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ABSTRACT 
Artificial Intelligence (AI) can augment and sometimes even replace human cognition, 
but still has many fundamental roadblocks preventing it from achieving fully autonomous 
applications. Inspired by the growing set of AI-implementation failures in society at 
large, in this opinion piece we reexamine the field of Citizen Science (CitSci) through a 
computational lens, highlighting algorithmic opportunities as well as uniquely human 
capabilities. In particular, we situate the CitSci field among human and machine 
computation fields and introduce two novel dimensions allowing us to match CitSci 
projects ranging from digital games and annotation tasks to data collection in nature to 
the appropriate machine learning algorithms. Interestingly, in CitSci there is an 
abundance of tasks drawing upon human common sense, hierarchical thinking, and 
complex skills which have yet to be incorporated in current AI methods. This gap, 
combined with the unique participant-centered set of values, makes CitSci an invaluable 
test bed for the development of human-centered AI of the 21st century such as hybrid 
intelligence. The mapping thus offers concrete algorithm selection guides to CitSci 
researchers as well as inspiration for AI researchers to pursue grand AI challenges 
through support of CitSci projects. 
 
 

1. INTRODUCTION 
This opinion piece is conceived in response to the critical question which Franzen et al. 
(2021) articulate well: with increasingly powerful AI, what is the human’s role in Citizen 
Science (CitSci)? AI certainly has its place in taking over boring, labor intensive aspects 
of work, speeding up analysis, and optimally distributing tasks to humans (Lotfian, 
Ingens and and Brovelli, 2021); however, we argue strongly against the position that AI 
can or should completely take over all once human-dominated CitSci tasks. 
 
CitSci projects enhance scientific research by tapping into the collective cognitive and 
labor resources of the general public. Indeed CitSci attracts hundreds of thousands of 
participants to research projects that utilize human problem-solving for tasks of varying 
complexity. Researchers use CitSci when they are unable to collect the necessary data by 
themselves (Wyler et al., 2016), need specific expertise from the general public to help 
solve a problem (Danielsen et al., 2018), datasets are too large or complicated for the 
researchers to process with their own technology and resources (Das et al., 2019; Fortson 
et al., 2011; Nugent, 2019), or the degrees of freedom of a system results in nearly 
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infinite possible candidate solutions to be explored (Jensen et al., 2021; Koepnick et al., 
2019). 
 
To a large extent, the growth in scale and complexity of contemporary CitSci projects has 
been attained by digitizing social interaction, communication, and access to projects. 
With these initial steps of digitization of the connectivity, the CitSci field seems poised to 
also substantially involve computers in problem-solving by building efficient, 
sustainable, human-computer partnerships. 
 
In recent years, Machine Learning (ML) applications (a sub-field of AI)1 have become 
increasingly widespread making it possible for researchers to work with larger amounts 
of data or detect patterns that would be hidden to the human eye (Eager et al., 2020; Li et 
al., 2017; Silver et al., 2016). Following this global trend, the integration of ML into 
CitSci projects is on the rise. Specific CitSci tasks using the sub-class of ML, supervised 
learning (SL) for the classification of ecology images are most commonly reported on 
(Picek et al., 2022; Willi et al., 2018). Neural networks are also used for RNA puzzle 
solving (Koodli et al., 2019) as well as with respect to broader engagement and retention 
of CitSci volunteers (Zaken et al., 2021). Following these early attempts of ML adoption 
in CitSci, there have been several recent meta-analysis articles discussing various risks 
and opportunities for ML in CitSci (Cecerroni et al., 2019; Franzen et al., 2021; Lotfian 
et al., 2021). These articles focus almost exclusively on applications of and ethical 
concerns brought on by SL used for classification tasks. Given the abundance of ML 
techniques beyond just SL such as reinforcement and unsupervised learning, there seems 
to be a gap in current CitSci literature concerning the broader potential of implementing 
AI to both assist existing CitSci applications and help developing entirely new solutions. 
 
In this opinion piece we argue that examining CitSci projects from the viewpoint of 
quantifying the human cognitive and/or motoric effort needed to make a scientific 
contribution could yield valuable insights around potential human-computer processes 
that could be served by human common sense, structured learning, and real-world 
experience. This human-centered, computational lens allows us to define a novel 
spectrum of degree of task digitization spanning CitSci games, annotation tasks and 
physically based environmental monitoring. We then match the characteristics of each of 
these types of CitSci tasks to distinct forms of AI. Herein, we provide implementation 
advice for CitSci and AI practitioners and contend that CitSci contains certain 
characteristics (detailed below) that will uniquely enable the field to contribute to some 

 
1  For a visual overview on the differences between ML and AI see Lotfian et al. (2021) pg. 3 
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of the outstanding grand challenges facing human-centered models of AI in the 21st 
century. 

1.1 Pitfalls of current AI and a case for Hybrid Intelligence in Citizen 
Science 

The widely publicized success of ML based applications in recent years has given rise to 
a misplaced techno-optimistic belief that purely autonomous AI problem solutions are 
imminent. However, there is a growing recognition that autonomous deep learning-based 
approaches often are not robust enough to solve real-world problems in noisy, 
unpredictable and dynamically varying environments including serious failures in visual 
recognition, chatbot training, and self-driving cars (Heaven, 2019; Marcus, 2018). Many 
tasks can therefore still only achieve the required quality and reliability with some form 
of human-in-the-loop input for training, execution or verification (Benedikt et al., 2020; 
Zanzotto, 2019). Even highly publicized research on self-learning AI in games such as 
AlphaZero has either required manual adaptation (Silver et al., 2018) or extensive 
learning from human data (Vinyals et al., 2019) and has been exceedingly difficult to 
generalize beyond its field (Dalgaard et al., 2020; Tomašev et al., 2020). 
 
