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A B S T R A C T   

Any listening task, from sound recognition to sound-based communication, rests on auditory memory which is 
known to decline in healthy ageing. However, how this decline maps onto multiple components and stages of 
auditory memory remains poorly characterised. In an online unsupervised longitudinal study, we tested ageing 
effects on implicit auditory memory for rapid tone patterns. The test required participants (younger, aged 20–30, 
and older adults aged 60–70) to quickly respond to rapid regularly repeating patterns emerging from random 
sequences. Patterns were novel in most trials (REGn), but unbeknownst to the participants, a few distinct patterns 
reoccurred identically throughout the sessions (REGr). After correcting for processing speed, the response times 
(RT) to REGn should reflect the information held in echoic and short-term memory before detecting the pattern; 
long-term memory formation and retention should be reflected by the RT advantage (RTA) to REGr vs REGn 
which is expected to grow with exposure. Older participants were slower than younger adults in detecting REGn 
and exhibited a smaller RTA to REGr. Computational simulations using a model of auditory sequence memory 
indicated that these effects reflect age-related limitations both in early and long-term memory stages. In contrast 
to ageing-related accelerated forgetting of verbal material, here older adults maintained stable memory traces for 
REGr patterns up to 6 months after the first exposure. The results demonstrate that ageing is associated with 
reduced short-term memory and long-term memory formation for tone patterns, but not with forgetting, even 
over surprisingly long timescales.   

1. Introduction 

Memory loss is one of the most significant changes to cognitive 
processing experienced in healthy ageing (Cansino, 2009; Füllgrabe, 
2020; Nyberg et al., 2012; Raz and Lindenberger, 2011; Salthouse, 
2011). The most pronounced memory deficits are related to direct recall 
of episodic memory (Koen and Yonelinas, 2014, 2016), but evidence is 
increasingly revealing impairment in older listeners also in tasks that 
draw on automatic sensory memory processes (Cheng et al., 2013; 
Humes et al., 2013; Janacsek et al., 2012; Rieckmann and Bäckman, 
2009; Rimmele et al., 2012; Schneider and Pichora-Fuller, 2000; 
Sluming et al., 2002; Wayne and Johnsrude, 2015). 

Sensory memory is at the core of auditory processing (Atkinson and 
Shiffrin, 1968; Cowan, 1984; Nees, 2016; Winkler and Cowan, 2005). 
The nature of the unfolding signal is such that any listening task, from 

sound recognition to sound-based communication, depends on the 
ability to store successive events in memory to derive a coherent rep-
resentation (Baldeweg, 2006; Conway, 2020; Heilbron and Chait, 2018; 
Massaro and Cohen, 1975; Rimmele et al., 2015; Santolin and Saffran, 
2018). Age-related deficits in implicit auditory memory are increasingly 
being documented (Bianco and Chait, 2023; Fogerty et al., 2016; 
Jääskeläinen et al., 1999; Pekkonen et al., 1996; Rimmele et al., 2012), 
but remain poorly characterised due to limited computational tracta-
bility and paucity of longitudinal research designs. Recently emerging 
links between auditory processing and dementia are also making it ur-
gent to quantify and understand these impairments (Griffiths et al., 
2020; Johnson et al., 2021). In particular, the brain networks that are 
thought to underlie auditory memory – involving auditory, frontal and 
hippocampal areas (Barascud et al., 2016; Bonetti et al., 2022; Brown 
et al., 2004; Burunat et al., 2014; Kumar et al., 2014; Schapiro et al., 
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2014; Schmithorst, 2005; Watanabe et al., 2008) – are the same net-
works that exhibit age-related alterations (Mander et al., 2013) and the 
earliest decline in Alzheimer’s disease (Benhamou and Warren, 2020; 
Griffiths et al., 2020; Johnson et al., 2021). This makes auditory memory 
decline a promising proximity marker of dementia that is worth inves-
tigating (Fleischman, 2007; Swords et al., 2018). 

Traditionally, auditory memory is conceived as a sequence of stores 
(Atkinson and Shiffrin, 1968): an echoic buffer stores detailed unpro-
cessed information for several hundred milliseconds to allow successive 
sounds to be linked to the representation of sequences; then information 
passes to short-term memory for a few seconds and strengthens in 
long-term memory upon repeated presentations of the 
to-be-remembered sound (Winkler and Cowan, 2005). Impairments can 
potentially arise at any of these different stages. 

Compared to younger adults, older adults exhibit diminished 
amplitude and longer latencies of the mismatch negativity (MMN) – an 
automatic brain response evoked by a rare deviant sound in a sequence 
of standard sounds (Cooper et al., 2006; Jääskeläinen et al., 1999; Kiang 
et al., 1996, 2009; Rimmele et al., 2012). The MMN is hypothesised to 
reflect the process of comparing incoming inputs with sensory-memory 
traces (Atienza et al., 2002; Baldeweg, 2006; Haenschel et al., 2005; 
Näätänen et al., 2007; Squires et al., 1976). Diminished MMN in older 
listeners suggests reduced echoic buffer and/or short-term memory 
(Näätänen et al., 2012). Age-related performance decline is also re-
ported in probabilistic sequence learning tasks using artificial auditory 
material and it is hypothesised to reflect short- and long-term implicit 
memory deficits in older adults (Lukács and Kemény, 2015). In such 
tasks, target sequences of arbitrary syllables or tones (presentation rate 
~2 Hz) are structured according to certain probabilistic or deterministic 
statistics and repetitively presented to listeners who are unaware of the 
structure underlying the sequence (Christiansen, 2019; Petkov and ten 
Cate, 2020). Compared to novel sequences, a memory benefit for the 
target sequences is reflected in better immediate sequence reproduction 
or higher familiarity ratings after the exposure phase. This benefit tends 
to decline with age, and drastically around the age of 65 (Herff et al., 
2020; Lukács and Kemény, 2015; Schevenels et al., 2021). 

Age-related decline has also been described in verbal memory tests 
asking participants to memorise a list of words, nonsense words, or 
stories to a minimum required level of accuracy. Memory is then typi-
cally probed with free recall at delayed sessions. Older compared with 
younger adults exhibit a reduced primacy effect suggesting age-related 
impairment in short-term memory (Mander et al., 2013; Murphy 
et al., 2000), as well as accelerated long-term forgetting (Elliott et al., 
2014; Mary et al., 2013; McGibbon et al., 2022; Wearn et al., 2020) 
implicating impairments of long-term memory consolidation (Hoe-
feijzers et al., 2013). Notably, accelerated long-term forgetting has 
gained particular traction in the clinical field because of its potential as a 
predictor of Alzheimer’s pathology (Weston et al., 2018). 

However, general confounding issues may emerge when tasks 
involve the presentation of stimuli at relatively slow rates (typically ~ 
2–4 Hz) and require engagement of the participant with the to-be- 
remembered information (e.g., the requirement to actively recall, 
judge familiarity etc). Factors such as experience, attention or executive 
processing ability might conceal core informational aspects of age- 
related memory decline. Indeed, age differences in immediate or long- 
term recall might reflect the effects of attentional load (Palmer et al., 
2018), availability of feedback (Herff et al., 2020), or vocabulary 
knowledge (Schneider et al., 2002), as well as rehearsal strategies or 
interference (Manes et al., 2008; Mary et al., 2013; Wearn et al., 2020; 
Weston et al., 2018). Additionally, complex material, like words, limits 
the cross-linguistic and translational diagnostic potential of verbal tests 
and, critically, it is difficult to informationally model and quantify. 
Consequently, whilst it is generally accepted that ageing is associated 
with auditory sensory memory impairment, the properties of this mne-
monic decline are poorly understood. An additional persistent meth-
odological hurdle lies in the ability to monitor the trajectory of memory 

processes over time – from the initial encoding of memories to their 
enduring retention in the long term. To achieve this, it is necessary to use 
standardized assessment techniques throughout these distinct stages. 

We tested younger (aged between 20 and 30) and older (aged be-
tween 60 and 70) participants with an online paradigm that allows us to 
quantify short-term memory, the dynamics of long-term memory for-
mation and long-term retention of tone patterns in an unsupervised 
manner. The “Auditory pattern Memory test” (ApMEM) (Bianco et al., 
2020a) employs arbitrary rapid pure-tone sequences spanning the 
acoustic time scale of speech (20 Hz tone presentation rate, 1 Hz pattern 
rate) (Rosen, 1992). In 50% of the sequences, a pattern (REG; a 
repeating sequence of 20 tones) emerges partway, and listeners are 
required to detect it as quickly as possible (Fig. 1A). The rate at which 
successive tones are presented precludes deliberate tracking of the 
sequence structure, instead the REG patterns pop-out perceptually 
(Warren and Ackroff, 1976). Implicit auditory memory plays an oblig-
atory role in pattern detection (Winkler et al., 2009). The brain’s ability 
to detect a REG pattern is hypothesised to arise from an automatic 
process that scans the unfolding sequence and compares incoming in-
formation with the just-heard sounds held in short-term memory and 
stored representations of the longer-term context (Barascud et al., 
2016). Therefore, after adjusting for individual variability in detecting a 
simple sound change (see methods), the response time (RT) associated 
with REG detection becomes a quantitative measure of the information 
automatically held in memory until sufficient evidence has accumulated 
to trigger the observer’s behavioural response (Bianco et al., 2020a). In 
the task, most REG patterns are novel on each trial (REGn). The asso-
ciated RT can thus be taken to reflect the combined contribution of 
implicit echoic and short-term memory to pattern detection. Crucially, 
unbeknownst to the participants, a few different patterns reoccur 
sparsely (REGr; every 2 min). Memory for REGr strengthens through 
repetitive exposure, as reflected by the gradual emergence of a RT 
advantage (RTA) in REGr pattern detection compared to REGn. This 
relative measure is used to quantify long-term memory formation. 
Previous results from young adults have shown that this effect is im-
plicit, in that it is not driven by explicit familiarity (Bianco et al., 2020a). 
To assess long-term memory retention of REGr patterns, RT to REGr is 
also measured 8 days and 6 months after the first exposure. 

