Disordered monitored free fermions

Marcin Szyniszewski,1,2,3 Oliver Lunt,1,2,3 and Arijeet Pal1

1Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
2Department of Physics, King’s College London, Strand, London, WC2R 2LS, United Kingdom
3School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

(Received 10 February 2023; revised 26 September 2023; accepted 27 September 2023; published 17 October 2023)

Scrambling of quantum information in unitary evolution can be hindered due to measurements and localization, which pin quantum mechanical wave functions in real space, suppressing entanglement in the steady state. In monitored free-fermionic models, the steady state undergoes an entanglement transition from a logarithmically entangled critical state to area law. However, disorder can lead to Anderson localization. We investigate free fermions in a random potential with continuous monitoring, which enables us to probe the interplay between measurement-induced and localized phases. We show that the critical phase is stable up to a finite disorder, and the criticality is consistent with the Berezinskii-Kosterlitz-Thouless universality. Furthermore, monitoring destroys localization, and the area-law phase at weak dissipation exhibits power-law decay of single-particle wave functions. Our work opens an avenue to probe this phase transition in electronic systems of quantum dot arrays and nanowires and allow quantum control of entangled states.

DOI: 10.1103/PhysRevB.108.165126

I. INTRODUCTION

The preservation of information in many-body quantum systems poses a substantial challenge in quantum computing. Generically, as quantum systems evolve in time, any initial quantum information is scrambled throughout the system, becoming inaccessible through local measurements, leading to thermalization. In recent years, it has become clear that there are quantum systems that can fail to thermalize, the most prominent example being the phenomenon of many-body localization (MBL) [1–5]. In such systems, quantum information remains accessible via local measurements even at long times and preserves correlations in the initial state. The MBL phase transition separating localized and chaotic phases of matter is characterized by a singular change in the entanglement properties of the system.

Entanglement phase transitions can also occur in quantum trajectories of open quantum systems [6–8]. The transition occurs due to a competition between measurements and unitary evolution, hence the name measurement-induced entanglement transition (MIET). This type of phase transition has been of interest in many recent studies [9–127]. Typically, one considers a quantum circuit with unitary gates interspersed with local measurements at random locations. The transition between the volume-law and the area-law phase occurs at a finite measurement probability and is known to occur in a wide variety of systems: unitaries can be randomly drawn either from the Haar measure or the Clifford group [6–9], or a Hamiltonian evolution of interacting systems [45–49], while the measurements can be chosen to be projective or weak. The universal properties of the MIET in random unitary circuits have similarities with those of percolation, though there appear to be some differences in surface critical behavior [8,11,16–19,21].

Intriguingly, the phase diagram changes significantly for a free-fermionic system [32–44]. The volume-law entangled steady state for nonzero measurement probability is fragile due to its lack of multipartite entanglement in free-fermion systems [32,33]. For a range of measurement probabilities, an extended critical phase with logarithmic growth of entanglement and conformal symmetry emerges [33]. Beyond a critical measurement probability, the systems transition into

\[c_{L/2} \]

FIG. 1. (a) Sketch of disordered monitored free fermions. (b) Phase diagram. The density plot shows the effective central charge estimate $c_{L/2}$. Data collapses of half-chain entanglement entropy (green circles) and central charge (blue squares) are used to estimate the transition boundary (solid line).
an area-law phase. A substantial amount of evidence implies that this MIET is within the Berezinskii-Kosterlitz-Thouless (BKT) universality class [33,34], which puts it in a distinct class from random unitary circuits. Recent developments also suggest that the transition happens due to pinning of the wave-function trajectory to the eigenstates of the measurement operator [34].

