
1

Joint Sparsity and Low-Rank Minimization for
Reconfigurable Intelligent Surface-Assisted Channel

Estimation
Jie Tang, Senior Member, IEEE, Xiaoyu Du, Zhen Chen, Senior Member, IEEE,

Xiuyin Zhang, Fellow, IEEE, Daniel Ka Chun So, Senior Member, IEEE,
Kai-Kit Wong, Fellow, IEEE, and Jonathon Chambers, Fellow, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs) have at-
tracted extensive attention in millimeter wave (mmWave) systems
because of the capability of configuring the wireless propagation
environment. However, due to the existence of a RIS between the
transmitter and receiver, a large number of channel coefficients
need to be estimated, resulting in more pilot overhead. In this
paper, we propose a joint sparse and low-rank based two-stage
channel estimation scheme for RIS-assisted mmWave systems.
Specifically, we first establish a low-rank approximation model
against the noisy channel, fitting in with the precondition of
the compressed sensing theory for perfect signal recovery. To
overcome the difficulty of solving the low-rank problem, we
propose a trace operator to replace the traditional nuclear
norm operator, which can better approximate the rank of a
matrix. Furthermore, by utilizing the sparse characteristics of
the mmWave channel, sparse recovery is carried out to estimate
the RIS-assisted channel in the second stage. Simulation results
show that the proposed scheme achieves significant performance
gain in terms of estimation accuracy compared to the benchmark
schemes.

Index Terms—Channel estimation, reconfigurable intelligent
surface, millimeter wave, compressed sensing, sparse and low-
rank.
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I. INTRODUCTION

M ILLIMETER wave (mmWave) is regarded as a poten-
tial technology for 6th generation (6G) wireless com-

munication to deal with increasingly scarce spectrum resources
[1], [2]. However, due to the high operating frequency in the
range of 30∼300 GHz, mmWave has the hidden danger of
severe path loss and blockages, which limits its application in
practical urban cellular systems [3]. A reconfigurable intelli-
gent surface (RIS), with the ability to flexibly configure the
wireless transmission environment, has emerged as a promis-
ing solution to cope with blockages in mmWave systems. RIS
is a planar array composed of numerous passive reflecting
elements, which can intelligently reflect incident signals to the
desired direction with an adjustable phase shift [4]. In addition,
RIS only reflects the incident signal without amplification and
decoding, and hence there is no need for additional power
consumption. Nevertheless, the promising benefits brought
by RIS critically depend on the acquisition of channel state
information (CSI), which is a practical challenge due to the
following two main reasons [5]. Firstly, the reflecting elements
are generally passive, and there is a lack of signal processing
capabilities, making traditional transmission training sequence
methods inapplicable [6], [7]. Secondly, due to the numerous
reflecting elements deployed on a RIS, it is necessary to
estimate the large-scale channel matrices, leading to a more
complicated estimation process [8], [9].

To overcome the above challenges in RIS-assisted systems,
much research has attempted to design excellent estimation
algorithms via various signal processing techniques. The clas-
sical least squares (LS) and minimum mean squared error
(MMSE) methods are frequently used in traditional pilot-
based channel estimation due to their low complexity for
implementation. Recently, different training protocols have
been designed to apply LS and MMSE in RIS-assisted sys-
tems [10]–[14]. An LS-based dual-link (BS-RIS-BS) scheme
employed pilot signals transmitted from the base station (BS)
and subsequently reflected by the RIS to solve the common
BS-RIS channel [13]. After obtaining the high-dimensional
quasi-static BS-RIS channel, the RIS-user channel could easily
be estimated. Inspired by this, the work in [14] designed
an anchor-assisted estimation scheme, which employed two
dedicated anchor nodes near RIS to estimate the common
BS-RIS channel. Based on the obtained BS-RIS channel, the

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3331521

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on November 28,2023 at 21:08:36 UTC from IEEE Xplore.  Restrictions apply. 



2

dynamic RIS-user channel was further estimated effectively
via the LS method. In addition to the widely used traditional
methods, the booming development of deep learning points to
a new direction for channel estimation. As a potent tool to
solve nonlinear mapping problems, deep learning technology
can learn the approximate mapping function from training
data to CSI [15]–[19]. An approximate MMSE solution was
obtained in [15] by employing a de-noising convolutional
neural network (CNN) to deal with the noisy LS channel
matrix. The work in [16] first activated only a part of the RIS
elements and estimated the corresponding cascaded channels.
The deep neural network (DNN) was then employed to predict
other parts based on the obtained results. Furthermore, a new
strategy based on matrix decomposition has emerged strongly,
which decomposes high dimensional cascaded channels into a
set of low dimensional subchannels that are easy to estimate
[20]–[23]. By decomposing the three-dimensional cascaded
channel into two-dimensional user-RIS and RIS-BS channels,
the respective channels were estimated efficiently via parallel
factor tensor modeling [20]. The work in [21] modeled the
RIS-assisted channel as the keyhole channel and then pro-
posed a singular value decomposition (SVD)-based scheme to
estimate a set of rank-one matrices, each of which corresponds
to a RIS element.