Utilizing such arbitrary stimuli presents several notable advantages 
when investigating auditory memory. Beyond overcoming linguistic 
barriers, these stimuli are too rapid to be actively monitored (Warren 
and Ackroff, 1976), and unlikely to be encountered in real-world set-
tings. Consequently, they effectively mitigate mnemonic biases stem-
ming from prior linguistic familiarity, deliberate rehearsal tactics, or the 
interference posed by routinely encountered auditory inputs. Impor-
tantly, these stimuli are also well suited for establishing a systematic link 
between implicit listener performance (measured through RTs to pat-
terns) and the information-theoretic attributes of the stimuli. This fa-
cilitates the computational simulation and quantification of how 
mnemonic subcomponents constrain listeners’ behaviour. 

The Prediction by Partial Matching (PPM) model, has successfully 
explained listeners’ performance with a variety of discrete musical and 
artificial auditory sequences (Barascud et al., 2016; Bianco et al., 2020b; 
Di Liberto et al., 2020; Harrison et al., 2020; Kern et al., 2022; Omigie 
et al., 2019; Pearce et al., 2010; Quiroga-Martinez et al., 2020). Here, we 
use its memory-constrained variant (PPM-decay, see Harrison et al., 
2020), previously used to simulate performance in the ApMEM task in 
young listeners (Bianco et al., 2020a). The model encodes sequences by 
weighting sub-sequences (n-grams) of multiple orders based on recency. 
Each auditory event is stored as a single count with a certain weight 
which decays over time (following the parameters set by a customizable 
decay kernel; Fig. 1C) and increases if the event is re-encountered. The 
non-linear decay profile simulates the contribution of three sub-
components to memory formation corresponding to echoic buffer, short- 
and long-term memory decay. Based on stored observations, the model 
estimates the information content (IC) for each event, corresponding to 
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the degree to which the event is expected based on prior context. When a 
random sequence transitions into a novel REG pattern (REGn), the IC 
drops due to the match between incoming information and prior ob-
servations held in short-term memory. The brain is hypothesised to be 
sensitive to this change in IC (Barascud et al., 2016) as an indicator for 
changes in underlying stimulus statistics. For a previously encountered 
REG pattern (REGr), there will be a stronger match with information 
stored in long-term memory, resulting in earlier change in IC and 
consequently a faster response (Fig. 1C). Within this framework, the RT 
to a pattern might encapsulate a combination of both speed in accessing 
stored information and associated confidence indirectly reflecting the 
weights this information has in memory. 

Fitting ApMEM RT data from young and older adults with parame-
ters associated with the decay kernel and memory weights allowed us to 
identify the potential sources of memory impairment in the ageing 
cohort. 

2. Methods 

2.1. Power analysis 

We initially ran an online pilot experiment (N = 20, age between 20 
and 30 years old). The RTA effects size across 3 blocks was hp

2 = 0.22. We 
expected the difference between groups to be potentially small (hp

2 =

0.02). A prospective power calculation (beta = 0.8; alpha = .05) for an 
ANOVA within-between interaction yielded a required total sample size 
of N = 41 per group. We set our online target sample size to N = 90 per 
group to account for dropouts (expected ~30%) due to headphone check 
exclusion and the unsupervised and longitudinal nature of the experi-
ment. Experimental procedures were approved by the research ethics 
committee of University College London and informed consent was 
obtained from each participant. 

Fig. 1. Stimuli, experimental design, and a model of auditory memory. A) Example spectrograms of the ApMEM stimuli. RAN sequences contained a random 
arrangement of tone pips. RANREG sequences contained a transition from a random (RAN) to regularly repeating cycles of 20 tone-pips (REGn). The repetition of the 
REG pattern becomes detectable after the first cycle (‘effective transition’). RAN and REGn sequences were generated anew on each trial. Three different regular 
patterns (REGr) were each presented identically trice within a block. Reoccurrences were spaced ~2 min apart. STEP stimuli, containing a step change in frequency, 
(and their ‘no change’ control, CONT) were also included in the stimulus set as a form of attentional checks, and to control for age-related differences in speed of 
processing reflected in RT-based measures. To distil the computation time required to detect the patterns RTs to RANREG were corrected by the median STEP RTs. B) 
Experiment design and task order. This was a 3-session study, conducted on day 1 (d1) to test memory formation over 3 blocks of ApMEM task, and on day 8 (d8) and 
month 6 (m6) to test memory retention with 1 block of ApMEM. Additional cognitive tests (random order) were included on d1: Sustained attention to response 
(SART), Choice reaction time task (CRT), and visual sequence memory task (Corsi blocks). The ApMEM familiarity surprise task was administered at the end of d8. C) 
Auditory sequence memory model. A schematic representation of the parameters implemented in the model to simulate auditory memory. Memory decay. Sequence 
statistics are memorised through partitioning the unfolding sequence into events and sub-sequences of increasing order (n-grams) that are thereon stored in memory. 
The salience of these observations (‘weight’) decays over time through three phases indicated by the shaded areas: (1) buffer, (2) short-term memory (STM, with a 
fast exponential decay from the weight of the buffer to the starting weight of the next phase over a given duration), and (3) the long-term memory (LTM, with a slow 
exponential-decay defined by a starting weight and a half-life). Information tracking: The model uses these stored statistics to quantify the information content (IC, 
where high IC corresponds to low predictability and low IC corresponds to high predictability) of incoming tones. A newly encountered pattern (REGn, in black) is 
detected when incoming information matches the information held in the buffer and the STM resulting in a drop of IC. Once an n-gram is encountered, its repre-
sentation enters a slow LTM-decay phase. Pattern reoccurrence (REGr, illustrated with different shades of purple to indicate the same pattern after 3, 6 and 9 
reoccurrences) leads to weight increase in memory as an index of increasing memory strength. This causes the fall in IC associated with pattern recognition to occur 
progressively earlier. Previous observations (Barascud et al., 2016; Bianco et al., 2020a) support the hypothesis that listeners track and leverage the drop in IC as an 
indication of the emergence of regularity. 
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2.2. Participants 

Two participant groups were recruited via the Prolific platform 
(https://www.prolific.co/). A group of younger participants (age range 
20–30 years old; N = 93) and a group of older participants (age range 
60–70 years old; N = 98). Inclusion criteria included being a native 
speaker of British English, generally good health, no known hearing 
problems, or cognitive impairment (all based on self-report). Partici-
pants using low-quality audio equipment, or those suffering from 
binaural hearing loss, were screened out using the test introduced by 
Milne et al. (2020). 29 participants in the older group, and 24 of the 
younger participants failed the screen and their data were therefore not 
analysed. Additional exclusion criteria were: (a) poor performance in 
the main apMEM test (mean d’ < 1.5 across blocks in day 1 or day 8; N =
1 in the older group, N = 4 in the younger group excluded.) (b) poor 
performance on the attentional checks (mean RT to STEP changes larger 
than 2 STD away from the group means; N = 1 in the younger group 
excluded). A final N = 132 was analysed: N = 68 (28 female) in the older 
group, and N = 64 (33 female) in the younger group (Fig. 2A). Six 
months later we ran an additional (surprise) session. From the original 
pool, N = 104 participants (N = 63 older, N = 41 younger group) signed 
up, and, after exclusion as mentioned above, data from 93 subjects were 
analysed. 

2.3. General procedure 

This study was implemented in the Gorilla Experiment Builder 
platform (www.gorilla.sc) (Anwyl-Irvine et al., 2020) and delivered 
across three sessions: day 1 (d1), day 8 (d8) and month 6 (m6) (Fig. 1B). 

Participants were initially recruited only for d1 and d8. They were later 
invited to participate in the m6 session. Participants were recruited via 
the Prolific platform and remunerated based on an hourly wage of £ 8. 
To enhance the precision of online RT measurements and minimize the 
potential interference arising from variances in devices and browsers (as 
outlined by Anwyl-Irvine et al., 2020; Bridges et al., 2020), we imple-
mented a controlled approach: only participants equipped with a com-
puter (excluding tablets or phones) and using the ‘Chrome’ browser 
were eligible to take part in the study. Offline checks of the OS used by 
participants revealed no systematic bias between older and younger 
participants (see Table S1 in supplementary material). Potential biases 
in laptop vs desktop computers or OS versions were not assessed. Par-
ticipants who performed below 70% accuracy in the practice of the main 
ApMEM task (see below) were prevented from continuing and received 
partial compensation for the time spent on the experiment. 

