This paper introduces a Sta-
tistically Robust (SR) method aimed at enhancing the stability and
performance of IFNs by endeavoring to eliminate these constraint-
related structures. Triangulated Maximally Filtered Graph (TMFG)
is employed as the core IFN for the purposes of the ensuing experi-
ments.

The construction process for TMFG relies on a simple topological
move that maintains both planarity and chordality. TMFG has been
demonstrated to be a computationally efficient model capable of
sparse probabilistic modelling via topological regularization. How-
ever, it is not without limitations: unnecessary edges may be added
to satisfy the graph’s chordality, thereby introducing undesirable
noise, a particular issue in fields characterized by a low signal-to-
noise ratio, such as finance. To address this limitation, we propose
the Statistically Robust (SR) method, detailed in Algorithm 1.

Temporal sequential dependence is reduced by randomly boot-
strapping the observations in each repetition, which also results
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Algorithm 1 Statistically Robust IFN (SR-IFN)
Input A set of observations x̂𝑠,𝑛 ∈ R𝑠,𝑛 , the confidence level 𝑝𝑐𝑙 ,

and the number of repetitions 𝑡𝑟
Output Sparse similarity matrix S.

1: Initialize an empty ensemble adjacency matrix A ∈ R𝑛,𝑛 with
all zeros;

2: Initialize an empty final sparse similarity matrix S ∈ R𝑛,𝑛 with
all zeros;

3: Calculate the original correlation matrix Ĉ ∈ R𝑛,𝑛 from x̂𝑠,𝑛 ;
4: for 𝑡 ← 1 to 𝑡𝑟 do
5: Randomly bootstrap x̂𝑠,𝑛 in the first dimension and obtain

bootstrapped x̂𝑡𝑠,𝑛 ;
6: Calculate the bootstrapped correlation Ĉ𝑡 ∈ R𝑛,𝑛 from x̂𝑡𝑠,𝑛 ;
7: Obtain the bootstrapped sparse adjacency matrix A𝑡 from

Ĉ𝑡 by TMFG (or any information filtering network);
8: A+ = A𝑡

9: end for
10: for each pair of nodes 𝑖, 𝑗 in A do
11: if 𝐴𝑖,𝑗

𝑡𝑟
> 𝑝𝑐𝑙 then

12: 𝑆𝑖, 𝑗 = 𝐶𝑖, 𝑗 ;
13: end if
14: end for
15: return S.

in each bootstrapped sample possessing a distinct network struc-
ture. Therefore, superfluous edges will be added differently in each
case. By retaining structures that appear more frequently than a
certain threshold, we can discard unnecessary edges and noise as
they lack statistical robustness and tend to occur randomly, hence
infrequently, see Figure 1. Algorithm 1 illustrates this process, in-
troducing an ensemble adjacency matrix A, which amalgamates all
adjacency matrices from bootstrapped sub-TMFGs. After all rep-
etitions, the occurrence probability of an edge between any pair
is calculated, and only if this probability exceeds the defined con-
fidence level (ConfLv) threshold, do we retain the edge. The final
output S is a similarity matrix representing the original correlation,
but with many structural zeros from the discarded edges to ensure
sparsity.

3.2 Bootstrapped Centrality Measures
Subsequent experiments will utilize three centrality measures for
portfolio weight calculation, including Degree Centrality, Commu-
nicability Betweenness Centrality, and Absolute Correlation.

Degree Centrality is one of the simplest and most common cen-
trality measures used to quantify the prominence of a node in a
network. It is based on the idea that nodes with more connections
(edges) to other nodes are more central and influential within the
network. For an undirected network, the degree centrality, 𝑐𝑑

𝑖
of

a node i is calculated as the number of edges (connections) it has
denoted by 𝑘𝑖 . The normalized degree centrality is obtained by di-
viding 𝑘𝑖 by the maximum possible number of connections, which
is (𝑛 − 1), where n is the total number of nodes in the network,

𝑐𝑑𝑖 = 𝑘𝑖/(𝑛 − 1) . (1)

Figure 1: Statistically robust bootstrapping process. Three
sub-networks were generated from one observation set with
bootstrapping. Only edges that present more than a two-
thirds majority will be preserved in the resulting statistically
robust network.

This normalization allows for the comparison of centrality scores
across different networks.