For RIS-assisted systems operating at the mmWave fre-
quency band, severe path loss and blockages result in a
limited number of paths, making the channel exhibit sparse
characteristics. Compressed sensing, with the ability to sense
the sparsity of channels, has emerged as a powerful method
for RIS channel estimation. For example, by finding the sparse
representation of cascaded channels through the properties of
Khatri-Rao and Kronecker products, the channel estimation
was transformed into a sparse signal recovery problem and
could be solved efficiently by compressed sensing methods
[24]. This work was further advanced in [25] by expanding
the mobile station from a single antenna to multiple antennas.
Specifically, a two-stage channel estimation scheme was de-
signed, and the atomic norm minimization method was used to
estimate the channel parameters sequentially. Similarly, based
on the common sparse characteristics shared by all subcarrier
channels, the classical orthogonal matching pursuit (OMP)
method was employed to solve the channel estimation problem
[26]. In addition, other compressed sensing methods such as
manifold optimization [27], adaptive grid matching pursuit
[28], and iteratively reweighted method [29] have also been
employed to cope with RIS channel estimation in mmWave
systems. However, several urban environment measurement
results reveal that the mmWave channel not only has sparse
scattering characteristics but also shows angular spreads of
path clusters over the angle-of-departure (AoD) and the angle-
of-arrival (AoA) domains [30]–[32]. As demonstrated in [33],
the angular spread gives rise to a structured sparsity pattern.
Inspired by this, the mmWave channel was further proved
to exhibit low-rank characteristics in the presence of angular
spread, which can be exploited to improve estimation perfor-
mance [34].

In this paper, the joint sparse and low-rank characteris-
tics are exploited for channel estimation in the RIS-assisted

mmWave system. Based on joint characteristics, we first
reconstruct the noisy received signal by low-rank matrix ap-
proximation before sparse signal recovery, which is the noise-
free requirement of the compressed sensing theory for perfect
channel recovery [34]. Specifically, considering the nuclear
norm as the convex relaxation of rank function would lead
to the results deviating from the true underlying ones [35],
[36], an improved trace operator is applied for the low-rank
stage to overcome this bias and thus improve the estimation
accuracy. The main contributions of this paper are summarized
as follows:
• We propose a RIS-assisted massive multiple-input

multiple-output (MIMO) framework that combines spar-
sity and low-rank minimization for channel estimation by
leveraging the spatial sparse structure. To be specific, a
trace-based rank model is adopted, which is regarded as a
low-rank approximation. Due to the powerful recognition
of the trace norm and the robust sparse representation
abilities of the L1 norm, a joint trace and L1 norm
minimization channel estimation problem is formulated
to achieve a performance improvement.

• To solve the channel estimation problem, a two-stage
algorithm is proposed for RIS-assisted channel estima-
tion. Different from the existing optimization schemes,
we propose a trace operator with constantly adjusting
coefficients as the cost function to replace the traditional
nuclear norm operator, which can better approximate the
rank of a matrix. This operator corrects the deviation
caused by conventional operators and provides a new
choice for the solution of low-rank minimization.

• Extensive simulation results and comparisons are per-
formed to verify the efficiency and robustness of the pro-
posed schemes. Specifically, the proposed joint channel
estimator outperforms the conventional schemes in terms
of the mean square error (MSE), error vector magnitude
(EVM), bit error rate (BER), capacity and success ratio .

The remaining sections of this paper are structured as fol-
lows. In Section II, we establish the system model and describe
how the conventional sparse recovery scheme works. The
mmWave channel model with angular spread is discussed in
Section III, where its joint sparse and low-rank characteristics
are further elaborated. Based on these joint characteristics, a
two-stage channel estimation scheme utilizing an improved
rank operator is designed in Section IV, which consists of low-
rank matrix approximation and sparse signal recovery. Finally,
we reveal the results of our simulation in Section V and draw
the conclusion in Section VI.

Notations: Uppercase bold letters represent matrices, and
lowercase bold letters represent vectors. For any general
matrix A, AT , A∗ and AH represent the transpose, conjugate
and conjugate transpose, respectively; rank(A) and vec(A)
denote rank and vectorization. ‖A‖F , ‖A‖1 and ‖A‖2 are the
Frobenius norm, L1 norm and L2 norm of matrix A. For a
square matrix B, we set tr(B) to indicate the trace. j =

√
−1

indicates an imaginary unit. A ⊗ B represents the Kronecker
product of A and B. diag(x1, · · · , xN ) is the diagonal matrix
with {x1, · · · , xN} as diagonal elements, Cm×n means that
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Fig. 1: The RIS-assisted uplink mmWave MIMO system.

the size of the matrix is m × n, and I denotes the identity
matrix.

II. SYSTEM MODEL

Consider a RIS-assisted uplink mmWave MIMO system
(see Fig. 1), which consists of one multi-antenna user, one
multi-antenna BS, and one RIS. Suppose there are NBS
and NUS antennas at the BS and user, respectively, and
the RIS is a uniform linear array (ULA) with M reflecting
elements. Compared with the conventional scheme, the system
introduces the phase shift of RIS to control the transceiver
beamforming. At a certain moment t, the transmitter sends a
symbol s(t) with a beamforming vector f(t) ∈ CNUS , which
reaches the receiver end through the direct channel of user-
BS and the cascaded channel of user-RIS-BS. Employing a
receive combining vector z(t) ∈ CNBS , the signals from all
antennas are combined together, and the final signal y(t) can
be written as

y(t)=zH(t)(Hd+GΘHr)f(t)s(t)+ω(t),∀t = 1,. . ., T ,
(1)

where Hd ∈ CNBS×NUS , Hr ∈ CM×NUS , and G ∈
CNBS×M represent user-BS, user-RIS, and RIS-BS channels,
respectively. Θ = diag(β1e

jθ1 , · · · , βNejθN ) is the reflection
coefficient matrix of the RIS, and ω(t) ∼ CN

(
0, σ2

n

)
denotes

the additive white Gaussian noise.
In a conventional RIS-free mmWave system, since the

receiver does not have access to a clean version of the channel

matrix H , we can only get the noisy version with zHHf .
This issue, known as channel subspace sampling restriction,
complicates channel estimation [37]. In addition, the introduc-
tion of RIS results in more complex channels and larger-scale
coefficient matrices, making channel estimation even more
complicated. However, the emergence of compressed sensing
technology provides us with an effective solution. By utilizing
the sparsity of mmWave channels, channel estimation can be
expressed as a sparse recovery problem.