Although AI methodologies are applied in many CitSci projects, little attention has been 
given to the growing body of research on bi-directional, mutually beneficial, human-
computer interaction (Schmidt et al., 2021). Well designed, human-centered AI solutions 
augment humans by bringing them more intimately into-the-loop (Christiano et al., 2017; 
Dellermann et al., 2019; Michelucci and Dickinson, 2016; Schneiderman, 2020). Initial 
steps in this direction include capturing failures of the stand-alone AI system by querying 
humans for feedback about a certain selection of predictions made by an algorithm 
(Kamar and Manikonda, 2017; Nushi et al., 2018). The concept of Hybrid Intelligence 
(HI), a sub-class of human-centered AI, has been rather loosely defined in previous 
literature (Akata et al., 2020; Lasecki, 2019; Prakash and Mathewson, 2020). In our work 
we operationalize HI in terms of three criteria put forward by Dellermann et al. (2019). 1. 
Collectiveness: the human and AI are solving the task collectively towards a system-level 
goal. Sub-goals of individual agents might be different from the system-level goal; 2. 
solution superiority: the sociotechnical system achieves results superior to that one of the 
individual agents (human or AI); 3. mutual learning: the system improves over time, both 
as a whole and also each single component (human and AI). Although it is not the aim of 
this opinion piece to provide concrete development guidelines, we do believe that the 
criterion of mutual learning will provide inspiration to CitSci researchers to consider how 
to ensure that their citizen scientists learn how the AI “thinks” as well as to AI 
researchers to consider how to ensure that their algorithms adapt to the preferences and 
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working styles of the individual users in order to pursue maximally synergetic human-AI 
interfaces. 
 
We argue that the field of CitSci is well-suited for developing integrated human-machine 
interactions for two distinct reasons. First, although many fields of science involve 
human problem-solving, the human computation being performed in science in general is 
often defined implicitly through the tacit domain-specific experience of the involved 
experts. In contrast, CitSci specializes in explicitly transforming conventional research 
challenges into tasks adapted to the problem-solving abilities and collective intelligence 
of the general public. Thus, we argue that CitSci provides a unique snapshot of the 
current human-machine problem solving boundary because CitSci projects remain active 
only as long as the core challenge is unachievable by other (computational) means. 
Second, the long-term value of hybrid interactions may not always be immediately 
apparent because developing interfaces to optimally support human creativity is 
challenging. Therefore, commercial applications may tend to focus more narrowly on 
short-term efficiency maximization using shallower, but predictable human involvement 
(Rafner et al., 2022). In contrast, CitSci is fueled by a desire to solve concrete tasks and 
to generate intrinsic value for participants, a motivation at the heart of the growing and 
closely related field of AI for social good (Bondi et al., 2021; Hsu et al., 2022). We argue 
that the combination of these practical and value-based considerations make CitSci 
particularly well-suited to develop hybrid intelligence into concrete projects. These in 
turn, can benefit AI as a field as well as bringing value to CitSci projects, their 
participants, and science and society at large. 
 
Based on extensive discussions between the 17 co-authors and iterative mapping 
exercises analyzing a handful of CitSci projects through the lens of HI we: 
 

i. Provide a conceptual mapping of fields and terms computationally related to CitSci to 
promote knowledge exchange from each research tradition towards optimal human-
machine problem-solving. 

ii. Argue that two new, underexplored dimensions emerged during this analysis: the degree 
of task digitization and the accessibility to make a scientific contribution. 

iii. Apply this classification scheme to a selection of projects to (a) illustrate which types of 
CitSci tasks are best suited for which types of machine support and (b) highlight the 
importance of more deeply understanding the cognitive skills and training necessary to 
complete CitSci tasks. 

iv. Present a list of open challenges for human-centered AI in the field of citizen science. 
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2. WHAT TERMS MATTER AND WHY: TYPES OF COMPUTATION, 
EMERGENT INTELLIGENCE AND CITIZEN SCIENCE 

 
Before reexamining CitSci through the lens of HI it is important to clarify the relation of 
these two fields to related areas such as human and machine computation and collective 
intelligence and crowdsourcing. While the relationships between some of these fields has 
been studied extensively (Lease and Alson, 2018; Suran et al., 2020) we disagreed with 
previously suggested overlaps of fields (Dellerman et al., 2019; Newman, 2014; Quinn 
and Bederson, 2011) and found there were no previously established diagrams which 
provide the comprehensive overview needed for positioning our discussion. For example, 
Newman (2014) leaves a part of crowdsourcing outside of collective intelligence. We 
disagree with this as all forms of crowdsourcing involve multiple agents and all outputs 
of crowdsourcing that we are aware of would fit into the inclusive definition of collective 
intelligence as intelligence that emerges from the collaboration and competition of many 
individuals (Lévy & Bononno, 1997; Russell, 1995). Dellermann et al. (2019) 
demonstrates a rather generic relationship between human and artificial intelligence and 
does not allow for machine-only collective intelligence although this domain forms a 
rapidly growing branch of computer science (Jangra, Awasthi, and Bhatia, 2013. Thus, 
through an iterative mapping exercise between all 17 co-authors we combined and 
improved on the three previously published mappings (Dellerman et al., 2019; Newman, 
2014; Quinn and Bederson, 2011). For a full list of terms we reviewed when arriving at 
our figure, see supplemental File 5. 
 