Communicability Betweenness Centrality (CBC) is an extension
of the traditional betweenness centrality measure, which is based
solely on the shortest paths between nodes. While betweenness
centrality focuses on the number of shortest paths that pass through
a given node, CBC takes into account the weighted sum of all paths
between nodes, where the weight of each path is inversely pro-
portional to its length. Mathematically, communicability between
nodes i and j is calculated using the exponential of the adjacency
matrix, A, of the network. The adjacency matrix is a square matrix
whose element A𝑗,𝑘 represents the connection between nodes i
and j. The communicability between nodes i and j is given by the
(j,k)-th element of the matrix exponential, denoted as exp (A𝑗,𝑘 ).
Communicability Betweenness Centrality is then calculated by sum-
ming the relative changes in communicability for all pairs of nodes
when a node is removed from the network. For node i, the CBC is
computed as:

𝑐𝐶𝐵𝐶𝑖 =

∑
𝑖≠𝑗≠𝑘 exp (A𝑗,𝑘 ) − exp (A𝑗,𝑘 − 𝐸𝑖 )

exp (A𝑗,𝑘 )
(2)

where 𝐸𝑖 is a matrix with the same dimensions asA𝑗,𝑘 , representing
the connections of node i(i.e., with 1s in the positions corresponding
to the edges of node k and 0s elsewhere), and (A𝑗,𝑘 −𝐸𝑖 ) represents
a new adjacency matrix by removing node k from the network.
In this formula, the summation is over all pairs of nodes i and j,
excluding node k. The CBC quantifies the importance of node k
by considering its role in facilitating communication between all
pairs of nodes in the network, taking into account both direct and
indirect paths.

The portfolio selection methods in the above section select as-
sets with statistically significant decorrelation among the portfolio.
Therefore an intuitive way for weights optimization is directly us-
ing the sum of absolute pairwise correlation, as the portfolio weight
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for each node/asset. Therefore, it is expressed as

𝑐𝑐𝑜𝑟𝑟𝑖 =
∑︁
𝑗,𝑖≠𝑗

|𝐶𝑖, 𝑗 |, (3)

where 𝐶𝑖, 𝑗 represents the pairwise correlation between node i and
node j.

A bootstrapping approach akin to Algorithm 1 is utilized for
calculating statistically robust centrality. In each repetition, a sub-
centrality, 𝑐𝑡 , is determined within the sub-network obtained from
bootstrapped observations, and the overall centrality is obtained
by averaging all sub-centralities, as shown:

𝑐𝑖 =
1
𝑡𝑟

𝑡𝑟∑︁
𝑡=1

𝑐𝑡𝑖 (4)

where 𝑐𝑖 is the ensembled centrality, 𝑐𝑡
𝑖
is the sub-centrality for

node 𝑖 , and 𝑡𝑟 is the number of repetitions.

3.3 Portfolio Selection and Optimization
In our application of the Statistically Robust Information Filtering
Network (SR-IFN), we consider a total of 𝑁 assets with 𝑇 time-
stamped historical observations. The resultant sparse similarity
matrix, S, represents the pairwise correlations between assets. Given
the sparse nature of S, it allows for the division of assets into two
subsets: connected and disconnected. Disconnected assets lack any
link to other assets, while connected ones possess at least one
such link. By adjusting the confidence level (ConfLv) threshold
within the SR-IFN, we canmanipulate the quantities of disconnected
and connected assets. For the purpose of establishing a portfolio
with minimal correlation, we include all disconnected assets, while
excluding the connected ones. More specifically, we select assets
for which the sum of pairwise correlations is zero, as expressed in
the following equation: ∑︁

𝑗,𝑖≠𝑗

S𝑖, 𝑗 = 0. (5)

This results in the selection of assets that exhibit a very low statis-
tical correlation with others within the portfolio.

To further enhance the portfolio, we optimize the weights such
that they are inversely proportional to the ensembled centrality
measures,

𝑤𝑖 =
1/𝑐𝑖∑
𝑗 1/𝑐 𝑗

(6)

where𝑤𝑖 is the weight, and 𝑐𝑖 represents the centrality for asset 𝑖
in the portfolio.

Figure 2: Portfolio is rebalanced every 𝑡𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒 -day with a
𝑡𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 days look-back window of history.