Typically, mmWave channels are characterized by the ge-
ometric channel model. Taking the direct channel Hd as an
example, the model can be expressed as [38]

Hd =

L∑
l=1

αladA(θl)a
H
dD

(φl), (2)

where l represents the l-th path, αl denotes the relative
complex gain, and the total number of paths is L. θl ∈ [0, 2π]
and φl ∈ [0, 2π] denote the associated azimuth AoA/AoD.
In addition, adA(·) ∈ CNA and adD(·) ∈ CND are array
response vectors of the receiver and the transmitter, which
can be expressed as

adA(θ)=
1√
NA

[1,ej
2π
λ d sin(θ),· · ·, ej(NA−1) 2π

λ d sin(θ)]T, (3)

adD(φ)=
1√
ND

[1,ej
2π
λ d sin(φ),· · ·, ej(ND−1) 2π

λ d sin(φ)]T, (4)

where λ denotes the wavelength of the signal, and d denotes
the antenna spacing equal to half the wavelength. NA and ND
are the number of antennas corresponding to AoA and AoD,
respectively.

To express the channel estimation problem as a form of
sparse recovery, the geometric channel model needs to be
transformed into a more compact beamspace MIMO form
[39]:

Hd = AdAHvA
H
dD, (5)

where AdA
∆
= [adA(θ1), · · · ,adA(θN1)] with (N1 ≥ NA)

and AdD
∆
= [adD(φ1), · · · ,adD(φN2)] with (N2 ≥ ND) are

overcomplete matrices corresponding to the steering vectors
of pre-discretized AoA and AoD, respectively. Hv ∈ CN1×N2

denotes a sparse matrix with L nonzero terms that are associ-
ated with the channel path gain {αl}.

Similarly, the user-RIS and RIS-BS channels can be ex-
pressed as

G = AGAHGvA
H
GD, (6)

Hr = ArAHrvA
H
rD, (7)

y(t)=zH(t)Hdf(t) + zH(t)GΘHrf(t) + ω(t)

=
(
fT (t)⊗ zH(t)

)
vec(Hd) +

(
fT (t)⊗ zH(t)

)
vec(GΘHr) + ω(t)

=
(
fT (t)⊗ zH(t)

)[
vec(AdAHdvA

H
dD)+vec(AGA(HGvA

H
GDΘArAHrv)A

H
rD)
]
+ω(t)

=
(
fT (t)⊗ zH(t)

)
[(A∗dD ⊗AdA) vec(Hdv) + (A∗rD ⊗AGA)vec(Hcv)] + ω(t),

(8)
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where HGv and Hrv denote the sparse matrix corresponding
to user-RIS and RIS-BS channels, AGA, AGD, ArA, and
ArD are overcomplete matrices corresponding to the steering
vectors of prediscretized AoA and AoD in user-RIS and RIS-
BS channels, similar to AdA, and AdD in (5)

Substituting (5)-(7) into (1), the received signal model
can be written as (8) at the last of the next page, where
HGvA

H
GDΘArAHrv is combined and expressed as the

beamspace form of cascaded channels Hcv . In addition, the
symbol s(t) is set as 1 in the training stage.

Collecting all the measured values y(t) and stacking them
into a vector y ∆

= [y(1), · · · , y(T )]T , we have

y =

 fT (1) ⊗ zH(1)
...

fT (T ) ⊗ zH(T )

 (A∗dD ⊗AdA) vec(Hdv)

+

 fT (1) ⊗ zH(1)
...

fT (T ) ⊗ zH(T )

 (A∗rD ⊗AGA) vec(Hcv) + ω

= ψ1h1 +ψ2h2 + ω

=
[
ψ1 ψ2

] [ h1

h2

]
+ ω

= ψh+ ω,
(9)

with

ψ1 =

 fT (1) ⊗ zH(1)
...

fT (T ) ⊗ zH(T )

 (A∗dD ⊗A dA) , (10)

ψ2 =

 fT (1) ⊗ zH(1)
...

fT (T ) ⊗ zH(T )

 (A∗rD ⊗AGA) , (11)

and h1 = vec(Hdv), h2 = vec(Hcv), ψ = [ψ1,ψ2], h =

[h1
T ,h2

T ]
T

.
Making use of the sparse characteristics, the channel esti-

mation problem can be effectively solved by converting it into
a sparse recovery problem [40]:

min
h
‖h‖1

s.t. ‖y −ψh‖2 ≤ ε,
(12)

where ε denotes the accuracy threshold.
According to the theory of compressed sensing, the high

dimensional sparse signal h can be successfully recovered
from the lower dimensional measurement y in the noiseless
environment. Thus it is of vital importance to reconstruct ŷ
from the noisy received signal y to improve the reliability of
sparse signal recovery.