Here, we map the concepts based on the axes of types of computation (biological, human, 
and machine) and number of agents. Each axis has an emergent intelligence (Bonabeau et 
al., 1999) associated with it: hybrid intelligence and collective intelligence respectively. 
We provide a diagram illustrating the relationship between central fields (Fig. 1) 
followed by a table on the terms used (Table 1). 
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Figure 1. The diagram illustrates the relationship of Artificial Intelligence and Citizen 
Science in the reference frame of mixed-agent computation (y-axis), moving from 
machine to human and finally to general biological computation, and agent (biological 
individuals or machines) count (x-axis) moving from one agent to many. 
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Table 1. Overview of types of computation, emergent intelligence, and artificial 

intelligence that are referred to throughout the paper. 
 
 
HI is a subset of the overlap between Human Computation and AI. As HI can be 
achieved with only two agents, it lies partially outside of Collective Intelligence which 
requires at least three agents. HI necessitates at least one human and one AI whereas 
there are forms of both non-biological (Camazine and Sneyd, 1991; Bonabeau, 2002; 
Reid and Latty, 2016) and only artificial collective intelligence (Jangra, Awasthi, and 
Bhatia, 2013). Apart from collectiveness and solution superiority, HI poses a rather strict 
requirement of mutual learning, which explains the substantial overlap between CitSci 
and AI as well as an overlap of AI and Human Computation beyond the area of HI. Since 
few projects today achieve all three HI requirements, the size of the HI field on Fig 1 is 
overrepresented. However, HI’s importance will likely accelerate as algorithmic 
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development increasingly focuses on human-centered AI (Auernhammer, 2020; Schmidt, 
2020; Shneiderman, 2020). 

3. TWO NEW DIMENSIONS FOR EXPLORING CITIZEN SCIENCE 
PROJECTS 

 
We now discuss our two novel axes for determining which CitSci tasks are ideally suited 
for which types of machine support. As demonstrated below, the first axis, degree of task 
digitization, allows for a rough categorization in terms of the potentially applicable forms 
of AI, it does not explain why some tasks within each category are easy for most 
participants and some can only be solved by a minority. To address this question, we 
propose the term, accessibility to contribution, which we define as: “the likelihood that an 
average layperson (assuming there are no exclusionary factors to participation, e.g., 
physical, socio-cultural, financial, or technological) would make a scientific contribution 
to the particular project.” This category can be considered a cognitive axis and is a 
pragmatic aggregation of a number of cognitive and interaction design factors such as the 
level of expertise/experience and effort required, the level of task support as well as the 
character of the scientific evidence to be gathered (see below for concrete examples). 
Note, even though a task may routinely be solved by participants, it should not be taken 
as a sign of computational simplicity, since tasks easily completed by humans (e.g., 
related to human common sense) can be quite challenging for AI. We hope that this 
CitSci task mapping may lead to increased appreciation of the multitude of human-
processing going on in CitSci projects that are still far from being automatable in any 
foreseeable future. 
 
We conducted a literature mapping exercise between all 17 co-authors, mapping 19 
projects onto these axes (Fig. 2) based on their knowledge of the projects. This reflects 
our expert opinions on the placement of the projects. We call for future studies to 
empirically investigate our proposal, particularly, the cognitive dimensions involved in 
delineating the axis of contribution. 
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Figure 2. Mapping of Citizen Science projects. The x-axis shows an increasing degree 
of task digitization moving from physical tasks (potentially supported by robotics and 
smart sensors), through annotation tasks (potentially supported by supervised learning 
methods) to purely mathematical, optimization tasks (potentially supported by 
reinforcement learning methods). The y-axis represents accessibility to scientific 
contribution with highly accessible projects at the bottom and projects with extensive 
requirements on special cognitive traits, expert knowledge, or training at the top. 
Projects that span multiple categories on either the X or Y axis have tasks which fall 
into different categories. 
 

3.1 Digitization degree of the CS tasks 
We propose a granular description and classification of projects based on three different 
categories of task digitization: physical tasks, annotation tasks, and optimization tasks. 
 
Note that in this work we include only projects in which the participants are epistemic 
subjects (rather than objects), meaning that they actively gather external knowledge and 
are not the objects of study themselves (Kasperowski and Hilman 2018). This means that 
the field of citizen psych science is excluded (Coughlan et al., 2018, Jennett et al., 2014, 
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Pedersen et al., 2020). In the same vein we exclude projects in which the knowledge 
generation challenge is identical to the scientific discipline. Thus, classification of birds 
and written documents is included if the scholars are biologists and historians but 
excluded if the scholars are computer scientists only interested in training their 
algorithms. Lastly, we exclude ML applications in CitSci projects which deal with 
content and task distribution and recommendation systems (Zaken et al., 2021) as these 
systems can be applied across all three categories of task digitization. 
 
Physical Tasks require participants to perform non-digital, motoric actions, to acquire 
data such as birdwatching. In these tasks, the participant needs to continually (audio- 
visually) survey the environment and/or consider the suitability of deploying a sensor for 
recording data (Camprodon et al., 2019; Cochran et al., 2009; D’Hondt, Stevens and 
Jacobs, 2013; Van Horn et al., 2018). The machine analogy of the data collection task 
would be robotics and smart sensors. In smart sensors, the raw measurement data is 
processed locally in the hardware before being passed to a central data storage for further 
processing (Cartwright et al. 2019, Kim et al. 2010). Advanced robotics would include 
adaptable sensors which adapt (e.g. move location) independently. Note that even the 
deployment of a stationary sensor includes complex cognitive and socio-technical 
considerations such as evaluation of the environment in terms of e.g. degradation of the 
sensor or risk of theft. 
 
Annotation tasks of previously acquired data are mostly solved via a digital platform, 
but require subject-specific or disciplinary knowledge, even if at a layperson level. Thus, 
one cannot score the participants’ input objectively. Instead, the annotation is consensus-
based (absence of a ground truth). The elements to be annotated are often images or audio 
recordings or transcriptions (Causer and Terras, 2014; Lintott et al., 2008; Nugent, 2019; 
Tinati et al., 2017). The annotated data can be used to train ML classification models 
which fall into the paradigm of supervised learning (SL). Franzen et al. (2021) refers to a 
subset of these types of tasks as ‘classification,’ however this term is not broad enough to 
encompass transcription analysis which is analyzed using the same ML paradigm and 
thus fits under the umbrella category, annotation tasks. 
 