However, several important questions relating to the robustness of the critical logarithmic phase remain unanswered. For example, the logarithmic phase remaining stable against breaking of the continuous U(1) symmetry, for particle number conservation, to a discrete \mathbb{Z}_2 fermion parity symmetry is associated with continuous replica symmetry breaking which does not appear to have a physical analog [31,34,38,60]. For free-fermionic systems in one dimension (1D), it is particularly interesting to ask about robustness to quenched disorder. For a noninteracting Hamiltonian, arbitrarily weak disorder localizes the single-particle modes in 1D, a phenomenon known as Anderson localization [128–130]. The role of measurements can destroy the localized phase at intermediate couplings while facilitating localization into product states at strong coupling. The competition between measurements and couplings while facilitating localization into product states at intermediate quenched disorder can result in a rich phase structure for an arbitrary random potential; the results are then averaged over multiple trajectories. Importantly, this provides access to averages of nonlinear functions of the reduced density matrix, which in turn allow us to capture the entanglement phase transition. Specifically, we use the von Neumann entropy, a measure of entanglement between subsystem A and its complement, defined as $S = -\text{tr}(\rho_A \ln \rho_A)$, where ρ_A is the reduced density matrix of A. Here, S is initially zero for a separable state and grows in time, saturating near a fixed point S_∞ at long times, estimated as time average after saturation $S_\infty = \lim_{\Delta T \to \infty} \int_{t=0}^{\infty} S(t) dt / \Delta T$. Finally, S_∞ is averaged over trajectories, giving \bar{S}.

Entanglement phase transitions can be directly observed by monitoring how \bar{S} changes with the system size L. However, even in free-fermion circuits, where we can access larger system sizes, finite-size effects are significant and impede our analysis. Special care needs to be taken for the critical phase, where both \bar{S} and the correlation length ξ diverge logarithmically with L—extraction of the critical point is difficult for phase transitions with slowly diverging length scales [33]. This critical phase is expected to be described by a 1+1D nonunitary conformal field theory (CFT) with periodic boundaries, with

$$\bar{S}(l, L) = \frac{c}{3} \ln \left(\frac{L}{\pi \sin \frac{\pi l}{L}} \right) + s_0, \quad (3)$$

where l is the length of the subsystem A, c is the effective central charge of the nonunitary CFT, and s_0 is the residual entropy. For large enough systems, c is expected to be zero in the area-law phase and finite in the log phase and thus can be used as a transition diagnostic.

III. RESULTS

A. Phase diagram

Using the results for $\bar{S}(L/2, L)$ as a function of L, we perform a fit to Eq. (3) and obtain a central charge estimate $c_{L/2}$. This allows us to draw the dependence of $c_{L/2}$ on the measurement strength γ and the disordered field strength W—see Fig. 1(b). The central charge remains nonzero at low values of γ and W, implying the existence of the critical phase. However, at large values of either γ or W, $c_{L/2}$ stays close to zero, a signature of the area law. This suggests that the logarithmic phase survives the introduction of the random disordered field, and only when the field is strong enough ($W \gtrsim 3.5$), the phase breaks down.

Estimation of the precise phase boundary is, however, difficult, as $c_{L/2}$ does not decay sharply to zero. Large finite-size effects necessitate a scaling analysis, which we perform in the next sections. Nonetheless, two peculiar features can immediately be seen in the density plot in Fig. 1(b): for small W, there is nonmonotonic behavior of the phase boundary [see Fig. 2(a)]; and for small γ, the density plot shows a rapid change of $c_{L/2}$ for $\gamma = 0$ (Anderson localized) vs when γ is finite [see Fig. 2(b)].
B. Survival of the BKT universality class

We firstly discuss the case of small disorder strength. For the clean system \((W = 0)\), we can fully reproduce existing results \([32,33]\). Importantly, Ref. \([33]\) provides numerical evidence of the BKT universality class, for which the half-chain entropy can be collapsed using \([131]\)

\[
S(L/2, L, \gamma) - S(L/2, L, \gamma_c^\delta) = F \left[(\gamma - \gamma_c^\delta)(\ln L)^2 \right],
\]

where \(\gamma_c^\delta\) is the critical point; the optimal collapse gives \(\gamma_c^\delta \approx 0.31\). Another estimate comes from investigating \(c\) as a function of system size \(L\). To do this, one extracts \(c(L)\) for one specific \(L\) by fitting the entropy results for different bipartitions to Eq. (3). Then the \(c(L)\) data can be collapsed according to \([33]\)