Dynamic allocation of the portfolio is achieved through rebal-
ancing every 𝑡𝑟𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒 -day. The selection criteria in Equation 5
and weights in Equation 6 are re-calculated based on a 𝑡𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘
days look-back window of history, see Figure 3.3.

4 IMPLEMENTATION
4.1 Data
A series of experiments were conducted utilizing historical financial
time-series data obtained from three principal capital markets: NAS-
DAQ, FTSE, and HS300, spanning the period from January 1, 2010,
to January 1, 2020. For each constituent stock, the daily log-return,
denoted as 𝑟𝑖 (𝑡) = log(𝑃𝑖 (𝑡)) − log(𝑃𝑖 (𝑡 − 1)), was computed using
closing prices. Detailed statistics of the daily log-return distribution
are furnished in Table 1 for subsequent comparison and discussion.

NASDAQ FTSE HS300

Ann. Return 16.0% 5.8% 9.9%

Ann. Std.Dev. 17.5% 15.8% 23.2%

D. Skewness -0.44 -0.95 -0.89

Max. Drawdown -24.0% -43.5% -52.3%

Table 1: Statistics table for the log return distribution in NAS-
DAQ, FTSE and HS300 between 01/01/2010 and 01/01/2020, in-
cluding annualized return mean, annualized return standard
deviation, daily return skewness, and maximum drawdown.

The chosen indexes are emblematic of distinctly divergent mar-
ket dynamics during the designated period. NASDAQwas in a phase
colloquially referred to as its ’golden ten years’, characterized by a
substantial annualized mean return and moderate volatility. The
skewness of the return distribution is less negative compared to
the other indexes, indicating fewer extreme loss events and con-
sequently, a lower maximum drawdown throughout this period.
In contrast, both FTSE and HS300 exhibited a high negative skew-
ness and substantial drawdown over the same period. Additionally,
the FTSE was more conservative, with a lower average return and
volatility, whereas the HS300 displayed considerably higher volatil-
ity.

4.2 Experiment Setup
This section is devoted to the selection of portfolios exclusively
from an index component stock pool. Consequently, the weights of
the portfolio are maintained at 1/𝑁 , where 𝑁 represents the total
number of assets in the chosen portfolio, for the sake of simplicity
and controlled comparison. The portfolio undergoes rebalancing
every 𝑡rebalance days, with a historical look-back period of 𝑡lookback
days for the measurement of empirical correlation and other his-
torical statistical properties. Experiments are included both with
and without transaction costs of 20 basis points (bps) to simulate
commission and bid-ask spread costs. The complete period is parti-
tioned into in-sample and out-of-sample periods before and after
01/01/2017. A grid search over 𝑡rebalance and 𝑡lookback is conducted
in-sample for analysis and optimization, and the optimal param-
eters are retained for the out-of-sample period to showcase the
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persistence and significance of the method. In addition, to demon-
strate robustness and present statistics, all experiments across the
three markets are repeated and ensembled with varying starting
dates.

Figure 3: Grid search results in Sharpe Ratio across NASDAQ
(top left), FTSE (top right), and HS300 (bottom) over vari-
ous rebalance frequencies and lookback window sizes. The
Left and right columns show results with and without 20bps
transaction costs. L/H represents the long-hold portfolio over
the entire stock pool, and 1/N represents the simple equally
weighted selected portfolio averaged over other parameters.
The grid search results of Confidence Levels of SR-IFN are
not shown as it is not optimized for the remaining experi-
ments.

Figure 4.2 portrays the grid search results over a range of rebal-
ance frequencies, 𝑡rebalance, and lookback window sizes, 𝑡lookback.
The results are averaged across varying 𝑡rebalance, 𝑡lookback and Con-
fidence Levels of Statistically Robust Information Filtering Network
(SR-IFN, denoted as ConfLv), but the outcomes in relation to ConfLv
are not displayed as it is not optimized for the remaining experi-
ments. This grid search is executed in-sample from 01/01/2010 to
01/01/2017. While it is safe to assume that 𝑡lookback is optimally at
126 days for all three markets, there is a minor discrepancy among
𝑡rebalance. Nonetheless, for simplicity and consistency, we employ
an 84-day 𝑡rebalance for the remaining experiments.