Optimization tasks involve completely digital data acquisition and analysis within 
systems which can be described with a self-contained mathematical model such as with 
in physics (Jensen et al., 2021; Wooton, 2017), mathematics (Rafner et al., 2021) and 
biochemistry (Curtis 2015; Lee et al., 2014). By self-contained model, we mean a task 
that can be unambiguously and automatically evaluated (scored) in terms of how well a 
candidate solution solves the problem without any further human input. These are 
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problems that can often—in theory—be solved purely by machine computation, but in 
practice may become intractable due to high complexity of the solution space. Naturally, 
these tasks lend themselves well to ML methods related to optimization in complex 
spaces, such as reinforcement learning (RL). 
 
The degree of task digitization allows for a rough categorization of the possible AI-
contribution as robotics/smart sensors, SL, or RL respectively. One might naively expect 
that the pinnacle of human contribution is to solve complex mathematical problems (high 
degree of digitization tasks). However, in many ways the robotics/ smart sensors capable 
of assisting or replacing human volunteers in the real world for physical tasks is a much 
more difficult problem, considering current robotics are comparably less advanced than 
the state-of-the-art RL technologies (Dalgaard et al., 2020, Vinyals et al., 2019). This 
clearly demonstrates that the degree of digitization should not be mistaken for an axis of 
increasing cognitive complexity. We therefore posit that: a systematic comparison of 
CitSci tasks and relevant modern computational capabilities will lead to increased 
understanding and appreciation of the multitudes of tasks that human volunteers perform, 
and how that labor works alongside technology and ML. 
 
The x-axis of Figure 2 plots projects according to the degree of task digitization. As 
illustrated, there may be projects exhibiting a mixture of features from two categories. 
Another boundary case is CitSci remote optimization of concrete experiments (Heck et 
al., 2018), which would clearly be amenable to RL treatment but requires execution of a 
real-world experiment in order to evaluate the quality of any given user-specified 
candidate solution and therefore does not have a self-contained model. Another example 
is the CitSci game EteRNA where participants create RNA designs which can be partially 
evaluated within the software but must then be synthesized through a remote wet 
laboratory experimental pipeline to assess design candidates (Lee et al., 2014). Finally, 
we note that the ML technique of Unsupervised Learning is absent here because it is a 
data analysis technique that can in principle be applied to any data set across the 
categories. In the following we illustrate the relevance of these task characteristics 
through several specific CitSci projects (see appendix A for all considered projects). 
 

3.2 Digitization degree of the CS tasks 
To elaborate on the accessibility to contribution axis, we present nine examples, a 
subset of CitSci projects reviewed, and discuss what it takes for a participant to make a 
scientific contribution. We propose a spectrum along which projects can be ordered to 
signify broader or more limited accessibility to contribution. We note that this framework 
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has already found applications in the field within recent considerations of barriers to 
expertise in CitSci games (Miller and Cooper, 2022). 
 
To help operationalize the proposed two axes, we provide a table of concrete examples. 
Please note, the projects explained below were chosen based on the extensive firsthand 
knowledge from the 17 co-authors and are not an exhaustive list of citizen science 
projects that could be categorized. 
 
Optimization tasks  
Quantum Moves 2 is a real-time dynamics control game designed to tap into a player's 
intuition of water sloshing in a glass as they move an atom through a 2-dimensional 
space over the span of a few seconds. Apart from investigating the value of each 
individual human input, there is an emphasis on understanding the aggregated collective 
input to gain understanding of the generic intuition-driven strategies (Jensen et al., 
2021). The data analysis in Quantum Moves 2 builds on a bulk analysis of all player 
data and thus these heuristics are gleaned from all player data submitted after the 
completion of the short tutorial. broad accessibility 

Foldit is a puzzle-type game designed to visualize proteins in three dimensions, and lets 
participants spend as long as they need, while the puzzle is available, to slowly and 
(semi-) systematically search through a complex parameter landscape as they attempt to 
find the best folding pattern for a specific protein (Cooper et al., 2010). Reported results 
focus on the small subset of participants that arrive at uniquely useful solutions (Eiben et 
al., 2012; Khatib et al., 2011). medium-limited accessibility 

Decodoku is designed for participants to solve sudoku-like quantum computing 
challenges without a time limit (Wootton, 2017). Data are only collected in the form of 
written reports emailed to the scientists where participants not only have to come up 
with useful strategies but also be able to reflect on and verbalize their strategies. limited 
accessibility 
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Annotation tasks 
  
Stall Catchers is designed to facilitate analysis of data related to Alzheimer’s research. 
Participants are presented with few-second video clips of blood vessels from the brain of 
mice affected with Alzheimer’s. Through analyzing the movement of blood cells in a 
target area determined by the game, they classify images as either flowing or stalled, and 
mark the precise location of stalls on the images. The puzzles require non-domain 
specific skills and can be solved with minimal domain knowledge (Nugent 2019). broad 
accessibility  

In Galaxy Zoo participants classify images of galaxies according to a series of questions 
(Lintott et al., 2008). Some questions are approachable with minimal domain knowledge 
(e.g., “Does this galaxy have spiral arms?”) while others benefit from experience (e.g., 
“Is there anything odd?”). Examples and illustrative icons help teach new participants 
how to participate. medium-broad accessibility 