\[
c(L)g(\gamma) = \tilde{F} \left[\ln L - \frac{\alpha}{\sqrt{\gamma - \gamma_c(L)}} \right],
\]

which yields \(\gamma_c^{(\delta)} \approx 0.21\). The scaling function \(g(\gamma) = [1 + 1/(2 \ln L - \beta)]^{-1}\) \([33,131–133]\). Although the two estimates have substantial error bars \((\approx 0.05)\), both are much lower than estimate based on \(c_{L/2}\), where the transition would rather be expected at \(\gamma_c^{(\delta)} \approx 0.8\) [cf. Fig. 2(a)]. This strongly suggests that \(c_{L/2}\) cannot provide a good estimate of the transition point due to finite-size effects, and data collapses of \(S\) and \(c(L)\) are needed instead.

Armed with this knowledge, we introduce a small amount of disorder \((W = 0.25, 0.5, 1.0)\) \([133]\). The results for the half-chain entropy and the central charge are shown in Figs. 3(a) and 3(c). Judging from \(S(L/2)\), the corresponding transition region where the entropy starts deviating significantly from a \(\ln(L)\) behavior for large \(L\) is \(0.3 \lesssim \gamma_c \lesssim 0.37\) for \(W = 0.5\). We also perform the data collapse for \(S(L/2)\) and \(c(L)\), shown in Figs. 3(e) and 3(g), finding \(\gamma_c^\delta \approx 0.40\) and \(\gamma_c^{(\delta)} \approx 0.35\) for \(W = 0.5\). All performed data collapses are of reasonably good quality, which suggests that the BKT universality class of the transition is preserved in the presence of weak disorder. This is consistent with the idea that the relevant symmetry is the continuous replica symmetry, which should be preserved if the system is still free fermionic \([31,34,60]\).

This result is corroborated further by the behavior of the connected correlation function \(\tilde{C}(r) = \langle n_i(n_{i+r}) - \langle n_i \rangle \langle n_{i+r} \rangle \rangle\) [see Figs. 4(a) and 4(b)], which decays algebraically as \(\sim r^{-2}\) in the critical phase, like the clean system \([33]\). Deep within the area law, the correlations decay more rapidly, as expected,

![FIG. 2. Effective central charge estimate \(c_{L/2}\), calculated using half-chain entanglement entropy (a) for small values of \(W\) and (b) for small values of \(\gamma\).](image)

![FIG. 3. Behavior for small \(W\) (left plots) and small \(\gamma\) (right plots). (a) and (b) Half-chain entropy \(S(L/2)\) for different values of the measurement strength \(\gamma\) or disorder strength \(W\) (see labels on the right). (c) and (d) Central charge \(c(L)\) as a function of \(\gamma\) (or \(W\)) and system size \(L\). Data collapses for (e) and (f) \(c(L)\) and (g) and (h) \(S(L/2)\). Legend from (c) and (d) applies in (e)–(h).](image)

![FIG. 4. Connected correlation function \(\tilde{C}(r)\) for constant disorder strength (a) \(W = 0.5\), (b) \(W = 1.0\), and constant measurement strength (c) \(\gamma = 0.0\), (d) \(\gamma = 0.02\). Plot opacity indicates the system size \((L = 128, 196, 256, 384, 512,\) and 768). Gray lines show the algebraic decay of \(\sim r^{-2}\) expected for the critical phase.](image)
observed in the disordered free-fermion system studied here implies that the disorder may stabilize the critical phase, even if it is absent in the clean case, signifying the presence of the measurement-induced transition for a finite disorder strength.