On day 1 (60 min), participants first completed a headphone check 
(Milne et al., 2020; strict test version). The test is based on a binaural 
pitch signal that is only audible over headphones (i.e., where L and R 
audio channels are delivered separately to each ear). Passing the test 
requires reasonable quality audio equipment (headphones with separate 
R and L channels) and preserved binaural hearing (Sanchez Lopez et al., 
2018). People who failed this very first stage were excluded from the 
analysis. Next, participants performed the Auditory pattern Memory 
task (ApMEM; 3 blocks). The main task was preceded by a short practice 
with a simplified version of the stimuli (see below). People who did not 
reach 70% accuracy in this practice stage were stopped from continuing 
the experiment and received partial compensation. ApMEM was fol-
lowed by a series of cognitive tests - Sustained Attention to Response 
Task (SART), the Corsi blocks task, and the Choice Reaction Time (CRT) 

Fig. 2. Auditory memory formation in young and older adults (ApMEM task). A) Participant age distribution. B) d’ (sensitivity to the emergence of regularity) 
for the OLD and YOUNG groups. Shaded areas indicate the different stages of memory formation (d1 in grey) and retention (d8, m6 in yellow). C) Median RT to STEP 
trials (frequency step changes) averaged across the d1, d8 and m6 sessions. (D) Across all sessions (d1, d8 and m6), older listeners exhibited slower REGn RT than 
young controls. E) RTs to REGr and REGn across the 3 blocks of d1, and the 1 block of d8 and m6. Error bars represent the standard error of the mean. 
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task - presented in random order across participants (Fig. 1B) (more 
details about each task are provided below). At the end of the session, 
participants completed a short questionnaire about their listening 
environment and equipment. This included 4 choice questions about 
how old (1 year/2–4 years/5–7 years/8 or more), and how expensive 
their computer was (less than £700/between £700 and £1000/between 
£1000 and £2000/more than £2000). We observed no between-group 
differences associated with these two ratings (W = 2100, p = .711; W 
= 1855, p = .100). Participants were also asked about their physical 
activity habits (numbers of hours per week) and years of musical 
training (ranked as 0, 0.5, 1, 2, 3–5, 6–9, 10 or more). 

On day 8 (15 min), participants completed the headphone check 
followed by a single ApMEM block. The session ended with a surprise 
familiarity test for REGr (see details below). 6 Months later participants 
who completed d1 and d8 were re-invited for another surprise session 
(15 min). This included the headphone check and 1 block of ApMEM. 

2.4. Tasks 

2.4.1. Headphone check 
This test was used to exclude participants with poor sound envi-

ronments from the analysis. We used the strict version of the test freely 
available online (https://gorilla.sc/openmaterials/100917) and thor-
oughly documented in (Bianco et al., 2021; Milne et al., 2020). 

2.4.2. ApMEM task 
The ApMEM task was used to measure multiple stages of auditory 

memory (Bianco et al., 2020a). Stimuli (Fig. 1A) were sequences of 
contiguous 50-ms tone-pips of different frequencies generated at a 
sampling rate of 22.05 kHz and gated on and off with 5-ms raised cosine 
ramps. Twenty frequencies (logarithmically spaced values between 222 
and 2000 Hz; 12% steps; loudness normalised based on iso226) were 
arranged in sequences with a total duration varying between 5.5 and 6 s. 
The specific order in which these frequencies were successively 
distributed defined different conditions that were otherwise identical in 
their spectral and timing profiles. We created 5 different stimulus sets 
which participants were randomly assigned to. Each set contained five 
conditions as follows. RAN (‘random’) sequences consisted of tone-pips 
arranged in random order. This was implemented by sampling uni-
formly from the pool with the constraint that adjacent tones were not of 
the same frequency. Each frequency was equiprobable across the 
sequence duration. The RANREG (random-to-regular) sequences con-
tained a transition between a random (RAN), and a regularly repeating 
pattern: Sequences with initially randomly ordered tones changed into 
regularly repeating cycles of 20 tones (an overall cycle duration of 1 s; 
new on each trial). The change occurred between 2.5 and 3 s (random 
jitter) after sequence onset such that each RANREG sequence contained 
3 REG cycles. RAN and RANREGn (RANREG novel) conditions were 
generated anew for each trial and occurred equiprobably. Additionally, 
and unbeknownst to participants, 3 different REG patterns reoccurred 
identically several times within the d1, d8 and m6 sessions (RANREGr 
condition, reoccurring). The RAN portion of RANREGr trials was always 
novel. Each of the 3 regular patterns (REGr) reoccurred 3 times per block 
(every ~ 2 min, i.e., 9 presentations in d1, 3 in d8, and 3 in m6). 
Reoccurrences were distributed within each block such that they 
occurred at the beginning (first third), middle and end of each block. 
Two control conditions were also included: sequences of tones of a fixed 
frequency (CONT), and sequences with a step change in frequency 
partway through the trial (STEP). The STEP trials served as a 
lower-bound measure of individuals’ RT to simple acoustic changes. 
They were also used as attention checks – no, or very slow (see below) 
responses to STEP trials indicated insufficient task engagement. 

Each session of the main task was preceded by a volume adjustment 
stage. Participants heard a few sounds from the main task and were 
instructed to adjust the volume to a comfortable listening level. In the 
main task, participants were instructed to monitor for transitions (50% 

of trials) from random to regular patterns (RANREG) and frequency 
changes in STEP stimuli, and press a keyboard button as soon as possible 
upon pattern detection. On day 1, to acquaint participants with the task, 
two practice runs were administered. The first practice contained 24 
sequences consisting of simplified versions of the stimuli (10 RAN, 10 
RANREGn, 2 STEP, 2 CONT), in that sequences were presented at a 
slower tempo (10 Hz) and contained regularities of 10 tones. The second 
practice consisted of 21 sequences (9 RAN, 9 RANREGn, 2 STEP, 1 
CONT) presented at a faster tempo (20 Hz) and containing regularities of 
20 tones, as in the main task. The main task consisted of 3 blocks on d1, 1 
on d8 and 1 on m6 sessions. Each block of the main task lasted about 6 
min and contained 43 stimuli (18 RAN, 9 RANREGn, 9 RANREGr, 5 
STEP, 2 CONT), with an inter-trial-interval of 1 s. Participants were 
instructed to respond as quickly and accurately as possible both to the 
transition from random to regular pattern and to the step frequency 
change. Feedback on accuracy and speed was provided at the end of 
each trial as in our previous work (Bianco et al., 2020a): a red cross for 
incorrect responses, and a tick after correct responses. The colour of the 
tick was green if responses were ‘fast’ (<2200 ms from transition to REG 
or <500 ms from the step frequency change), and orange otherwise. The 
inter-block intervals were set to have a maximum duration of 3 min to 
keep the overall duration of the exposure equal across participants. 
Altogether, on day 1 instructions and practice took approximately 20 
min and the main task lasted 18 min. On day 8 and month 6, the ApMEM 
task took 8 min, 2 of which consisted of 20 trials of practice. 

d’ (computed per session across RANREGn and RANREGr condi-
tions) served as a general measure of sensitivity to regularity. Responses 
were marked as hits when they occurred after the pattern begins to 
repeat (i.e., after the first cycle; effective transition). Responses that 
occurred earlier or during random trials were marked as false alarms. 
Participants whose d’ was smaller than 1.5 in at least one session were 
excluded from the analysis as this indicated poor pattern sensitivity and 
made RT uninterpretable. The core analysis focused on the RT to the 
onset of regular patterns and followed the pipeline adopted in (Barascud 
et al., 2016; Bianco et al., 2020a). RT was defined as the time difference 
between the onset of the regular pattern or the frequency step change 
and the participant’s button press. For each participant and block, RTs 
beyond ±2 SD from the mean were discarded (OLD: 4.3% in REG, 4.1 in 
REGr; YOUNG: 4.1% in REG, 3.8% in REGr). Individuals identified as 
outliers in the RTs to the STEP condition were excluded from the anal-
ysis as this indicated low task engagement. The median STEP RT 
computed per session was used as a measure of the latency of the 
response to a simple acoustic change. This measure of individual base-
line was stable across sessions (day 1 vs day 8 OLD: V = 991, p = .267; 
YOUNG: V = 1012, p = .854), and was subtracted from the RTs to 
RANREGn and RANREGr to yield a lower-bound estimate of the 
computation time required for pattern detection. Lastly, for each sub-
ject, we computed indexes of RT advantage (RTA) of REGr over REGn to 
quantify long-term memory at different time points. To do so, we first 
corrected the RTs to REGr trials by the median RTs to REGn in each 
block. Then, to calculate the RTA by block, we computed the median 
RTA across the 3 intra-block presentations and the 3 different REGr 
patterns. 