5 RESULTS
5.1 Topological Portfolio Selection
The Statistically Robust Information Filtering Network (SR-IFN),
introduced in Section 3.1, provides a statistically robust selection
predicated on historical correlation. The remaining correlated fea-
tures, derived from the historical period, due to their robustness,
are anticipated to maintain their correlation for a brief future pe-
riod. This intrinsic ability to predict future correlation serves as a
pivotal criterion for numerous portfolio selection and optimization
techniques, as their primary objective is to identify the least cor-
related portfolio. In this section, we scrutinize the influence of the

peripheral portfolio over the central portfolio, as defined by the cor-
relation graph, and exhibit the supplemental gain from the SR-IFN
peripheral portfolio in comparison to a classic correlation-based
portfolio.

Figure 4 showcases the results in terms of the Sharpe Ratio for
NASDAQ, FTSE, and HS300. The parameters 𝑡rebalance = 84 and
𝑡lookback = 126 are fixed, which are optimized in-sample from sec-
tion 4.2, and the outcomes of the out-of-sample period are presented.
For each subplot, the top row and bottom row represent experi-
ments without and with 20bps transaction costs, with the bottom
row being displayed in a symmetrical log scale for enhanced visual-
ization and comparison. The Peripheral Topological Portfolio (PTP)
in blue is the principal portfolio selected by SR-IFN. By varying
the ConfLv of SR-IFN, we illustrate the performance with respect
to different numbers of assets. Given that PTP is constructed from
the disconnected assets of the correlation graph, its counterpart,
Central Topological Portfolio (CTP) in yellow, represented by the
connected assets from the correlation graph, is also exhibited as a
supplement to portray the nearly symmetrical gain and loss. Since
the number of assets is not a direct parameter in the algorithm but
is controlled by the ConfLv, PTP and CTP do not have the exact
same number of assets when comparing the two curves. Moreover,
to showcase the efficacy of PTP, we also present the results for a
randomly sub-sampled portfolio with the same number of assets
as PTP, denoted as Random Benchmark Portfolio (RBP) in green, a
Peripheral Benchmark Portfolio (PBP) in red that is constructed by
selecting the assets with the least sum of pairwise correlation, as
well as a simple long hold strategy represented by a dashed line.

In all three markets, the two peripheral portfolios, PTP and PBP,
both yield superior performance compared to RBP and CTP, sug-
gesting a clear advantage in adopting the peripheral portfolio as
discussed in section 2.1. For out-of-sample experiments, PTP sur-
passes PBP when the number of assets is relatively large with no
transaction cost, and if a 20bps transaction cost is applied, the range
where PTP outperforms PBP extends. These findings corroborate
that PTP is superior to the benchmark PBP with statistical signifi-
cance and consistency across markets and conditions. Specifically,
SR-IFN provides a more robust mechanism to identify assets with
the most/least correlation than the simple empirical correlation
method, and this effect is more likely to persist in the future. Fur-
thermore, by contrasting PTP and CTP, the gains and losses are
roughly symmetrical around the Long/Hold dashed line, suggest-
ing that the gain in PTP predominantly arises from selecting the
peripheral assets as opposed to other factors.

To further refine our discussion, we place a restriction on our
portfolio size to include more than 50 and less than 100 assets,
aiming to mitigate the high variance at the tail of the performance
distribution. When examining the out-of-sample period without
transaction fees, the average Sharpe Ratio for NASDAQ is 1.10,
while with the inclusion of 20bps transaction fees, it marginally
decreases to 1.08. This is compared against a Long/Hold (L/H) bench-
mark of 1.07. In a similar vein, the FTSE index records an average
Sharpe Ratio of 0.28 without transaction fees and 0.24 with these
fees, against an L/H benchmark of -0.09. The HS300 index exhibits
a Sharpe Ratio of 0.65 without transaction fees and 0.62 with the
inclusion of 20bps transaction fees, compared to an L/H benchmark
of 0.47. Thus, the net gain in the out-of-sample Sharpe Ratio equates
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Figure 4: Portfolio selection results in Sharpe Ratio across NASDAQ (top left), FTSE (top right), and HS300 (bottom). The
selection is performed based on the SR-IFN, and we report the central (orange) and peripheral (blue) portfolios as well as a
random subsampled (green) portfolio to showcase the efficacy of the peripheral one. For each subplot, the top and bottom
(with symmetrical log scale) rows represent without and with 20bps transaction fees for the out-of-sample period(2017-2020).
The rebalance window is fixed at 84 days and the lookback window is fixed at 126 days, optimized in the in-sample period.
The peripheral and central portfolios do not have the exact same number of assets in comparison, as SR-IFN selects based on
confidence level instead of an exact parameter.

to approximately 3% and 1% in the case of NASDAQ, 411%, and 367%
for FTSE, and 38% and 32% for HS300, without and with transaction
fees respectively.