III. CHANNEL MODEL WITH ANGULAR SPREAD

Based on the sparse characteristics, the channel estimation
problem was converted into a sparse signal recovery problem
in the previous section. However, the mmWave channel also
takes the form of angular spread in AoA and AoD domains
[31]. The angular spread is caused by scattering clusters, pre-
senting a structured sparsity pattern with each cluster possibly

contributing multiple paths [32]. This section will demonstrate
that the mmWave channel exhibits joint sparse and low-rank
characteristics as the result of asymmetric angular spreads.

Supposing angular spreads in the AoA domain only come
from one common AoD, we start with this straightforward
scenario to illustrate the low-rank characteristics, and the
channel from user to BS can be expressed as

Hd =

(
I∑
i=1

αiadA(θ − νi)

)
aHdD(φ), (13)

where αi denotes the gain of the i-th path, and νi denotes the
offset of the i-th path compared to the mean AoA θ. Obviously,
under this circumstance, the rank of matrix Hd is only one.

Extending from this simple case, we further analyze the
channel model when two closely spaced AoDs generate angu-
lar spreads in the AoA domain,

Hd =

(
I∑
i=1

αiadA(θ − νi)
)
aHdD(φ− ϕ1)

+

(
I∑
i=1

α′iadA(θ − νi)
)
aHdD(φ− ϕ2).

(14)

Due to the assumption that the two AoDs are close to each
other, the corresponding AoA has a similar power angle mode,

namely,
I∑
i=1

αiadA(θ − νi)=
I∑
i=1

α′iadA(θ − νi). Then, it can

be further simplified and expressed as

Hd =

(
I∑
i=1

αiadA(θ − νi)

) 2∑
j=1

aHdD(φ− ϕj)

 . (15)

Hence, we can continue to expand the number of AoDs and
clusters to characterize the universally applicable geometric
channel model as

Hd=

L∑
l=1

(
I∑
i=1

αl,iadA(θl − νl,i)

) J∑
j=1

βl,ja
H
dD(φl − ϕl,j)

,
(16)

where L is the number of clusters, I is the number of paths,
and J can be regarded as the number of AoDs in the clusters.
In the l-th cluster, αl,i and βl,j are the path gains, θl and φl are
the average AoA/AoD, and νl,i and ϕl,j are the corresponding
offsets.

Similar to the beamspace form in (5), the geometric channel
model could be transformed into the beamspace form with
angular spread:

Hd =
L∑
l=1

AdAαlβ
T
l A

H
dD

= AdA(
L∑
l=1

αlβ
T
l )AH

dD

= AdAHdvA
H
dD,

(17)

where αl and βl are virtual representations over the AoA and
AoD domains, and Hdv is the virtual beamspace channel of
Hd.

Since only a tiny piece of the whole angular domain is
occupied by the angular spread, both αl and βl are sparse
vectors with only a few non-zero elements centered on the
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average AoA and AoD. Thus, the virtual beamspace channel
Hdv is composed of L sparse matrices. If we assume that αl
and βl contain at most Q non-zero elements, the maximum
numbers of non-zero columns and non-zero rows in Hdv are
both QL, and we have QL � min{N1, N2}. That is, Hdv

has sparsity, and since rank(Hdv) = L, it is clear that Hdv

has low-rank characteristics. Therefore, the virtual beamspace
channel takes on joint sparse and low-rank characteristics.
Similarly, the BS-RIS and RIS-user channels also have low-
rank virtual beamspace channels. Moreover, in RIS-assisted
massive MIMO systems, the number of antennas at the BS
and the number of reflecting elements at the RIS are typically
larger than the number of antennas at the user. As a result,
GΘHr is a low-rank matrix, which has been extensively
investigated in mmWave systems.

IV. TWO-STAGE CHANNEL ESTIMATION SCHEME

This section will employ the joint sparse and low-rank
characteristics for channel estimation in RIS-assisted mmWave
systems. Especially, in addition to the sparse signal recovery,
which has been extensively studied, we have previously set
up a trace-based low-rank matrix approximation against the
noisy channel. This can better meet the precondition of the
compressed sensing theory and further improve the channel
estimation accuracy.

A. Stage 1: Low-Rank Matrix Approximation

To reconstruct the noisy received signal, we carry out the
process of low-rank matrix approximation in the first stage.
Aiming at the deviation caused by the traditional nuclear norm
minimization method, we propose a trace operator that can
approximate the rank of a matrix well.

To begin, we go back to our received signal model (1) and
recast it by the low-rank sampling process. Suppose F and Z
are preprepared randomly for beamforming/receiving vectors
f(t) and z(t), where the cardinalities of the sets are |Z| = NZ
and |F| = NF . Assume that all the vectors in Z form a matrix
Z ∈ CNBS×NZ and that all the vectors in F form a matrix
F ∈ CNMS×NF . The low-rank matrix sampling model of the
received signal can therefore be written as

Y ij=(ZH(Hd+GΘHr)F+Ω)ij
= (ZHHdF )ij+(ZHGΘHrF )ij+Ωij,(i, j)∈Υ,

(18)
where Y ∆

= ZH(Hd +GΘHr)F is a low-rank matrix with
the rank of L, Y ij represents the ij-th element of Y , and Ω
is the noise. Υ represents the observed set.

Then, based on the low-rank matrix sampling model above,
we can recover Ŷ from the noisy observed value Y . Assume
that F and Z are square matrices with full-rank, i.e. NF =
NUS and NZ = NBS . We can find a low-rank matrix to
approximate the original signal [41],

min
Ŷ

rank(Ŷ )

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1,

(19)

where ε1 is the precise threshold.