2.4.3. ApMEM familiarity task 
Explicit memory for REGr was examined with a surprise task at the 

end of day 8. The 3 REGr patterns presented in the ApMEM (only one 
instance per REGr) were intermixed with 18 REGn patterns, as in 
(Bianco et al., 2020a). Participants were instructed to indicate which 
patterns sounded ‘familiar’. The task took approximately 2 min to 
complete. The classification was evaluated using the Matthews Corre-
lation Coefficient (MCC) score which ranges between 1 (perfect classi-
fication) to − 1 (total misclassification) (Boughorbel et al., 2017; Powers, 
2007). Before starting the task, participants were played a few sounds 
similar to those played in the upcoming task and asked to adjust the 
volume to a comfortable listening level. 
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2.4.4. Choice reaction time task (CRT) 
The CRT task is an established measure of individual variability in 

processing speed and it is linked with age-related decline in higher-level 
cognitive functions (Salthouse, 1996). Subjects were required to respond 
as soon as possible with the index or middle finger to a cue appearing 
with equal probability on the left or right box displayed on the screen. 
The task comprised 20 trials and took approximately 1 min to complete. 
The task has two outcome measures: The central tendency (the median 
RT), and intraindividual variability (the raw standard deviation of the 
RTs), known to show a marked increase with age (Der and Deary, 2006; 
Hultsch et al., 2002). 

2.4.5. Corsi blocks (visual-sequence memory) task 
Nine identical black squares were presented on the screen. On each 

trial, following a fixation duration (500 ms) a few blocks flashed (briefly 
changed colour from black to yellow; flash duration 500ms; inter-flash- 
interval 250 ms) in a sequence. Participants had to reproduce the order 
of the sequence by mouse-clicking on the correct blocks. The initial 
sequence length was 2 blocks. Correct responses resulted in length in-
creases, while incorrect responses led to length decreases. Overall par-
ticipants completed 20 trials. The task took approximately 5 min to 
complete. As an outcome measure, we computed the mean sequence 
length. This score is considered to reflect the ability to remember the 
temporal order of spatial sequences and it is known to deteriorate with 
ageing (Beigneux et al., 2007; Bianco and Chait, 2023; Fournet et al., 
2012). 

2.4.6. Sustained attention to response test (SART) 
The ApMEM task is attentionally demanding and memory formation 

may be affected by the listener’s capacity to sustain focused attention. 
The SART task was used to measure individual vigilance and propensity 
to inattention (Manly et al., 2000). Participants were asked to respond 
by pressing a button to serially and frequently presented ‘Go’ visual 
stimuli (digits from 0 to 9, except 3) but maintain a readiness to with-
hold a response to rare and unpredictable no-Go trials (the digit 3). The 
task took approximately 8 min to complete. The key outcome measure 
was the % ‘no-Go’ fail – quantifying listeners’ ability to successfully stay 
’on task’. 

2.5. Statistical analyses 

Performance was statistically tested with linear analyses of variance 
(ANOVA) implemented in the R environment using the ‘ezANOVA’ 
function (Michael Lawrence, 2016). P-values were Greenhouse-Geisser 
adjusted when sphericity assumptions were violated. Post hoc t-tests 
were used to test for differences in performance between conditions 
across blocks and groups. A Bonferroni correction was applied by 
multiplying p-values by the number of comparisons. Resulting values 
below the significance level of .05 are indicated as n. s. – non-significant. 
Non-parametric tests were used where the normality of the outcome 
distribution and homogeneity of variances were violated based on the 
Shapiro-Wilk test. To isolate the contributions of different tasks to 
ApMEM performance, we used hierarchical linear regressions. 

2.6. PPM-decay modelling 

Observed data from the ApMEM task were computationally 
modelled using a memory-constrained Prediction by Partial Matching 
(PPM) model. PPM is a variable-order Markov modelling technique that 
estimates the likelihood of the occurrence of symbolic sequential events, 
given the number of occurrences of n-grams of varying size within a 
training sequence, smoothing between models of different orders 
(Bunton, 1996; Cleary and Witten, 1984). 

Conventional models using PPM possess a perfect memory for all 
events in their training data, regardless of proximity to the modelled 
event. To model the effects of human memory on learning, Harrison 

et al. (2020) implemented a PPM model with the ability to down-weight 
occurrences in the model over time, based on a customizable decay 
kernel. As used here, the kernel contained three phases: (1) a 
high-fidelity echoic memory buffer, defined by a weight and a duration; 
(2) a short-term memory (STM) phase that decays exponentially from 
the weight of the buffer to the starting weight of the next phase over a 
given duration; and (3) an exponentially decaying long-term memory 
(LTM) phase, defined by a starting weight and a half-life; (examples of 
decay kernels and their phases can be seen in Fig. 3C). Additionally, 
varying levels of noise were added to event probabilities, fulfilling the 
role of a general processing speed parameter, and replicating similar 
imperfections in human memory. This noise was parameterised by the 
SD of a normal distribution, from which sampled absolute values were 
added to the weights on memory retrieval. 

All stimuli in blocks 1 to 3 of day 1 were modelled, as presented for 
each stimulus set, maintaining the tone, stimulus, and block timings of 
the task. Models were trained dynamically, estimating a probability for 
each tone, given the sequence preceding it and all preceding stimuli, 
which was converted into information content (negative log-base-2 
probability). Models were limited to a maximum n-gram length of 5 
symbols (an order bound of 4). As in (Bianco et al., 2020a), changes in 
information content were identified for REGn and REGr stimuli using 
the nonparametric change-point detection algorithm (Ross et al., 2011), 
a sequential application of the Mann-Whitney test, while controlling for 
a Type I error rate of 1 in 10000. 

Model parameters were optimised to find the decay configuration 
that best reproduced the observed data of the younger group using 
Rowan’s Subplex algorithm, as implemented in the NLopt package 
(Johnson, 2020; Rowan, 1990). Initial parameter values were adapted 
from the manually fitted parameters by Bianco et al. (2020a). To ac-
count for the increased variability of change points due to modelling 
prediction noise, for every optimisation iteration, the modelling was 
repeated 100 times, refreshing model memory between each. Repeated 
change points were then averaged for individual stimuli. Optimisation 
sought to minimize the root-mean-square error (RMSE) between 
observed RTs and modelled change points, when averaged for each of 
the REGn and REGr conditions within blocks 1 to 3, for each different 
stimulus set. To facilitate a comparison of goodness of fit between 
models using different numbers of parameters to fit the same data, 
Akaike Information Criterion (AIC) values were calculated under the 
assumption of normally distributed errors. A correction was applied to 
penalize potential overfitting when using small sample sizes (AICc). 

To characterise differences between the older and younger groups, 
first, observed data for the older group were modelled by optimising a 
single parameter while holding all others to the values obtained for the 
younger group. The fit of these models is shown in Fig. 3B. As no single 
change of only an individual parameter adequately reproduced the 
observed data, pairs of parameters were then fitted. For each pair, the 
parameter giving the best fit when optimised individually was initialised 
at the value obtained in that optimisation. The other parameter in the 
pair was initialised at, and all remaining parameters were held at, the 
values obtained for the younger group. The parameters that produced 
the best-fitting of these models, based on RMSE, were selected as those 
characterising the older group. 

3. Results 

With an online version of ApMEM, we characterised implicit memory 
for rapid tone patterns in young and older participants over multiple 
timescales, from early mnemonic stages required to detect novel pat-
terns to long-term memory formation and retention at 1-week (d8) and 6 
months (m6). Using a computational model of auditory sequence pro-
cessing, we then distilled and quantified how different memory pa-
rameters contribute to between-group differences in performance on 
day 1 (d1). 

To account for age-related effects on general aspects of the ApMEM 
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task (ApMEM task is RT-based, it measures memory for sequences and 
requires focused attention) we also included tests of processing speed 
(Salthouse, 1996), spatial-visual sequence memory (Corsi, 1972; Kessels 
et al., 2000), and attention (Manly et al., 2000) (Fig. 1B). We explored 
whether these measures might explain response differences in ApMEM 
performance between the age groups. 

3.1. No group difference in accuracy of pattern detection 

Overall, the ability to detect the emergence of a pattern from a 
random sequence, as quantified with d’ (collapsed across REGn and 
REGr), was consistently high across blocks (Fig. 2B), though a drop 
between d8 and m6 was seen in the younger group (YOUNG: W = 796, p 
= .003, CI [− 0.642 -4.953e-05; OLD: W = 1628, p = .208, CI [− 0.321 
3.74e-05]). d’ was similar between groups on d1 (W = 2524.5, p = .113, 
CI [-0.006 0.231], mean OLD: 3.3 ± 0.40, YOUNG: 3.17 ± 0.454), on d8 
(W = 2036, p = .513, CI [− 0.321 7.035e-06], mean OLD: 3.34 ± 0.48, 
YOUNG: 3.36 ± 0.558), and on m6 (W = 1265, p = .082, CI [− 1.999e- 
05 0.496], mean OLD: 3.22 ± 0.55, YOUNG: 2.97 ± 0.67). This confirms 
high sensitivity to the presence of regularities and allows us to confi-
dently interpret the between-group differences in RTs as a measure of 
memory strength. 

The hit rate for novel (REGn) and reoccurring patterns (REGr) was 
computed for each session (d1, d8, m6). Hits were higher for REGr than 
REGn on d1 (mean over blocks 1,2 and 3) in both groups (REGr: 96.6 ±
4.36, REGn: 94.1 ± 7.7 in OLD; REGr: 97 ± 4.57, REGn: 93.6 ± 7.9 in 
YOUNG; one-sample Wilcoxon test of REGr – REGn hit per cent, OLD: V 
= 596, p = .006; YOUNG: V = 807, p < .001), indicating a memory effect 
for REGr. The hit advantage of REGr over REGn did not differ between 
the groups on d1 (W = 2439.5, p = .218, CI [− 2.86e-05 3.70]), on d8 

(W = 2341.5, p = .39, CI [− 1.38e-05 3.97e-05]), and m6 (W = 1118.5, 
p = .531, CI [− 3.47e-05 3.44e-05]). Finally, the hit advantage did not 
change over time: similar effects were found in the last block of d1 
(b3_d1), d8 and m6 in both groups (all p-values < .78). 