The noteworthy performance observed in the FTSE and HS300
indices can likely be attributed to the specific market dynamics dur-
ing the chosen period, characterized by a highly negative skew and
a substantial maximum drawdown. For instance, during the ’golden
period’ of NASDAQ, a high beta and generally high correlation
among the index component stocks result in a low signal-to-noise
ratio when identifying the least correlated stocks. In contrast, in the
more turbulent and less bullish market dynamics observed in the
FTSE and HS300 indices, where the correlation among component
stocks presents greater diversity, the underlying SR-IFN results
in more significant findings in terms of correlation filtering and
inference. In essence, SR-IFN for portfolio selection generally has a
positive impact on the selection of the least correlated assets, lead-
ing to improved portfolio performance. This performance is more
pronounced when the underlying market dynamic is less bullish
and subject to more extreme losses.

5.2 Topological Portfolio Optimization
In the preceding section, we have demonstrated the significant
advantage of a peripheral portfolio selection strategy in the con-
text of high drawdown periods. This strategy, founded on the least

correlated portfolio, can be further refined by incorporating other
topological properties to optimize the weighting of the selected
portfolio. Herein, we continue to underscore the merit of a more
peripheral portfolio, characterized by reduced correlation and su-
perior performance, by assigning weights that are inversely pro-
portional to centrality measures within the previously selected
Peripheral Topological Portfolio (PTP). Degree Centrality, as one of
the simplest measures of centrality, and Communicability Between-
ness Centrality, a more complex but well-documented measure,
are included in our study. Furthermore, given its intuitive nature
and alignment with the overall theme of decorrelation, Absolute
Correlation is also incorporated into our experiments.

Figure 5 depicts the performance across the three markets in
terms of the Sharpe Ratio. Within each market, we plot PTP, serving
as the benchmark, and three optimized versions of PTP wherein
weights are inversely proportional to centrality measures, including
Degree Centrality (yellow), Communicability Betweenness Central-
ity (green), and Absolute Correlation (red).

Maintaining the same comparative framework, we restrict our
analysis to portfolios comprising more than 50 and less than 100
assets, in order to mitigate the high variance at the tail of the perfor-
mance distribution. For brevity, we limit our analysis to experiments
incorporating 20 bps transaction fees. For the NASDAQ index, the
average Sharpe Ratio is improved from 1.08 to 1.12, representing an
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Figure 5: Portfolio optimization results for the out-of-sample period (2017-2020) in Sharpe Ratio across NASDAQ (top left),
FTSE (top right), and HS300 (bottom) with 20bps transaction fee. We report the original Peripheral Topological Portfolio of
equal weights as the benchmark (blue), and the optimized PTPs whose weights are inversely proportional to Degree Centrality
(yellow), Communicability Betweenness Centrality (green), and Absolute Correlation (red). The rebalance window is fixed at 84
days and the lookback window is fixed at 126 days, optimized in the in-sample period.

NASDAQ FTSE HS300

L/H PTP PTP+CBC L/H PTP PTP+CBC L/H PTP PTP+CBC

Ann. Return 16.6% 16.2% 15.7% -1.6% 1.1% 5.5% 8.7% 11.5% 12.1%

Ann. Std.Dev. 15.5% 15.0% 14.1% 18.4% 19.5% 17.7% 18.6% 18.7% 18.8%

Sharpe R. 1.07 1.08 1.12 -0.09 0.24 0.42 0.47 0.62 0.65

Max. Drawdown -23.2% -22.1% -18.1% -43.5% -48.5% -42.4% -30.0% -28.0% -29.0%

Table 2: Aggregated performance statistics of L/H benchmark, Peripheral Topological Portfolio (PTP) and PTP optimised
by Communicability Betweenness Centrality (CBC) in NASDAQ, FTSE and HS300. The table reports averaged statistics for
portfolios with a number of assets between 50 and 100, including the annualized mean return, annualized return standard
deviation, annualized Sharpe Ratio, daily return skewness and maximum drawdown.