Since the above original problem is not easy to solve di-
rectly, many schemes focus on the nuclear norm minimization
to obtain the approximation solution [42], [43]. Hence, the
original problem (19) can be transformed as

min
Ŷ

∥∥∥Ŷ ∥∥∥
∗

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1,

(20)

where
∥∥∥Ŷ ∥∥∥

∗
denotes the nuclear norm of Ŷ .

However, since the nuclear norm is a convex relaxation of
rank, the solution obtained by minimizing the nuclear norm is
usually biased and thus affects channel estimation accuracy
[35]. To overcome the deviation, we adopt an improved-
rank operator tr(Pµ(Λ)) to approximate the original low-rank
problem [44] and it follows as

Pµ(Λ)=Λ(ΛHΛ + µI)
−1

ΛH , µ ≥ 0, (21)

when the rank of Λ is full, we have µ = 0; and when the
rank is not full, tr(Pµ(Λ)) can well approximate rank(Λ), as
depicted in the following theorem.

Theorem 1: For a matrix Λ ∈ RM×N , when the parameter
satisfies µ > 0, there exists

lim
µ→0

tr(Pµ(Λ)) = rank(Λ), (22)

where tr(·) denotes the trace operator. .
Proof : Please refer to the Appendix B for specific proof.
Based on Theorem 1, the original problem could be approx-

imated by the improved rank operator,

min
Ŷ

tr(Pµ(Ŷ ))

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1.

(23)

The theorem indicates that when the coefficient µ approaches
0, the improved rank operator tr(Pµ(Ŷ )) could approach
rank(Ŷ ). Therefore, we set the process of loop iteration to
realize the requirement that the coefficient approaches 0.

To be specific, to approach the rank operator as smoothly
as possible, we establish an iterative approximation using the
trace-based operator tr(Pµ(Ŷ )) as the cost of minimizing each
iteration. The minimum value of each iteration is

min
Ŷ

{
1

2

∥∥∥Y − Ŷ ∥∥∥2

F
+ ηtr

(
Pµ
(
Ŷ
))}

. (24)

Based on the SVD of Y , we have Y = UΣY V
H and

define Φ = UH Ŷ V . For unitary matrices V and U , there
exists tr(Pµ(Ŷ )) = tr (Pµ (Φ)). Due to the Frobenius norm’s
unitary invariance, we can derive

g
(
Ŷ
)

= 1
2

∥∥∥Y − Ŷ ∥∥∥2

F
+ ηtr

(
Pµ
(
Ŷ
))

= 1
2

∥∥∥U (ΣY −Φ)V H
∥∥∥2

F
+ ηtr

(
Pµ
(
Ŷ
))

= 1
2 ‖ΣY −Φ‖2F + ηtr (Pµ (Φ)).

(25)
By substituting (25), the problem (24) may be recast as

min
Φ

{
1

2
‖ΣY −Φ‖2F + ηtr (Pµ (Φ))

}
. (26)
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vec(Ŷ ) = vec(CdHdvDd) + vec(Cc(HGvA
H
GDΘArAHrv)Dc) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + (DT

c ⊗Cc)vec(HGvA
H
GDΘArAHrv) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + (DT

c ⊗Cc)(H
T
rv ⊗HGv)vec(AH

GDΘArA) + vec(Ω)

= (DT
d ⊗Cd)vec(Hdv) + ((vec(AH

GDΘArA))
T ⊗ (DT

c ⊗Cc))vec(HT
rv ⊗HGv)

=
[

(DT
d ⊗Cd) (vec(AH

GDΘArA))
T ⊗ (DT

c ⊗Cc)

] [ vec(Hdv)

vec(HT
rv ⊗HGv)

]
+ vec(Ω)

= ψh+ vec(Ω),

(36)

For the first portion of the problem (26), the following exists

‖ΣY −Φ‖2F = ‖ΣY ‖2F + ‖Φ‖2F − 2tr
(
ΣY ΦH

)
(a)

≥ ‖ΣY ‖2F + ‖ΣΦ‖2F − 2tr
(
ΣY ΣΦ

H
)

= ‖ΣY −ΣΦ‖2F ,
(27)

where operation (a) is based on the von Neumann trace
inequality, and ΣΦ denotes a diagonal matrix derived by SVD
of Φ [45].

We can deduce this further and get the following

‖ΣY −Φ‖2F +ηtr (Pµ (Φ)) ≥ ‖ΣY −ΣΦ‖2F+ηtr (Pµ (Φ)) ,
(28)

blue where equality holds if Φ = ΣΦ. Based on (28), problem
(29) is an effective approximation of (26) as follows

min
ΣΦ

{
1

2
‖ΣY −ΣΦ‖2F + ηtr (Pµ (Φ))

}
. (29)

Further, the Frobenius norm and Appendix B allow us to write
the problem (29) as follows

min
ΣΦ

1
2 ‖ΣY −ΣΦ‖2F +ηtr (Pµ (Φ))

= min
ΣΦ

1
2 ‖ΣY −ΣΦ‖2F +η

L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

= min
ΣΦ

1
2 ‖ΣY ‖2F + 1

2 ‖ΣΦ‖2F−〈ΣY ,ΣΦ〉F +η
L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

= min
σ1(Φ),··· ,σL(Φ)

1
2

L∑
i=1

(σi (ΣY )+σi (Φ))
2
+η

L∑
i=1

σ2
i (Φ)

σ2
i (Φ)+µ

.

(30)
This implies that we can disentangle the minimizations with

regard to σ1 (Φ) , · · · , σL (Φ) as

min
σi(Φ)

{
f (σi (Φ))=

1

2
(σi (ΣY )+σi (Φ))

2
+η

σ2
i (Φ)

σ2
i (Φ) + µ

}
.