Scribes of Cairo Geniza is a transcription project, where participants are presented with 
images of historic text fragments in Hebrew and Arabic and transcribe it one line at a 
time using an online program. Participation requires specialized training and/or prior 
knowledge when dealing with specialized objects due to language requirements (Scribes 
of the Cairo Geniza n.d.). limited accessibility  
 
Physical Tasks   
Quake-Catcher Network is a real-time motion sensing network of computers for 
earthquake monitoring. Participants download the software and purchase a USB sensor 
device, which records seismological waves while the software algorithmically 
determines waves outside the normal range, and sends them back to the project server. 
Participation, apart from the initial setup, does not require active action or skills of the 
participant (Cochran et al., 2009). broad accessibility 

iNaturalist is an online social network, where participants can share biodiversity 
information by recording observations of organisms or their traces (nests, tracks etc.). 
Users can add identifications to these observations and an automated species 
identification algorithm is also used on the platform. Participation requires none to 
extensive domain-specific skills, depending on whether the user wants to also perform 
identification tasks. Observations can be used to monitor organisms at various locations 
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(iNaturalist, 2021). broad-medium accessibility 

UK Butterfly Monitoring Scheme (UKBMS) is a recording protocol used to record 
data on the butterfly population. Participants walk 1-2 km routes weekly at specific 
times of the day, in specific weather conditions from spring to fall multiple years in a 
row. The task is to record measurements on e.g., weather, habitat, and the number of 
different butterfly species on recording forms which are submitted weekly on the project 
website. Significant time investment, prior domain knowledge, and detailed 
environmental surveying skills are required; participation is limited to the United 
Kingdom (Dennis et al., 2017). limited accessibility 

 
As we see, accessibility to contribution is determined by requirements such as: expertise 
through training (e.g., animal identification skills), experience (becoming familiar with 
the task environment and interface, e.g., Foldit), and certain cognitive skills (currently 
understudied in CitSci). Although at this point these factors are difficult to assess, if they 
are properly understood, AI can be used to broaden accessibility by automatically 
adapting to the diverse needs and skills of participants, facilitating quality of 
contributions (Anderson-Lee et al., 2016; Walmsley et al., 2020) and making the task 
simpler and more enjoyable for participants (Kawrykow et al., 2012). Attempts have been 
made to optimize the interactions between the volunteers and the scientific tasks of the 
CitSci project increasing engagement and optimizing quality of contributions (Sterling, 
2013). However, without an appropriate underlying framework the experiences from 
these specific examples are difficult to transfer to other projects. As an initial step in this 
direction, Von Rueden et al.’s taxonomy of informed machine learning provides an 
interesting and potentially helpful organization of types of prior knowledge (e.g. 
scientific knowledge, world knowledge or expert knowledge), the representation of the 
knowledge and how it is integrated into the machine learning pipeline (von Rueden et al., 
2021). 
 
While an in-depth analysis is beyond the scope of this opinion piece, we argue that our 
initial categorization allows for joint considerations about cognitive and learning 
processes of participants as well as possible computational models of AI applicable 
across a wide range of CitSci projects. In particular, we demonstrate that across CitSci 
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projects there exists a class of tasks that is characterized by intuitive processing and the 
application of common sense (information processing or physical actions that most 
participants can do almost instinctively). In these cases, nearly all participants can 
contribute to using general human cognitive and motoric abilities (see Fig 1, y-axis) thus 
have “broad accessibility”. The apparent simplicity of these tasks from the human 
perspective stands in dramatic contrast to the challenge of replicating them with AI 
technologies, which is one of the grand challenges of the AI field (Marcus, 2018, 2020). 
At the other end of this spectrum lie projects where only a small fraction of participants 
are able to contribute (e.g. Decodocu, UK butterfly monitoring scheme), thus have 
“limited accessibility”. Here, understanding of how task learning can be combined with 
systematic exploration and intuitive leaps remains another grand challenge of AI. 
Interestingly, most limited accessibility tasks also draw heavily on many skills such as 
creativity and complex problem solving, which still elude a firm theoretical 
understanding in the fields of psychology and education. Nevertheless, a further analysis 
of the particular cognitive processes going on in CitSci projects will be crucial for 
designing future automated support systems to enhance the contribution of the 
participants. 
 
Finally, the meta-cognitive aspects in the Decodoku example illustrates that it would be 
interesting to relate the accessibility level to the emerging concept of co-created CitSci 
(Bonney et al., 2009b), in which participants are involved not just in the data gathering 
phase of the scientific process but also e.g. hypothesis generation, design, and analysis 
(Hidalgo et al., 2021). The algorithmic support of the scientific processes beyond data 
acquisition could seek inspiration within cutting edge AI trends such as unsupervised 
ML, hierarchical modeling (Menon et al., 2017) and generative design (McKnight, 2017; 
Oh et al., 2019). 

4. CONCLUSIONS AND OUTLOOK 
As mentioned above, this opinion piece is a strong argument against the position that AI 
can or should completely take over all once human-dominated CitSci tasks. In addition to 
making room for participants to contribute to multiple aspects of the research cycle we 
can use AI as a lens to reflect on and ultimately more deeply understand human skills 
such as hierarchical thinking, problem solving, and creativity which are current 
roadblocks in state of the art AI such as (Jensen et al., 2021, Marcus, 2018). Using AI in 
the reflection process to understand more about human cognition and problem solving is 
already well underway in interdisciplinary domains such as computational co-creativity 
(Feldman, 2017), but under-investigated in CitSci projects. 
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As outlined in the introduction, a key quality of HI as defined by Dellermann et al. (2019) 
is that mutual learning exists among the AI and human components of the system. Such 
integration not only allows for, but necessitates the co-evolution of individual 
components (AI and human alike) with each other and the systems to which they 
contribute. Thus, we are entering into uncharted AI territory, where our best hope for 
advancing the field may require bootstrapping. In other words, the potential complexity 
of these systems suggests an opportunity to use HI itself to improve our understanding of 
HI. Asking why a given CitSci project is not solved entirely algorithmically can be a path 
to identifying new modes of human-machine problem solving by discovering suitable 
existing machine technologies and as well as to deeper appreciation of the distinctly 
human contribution in areas where current machine technology falls short. 
 
