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Abstract
Motivation: Methods for concept recognition (CR) in clinical texts have largely been tested on abstracts or articles from the medical literature.
However, texts from electronic health records (EHRs) frequently contain spelling errors, abbreviations, and other nonstandard ways of represent-
ing clinical concepts.

Results: Here, we present a method inspired by the BLAST algorithm for biosequence alignment that screens texts for potential matches on the
basis of matching k-mer counts and scores candidates based on conformance to typical patterns of spelling errors derived from 2.9 million clinical
notes. Our method, the Term-BLAST-like alignment tool (TBLAT) leverages a gold standard corpus for typographical errors to implement a
sequence alignment-inspired method for efficient entity linkage. We present a comprehensive experimental comparison of TBLAT with five
widely used tools. Experimental results show an increase of 10% in recall on scientific publications and 20% increase in recall on EHR records
(when compared against the next best method), hence supporting a significant enhancement of the entity linking task. The method can be used
stand-alone or as a complement to existing approaches.

Availability and implementation: Fenominal is a Java library that implements TBLAT for named CR of Human Phenotype Ontology terms and
is available at https://github.com/monarch-initiative/fenominal under the GNU General Public License v3.0.

1 Introduction

Deep phenotyping of patients suspected of or diagnosed with a
rare disease (RD) has become standard practice in the last ten
years. In this context, deep phenotyping refers to the precise and
comprehensive annotation of phenotypic abnormalities in a
computer-readable format. Computational deep phenotyping
relies on community-curated and -maintained ontologies that
support the description of patient phenotype profiles via onto-
logical concepts. The clinical utility of deep phenotyping has
been showcased repeatedly over the years, in particular, in data
sharing (Taruscio et al. 2015, Boycott et al. 2022, Jacobsen et al.
2022) and clinical variant prioritization and interpretation
(Smedley et al. 2016, Clark et al. 2018, Son et al. 2018).

The Human Phenotype Ontology (HPO) provides the most
comprehensive resource for computational deep phenotyping
and has become the de facto standard for encoding phenotypes
in the RD domain, for both disease definitions as well as patient

profiles to aid genomic diagnostics (Robinson et al. 2008,
Köhler et al. 2009, Smedley et al. 2021). The ontology, main-
tained by the Monarch Initiative (Shefchek et al. 2020), provides
a set of more than 16 500 terms describing human phenotypic
abnormalities, arranged as a hierarchy with the most specific
terms furthest from the root term, “Phenotypic abnormality.”

The process of deep phenotyping can be slow, tedious, and
error prone if performed manually, which can be a substantial
barrier to uptake from clinicians. In recent years, however,
natural language processing tools have been developed and
have replaced or supplemented manual encoding of pheno-
type profiles (Arbabi et al. 2019, Deisseroth et al. 2019).
These tools implement various approaches to address the
challenges governing the phenotype concept recognition (CR)
task such as ambiguity, use of metaphorical expressions, ne-
gation, and complex or nested sentence structures (Groza
et al. 2015).
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There are two groups of approaches to phenotype CR:
“traditional” dictionary-based and machine learning (ML)-
based methods (Gorinski et al. 2019). Dictionary-based
approaches rely on creating and using inverted indexes from
the tokens composing HPO concepts (usually both labels and
synonyms), are relatively fast, and provide packaging options
that enable deployment in resource-constrained environ-
ments, such as typical clinical practices. They achieve high
precision at the expense of lower recall rates and tend to
struggle with identifying concepts that consist of unseen
tokens. The most representative tools in this category are:
NCBO Annotator (Jonquet et al. 2009), ZOOMA
(Kapushesky et al. 2012), OBO Annotator (Taboada et al.
2014), SORTA (Pang et al. 2015), Doc2HPO (Liu et al.
2019), ClinPhen (Deisseroth et al. 2019), and the Monarch
Initiative annotator (Shefchek et al. 2020). ML-based
approaches are less common in phenotype CR than in other
domains where multiple well-established gold standard cor-
pora exist. Two recent attempts, however, have showcased
the use of the latest developments in Deep Learning algo-
rithms and models with application to phenotype CR and
have achieved state-of-the-art results. Arbabi et al. (2019)
have developed a neural concept recognizer using a convolu-
tional neural network-based neural dictionary model and
tested it successfully on both scientific abstracts and medical
notes. PhenoTagger (Luo et al. 2021), which is also the cur-
rent best of breed approach, was developed as a hybrid
method that combines dictionary tagging with a BioBERT-
based tagger (Lee et al. 2019) to efficiently identify HPO con-
cepts—including unseen synonyms and nested subconcepts.
While they provide superior experimental results, ML meth-
ods impose a heavy computational footprint, which makes
them less feasible for deployment outside of server or cloud
environments.