C. Destruction of Anderson localization

We now discuss the topic of small measurement strengths. For $\gamma = 0$, the system becomes an Anderson insulator and exhibits an area law for any finite W. Below $W \lesssim 1.1$, finite-size effects cause finite $c_{L/2}$: localization length ξ in the Anderson model is inversely proportional to W^2 [135], and ξ becomes comparable with the considered system sizes when $c_{L/2}$ becomes nonzero. This should, however, not be an issue for larger γ, as the characteristic length ξ is affected by both the disorder and the measurements.

At very small but nonzero values of $\gamma = 0.02, 0.04$ [133], we observe an abrupt change to the localized behavior. Here, $\bar{S}(L/2)$ results suggest that a logarithmic dependence on the system size is present for small W [Fig. 3(b)], with the crossover to the area-law scaling at $\sim 1.5 \lesssim W \lesssim 2.5$. We pinpoint the transition, extracting $W^2_\chi \approx 2.1$ and $W^2_{c(L)} \approx 1.9$ for $\gamma = 0.02$. Importantly, W_χ is large enough not to be impacted by the characteristic length ξ being comparable with L, and therefore, we believe the observed transition to be physical. Our results suggest the BKT universality class is preserved for the whole transition boundary in Fig. 1(b). Furthermore, the connected correlators change their behavior between $\gamma = 0$ and 0.02 [see Figs. 4(c) and 4(d)] from faster than algebraic to $1/r^2$ decay for $W < W_\chi$, indicating emergence of the conformal phase.

We thus conclude that Anderson localization is immediately broken for any finite value of γ, and the critical phase reappears in the phase diagram. This phenomenon most likely occurs due to measurements impeding interference through impurity scattering—even very weak measurements change the scattered fermionic modes, and destructive interference is not possible, rendering the mechanism behind Anderson localization disrupted. A similar mechanism occurs when inelastic scattering is introduced to an Anderson-localized medium, where the phase coherence between outgoing and ingoing modes is disrupted [136]. Whether the measurements force the system into the critical phase or the area law depends on the shape of localized single-particle orbitals $|\psi_0|^2$ at $\gamma = 0$ [see Figs. 6(a) and 6(b)], which can be read off from the Slater determinant. At large disorder, the orbitals decay rapidly, and the overlap between their envelopes is negligible. The measurements have little impact, only sharpening the orbitals at their localization centers, and the area law is preserved. At small disorder, the orbitals are broad, and their envelopes substantially overlap with each other. The measurements effectively introduce scrambling between them, which leads to a delocalized behavior and the critical phase. This very simple picture would suggest that the transition happens approximately when $\xi \sim 1$, while our numerical results reveal a slightly larger critical localization length of $\xi \sim 24/W^2_\chi \approx 6$ [135].

Furthermore, we find a clear distinction between the Anderson-localized area law and the measurement-induced area law for $\gamma > 0$. The former is characterized by

![FIG. 5. Central charge as a function of measurement strength γ and disorder W for a system with additional next-nearest-neighbor interactions.](Image)
decay in space instead of exponential. The temporal behavior of the autocorrelations exhibits parametrically longer decay times scales compared with Anderson localization. There are several interesting directions for future work emerging from our results. The role of interactions in the logarithmic phase and its relationship to MBL remains a challenging open problem. The fate of the critical phase for integrable models which do not map to free fermions could also provide classes of measurement-induced criticality.

All relevant data present in this publication can be accessed at [138].

ACKNOWLEDGMENTS

We thank Romain Vasseur, Sebastian Diehl, Alessandro Romito, Paul Pöpperl, Igor Poboiko, and Igor Gornyi for useful discussions. A.P. and M.S. were funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 853368). O.L. was supported by UKRI Grant No. MR/T040947/1. The authors acknowledge the use of the UCL Myriad High Performance Computing Facility and associated support services in the completion of this paper.