Importantly, the three HI criteria provide a philosophical and operational framework for 
enriching the human role in a system (Rafner et al., 2022), rather than human-in-the-loop 
ML methods designed to move towards pure automation of CitSci tasks (Picek et al., 
2021). Following this opinion piece, initial studies have looked at optimizing the AI-
human workflow in CitSci (Gal et al., 2022), but considerable more research is needed in 
this area. Concretely HI holds the potential to be used as a tool to augment and empower 
citizen scientists, enabling them to participate in increasingly difficult or domain specific 
tasks (e.g., hypothesis formation, data analysis). The possibilities for HI and AI to 
augment workers by (i) freeing up resources, so humans can use their expertise for 
further innovation, working on more cognitively demanding or rewarding tasks that 
computers cannot solve (Bresnahan et al., 2002) and (ii) introducing new demands and 
facilitating the acquisition of new skills that are necessary after the way of working has 
been transformed (Spenner, 1983) have been reviewed in Rafner et al., 2022, but it has 
not been investigated comprehensively in CitSci. 
 
In conclusion, areas of great potential for human augmentation are applications of RL to 
optimization challenges, SL to annotation tasks, and smart sensors to participatory 
sensing tasks. However, advanced human-AI interaction typically tap into common 
sense, hierarchical thinking or meta-cognitive reflection and full human-level mobility 
combined with environmental sensing and domain knowledge. In future work, we 
encourage researchers to examine each of these categories more granularly to e.g., 
distinguish within the annotation category between image recognition tasks requiring 
computer vision and text recognition requiring natural language processing. 
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We conclude our article by offering five exciting research questions linking the fields of 
CitSci and AI: 
 

i. Can the skill requirements of ongoing CitSci projects be interpreted as a continually 
updated ‘thermometer’ of the boundary between human and AI capabilities? 

ii. What are the links between the accessibility of concrete CitSci tasks and the particular 
cognitive processes required to complete them? 

iii. What are pathways, frameworks and quantification methods for participants to be 
upskilled during citizen science tasks through AI? 

iv. How can the explicit task formulations in CitSci lead to increased understanding of 
human-AI interaction beyond the CitSci field? 

v. Can the explicitation of the vast amount of CS-tasks that are at present not automatable 
yield greater appreciation for CitSci as a field and be used to increase participant 
motivation and sense of achievement? 

 
Addressing these five questions will require new interdisciplinary partnerships and 
qualitative and quantitative research analyzing and developing individual CitSci and 
other related AI projects, understanding the core motivations and preferences of CitSci 
participants, as well as understanding attitudes to human-AI partnerships and CitSci in 
research and society. 
 

5. SUPPLEMENTAL FILES LIST 
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Supplement 1. Screenshots of optimization tasks. (a) Phylo (Phylo 2021). (b) Quantum Moves 2 
(Ahmed n.d.). (c) Eterna (Eterna 2018). (d) Fraxinus (Rallapalli 2015). (e) Foldit (Foldit n.d.). (f) 
Decodoku (Decodoku 2021). 
 
Supplement 1: Screenshots of optimization tasks. (a) Phylo ( 
https://phylo.cs.mcgill.ca/play.php). (b) Quantum Moves 2 
(https://www.scienceathome.org/games/quantum-moves-2/about-quantum-moves-2). (c) 
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Eterna (https://eternagame.org/news/8997813?sort=blog). (d) Fraxinus (Rallapalli 2015). (e) 
Foldit (https://fold.it/portal/info/about). (f) Decodoku (https://decodoku.itch.io/decodoku) 
 
 
 

 
 
Supplement 2. Screenshots of annotation tasks. (a) Scribes of the Cairo Geniza (Scribes of the 
Cairo Geniza 2021). (b) Galaxy Zoo (Galaxy Zoo 2021). (c) Eyewire (Eyewire 2021). (d) Stall 
Catchers (Stall Catchers 2020). 
 
Supplement 2: Screenshots of annotation tasks. (a) Scribes of the Cairo Geniza 
https://www.scribesofthecairogeniza.org/). (b) Galaxy Zoo 
(https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/classify). (c) Eyewire 
(https://eyewire.org/ ). (d) Stall Catchers (https://stallcatchers.com). 
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Supplement 3. Screenshots of physical tasks. (a)  iNaturalist (iNaturalist 2021). (b) Spider 
Spotter (Spider Spotter 2021). (c)  Quake Catcher (Quake Catcher n.d.). (d) UK Butterfly 
Monitoring Scheme UKBMS (UKBMS, n.d.). (e) Noisetube (Noisetube 2021). (f) Smart Citizen 
(Camprodon et al., 2019). (g) BBC Pandemic (Manson, n.d.).  
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Name  General project 

description  
Core participant task  Web reference 

Annotation tasks 

Galaxy Zoo  Classification of images of 
galaxies based on an 
evolving scheme devised by 
scientists who use the 
resulting classifications as 
part of their studies (Ponti et 
al., 2018). 

Classifying images of 
galaxies based on particular 
features in a decision tree 

https://www.zooniverse.org/projects/zookeeper
/galaxy-zoo/ 

Ponti, M., Hillman, T., Kullenberg, 
C., & Kasperowski, D. 2018. 
Getting it Right or Being Top Rank: 
Games in Citizen Science. Citizen 
Science: Theory and Practice, 3(1): 
1. DOI: 
https://doi.org/10.5334/cstp.101 

Eyewire Mapping the 3D structure of 
neurons in the brain and 
reconstructing neural 
circuits (Explore, Eyewire, 
n.d.) from serial electron 
microscope images 
(Eyewire, Wikipedia 2020) 
to discover how neurons 
connect and network to 
process information. 