This article focuses on a challenge largely ignored or as-
sumed to be implicitly solved by the existing phenotype CR
tools—i.e. typographical errors often encountered in real-
world clinical settings. Typographical errors can be seen as a
subclass of lexical variation in the context of the CR task.
They are significantly less structured than standard lexical
variation, with the semantics of the tokens being harder to
predict and interpret. For example, the tokens short and
shortening in Short phalanx of finger and Shortening of the
finger phalanges, respectively (HP:0009803) have a well-
defined linguistic interpretation (e.g. in terms of the root/
lemma and part of speech tag) and can both be folded into the
token short. The same can be stated for shorter and shortest.
Tokens such as shoret or shprt, on the other hand, are more
difficult to interpret automatically, although a human would
instantly recognize them as common typographical errors of
the token short. In this article, we investigate the accuracy of
current phenotype CR methods in the presence of typographi-
cal errors.

The contributions of this article are 3-fold. Firstly, we make
available a gold standard corpus for typographical errors
with relevance to clinical phenotyping. Secondly, we propose
a novel method to perform fast and accurate token-level
matching with applications to entity linkage in the presence of
typographical errors. The method is conceptually inspired
from sequence alignment algorithms—Basic Local Alignment
Search Tool (BLAST) (Altschul et al. 1990) and FASTA
(Lipman and Pearson 1985)—and uses an underlying scoring
matrix, which was built from 3-mers belonging to tokens

present in the gold standard. Conceptually, our approach is
similar to the one proposed by Krauthammer et al. (2000),
while methodologically it is completely different. Thirdly, we
perform a systematic evaluation of our approach and the
state-of-the-art phenotype CR tools. Our study represents an
extension to the work of Kim et al. (2022) with a focus on
assessing the versatility of existing phenotype CR methods in
the presence of typographical errors. The results show that
our method enhances significantly the entity linkage task.
Moreover, both the scoring matrix and the methodology can
be used to augment existing dictionary or ML-based tools.

2 Materials and methods

We present an algorithm for CR of HPO terms in the presence
of spelling errors, alternate spellings, partial matches, and al-
tered orderings of the tokens that make up the term.

2.1 Term-BLAST-like alignment tool

The BLAST finds regions of local similarity between sequen-
ces without performing a comprehensive search of every resi-
due against each other. Instead, BLAST uses short word
segments to create alignment seeds that are extended if a
specified match threshold is exceeded (Altschul et al. 1990).
The BLASTP algorithm is an extension of BLAST for protein
sequences that uses amino-acid scoring matrices that capture
evolutionary information to estimate the probability of any
given amino-acid substitution (Altschul et al. 1997). Here, we
present the Term-BLAST-like alignment tool (TBLAT).
TBLAT adapts the general strategy of the BLAST algorithm
to CR in potentially noisy clinical texts. A high-level overview
of the approach is depicted in Fig. 1. The algorithm compares
a given candidate against the list of tokens compiled from a
given ontology—in our case, the HPO—by computing an
alignment score between the sets of 3-mers composing the
tokens. A scoring matrix underpins the computation of the
score and a final decision is proposed using precomputed op-
timal cut-offs and the length of the original candidate token.
Each of these steps is detailed in the following sections.

2.2 Human phenotype ontology

In this work, we apply the TBLAT method for recognition of
HPO concepts (terms). The HPO version 02–2022 (February
2022) was used, which contains 16 801 terms and 18 999 ex-
act synonyms. For instance, the term “Cataract”
(HP:0000518) has five synonyms including “Lens opacity.”