(31)
This is a simple scalar minimization problem, which is easy
to solve.

As a result, we can write the answer to (19) as

Ŷ = Udiag(σ1 (Φ) , · · · , σL (Φ))V H . (32)

Inspired by [46], the initial value of the first loop is set to
µ = 4 max

i
|σi(Y Υ)|. Next, we use µ(k) = cµ(k−1)(0.5 < µ <

1) to approach 0 iteratively, where c is empirically selected to
fall between 0.5 and 1.

The improved trace operator-based low-rank approximation
algorithm at the first stage of the algorithm is summarized in
Algorithm 1.

Algorithm 1 Improved Trace Operator-Based Low-Rank Ap-
proximation Scheme.

1: Input: The observed noisy signal Y .
2: Initialization: Ŷ

(0)
= Y , c = 0.5, ρ, k = 1 and K;

3: While k < K do
4: Iterative regularization:YΥ

(k) = Ŷ
(k−1)

+ρ(Y−Ŷ
(k−1)

);
5: if k = 1
6: µ = 4 max

i

∣∣∣σi(Y (k))
∣∣∣;

7: else
8: Update the µ(k) = cµ(k−1);
9: end if

10: Update the Ŷ
(k)

via (23);
11: k = k + 1;
12: end while
13: Output: The reconstructed signal Ŷ .

B. Stage 2: Sparse Signal Recovery

After completing the reconstruction of Ŷ , the second stage
estimates the channel through sparse signal recovery. Specif-
ically, based on (17), the beamspace model of user-BS, user-
RIS, and RIS-BS channels can be written as

Hd = AdAHdvA
H
dD,

Hr = ArAHrvA
H
rD,

G = AGAHGvA
H
GD,

(33)

where Hdv , Hrv and HGv are virtual beamspace vectors,
AdA, ArA, AGA and AH

dD, AH
rD, AH

GD are composed of the
array response vectors corresponding to the AoA and AoD of
each channel respectively.

Putting the beamspace model (33) into the sampling model
(18), we have

Ŷ = ZH(AdRHdvA
H
dD)F

+ZH(AGRHGvA
H
GD)Θ(ArRHrvA

H
rD)F + Ω

= (ZHAdR)Hdv(A
H
dDF )

+ (ZHAGR)(HGvA
H
GDΘArRHrv)(A

H
rDF ) + Ω

= CdHdvDd

+Cc(HGvA
H
GDΘArRHrv)Dc + Ω,

(34)
with

Cd = ZHAdR,

Dd = AH
dDF ,

Cc = ZHAGR,

Dc = AH
rDF.

(35)
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Then, employing the Kronecker product operation and ma-
trix vectorization operator to further reduce the complexity,
we obtain (36) shown at the top of last page, with

ψ =
[

(DT
d ⊗Cd) (vec(AH

GDΘArA))T ⊗ (DT
c ⊗Cc)

]
,

(37)

h =

[
vec(Hdv)

vec(HT
rv ⊗HGv)

]
, (38)

where I denotes a identity matrix. Here, channel estimation
is converted into a sparse recovery problem,

min
h
‖h‖1

s.t.
∥∥∥vec(Ŷ )−ψh

∥∥∥
2
≤ ε2,

(39)

where ε2 denotes the precise threshold. Based on the relevant
literature and previous experience, we made several attempts
and finally set the threshold to 0.001.

The conventional compressed sensing-based schemes em-
ploy the directly observed data Y to estimate channels, which
affects the estimation accuracy due to the existence of noise.
However, the proposed scheme reconstructs Ŷ before sparse
recovery to overcome this problem. The summarized two-stage
scheme is shown in Algorithm 2.

Remark: In this paper, our analysis is based on the assump-
tion that the RIS is a ULA. However, for UPA, our method
can still be applied, and its simulation is shown in Appendix
A.

Algorithm 2 Compressed Sensing-Based Two-Stage Channel
Estimation Scheme.
Input: The observed signal Y and the coefficient matrices
ψ.

1: Recover Ŷ based on the Algorithm 1 via

min
Ŷ

rank(Ŷ )

s.t.
∥∥∥Y − Ŷ ∥∥∥2

F
≤ ε1,

(40)

2: Estimate ĥ via

min
h
‖h‖1

s.t.
∥∥∥vec(Ŷ )−ψh

∥∥∥
2
≤ ε2.

(41)

Assuming that in each iteration, the computational complex-
ity can be divided into two part: low-rank matrix approxima-
tion and sparse recovery. For low-rank matrix approximation,
the SVD of Y should be considered, and its complexity is
O(min(M2N+N2M)); then, the complexity of updating the
problem (23) is O((M2N)3 + 2NM2). For sparse recovery,
the corresponding complexity is O(K3 + 2K), where I is the
dimension size of ψ. Hence, the complexity of Algorithm 2
can be expressed as,

O(Iiter(min(M2N+N2M)+(M2N)3+2NM2+K3+2K))

where Iiter is the number of iterations.