Overall, both groups were highly accurate in detecting the patterns 
and showed a memory advantage for REGr. However, this advantage 
was similar between groups and did not change over time, likely because 
it quickly reached ceiling effects. The ApMEM task was indeed designed 
to yield high levels of accuracy consistently over time. This enabled us to 
focus on analysing the RT to capture processes related to dynamic 
sequence processing. Below, we demonstrate that between-group dif-
ferences associated with these effects are sensitively captured when 
focusing on RT. 

3.2. Age-related decline in early mnemonic stages 

RTs to simple frequency changes (STEP) collapsed across d1, d8 and 
m6 showed substantial inter-individual variability and were also 
generally slower in the OLD than YOUNG group (Fig. 2C; W = 2766.5, p 
= .007, CI [15.9 92.9], mean OLD: 482 ± 115, YOUNG: 434 ± 108 ms). 
For each subject, the RT to the pattern emergence (RANREGn and 
RANREGr) was corrected by the RT to the STEP (median per session). 
This was done to control for individual variability in RT to a simple 
stimulus change, and thus isolate the computation time required to 
detect an emerging pattern. 

We first analysed responses to REGn, as a measure of early mnemonic 
stages. We computed the median RT to REGn, collapsed across all ses-
sions (Fig. 2D). The OLD group took longer than the YOUNG to detect 
the REGn patterns (RTs to REG: W = 2654.5, p = .03, CI [5.49 106.25]; 
mean OLD: 1807 ± 0.152; YOUNG: 1747 ± 137 ms), suggesting age- 

Fig. 3. Modelling contribution of buffer, STM and LTM to auditory memory formation in young and older adults. A) Simulated and observed RTs to REGn and 
REGr conditions for the YOUNG group (left), and the parameter values of the optimised model with RMSE = 56.85 (right). B) Simulated RTs (left) and parameter 
values (right) for models fitting OLD RTs by optimising individual parameter changes from those of YOUNG. C) Simulated and observed RTs to REGn and REGr 
conditions for the OLD group using parameter values obtained for YOUNG and modifying buffer weight and LTM half-life yielding RMSE = 57.22 (left); the memory 
decay kernels of best fitting models for both groups on a time scale of 30 s (right). The small insert illustrates the LTM phase on a timescale of 1 h. See Supplementary 
Material for simulated RTs using tone intervals, instead of absolute tone values. 
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related decline of early mnemonic components (echoic/short-term 
memory) supporting pattern detection. 

3.3. Age-related decline in long-term memory formation 

Fig. 2E shows the median RT to REGn vs REGr for each block and 
session. We first focused on d1 (memory formation stage). A mixed 
ANOVA with factors condition (RANREGn/RANREGr), block (block 1–3 
of d1) and between-subjects factor group (OLD/YOUNG) yielded a main 
effect of condition [F (1, 130) = 82.52, p < .001, ηp

2 = 0.39], a main 
effect of block [F (2, 260) = 6.87, p = .002, ηp

2 = 0.05] and an interaction 
of condition by block [F (2, 260) = 7.57, p = .001, ηp

2 = 0.06]. This 
confirms the general pattern previously observed for this task (Bianco 
et al., 2020a): whilst RT to REGn patterns remains stable across blocks 
(no significant difference between blocks), RT to REGr becomes pro-
gressively faster with repeated exposure (block 1 vs 2 p = .004; block 1 
vs 3 p < .001). 

A main effect of group [F (1, 130) = 8.71, p = .004, ηp
2 = 0.06] and 

interaction of condition with group [F (1, 130) = 4.74, p = .031, ηp
2 =

0.04] confirmed that, across the 3 blocks of d1, the older group were 
slower overall than the younger group in detecting the REGr patterns 
(RT to REGr: OLD, mean 1725 ± 182 ms, vs YOUNG, 1622 ± 164, [t 
(130) = 3.40, p < .001]). An effect of ageing on REGn RT did not quite 
reach significance when focusing on the first day only (RT to REGn: OLD, 
mean 1809 ± 173 ms, vs YOUNG, mean 1761 ± 138 ms, [t (130) = 1.75, 
p = .08]), possibly due to some noise in the YOUNG data in block 2. No 
three-way interaction was found [F (2, 260) = 0.76, p = .467, ηp

2 =

0.01]. 

3.4. Computational modelling indicates that reduced performance among 
older listeners can be explained by reduced echoic buffer weight and faster 
LTM decay 

Using a memory-constrained variant of Prediction by Partial 
Matching (Harrison et al., 2020), a computational model was optimised 
to fit the observed data on day 1 over blocks 1 to 3 of the ApMEM task for 
both OLD and YOUNG groups. We use this model to provide a formal 
simulation of early memory encoding and long-term memory formation 
characterising differences between the groups. 

Fig. 3A shows the simulated RTs and the parameters optimised to fit 
the data of the YOUNG group (RMSE = 56.85). The decay kernel that 
these parameters generate is illustrated in Fig. 3C (right plot). Qualita-
tively, these parameters show close correspondence to those obtained 
when simulating responses of young participants on the same task in 
(Bianco et al., 2020a). 

The optimisation of the data of the OLD group first examined 
whether a single parameter change from the values obtained for YOUNG 
could explain the differences in RT. The individually optimised param-
eters and their fit are given in Fig. 3B. It should be noted that, in several 
cases, the change of a single parameter affects the characteristics of 
multiple memory phases. No optimisation of only a single parameter 
managed to adequately fit the observed data for the OLD group, with all 
models possessing both high RMSEs reflecting an inability to recreate 
the trajectories of REGn and REGr responses, as displayed in Fig. 3B (left 
plot). In particular, parameters affecting the buffer, STM, or overall 
prediction noise, were unable to reproduce the decrease in learning rate 
exhibited in block 3 of the observed data for the REGr condition. While 
LTM weight was better able to account for this effect, it could not suf-
ficiently increase simulated RTs for the REGn condition at the same 
time. Manipulating LTM half-life on its own was unable to produce a fit 
for either condition. 

Next, pairs of parameters were optimised in turn to fit the data for the 
OLD group (a full list of parameter values and fit of models is given in 
supplementary material). Four parameter sets had better goodness of fit 
than the best-fitting single parameter optimisations when accounting for 
the increased number of parameters (i.e., with an AICc lower than that 

of LTM weight at 249.54). Each could plausibly fit the observed data, 
and each contained one parameter controlling properties of the buffer or 
short-term memory, and one controlling an aspect of long-term memory. 
The best-fitting combination (RMSE = 57.22; AICc = 247.26) was the 
optimisation of buffer weight and LTM half-life (0.93 and 232.86 s, 
respectively). The decay kernel described by these parameters diverges 
from that of the YOUNG group by having some down-weighting of 
memories formed within the buffer and more rapid long-term decay, as 
shown in Fig. 3C (right). These differences, and those of the other low- 
RMSE models fitting the OLD data (buffer duration and LTM half-life; 
buffer duration and LTM weight; STM duration and LTM half-life), 
indicate that the older group possesses weaker memory formation in 
both the immediate and long-term mnemonic phases and that both 
deficits are required to explain the differences observed between the two 
groups. 

3.5. Auditory memory retained for up to 6 months in both older and 
younger listeners 

Fig. 4A displays the RT advantage between REGr and REGn across all 
experimental sessions. The data revealed that the difference in RTA 
observed at the end of d1 (and modelled above) persisted when probed 
at d8 and at m6. 

To explicitly test for long-term memory retention, for each subject 
we compared the RTA at d8 and m6 to that observed in block 1 of d1 
(b1_d1). If listeners retained a lasting memory of REGr we expected RTA 
in d8 and m6 to be different from that in b1_d1. An ANOVA with factors 
block (b1_d1/d8) and group yielded main effects of group [F (1, 130) =
8.69, p = .004, ηp

2 = 0.06], block [F (1, 130) = 26.30, p < .001, ηp
2 =

0.17], and no interaction [F (1, 130) = 3.24, p = .074, ηp
2 = 0.02], 

indicating a greater RTA in d8 than in b1_d1 in both groups [t (131) =
5.03, p < .001; mean RTA OLD: b1_d1 36.4 ± 189, d8 115 ± 0.190 ms; 
YOUNG: b1_d1 71.6 ± 215, d8 234 ± 215 ms], and overall greater in the 
YOUNG than in the OLD group [t (130) = 2.94, p = .004]. 

An ANOVA with factors block (b1_d1/m6) and group yielded main 
effects of group [F (1, 91) = 10.82, p = .001, ηp

2 = 0.11], block [(1, 91) =
16.59, p < .001, ηp

2 = 0.15], and no interaction [F (1, 91) = 1.52, p =
.221, ηp

2 = 0.02], indicating a greater RTA in m6 than in b1_d1 in both 
groups [t (92) = 3.90, p < .001; mean RTA OLD: b1_d1 30.2 ± 198, m6 
119 ± 189 ms; YOUNG: b1_d1 89.5 ± 197, d8 255 ± 239 ms], and an 
overall greater RTA in the YOUNG group [t (91) = 3.28, p = .001]. This 
analysis shows that weaker LTM memory is formed in the OLD than in 
the YOUNG group, but both groups maintain non-decaying memories of 
the REGr patterns up to 6 months following initial memory formation. 