Solving 2D and 3D 
puzzles: Identifying and 
coloring axons of neurons 
in 2D view of 3D cubes 
using microscope images 
and pattern recognition 
skills 

https://eyewire.org/explore 
Explore. n.d. Eyewire. Available at 
https://eyewire.org/explore [Last 
accessed 21 April 2021] 
Eyewire. 2020. Wikipedia. 
Available at 
https://en.wikipedia.org/w/index.ph
p?title=Eyewire&oldid=950539218 
[Last accessed 21 April 2021] 

Stall 
Catchers 

An online game that helps to 
speed up Alzheimer’s 
disease research by making 
it possible for anyone to 
analyze microscopic images 
of blood vessels in the 
brains of transgenic 
Alzheimer’s mice (Join a 
Global Game That’s Trying 
to Cure Alzheimer’s, Stall 
Catchers, n.d.). 

Looking at movies clips 
from the brains of mice and 
trying to identify blood 
vessels as flowing or 
stalled (clogged) 

https://stallcatchers.com/main 
Join a global game that’s trying to 
cure Alzheimer’s. n.d.. Stall 
Catchers. Available at 
https://stallcatchers.com [Last 
accessed 21 April 2021] 

Optimization tasks 

Quantum 
Moves 

Finding the optimal solution 
for Quantum Mechanics 
evolution of wavefunction 
in a dynamical potential in 
the shortest possible 
time/duration. (Jensen et al., 
2021, p.4). 

Transferring atoms the best 
possible way from a 
specified initial state to the 
desired target state within 
very short timescales 

https://www.scienceathome.org/games/quantu
m-moves-2/  

Jensen, JHM., Gajdacz, M., Ahmed, 
SZ., Czarkowski, JH., Weidner, C., 
Rafner, J., Sørensen, JJ., Mølmer, 
K., Sherson, JF., 2021. 
Crowdsourcing human common 
sense for quantum control. Physical 
Review Research, 3(1): 013057. 
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DOI: 
https://doi.org/10.1103/PhysRevRes
earch.3.013057 
Quantum Moves n.d. 
ScienceAtHome. Available at 
https://www.scienceathome.org/ga
mes/quantum-moves-2/ [Last 
accessed 21 April 2021] 

EteRNA Capitalizing on the 
collective intelligence of 
EteRNA players to answer 
fundamental questions about 
RNA folding mechanics 
(EteRNA, CitizenScience, 
n.d.): Understanding and 
mastering the synthesis of 
RNA molecules and the 
RNA conformation for 
multiple medical, 
therapeutic and 
biotechnological 
applications (Lafourcade et 
al., 2015, p.5). 

2D puzzle solving game 
with the four bases of 
RNA: designing elaborate 
structures, including knots, 
lattices and switches 
(EteRNA, Eterna, n.d.) 

https://eternagame.org/home/ 
EteRNA. n.d. 
CitizenScience..Available at 
https://www.citizenscience.gov/eter
na/  [Last accessed 21 April 2021] 
Eterna. n.d. Eterna. Retrieved 
Available at https://eternagame.org/ 
[Last accessed 21 April 2021] 
Lafourcade, M., Joubert, A., & Le 
Brun, N. 2015. Games with a 
Purpose (GWAPS). 1st ed. 
Hoboken, New Jersey, USA: John 
Wiley & Sons Ltd. DOI: 
https://doi.org/10.1002/9781119136
309 

FoldIt  Crowdsource problems in 
protein modelling: Creating 
predictive models of three-
dimensional structures of 
proteins from their amino 
acid composition 
(Lafourcade et al. 2015, p.2) 
to understand how a 
mutation occurs at the level 
of the spatial conformation, 
and develop appropriate 
therapies (Lafourcade et al. 
2015, p.2). 

Protein folding puzzle 
game: players are presented 
with an unstructured amino 
acid sequence and 
challenged to determine its 
native conformation 
(Koepnick et al. 2019, p. 
390) 

https://fold.it/ 
Foldit. n.d. Foldit. Available at 
https://fold.it/  [Last accessed 21 
April 2021] 
Koepnick, B., Flatten, J., Husain, 
T., Ford, A., Silva, DA., Bick, MJ., 
Bauer, A., Liu, G., Ishida, Y., 
Boykov, A., Estep, R.D., 
Kleinfelter, S., Nørgård-Solano, T., 
Wei, L., Players, F., Montelione, 
G.T., DiMaio, F., Popović, Z., 
Khatib, F., Cooper, S., Baker, D. 
2019. De novo protein design by 
citizen scientists. Nature 570: 390–
394. DOI: 
https://doi.org/10.1038/s41586-019-
1274-4 
Lafourcade, M., Joubert, A., & Le 
Brun, N. 2015. Games with a 
Purpose (GWAPS). 1st ed. 
Hoboken, New Jersey, USA: John 
Wiley & Sons Ltd. DOI: 
https://doi.org/10.1002/9781119136
309 

Decodoku  2-D puzzle solving game 
simulating the build-up of 
unwanted quantum 

Adding up the numbers in 
the grids, where multiples 
of 10 disappear and new 

https://decodoku.com/ 
Decodoku. n.d..Decodoku. 
Available at https://decodoku.com/ 
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interactions in quantum 
computers to learn about the 
cognitive strategies and 
heuristics players use to 
correct these errors, which 
can later be used for 
improving algorithms used 
in quantum error correction 
(Scientists Need You to Join 
the Phi-Lambda Mission 
and Make Quantum 
Computers Work, 
Zmescience, n.d.). 

errors may arise until the 
game is over, then the 
players can provide an 
explanation on the thought 
processes and strategies 
they used during playing. 