approximate 4% improvement when optimized by Communicability
Betweenness Centrality. Absolute Correlation yields an equal 1.08,
while Degree Centrality results in a slightly inferior 1.06. For the
FTSE index, Communicability Betweenness Centrality optimiza-
tion improves the Sharpe Ratio from 0.24 to 0.42, an impressive 75%
enhancement, while Absolute Correlation and Degree Centrality
yield improvements to 0.31 (29%) and 0.25 (4%), respectively. For
the HS300 index, the average Sharpe Ratio improves from 0.62 to
0.65 (approximately 5%) when optimized by Communicability Be-
tweenness Centrality, while remaining unchanged under the other
two methods.

Furthermore in Table 2, we summarize the performance of selec-
tion in the previous subsection and optimization in this subsection
by reporting the aggregated performance for the Long/Hold bench-
mark, PTP and PTP optimized by CBC (PTP+CBC). Apart from a
superior Sharpe Ratio discussed above, our PTP+CBC demonstrates

significant improvement in the risk matrices. PTP+CBC has reduced
annualized return standard deviation by 1.4% in NASDAQ, 0.7% in
FTSE and kept similar in HS300, as well as shrank the maximum
drawdown by 5.1% in NASDAQ, 1.1% in FTSE and 1% in HS300.

This section illustrates the impact of weighting the portfolio
inversely proportional to different centrality measures. We provide
quantitative evidence of a robust improvement over the simple,
equally-weighted PTP. Furthermore, Figure 5 demonstrates that,
apart from the FTSE index where the effect is consistently dominant
across all asset numbers, the effect is particularly pronounced for
portfolios with larger asset numbers. One plausible explanation is
that, for smaller PTPs, the assets are already optimally selected and
much of the topological information has been extracted. As a re-
sult, additional optimization may suffer from a low signal-to-noise
ratio, as the application of infinitesimally small weights effectively
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equates to deselection. This hypothesis aligns with the more pro-
nounced effect observed in the FTSE index, given its effectively
larger pool of component stocks compared to the other two indices.

6 CONCLUSION
In this study, we present a novel, statistically robust bootstrapping
method designed to select a robust structure from bootstrapped
information filtering networks, hereby referred to as the Statisti-
cally Robust Information Filtering Network (SR-IFN). This method
improves upon the existing Information Filtering Network (IFN)
by reducing redundant edges formed due to applied graphical con-
straints. The SR-IFN accepts multivariate observations as inputs
and outputs a sparse similarity matrix and a network, both of which
are subsequently employed for portfolio selection and optimization
with constant rebalancing. Our experiments spanned a decade-long
history across three distinct markets, utilizing the first 70% of the
data to select parameters such as rebalancing frequency and look-
back window size. The results reported are based on the remaining
three years of out-of-sample data. Our in-sample grid search for
parameter tuning demonstrated consistent outperformance of the
benchmark, mirroring the findings in the out-of-sample period,
thereby reinforcing the robustness of the proposed method in even
the most challenging financial applications.

Our findings indicate that the deployment of such an innovative
approach results in a Sharpe Ratio improvement of 1%, 367%, and
32%with 20bps transaction costs formarket indices. This is achieved
by simply selecting a subset of composite stocks in the US, UK, and
China markets, respectively. Moreover, the performance can be
further amplified by optimizing the portfolio weights based on
the centrality measures of the output network, yielding additional
improvements of 4%, 75%, and 5%. The cumulative improvement
derived from both approaches enhances the results by 5%, 567%, and
38% for the NASDAQ, FTSE, and HS300 indices, respectively. The
disparities in the magnitude of improvement are likely attributed to
the market dynamics of the selected period. For instance, NASDAQ
was in its ’golden period’, while the other two markets underwent
significant drawdowns. Consequently, further improvement of an
already efficient system (NASDAQ) proved more challenging than
the other two, which serves as a testament to themethod’s resilience
under extreme market conditions. Furthermore, despite a marginal
boost in the risk-adjusted reward in NASDAQ compared to the
other two markets, the risk metrics are notably reduced in both
annualized standard deviation of 1.4% and maximum drawdown
of 5.1%. Additional findings reveal that the underlying method
performs well with large-dimension data (number of assets) with
computational efficiency.
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