Lastly, we compared the RTA observed in block 3 of d1 (b3_d1), to 
those in d8 and m6 (Fig. 4B). A repeated measures ANOVA revealed a 
main effect of group only [F (1, 91) = 13.86, p < .001, ηp

2 = 0.12], 
consistent with the overall larger RTA among the young listeners. There 
was no main effect of block, nor an interaction (block: [F (2, 182) =
0.97, p = .381, ηp

2 = 0.01]; interaction: [F (2, 182) = 0.93, p = .397, ηp
2 =

0.01]), confirming a plateauing of the RTA after d1 in both groups – 
consistent with an enduring memory trace. 

We also found that RTA in b3_d1 positively correlated with RTA in d8 
(spearman’s rho = 0.198, p = .022) and that RTA in d8 correlated with 
RTA in m6 (spearman’s Rho = .230, p = .026). This indicates good 
reliability of individual effects even in online settings. 

Finally, we found no correlations between the age of the participants 
and the RTA in b3_d1, d8, or m6, in either the OLD (all p-values < .06), 
nor the YOUNG group (all p-values < .19). This might be due to the 
narrow age ranges used in the current study. However, the observed 
negative trend in the correlation between age and RTA in m6 in the older 
group (spearman’s Rho = − .255, p = .06) suggests that future studies 
with larger sample sizes and a broader age range might potentially 
reveal critical age periods in implicit auditory memory decay. 

To summarise, an effect of group (young vs. older) emerged across 
different time scales: in addition to weaker early mnemonic stages 
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(Fig. 2D), the older group exhibited weaker long-term memory, as re-
flected by smaller RTA in b3_d1, d8 and m6; however, there was no 
evidence of a decline in memory i.e., between b3_d1 and d8 or d8 and 
m6. 

3.6. No link between explicit and implicit auditory memory formation 

Explicit memory for the REGr patterns was assessed at the end of d8 
with a surprise familiarity task (Fig. 5A). Each REGr was presented once 
only amongst a large set of foils (REGn) and participants judged if the 
pattern was familiar. MCC (Matthews correlation coefficient) was used 
to measure the quality of subjects’ binary classification. Both groups 
exhibited above-chance performance (OLD: V = 1734, p < .001; 
YOUNG: V = 1765.5, p < .001), but the performance was poorer in older 
listeners (W = 1589, p = .040, CI [-0.137 -5.16e-05], mean MCC OLD: 
.173 ± .217, YOUNG: .253 ± .183) (Fig. 5A). As in our previous findings 
(Bianco et al., 2020a), explicit memory scores did not correlate with the 
RTA observed in the last block of d1 (b3_d1; spearman’s Rho = − .025; p 
= .777) nor with that in d8 (spearman’s Rho = .056; p = .170). These 
analyses confirm the implicit nature of the RTA measures. 

3.7. Age-related decline in visual-sequence memory and processing speed, 
but no link with ApMEM RTA 

At the group level, older participants showed slower median RTs in 
the CRT (W = 4000, p < .001, CI [68.80 100.09], mean OLD: 421 ±
97.2; YOUNG: 319 ± 40.5), and greater variability (SD of trials: W =
3227, p < .001, CI [11.63 27.06]) (Fig. 5B and C), reflecting the well- 
known effect of age-related processing speed impairment (Hultsch 
et al., 2002). The median RTs in CRT correlated with the RTs in our 
control STEP condition (spearman’s Rho = .312, p < .001) confirming 
that STEP RTs are a good measure for correcting differences in baseline 
speed. 

The older group exhibited worse performance in the Corsi blocks task 
(OLD vs YOUNG: t (130) = − 3.56, p < .001, mean OLD: 4.54 ± .59; 
YOUNG: 4.80 ± .537), confirming the expected age-related decline in 
visual sequence memory (Fig. 5D) (Beigneux et al., 2007; Bianco and 
Chait, 2023; Fournet et al., 2012). 

In line with previous findings on the SART (de Kerangal et al., 2021), 
there was no age-related decline in the sustained attention accuracy (% 
‘no-Go’ fail: W = 1967, p = .343, CI [− 11.10 3.10], mean OLD: 33.5 ±
20.3; YOUNG: 38.1 ± 24.5) (Fig. 5E). As expected, RTs were slower in 
the OLD vs the YOUNG group in the ‘Go-trials’ (W = 11 073, p < .001, 
CI: [19.62 52.54], mean OLD: 378 ± 66.5; YOUNG: 348 ± 85.7). The 
speed-accuracy trade-off was similar between groups: accuracy in ‘no 
Go’ trials was predicted by RT (χ2 (1) = 25.29, p < .001), but not by 
group or the interaction between RTs and group (p > .1). 

We conducted linear regression analyses to understand to what 
extent group-specific variance in ApMEM is predicted by performance 
on these cognitive tasks. We also included weekly hours of physical 
activity and years of musical training as possible predictors of ApMEM 
performance. Physical activity has been listed among the factors 
reducing the risk of cognitive and memory decline (Nyberg and Pudas, 
2019; Sofi et al., 2011). Evidence from a meta-analysis has linked 
musical practice in healthy ageing with cognitive benefits both in 
domain-specific functions (auditory perception) and more general ones 
(Román-Caballero et al., 2018). For each outcome measure of ApMEM 
(Fig. 4B) and group, we performed a linear regression analysis with the 
predictors: CRT standard deviation, SART RTs, Corsi mean sequence 
length, and the above-mentioned demographic scores. None of the 
models was significant in the older group (all p-values >.11). A similar 
analysis in the younger cohort also yielded non-significant models (all 
p-values >.14). Overall, this pattern of results indicates that the vari-
ability in ApMEM is not driven by general processing speed, visuospatial 
sequential memory, or sustained attention, and might thus reflect 
age-related deficits specific to auditory memory. 

Fig. 4. Auditory memory formation and retention in the young and older groups (ApMEM task). (A) Long-term memory dynamics across d1, d8 and m6 in 
young and older listeners, quantified as RT advantage (RTA) of REGr over REGn patterns. (B) Violin plots showing the individual data for the indexes extracted from 
the ApMEM task to quantify memory formation (the RTA computed over the last block of the first exposure on d1) and memory retention (the RTA computed on d8 
and m6). Statistically significant differences between group means (Mann-Whitney U) are indicated. 
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4. Discussion 

Despite its role in supporting fundamental aspects of auditory 
perception, how implicit sensory memory is affected by ageing remains 
poorly understood. Existing approaches have predominantly focused on 
verbal material and tasks that require cued reporting, making them 
susceptible to factors such as rehearsal strategies or interference during 
long retention periods. For example, it is not known whether the 
’accelerated forgetting’ effect recently characterised in older listeners 
(Elliott et al., 2014; Wearn et al., 2020) is specific to explicit memory or 
also extends to more basic auditory mnemonic representations. 

Here, we introduce a paradigm that distils and quantifies age-related 
deficits in core memory mechanisms underlying auditory scene analysis. 
We compared younger (aged between 20 and 30 years old) and older 
adults (aged between 60 and 70 years old) with an RT-based implicit 
memory test. Participants are required to detect emerging regular pat-
terns from random rapid sequences of tones. Patterns are novel in most 
trials (REGn), but unbeknownst to the participants, a few distinct pat-
terns reoccur identically throughout the experimental sessions (REGr). 
The progressively growing RT advantage (RTA) for REGr vs REGn 
demonstrates that mnemonic traces for the specific reoccurring patterns 
become more salient in memory through repeated presentations. The 
test is repeated 8 days and 6 months after initial exposure. Notably, the 
stimuli are arbitrary, and too fast to allow conscious tracking of the 
sequence events; thus, minimizing active tracking processes and mne-
monic interference with real-world sounds. 

We found that, compared to young adults, older participants were 
slower in detecting novel patterns and exhibited a smaller RTA in 

detecting reoccurring patterns, indicating deficits in echoic/short-term 
memory and long-term memory formation. A computational model of 
auditory sequence memory fit to the data on the first day of exposure 
also suggested age-related limitations in both early and long-term 
mnemonic components. However, in contrast to mounting demonstra-
tions of accelerated forgetting of verbal material with ageing, here older 
adults maintained stable memory traces for the reoccurring patterns – an 
unaltered RTA – up to 6 months after the first exposure. An absence of a 
correlation between the RTA and the active recall abilities measured 
with familiarity ratings confirmed the implicit nature of the RT effects. 