V. SIMULATION RESULT

In this section, we perform simulations and provide nu-
merical results to evaluate the proposed two-stage scheme.
Consider a RIS-assisted uplink mmWave MIMO system, as
shown in Fig. 1. Assume both the user and BS employ uniform
linear array antennas, where the distance of adjacent units
is half the signal wavelength. RIS is a panel consisting of
M uniform linear arrays, and the reflection coefficient matrix
of the RIS is expressed as Θ = diag(β1e

jθ1 , · · · , βNejθN ).
In practice, each element of the RIS is usually designed
to maximize signal reflection, and thus we set βi = 1.
θN is generated randomly [1]. In the general case, we set
M = 16, NBS = 32 and NUS = 16. The mmWave
channels are generated by the geometric channel in (17).
Taking the sparse scattering of mmWave into account, the
number of clusters in each transmission link is set to L = 2
[34]. For these clusters, we assume the average AoAs and
AoDs are 0, and the relative AoA shifts and AoD shifts are
randomly generated via an inverse transform sampling-based
random variable generator. The beamforming matrix F and
receiving combination matrix Z are randomly generated by
circularly symmetric complex Gaussian (CSCG) distribution
in the experiment. For stage 2, problem (39) is tackled
using a fast iterative shrinkage-thresholding algorithm (FISTA)
[47]. In addition, the classical LS and OMP methods, as
well as one-stage scheme without low-rank approximation and
nuclear norm minimization (NNM)-based two-stage scheme
[34], are chosen as comparisons. The dictionary of OMP are
constructed from the Kronecker product of beamforming and
receive combining matrices, i.e FT ⊗Z, to take full advantage
of the characteristics of both the transmitter and the receiver.
Numerical results derived from the average of 10,000 Monte
Carlo experiments.

We select MSE as the metric to assess the accuracy of the
channel estimation methods. MSE is defined as the average
square sum of the distance between each observed data and
the actual value, which is one of the most common measures
to reflect the difference between estimators. The formula is
shown as follows

MSE =
1

n

n∑
i=1

(
hi − ĥi

)2

, (42)

where hi and ĥi are the actual and estimated channels
respectively. Under the same conditions, the smaller the MSE,
the better the estimation scheme.

We first examine the estimation accuracy varying with
signal-to-noise ratio (SNR), as illustrated in Fig. 2. It can
be observed that the MSEs of all schemes decrease as SNR
increases, and the proposed scheme consistently outperforms
the others. To be specific, the LS method completely ignores
the impact of noise and has poor performance. As a classical
compression sensing algorithm, the OMP method makes full
use of the sparse characteristics of the channel and can better
cope with the noisy environment. Considering the effect of
noise on channel recovery, the NNM-based two-stage scheme
and the proposed scheme reconstruct the noisy received signal
by low-rank matrix approximation, fitting in with the precon-
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Fig. 2: The MSE performance versus SNR.
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Fig. 3: The EVM performance versus SNR.

dition of the compressed sensing theory, thus bringing more
obvious performance improvement. However, the coefficients
of the NNM scheme remain unchanged after selection, while
the proposed scheme adjusts the coefficients in each iteration.
The fixed coefficients limit the flexibility and accuracy of
the algorithm because the optimum values of the coefficients
may change with the channel parameters. It can be observed
that when SNR is high (especially after 10dB), the proposed
scheme can deal with inconspicuous noise flexibly, while the
performance improvement of the NNM scheme is no longer
obvious. Additionally, to ensure that MSE is appropriate as the
evaluation index, EVM is employed for verification. The EVM
is calculated as the root-mean-square of the ratio of the ideal
error-free reference signal power P̂ and the actual estimated

signal power P , expressed as EVM =

√
P̂
P ×100% [48]. As

shown in Fig. 3, the variation trend is similar to that of MSE,
which indicates the prudence and objectivity of selecting MSE
as the metric.

Given that bit error rate (BER) and capacity are pivotal met-
rics for evaluating channel estimation’s effectiveness, as BER
mirrors transmission accuracy and capacity gauges achievable
data rates, both hinging on precise channel estimation, we
now move forward to authenticate their performance. We
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Fig. 4: The BER performance versus SNR.
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Fig. 5: The capacity performance versus SNR.

calculated the change of channel capacity with SNR according
to Shannon’s formula, as shown in Fig. 4. For convenience,
we set the bandwidth to 1Hz. As SNR increases, the capacity
of all methods increases. Consistent with the MSE trend,
our algorithm shows greater advantages when the SNR is
greater than 10 dB. Fig. 5 illustrates the BER performance
in relation to the SNR. After channel estimation for each
approach, the beamforming or combining vectors are com-
puted using the technique outlined in [40]. As SNR increases,
our proposed method exhibits a decreasing trend in BER,
while the performance improvement in other methods is less
pronounced. Notably, our proposed method exhibits a constant
advantage. These results demonstrate that the proposed scheme
can effectively deal with channel estimation in different SNR
environments and significantly improve estimation accuracy
and performance.

Subsequently, we explore the impact of the pilot sequence
length on the estimation performance. The MSE performance
in relation to the pilot is delineated in Fig. 6. From the
figure, it becomes evident that as the pilot sequence length
becomes more extensive, it equips the channel estimation with
augmented information, leading to an enhanced accuracy, as
reflected by a diminishing MSE. Remarkably, under identical
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Fig. 6: The MSE performance versus the pilot sequence
length.
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Fig. 7: The MSE performance versus the number of
antennas at BS.

pilot variations, our proposed methodology consistently out-
performs other comparison algorithms, showcasing a precision
advantage. Further research also indicates that when the length
of pilots exceeds 30, the improvement of our proposed scheme
in MSE performance gradually slows down, while other meth-
ods, such as OMP, require a longer training duration.