APPENDIX: METHODOLOGY

The evolution considered in this paper preserves particle number and can be efficiently simulated with a method based on the stochastic Schrödinger equation [32]. The wave function is a pure Gaussian state of \(N \) particles on \(L \) sites and can be described by an \(N \times L \) matrix \(U \):

\[
|\psi\rangle = \left(\prod_{k=1}^{N} \left(\sum_{j=1}^{L} U_{jk} c_{j}^\dagger \right) \right) |0\rangle, \tag{A1}
\]

where \(c_{j}^\dagger \) are the fermionic creation operators, and \(|0\rangle \) is the vacuum state. Physically, \(U \) is a matrix of fermion orbitals (single-particle wave functions), and \(\det(U) \) is a Slater determinant. In this paper, we always consider a case of half-filling and start the evolution from a Neél state.

The measurements and time evolution are implemented using the stochastic Schrödinger equation, where a monitoring of an operator \(O \) is done by evolving the wave function according to

\[
d|\psi(t)\rangle = -iHdt|\psi(t)\rangle + \mathcal{M}|\psi(t)\rangle, \tag{A2}
\]

where the measurement operator is \(\mathcal{M} = [(O - \langle O \rangle_t) dt \eta_t - \frac{\gamma}{2}(O - \langle O \rangle_t)^2 dt] \), with \(\eta_t \) a Wiener process and \(\gamma \) the measurement strength/rate. We will measure operator \(n_i = c_{i}^\dagger c_i \) on every site. This evolution can be approximated by trotterization \(|\psi(t + dt)\rangle \approx e^{\gamma dt} |\psi(t)\rangle \).

Importantly, this corresponds to an evolution of the matrix \(U \) that fully describes the Gaussian state:

\[
U(t + dt) = e^{M} e^{-iHdt} U(t), \tag{A3}
\]

where \(M \) is a matrix with elements \(M_{ij} = \delta_{ij} [n_i + (2/n_i - 1)\gamma dt], \) and \(h \) corresponds to the free-fermion Hamiltonian \(H = \sum_i c_{i}^\dagger c_{i+1} + \text{H.c.} \), and has elements \(h_{ij} = \)

IV. CONCLUSIONS

The results presented in this paper show the nontrivial interplay between Anderson localization and continuous measurements. We convincingly demonstrate that the entanglement phase transition from the critical phase with conformal symmetry to the area-law phase survives the introduction of quenched disorder. Moreover, the universality class of this transition also seems to be preserved, which strongly suggests that the logarithmic phase is stable to weak perturbations. We also find that a small amount of disorder can help stabilize the critical phase. Gathering all our data from the collapse of entanglement entropy and effective central charge, we estimate the true transition boundary between the logarithmic and area-law phases [solid line in Fig. 1(b)]. In general, our results convincingly suggest the conformal phase and free-fermion MIETs are viable for experimental probing in systems such as nanowires and quantum dot arrays, which host Anderson localization along with implementation of local measurements [137].

We find that an introduction of monitoring in the Anderson-localized model results in an instant destruction of the localization for weak disorder. The delocalization results from the destruction of the coherent processes leading to a liquid state, although, at sufficiently large disorder, the system transitions into an area-law state which is markedly distinct from Anderson localization as the orbitals exhibit a power-law exponential decay of the orbitals, while the latter exhibits power-law localization, \(|\psi_C(x)|^2 \sim x^{-\alpha}\) [inset in Fig. 6(b)] [133]. Autocorrelation functions \(\langle C(\tau) \rangle \) for different values of \(W \) and system sizes \(L = 128 \) (lighter), 256, and 512 (darker). Left plots: \(\gamma = 0 \); right plots: \(\gamma = 0.02 \).

FIG. 6. (a) and (b) Averaged steady-state fermion orbitals \(|\psi_i|^2\) for \(L = 192 \) for different values of \(W \). Inset in (b) shows the log-log plot, suggesting power-law decay. (c) and (d) Autocorrelation functions \(\langle C(\tau) \rangle \) for different values of \(W \) and system sizes \(L = 128 \) (lighter), 256, and 512 (darker). Left plots: \(\gamma = 0 \); right plots: \(\gamma = 0.02 \).
where $\delta_{ij+1} + \delta_{ij-1} + h_\gamma \delta_{ij}$. After each timestep dt, the wave function needs to be properly normalized, which can be done by a QR decomposition of matrix $U(t + dt) = QR$, and setting the new matrix U to be Q.