4.1. Processing speed does not explain the reduced auditory memory 
effect in the older cohort 

The between-group difference in the derived RT-based measures of 
memory cannot be explained by general reduced processing speed in the 
aged cohort (Salthouse, 1996; Zajac and Nettelbeck, 2018). This is 
supported by three arguments: First, RTs were corrected by RT to a 
simple stimulus change (STEP condition) interspersed in the main 
ApMEM task. This ensured that performance in pattern detection was 
controlled for inter-individual biological (e.g., subject’s general state of 
vigilance, or the time taken to perceive an auditory change, to generate a 
response) or equipment-based differences (e.g., keyboard latency) 
introducing non-memory specific variability. Second, the worse per-
formance of older than younger adults in the control choice-RT task 
(CRT) showed the expected age effect on processing speed, and it 
correlated with the ApMEM STEP control condition, confirming the 
latter as a valid measure for correcting general differences in baseline 

Fig. 5. Distribution of performance, across the various tasks, in the young and older groups. Statistically significant differences between group means (Mann- 
Whitney U) are indicated. Worse performance in the OLD than in the YOUNG group was observed in (A) ApMEM explicit familiarity scores computed as Matthews 
correlation coefficient (MCC) on the reoccurring patterns and obtained at the end of day 8. The coefficient ranges between 1 (perfect classification) to − 1 (total 
misclassification). (B) CRT both in terms of median and (C) variance of RTs, and (D) Corsi-blocks. Accuracy on the SART task (E) did not differ between groups. The 
two groups did not differ in terms of (F) musical training (W = 2076, p = .580). 
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speed. Finally, the regression analyses, including control tasks as pre-
dictors of ApMEM performance, showed that CRT did not contribute to 
variability in any of ApMEM-related memory measures. This, together 
with the absence of correlations between the ApMEM memory measures 
and tasks associated with sustained attention (SART) and 
visual-sequence memory, suggests that between-group differences in 
ApMEM reflect age-related deficits specific to auditory memory. 

Online RT measurements are subject to limitations due to the vari-
ability in the participants’ equipment (Anwyl-Irvine et al., 2020; Bridges 
et al., 2020) and engagement (Bianco et al., 2021). Although we 
implemented strict equipment requirements (see methods), residual 
components of equipment-driven RT delay might still contribute to the 
RT variance when measured online. Importantly, this variance is likely 
to be equally distributed across the groups (see methods and Table S2). 

4.2. Deficits in both early and long-term mnemonic stages contribute to 
age-related performance decline 

Our measure of memory was RT which can be related to the com-
putations inherent to dynamic sequence processing, and hence to the 
model output. Whilst accuracy measures were at ceiling by task design, 
older compared with younger participants exhibited overall slower RTs 
in response to novel patterns and, over time, formed a smaller RTA for 
the reoccurring patterns. Slower RTs in the older group could reflect a 
combination of slower access to stored information and less confidence 
due to noisier memory encoding. Whilst these factors could be reflected 
in both RT to REGr and REGn, the difference between the two conditions 
(the RTA) is likely to specifically reflect long-term memory representa-
tions. Modelling demonstrated that optimisation of parameters associ-
ated with both early and later mnemonic stages was necessary to 
accurately model older listeners’ performance. 

We modelled the effect of ageing on memory by optimising the 
model memory decay kernel pertaining to: (1) a high-fidelity echoic 
memory buffer; (2) an STM phase; and (3) an exponentially decaying 
LTM phase. Each of these is associated with parameters describing their 
duration, relative weight, and rate of decay. Amongst the four best- 
fitting models, each contained one parameter controlling properties of 
the buffer or short-term memory, and one controlling an aspect of long- 
term memory. The best fitting model suggested that weaker echoic 
buffer weight (YOUNG: 1; OLD: 0.93), as well as more rapid long-term 
decay (YOUNG: 502.96 s; OLD: 232.86 s), contributed to the age- 
related performance decline on day 1. 

The first ‘pre-perceptual’ stage of temporarily holding auditory in-
formation allows listeners to bind incoming events with the just heard 
ones to perceive a coherent representation of sequential sounds (e.g., a 
sequence of single tones as a motive). The computational modelling 
results support the interpretation that the overall slower detection of 
REGn patterns in older adults is a consequence of limited buffer/short- 
term memory components. This is in line with previous hypotheses 
(Herrmann et al., 2022) and consistent with neurophysiological evi-
dence showing a somewhat weaker ability to represent information in 
echoic memory in older than young adults (Cooper et al., 2006; Pek-
konen et al., 1996). 

Parameters affecting the early stages of auditory memory alone 
could reproduce the age effect on responses to novel patterns but were 
unable to reproduce the diminished RTA for reoccurring patterns. A 
combination of reduced memory buffer and more rapid long-term decay 
(LTM half-life) best accounted for both aspects of performance differ-
ences between groups. 

The decay kernel optimised for older adults’ data provides an initial 
model of how limitations at multiple stages of memory may explain 
different cognitive performance between populations. We focused on 
PPM-decay as the primary model for benchmarking auditory sequence 
tracking and learning. This model has successfully explained behav-
ioural and neural responses to stimuli like those used here (Barascud 
et al., 2016; Bianco et al., 2020a; Harrison et al., 2020). Notably, relative 

to neural network (Huang et al., 2018) and Gestalt models (Narmour, 
1990), PPM excels in simulating brain responses to complex auditory 
signals, such as music (Kern et al., 2022). Moreover, unlike alternative 
models (e.g., Skerritt-Davis and Elhilali, 2021), to the best of our 
knowledge, PPM-decay is the only model that has explicit decay pa-
rameters. In particular, the long-term decay seems to be necessary to 
simulate listeners’ performance on different auditory tasks (Bianco 
et al., 2020a; Harrison et al., 2020). The PPM model also provides some 
inherent reproduction of interference effects which are thought to 
co-exist with decay (Hardt et al., 2013; Lewandowsky et al., 2009). 

The parameters for this model were optimised to fit blocks 1 to 3 of 
the ApMEM task performed on d1. As the constant long-term decay of 
the model predicts that memory should eventually reduce to zero, d8 
and m6 are beyond the scope of this modelling in its current form. 
Modelling such time spans, while still being able to recreate effects 
within the first three blocks, would require a non-trivial addition that 
could account for memory consolidation over the intervening time 
periods. 

Could the observed age-related memory effects arise from poorer 
hearing sensitivity in older listeners? We consider this unlikely for 
several reasons: firstly, the sensitivity to the presence of regularities was 
high among older adults and did not differ between older and young 
listeners. Secondly, during the instructions stage, participants were 
encouraged to adjust the sound volume to as high a level as needed, and 
the tone frequency range of 220–2000 Hz was intentionally chosen to be 
less affected by age-related hearing loss. This further guaranteed 
adequate audibility for all sounds. Finally, only participants who passed 
the headphone test (see methods) were included. 

4.3. No evidence of long-term forgetting with ageing: memory traces to 
arbitrary tone patterns are retained for up to 6 months from initial 
exposure 

The older compared with the young group formed weaker memory 
during the first day of exposure as quantified by a smaller RTA. How-
ever, just as observed in the younger group, the RTA in older listeners 
persisted for 8 days and 6 months after the initial exposure. This very 
long-lasting effect observed in both groups is noteworthy considering 
that the RTA was not driven by the explicit familiarity judgments ob-
tained 6 months earlier. 

There is growing interest in tests taxing memory circuit functionality 
at delayed recall because memory problems at this stage could indicate 
incipient dementia (Ryan and Frankland, 2022; Weston et al., 2018). 
That auditory patterns were not forgotten at delays of 8 days nor 6 
months in the older cohort is in contrast to the body of work on accel-
erated long-term forgetting (ALF) for verbal material in ageing (Davis 
et al., 2003; Elliott et al., 2014; Manes et al., 2008; Mary et al., 2013; 
Wearn et al., 2020). ALF of verbal material has been reported also in 
pre-symptomatic autosomal dominant Alzheimer’s disease (Weston 
et al., 2018), patients with temporal lobe epilepsy (Blake et al., 2000), 
and it might represent a failure of memory consolidation processes 
(Hoefeijzers et al., 2013) due to altered integrity of 
hippocampal-neocortical (temporal) connections (Alvarez and Squire, 
1994). One explanation for the discrepancy between verbal tasks and 
ApMEM may reside in the very low probability, compared to verbal 
material, that subjects encountered ApMEM-like sequences outside of 
the experimental sessions. This might have minimised phenomena such 
as forgetting due to interference with real-world stimuli (Davis and 
Zhong, 2017), which perhaps affects older more than younger adults 
(Wais and Gazzaley, 2014). 

An alternative explanation can be found in the dichotomy between 
the active and implicit nature of the memorization processes inherent in 
verbal memory tasks versus the ApMEM task. While the former requires 
participants’ active engagement in memorization and subsequent recall, 
the latter relies on implicit memorization achieved through repetitive 
exposure. Notably, the memory effects observed in the ApMEM task, as 
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quantified by RTA, did not correlate with the active recall of the REGr 
sequences in the familiarity task. These observations are in line with 
demonstrations that implicit learning through repetition leads to 
memory retention for a remarkably long time also in the visuomotor 
domain (Kobor et al., 2017; Nemeth and Janacsek, 2011; Tóth-Fábera 
et al., 2023). These findings collectively suggest that implicit memory, 
rooted in robust biological substrates (Baird and Samson, 2009; Ohno 
et al., 2011), is less vulnerable to the availability of processing resources, 
attention, or interference, and so more preserved by ageing. 