Next, the experiments are conducted to see how the numbers
of antennas at the BS and user impact the estimation accuracy.
We simulate with the SNR of 10dB and a steadily growing
antenna number while leaving all other settings unchanged.
The numerical results presented in Fig. 7 indicate that in-
creasing the antennas at the BS can reduce MSEs, that is,
improve the estimation accuracy. This phenomenon is caused
by the improved channel quality due to the increase in the
number of antennas. Specifically, the LS method is greatly
affected by the noise, which not only shows the worst accuracy
but also has the slowest improvement with the increase of
antenna numbers. On the contrary, the NNM-based two-stage
scheme and the proposed scheme have obvious performance
improvement with the increase in the number of antennas.
However, it is worth noting that the proposed scheme always
maintains the best performance, indicating that the proposed
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Fig. 8: The MSE performance versus the number of
antennas at user.
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Fig. 9: The MSE performance versus the number of
reflecting elements on RIS.

trace operator and the design of the two-stage algorithm
are effective and meaningful. Conversely, in the results of
Fig. 8, it can be observed that the MSE increases as the
number of UE antennas increases. This is because, in the
uplink communication system, channel estimation is based on
uplink pilot signals sent from UE to BS. Therefore, when the
number of UE antennas increases, the variables that need to be
estimated in the channel matrix will increase. However, when
the number of pilots remains unchanged, the dimension of the
received signal will not change, and MSE will become worse.
But our proposed method always has optimal performance
and strong robustness. Similar situations also appear in Fig. 9
and 10. The increase of the reflection unit makes the channel
matrix continuously increase; and more paths also bring more
complex channels. It is worth noting that our proposed scheme
always has the best performance in terms of precision and
robustness.

Given the severe path loss in mmWave communications,
the value of SNR before beam alignment is typically low,
sometimes below 0dB. In this experiment, we set the SNR
to 10dB and -5dB to track the success ratio under the low
SNR region. Specifically, when MSE is less than 10−3, it is
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Fig. 10: The MSE performance versus the number of paths
in mmWave channels.
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Fig. 11: Success ratio versus the number of antennas at BS.

generally considered to have no error layer so that this trial
can be marked as a success. The success ratio is hence defined
as the ratio of the number of successes to the total number
of trials. It can be observed from the numerical results in
Fig. 11 that, with the increase in the number of antennas,
the performance of the NNM-based two-stage scheme and
the proposed scheme are significantly better than that of the
traditional OMP algorithm. In the situation that the SNR is
set to 10dB, when the number of antennas is 30, the proposed
scheme achieves a high success ratio of 99.64%, while when
the number of antennas increases to 70, the success ratio is
nearly 100%. The NNM-based schemes also maintain a high
success rate but are always lower than the proposed schemes.
Even with SNR=-5dB, the proposed scheme still has a success
rate of about 0.2 percentage points higher than the NNM-based
scheme. We continue to test the change of success ratio with
the number of mmWave paths in Fig. 12. When SNR is 10dB,
the success ratio of the proposed scheme maintains a high
success ratio of 100% and 99.71% when the number of paths
is 1 and 2. The consistently high success rate indicates that the
proposed method can effectively deal with channel estimation
under different communication conditions, even in the severe
environment of low SNR and numerous antennas.
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Fig. 12: Success ratio versus the number of paths in
mmWave channels.

VI. CONCLUSION

In this paper, we developed a two-stage channel estimation
scheme for RIS-assisted mmWave MIMO systems. Firstly,
the RIS-assisted mmWave channel model with angular spread
was established, which presented joint sparse and low-rank
characteristics. In the first stage, we utilized low-rank charac-
teristics to reconstruct the noisy received signal. Specifically,
to solve the low-rank matrix approximation problem, the trace
operator was proposed as a replacement since it could approx-
imate the rank operator well. In the second stage, based on
the properties of Kronecker products, the channel estimation
model was transformed into a sparse signal recovery problem.
Simulation results indicated that the proposed scheme could
effectively perform accurate channel estimation and was robust
for different channel environments.

APPENDIX A
SIMULATION OF UPA

To verify the performance when RIS is UPA, we provide the
simulation as follows. It can be seen from the figure that when
RIS is UPA, our channel estimation algorithm still maintains
the ideal performance.
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Fig. 13: The MSE performance when RIS is UPA.
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APPENDIX B
PROOF OF THE THEOREM 1

Assume rank(Λ) = r, and Λ is recast by singular
value decomposition as the form of Λ = UΣΛV

H =

U

(
Σr 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

)
V H , where U and V are

orthogonal matrices, 0M×N is M × N zero matrix and
Σr = diag {σ1(Λ), σ2(Λ), . . . , σr(Λ)} denotes diagonal ma-
trix. Based on the above, we can derive

ΛHΛ + µI = V
(
ΣH
r Σr + µI

)
V H

= V

(
ΣH
r Σr + µIr×r 0r×(N−r)
0(M−r)×r µI(M−r)×(N−r)

)
V H .

Therefore, we can write the matrix Pµ(Λ) as

tr (Pµ(Λ))=tr

(
Λ
(
ΛHΛ + µI

)−1

ΛH

)
=tr

(
UΣr

(
ΣH
r Σr + µIr×r 0r×(N−r)
0(M−r)×r µI(M−r)×(N−r)

)−1

ΣH
r U

H

)

=tr

((
ΣH
r Σr+µIr×r 0r×(N−r)

0(M−r)×r µI(M−r)×(N−r)

)−1(
ΣH
r Σr 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

))

=

r∑
i=1

σ2
i (Λ)

σ2
i (Λ) + µ

.

As a result, the preceding calculation led to lim
µ→0

tr(Pµ(Λ))=

rank(Λ), and the proof is completed. �
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