[Last accessed 21 April 2021] 
Scientists need you to join the Phi-
Lambda mission and make quantum 
computers work. (n.d.). Zmesciece. 
Available at 
https://www.zmescience.com/scienc
e/physics/phi-lambda-mission/ [Last 
accessed 21 April 2021] 
 

Fraxinus Fighting the Ash dieback 
disease, a disease of ash 
trees, by identifying regions 
of DNA sequences that 
show characteristics like 
resistance, which might then 
be bred into a new disease-
resistant variety. (Tsouvalis 
2015, p.2). 

A pattern-matching 
Facebook game: players 
aim to find the best match 
between color patterns 

https://teamcooper.co.uk/work/fraxinus/ 
Fraxinus. n.d. Team Cooper. 
Available at 
https://teamcooper.co.uk/work/fraxi
nus/ [Last accessed 21 April 2021] 
Tsouvalis, J. 2015. How social and 
citizen science help challenge the 
limits of the biosecurity approach: 
The case of ash dieback. Available 
at 
https://blogs.lse.ac.uk/politicsandpol
icy/limits-of-biosecurity-ash-
dieback/ [Last accessed 21 April 
2021] 

 
 

Phylo A game about multiple 
sequence alignment 
optimization: Players solve 
pattern-matching puzzles 
that represent nucleotide 
sequences of different 
phylogenetic taxa to 
optimize alignments over a 
computer algorithm (Play 
Phylo, Solve DNA Puzzle 
and Help Genetic Disease 
Research, Citizen Science 
Games,  n.d.). 

Solving pattern-matching 
puzzles of colored blocks: 
maximizing color matches 
across columns for best 
vertical alignments while 
minimizing gaps within 
sequences. 

https://phylo.cs.mcgill.ca/ 
Play Phylo, solve DNA puzzle and 
help genetic disease research. n.d.. 
Citizen Science Games. Available at 
https://citizensciencegames.com/ga
mes/phylo/ [Last accessed 21 April 
2021] 
Phylo DNA Puzzle. n.d. Phylo. 
Availabe at 
https://phylo.cs.mcgill.ca/ [Last 
accessed 21 April 2021] 

Physical tasks 

iNaturalist  A community of scientists, 
naturalists and citizen 
scientists and tools to create 
research quality data for 
scientists working to better 

Recording and sharing 
observations of the nature 
using an app 

https://www.inaturalist.org/ 
About. n.d. iNaturalist. Available at 
https://www.inaturalist.org/pages/ab
out [Last accessed 21 April 2021] 
INaturalist.(n.d.. iNaturalist. 
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understand and protect 
nature. (About, iNaturalist, 
n.d.) 

Available at 
https://www.inaturalist.org/  [Last 
accessed 21 April 2021] 

Smart 
Citizen  

A kit to collect data and a 
platform to connect people 
to collectively address and 
find solutions to local 
environmental problems 
(Smart Citizen, Smart 
Citizen, n.d.). 

Recording real-time 
environmental data and 
share it with the 
community 

https://digitalsocial.eu/case-study/9/smart-
citizen 

Smart Citizen. N.d. Smart Citizen 
Available at 
https://digitalsocial.eu/case-
study/9/smart-citizen [Last accessed 
21 April 2021] 

UK 
Butterfly 
Monitoring 
Scheme 

Monitoring changes in the 
abundance of butterflies 
throughout the UK based on 
a well-established and 
enjoyable method to 
understand trends in insect 
populations and answer 
policy questions relating to 
status and trends in 
biodiversity. (Home, United 
Kingdom Butterfly 
Monitoring Scheme, n.d.) 

Selecting site, designing 
route and recording and 
submitting data weekly 
(Pollard walks) 

https://www.ukbms.org/ 
Home. n.d. United Kingdom 
Butterfly Monitoring Scheme. 
Available at 
https://www.ukbms.org/ [Last 
accessed 21 April 2021] 

NoiseTube Monitoring noise pollution 
to inform the community, 
create collective, city-wide 
noise maps, improve policy 
making with regards to 
noise level, and research 
soundscape perception. 
(NoiseTube, NoiseTube, 
n.d.) 

Monitoring noise level in 
surroundings using an app 
and tagging the 
measurements (e.g. 
subjective level of 
annoyance, source of 
sound) 

http://www.noisetube.net/index.html#&panel1-
1 

NoiseTube. n.d. NoiseTube. 
Available at 
http://www.noisetube.net/index.htm
l#&panel1-1 [Last accessed 21 
April 2021] 

Spider 
Spotter 

Studying spider evolution in 
the city in real time how 
spiders adapt to the 
increased heat and other 
special circumstances in the 
city to inform research on 
climate change and 
potentially discover new 
ways to adapt to the 
changing environment (Info, 
SpiderSpotter, n.d.). 

Taking pictures of spiders 
and/or their web with a 
reference object using a 
smartphone app and/or 
analyse photos on the 
website and calculate the 
color and length of the 
spider or web (Info, 
SpiderSpotter, n.d.). 

https://www.spiderspotter.com/en/ 
Home n.d. Spider Spotter. Available 
at 
https://www.spinnenspotter.be/en/  
[Last accessed 21 April 2021] 
Info (n.d.). Spider Spotter. 
Available at 
https://www.spiderspotter.com/en/in
fo/spin-city [Last accessed 21 April 
2021] 
 

 
Supplement 4. Projects, descriptions, and sources. 
 
Supplement 5. Related terms (see additional PDF) 
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