One important open question is why such long-term auditory im-
plicit memory is overall resilient to time decay even later in life. The 
remarkable examples of preserved auditory memory for music in severe 
cases of dementia (Baird and Samson, 2009; Benhamou et al., 2021; 
Jacobsen et al., 2015) suggest that implicit auditory memory has a 
privileged status in the brain. In young listeners, implicit auditory 
memory based on repeated exposure has been demonstrated for many 
sound types, ranging from white noise (Agus et al., 2010; Dauer et al., 
2022; Ringer et al., 2022), click trains (Kang et al., 2017), discrete se-
quences of tones (Bianco et al., 2020a; Bonetti et al., 2022; Herrmann 
et al., 2021; Leek and Watson, 1988), tone clouds (Agus and Pressnitzer, 
2021), and naturalistic textures (Ringer et al., 2022; Woods and 
Mcdermott, 2018). All these studies capitalise on Hebb-type learning 
(Hebb, 1961; Reber, 1989), whereby regardless of subject awareness, 
recognition of reoccurring patterns improves compared to novel ones 
simply due to reinforcement through repetition. Repetition is arguably 
one of the most straightforward cues for inducing learning as it indicates 
the presence of patterns potentially relevant to behaviour (McDermott 
et al., 2011). Patterns have often a communicative function and are 
indeed implicitly learned through repetition in humans (Aslin, 2017; 
Saffran et al., 1996; Smalle et al., 2018) and non-human animals (Cazala 
et al., 2019; Hauser et al., 2001; Lu and Vicario, 2014; Soyman and 
Vicario, 2019; Wilson et al., 2013). The long-term memory of 
tone-sequences observed here even in older adults might thus reflect this 
primordial predisposition of the brain to remember patterns even when 
they sparsely reoccur. 

5. Conclusions 

Using a multi-stage auditory memory test, we demonstrated that 
ageing is associated with poorer auditory echoic/short-term memory 
and long-term memory formation than young listeners, but not with 
forgetting. We speculate that ageing might affect frontal-auditory and 
hippocampal circuits underlying memory formation, but once formed 
auditory memories of rapid tone patterns remain accessible for months 
after the initial exposure even in older listeners. This result might be 
explained by the absence of interference with memory traces of arbitrary 
stimuli, unlikely to be encountered in daily life (Hardt et al., 2013; Ryan 
and Frankland, 2022), and suggests preserved long-term implicit audi-
tory memory in ageing. Future studies combining human neuroimaging, 
animal models and synaptic simulations should shed light on the un-
derlying circuits and neuronal mechanisms (Gershman, 2022; Ohno 
et al., 2011; Poeppel and Idsardi, 2022). Expanding this work to include 
a wider age range, from children to the elderly, could offer valuable 
insights into the currently understudied development and decline of 
implicit auditory memory. 
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Näätänen, R., Kujala, T., Escera, C., Baldeweg, T., Kreegipuu, K., Carlson, S., Ponton, C., 
2012. The mismatch negativity (MMN) - a unique window to disturbed central 
auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 
123, 424–458. https://doi.org/10.1016/j.clinph.2011.09.020. 
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effects on auditory processing: an event-related potential study. Exp. Aging Res. 22, 
171–184. https://doi.org/10.1080/03610739608254005. 

Petkov, C.I., ten Cate, C., 2020. Structured sequence learning: animal abilities, cognitive 
operations, and language evolution. Top. Cogn. Sci. 12, 828–842. https://doi.org/ 
10.1111/tops.12444. 

Poeppel, D., Idsardi, W., 2022. We don’t know how the brain stores anything, let alone 
words. Trends Cognit. Sci. 26, 1054–1055. https://doi.org/10.1016/j. 
tics.2022.08.010. 

Powers, D.M.W., 2007. Evaluation: from precision, recall and F-factor to ROC, 
informedness, markedness & correlation. Tech. Rep. SIE-07-001. 

Quiroga-Martinez, D.R., Hansen, N.C., Højlund, A., Pearce, M., Brattico, E., Vuust, P., 
2020. Decomposing neural responses to melodic surprise in musicians and non- 
musicians: evidence for a hierarchy of predictions in the auditory system. 
Neuroimage 215. https://doi.org/10.1016/j.neuroimage.2020.116816. 

Raz, N., Lindenberger, U., 2011. Only time will tell: cross-sectional studies offer no 
solution to the age-brain-cognition triangle—comment on Salthouse (2011). 
Psychol. Bull. 137, 790–795. https://doi.org/10.1037/a0024503. 

Reber, A.S., 1989. Implicit learning and tacit knowledge. J. Exp. Psychol. Gen. 118, 
219–235. https://doi.org/10.1037/0096-3445.118.3.219. 
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enhancer of cognitive function in healthy aging - a systematic review and meta- 
analysis. PLoS One 13, 1–23. https://doi.org/10.1371/journal.pone.0207957. 

Rosen, S., 1992. Temporal information in speech: acoustic, auditory and linguistic 
aspects. Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/ 
rstb.1992.0070. 

Ross, G.J., Tasoulis, D.K., Adams, N.M., 2011. Nonparametric monitoring of data streams 
for changes in location and scale. Technometrics 53, 379–389. https://doi.org/ 
10.1198/TECH.2011.10069. 

Rowan, T., 1990. Functional Stability Analysis of Numerical Algorithms. 
Ryan, T.J., Frankland, P.W., 2022. Forgetting as a form of adaptive engram cell 

plasticity. Nat. Rev. Neurosci. 1–14. https://doi.org/10.1038/s41583-021-00548-3. 
Saffran, J.R., Aslin, R.N., Newport, E.L., 1996. Statistical learning by 8-month-old 

infants. Science 274, 1926–1928. 
Salthouse, T.A., 2011. Neuroanatomical substrates of age-related cognitive decline. 

Psychol. Bull. 137, 753–784. https://doi.org/10.1037/a0023262. 
Salthouse, T.A., 1996. The processing-speed theory of adult age differences in cognition. 

Psychol. Rev. 103, 403–428. 
Sanchez Lopez, R., Bianchi, F., Fereczkowski, M., Santurette, S., Dau, T., 2018. Data- 

driven approach for auditory profiling and characterization of individual hearing 
loss. Trends Hear 22, 1–12. https://doi.org/10.1177/2331216518807400. 

Santolin, C., Saffran, J.R., 2018. Constraints on statistical learning across species. Trends 
Cognit. Sci. 22, 52–63. https://doi.org/10.1016/j.tics.2017.10.003. 

Schapiro, A.C., Gregory, E., Landau, B., McCloskey, M., Turk-Browne, N.B., 2014. The 
necessity of the medial temporal lobe for statistical learning. J. Cognit. Neurosci. 26, 
1736–1747. https://doi.org/10.1162/jocn. 

Schevenels, K., Altvater-Mackensen, N., Zink, I., De Smedt, B., Vandermosten, M., 2021. 
Aging effects and feasibility of statistical learning tasks across modalities. Aging 
Neuropsychol. Cognit. 00, 1–30. https://doi.org/10.1080/13825585.2021.2007213. 

Schmithorst, V.J., 2005. Separate cortical networks involved in music perception: 
preliminary functional MRI evidence for modularity of music processing. 
Neuroimage 25, 444–451. https://doi.org/10.1016/j.neuroimage.2004.12.006. 

Schneider, B.A., Daneman, M., Pichora-Fuller, M.K., 2002. Listening in aging adults: from 
discourse comprehension to psychoacoustics. Can. J. Exp. Psychol. 56, 139–152. 
https://doi.org/10.1037/h0087392. 

Schneider, B.A., Pichora-Fuller, M.K., 2000. Implications of perceptual deterioration for 
cognitive aging research. In: The Handbook of Aging and Cognition, pp. 155–219. 

Skerritt-Davis, B., Elhilali, M., 2021. Computational framework for investigating 
predictive processing in auditory perception. J. Neurosci. Methods 360, 109177. 
https://doi.org/10.1016/j.jneumeth.2021.109177. 

Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., Roberts, N., 2002. Voxel- 
based morphometry reveals increased gray matter density in broca’s area in male 
symphony orchestra musicians. Neuroimage 17, 1613–1622. https://doi.org/ 
10.1006/nimg.2002.1288. 

Smalle, E.H.M.M., Page, M.P.A.A., Duyck, W., Edwards, M., Szmalec, A., 2018. Children 
retain implicitly learned phonological sequences better than adults: a longitudinal 
study. Dev. Sci. 21 https://doi.org/10.1111/desc.12634. 

Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G.F., Casini, A., Macchi, C., 2011. 
Physical activity and risk of cognitive decline: {A} meta-analysis of prospective 
studies. J. Intern. Med. 269, 107–117. https://doi.org/10.1111/j.1365- 
2796.2010.02281.x. 

Soyman, E., Vicario, D.S., 2019. Rapid and long-lasting improvements in neural 
discrimination of acoustic signals with passive familiarization. PLoS One. https:// 
doi.org/10.1371/journal.pone.0221819. 

Squires, K.C., Wickens, C., Squires, N.K., Donchin, E., 1976. The effect of stimulus 
sequence on the waveform of the cortical event-related potential. Science 193, 
1142–1146. https://doi.org/10.1126/science.959831. 

Swords, G.M., Nguyen, L.T., Mudar, R.A., Llano, D.A., 2018. Auditory system dysfunction 
in Alzheimer disease and its prodromal states: a review. Ageing Res. Rev. 44, 49–59. 
https://doi.org/10.1016/j.arr.2018.04.001. 
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