Figure 7 shows that setting $dt = 0.05$ is enough to describe the continuous-time regime, and we find that lowering dt does not change our results within the statistical error bars.

1. Observables

Using the matrix U, one can define the correlation matrix $D = UU^\dagger$ with elements $D_{ij} = \langle c_i^\dagger c_j \rangle$, giving us direct access to expectation values. Furthermore, to calculate entanglement entropy S of a bipartition of the system into subsystem A and its compliment B, we restrict D to indices associated with the subsystem A and then diagonalize the restricted matrix to obtain its eigenvalues λ_i. Here, S is then simply given by

$$S = -\sum_i [\lambda_i \ln \lambda_i + (1 - \lambda_i) \ln(1 - \lambda_i)].$$ \hfill (A4)

The connected correlation functions $C(r)$ can be determined from the correlation matrix:

$$C(r) = |D_{i+r,i}|^2 = \langle n_i | n_{i+r} \rangle - \langle n_i n_{i+r} \rangle.$$ \hfill (A5)

Similarly, the autocorrelation function $C(\tau)$ can be calculated in the same manner:

$$C(\tau) = |D_{i,(t + \tau)}|^2,$$ \hfill (A6)

where $D(t, t + \tau) = U(t + \tau)U^\dagger(t)$.

Finally, one can easily extract the fermion orbitals by taking the columns of U, i.e., $|\psi_i(r)|^2 = |U_{i,r}|^2$. We move the orbitals spatially so that they are centered around the maximum value and then average them over many realizations.

2. Equilibration to the steady state

The time it takes to reach the steady state is nontrivially dependent on two variables: measurement strength γ and disorder W. In the absence of the disorder, for large γ, we find that the equilibration takes $O(1)$ time, while for small γ, it takes at most $O(L)$ time. Introducing the disorder prolongs the equilibration time roughly proportionally to W (see Fig. 8).

We also note that near $W \approx 2$, the time dependence of the trajectory-averaged half-chain entropy seems to collapse into one curve [see Fig. 9], with the initial behavior scaling as
Fig. 9. Emerging conformal symmetry near $W = 2$ for $\gamma = 0.02$. Entanglement entropy is rescaled as S/L, while the time is scaled as time$/L$. Dashed line is a fit to a logarithmic behavior.

$S(L/2) \sim \ln(\text{time}/L)$. This suggests an emergence of $\gamma = 1$ conformal symmetry near this point.

3. Finite-size scaling

The data collapse for the finite-size scaling analysis is performed by minimizing the cost function ϵ, which measures how well the data collapse into a single curve given the parameters. First, the data are rescaled using the finite-size scaling Ansätze from Eqs. (4) and (5) to produce a set of triples x_i, y_i, d_i representing the rescaled x coordinate, rescaled y coordinate, and the error in the y coordinate. For example, for Eq. (4), $x = (\gamma - \gamma_c^0)/(\ln L)^{2}, y = S(L/2, L, \gamma) - \bar{S}(L/2, L, \gamma^0)$, and d is the error of the half-chain entropy. Then the triples are sorted by their x values, and one can calculate the cost function:

$$\epsilon = \frac{1}{n-2} \sum_{i=2}^{n-1} w(x_i, y_i, d_i|x_{i-1}, y_{i-1}, d_{i-1}, x_{i+1}, y_{i+1}, d_{i+1}),$$

(A7)

where

$$w = \frac{(y_i - \bar{y})^2}{\Delta^2},$$

(A8)

$$\bar{y} = \frac{(x_{i+1} - x_i)y_{i+1} - (x_i - x_{i-1})y_{i-1}}{x_{i+1} - x_{i-1}},$$

(A9)

$$\Delta^2 = d_i^2 + \frac{(x_{i+1} - x_i)^2d_{i+1}^2 + (x_{i-1} - x_i)^2d_{i-1}^2}{(x_{i+1} - x_{i-1})^2}.$$

(A10)

After obtaining the minimum ϵ_{min}, one can estimate the error in the collapse parameters by investigating the region where $\epsilon = 2\epsilon_{\text{min}}$.

In Table I, we report the estimates for the parameters from data collapses in Figs. 3, 10, and 11. The scaling function $g(L)$ from Eq. (5) has the following form: $g(L) = [1 + 1/(2\ln L - \beta)]^{-1}$, and can be determined from a superfluid stiffness scaling analogy for the BKT transition [33,131,132].

Supporting data for $W = 0.25$ and $\gamma = 0.04$ are shown in Fig. 10.

![Figure 9](https://example.com/fig9.png)

Fig. 9. Emerging conformal symmetry near $W = 2$ for $\gamma = 0.02$. Entanglement entropy is rescaled as S/L, while the time is scaled as time$/L$. Dashed line is a fit to a logarithmic behavior.

Fig. 10. Behavior of (a) and (b) half-chain entanglement entropy $S(L/2)$ for different values of the measurement strength γ (see labels on the right) and (c) and (d) central charge $c(L)$. Data collapse for (e) and (f) $S(L/2)$, and (g) and (h) $c(L)$; legend from (c) and (d) applies in (e)–(h). Left plots are for $W = 0.25$, and the right plots are for $W = 1.0$.

Table I. Data collapse parameters for the entropy and central charge results.

<table>
<thead>
<tr>
<th>Data</th>
<th>γ_c^0 or W_c^0</th>
<th>γ_c^{LL} or W_c^{LL}</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = 0.0$ [33]</td>
<td>0.31(5)</td>
<td>0.21(5)</td>
<td>3.99</td>
<td>4.37</td>
</tr>
<tr>
<td>$W = 0.25$</td>
<td>0.35(5)</td>
<td>0.31(5)</td>
<td>4.00</td>
<td>5.4</td>
</tr>
<tr>
<td>$W = 0.5$</td>
<td>0.40(6)</td>
<td>0.35(5)</td>
<td>4.1</td>
<td>7.6</td>
</tr>
<tr>
<td>$W = 1.0$</td>
<td>0.33(5)</td>
<td>0.29(5)</td>
<td>5.12</td>
<td>7.65</td>
</tr>
<tr>
<td>$\gamma = 0.02$</td>
<td>2.06(15)</td>
<td>1.92(25)</td>
<td>6.4</td>
<td>7.8</td>
</tr>
<tr>
<td>$\gamma = 0.04$</td>
<td>2.07(15)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
FIG. 11. Results for $\gamma = 0.04$. Behavior of (a) half-chain entanglement entropy $\bar{S}(L/2)$ for different values of W (see labels on the right) and (b) central charge $c(L)$. Data collapse for (c) $S(L/2)$; legend from (b) applies in (c).

4. Decay of correlation functions

Although we find that single-particle wave functions are power-law localized, the issue is that these orbitals are not uniquely defined, as the matrix U can be multiplied on the right by any unitary, while not changing the physical state. However, we also find that, for $\gamma > 0$, correlation functions do not seem to exhibit exponential decay (see Fig. 12, where we show the data of Fig. 4 but on a linear-log plot), which would be in agreement with our findings for the orbitals. Perhaps the reason why we do not find scrambled orbitals is due to the uniqueness of the method: both unitary evolution and measurements uniquely transform matrix U (during normalization, QR decomposition is unique as well).

entanglement from finite-depth unitaries and weak measurements, arXiv:2208.11136.

[98] M. Ippoliti and W. W. Ho, Dynamical purification and the emergence of quantum state designs from the projected ensemble, PRX Quantum 4, 030322 (2023).

[133] Supporting data for \(\gamma = 0.04 \) and \(W \in \{0.25, 1.0\} \) as well as details of the finite-size scaling analysis and the discussion of single-particle wave functions can be found in Appendix.

[138] https://doi.org/10.5522/04/24209346