2.3 Data

The starting point of our investigation was the creation of a
gold standard corpus of clinical typographical errors derived
from a real-world setting. The foundation of our corpus is
represented by a set of 2 692 451 clinical notes collected from
multiple individual clinics in a primary care setting in
Australia and authored by 22 doctors. Given the heterogene-
ity of both the environment, as well as of the individual pri-
mary care physician practices, the notes did not follow a
structured and uniform authoring template. We extracted the
notes from the clinics using a data extraction tool available
within the general practice medical records software. The
same tool, enabled an initial deidentification, by removing
personal health identification elements, such as names,
addresses, phone numbers, dates of birth, and other govern-
ment identifiers.
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The deidentified notes were processed using a standard
spaCy text processing pipeline (sentence splitter and token-
izer), available at https://spacy.io/. This resulted in sentences
and a total of 159 236 294 tokens forming them (700 475 of
which were unique)—see Table 1. All unique tokens were
cleansed of punctuation marks (e.g. “,”, “;”, “:”, “>”, “<”)
and those containing special characters (e.g. “@,” “þ”).
Tokens shorter than four characters were removed.

We assumed that a substantial proportion of the token set
represented spelling errors or other nonstandard spellings.
Therefore, we used the GoogleNews 3 million words and
phrases word2vec model (Mikolov et al. 2013) to find
matches for each of the 700 475 unique tokens. The consoli-
dation was performed by picking the top most similar token
and regrouping them around tokens with the highest number
of occurrences. This resulted in 256 005 unique “canonical”
tokens and 51 337 typographical errors, where a “canonical”
token is assumed to be the “correct” word. Note that this ca-
nonical token does not refer to a root or lemma of a set of
words, but rather to the correct spelling of a set of misspelled
tokens. An example of a consolidated row of tokens is:
actions::[actions, tactions, actons, acions, . . .]
(where actions is the “canonical” token). All rows consist-
ing of sets of nonidentical tokens were validated by one of the
authors (T.G.), who applied a best-judgment call of whether a
pair of tokens could represent a realistic typographical error
or not. This “gold standard” is used as a basis for all further
experiments and is available for download at: https://github.
com/monarch-initiative/fenominal.

To gain a better understanding of the nature of the typo-
graphical errors, we split the tokens into their component 3-
mers, recorded the transition from one 3-mer in the
“canonical” token to one 3-mer in the typographical error (at

the same index) and classified it into one of the six groups de-
scribed and exemplified below. A 3-mer represents the decom-
position of a word into all orderly occurring substrings of
length 3, in our case with overlap—e.g. actions::[act, cti,
tio, ion, ons]. Also, note: the “_” character below denotes
“any other character.”

• “Shift” errors (42.25%) represent a shift to the left or to
the right of two out of the three characters in the 3-mer,
e.g. met! ame or met! eta. Example: abnormal !
abbnormal.

• “Single replacement” errors (18.9%) denote a replace-
ment of one of the three characters in the 3-mer with an-
other, e.g. tar ! t_r or tar ! _ar or tar ! ta_.
Example: abnormal! annormal.

• “Double replacement” errors (8.79%) are the same as
“single replacement,” however, covering two characters,
e.g. tar! t__ or tar! __r or tar! _a_. Example:
abnormal! andnormal.

• “Gap shift” (5.63%) model an insertion of a random
character in the middle of the 3-mer, e.g. tar ! t_a or
tar! a_r. Example: abnormal! abdnormal.

• “Inversions” (3.02%) are a form of “gap shifts” where
two characters in the 3-mer are swapped around, e.g. tar
! atr or tar ! tra. Example: abnormal !
anbormal.

All other errors, denoting random 3-mer transitions, were
placed in an “Other” category covering 21.41% of the total
number of errors (e.g. bno! atr). For example, abnormal
! itormal.

Finally, given our focus on HPO phenotypes, we summa-
rize in Table 1 the coverage in the gold standard of the tokens
composing labels and synonyms defined by HPO concepts.
All HPO labels and synonyms consist of 6862 unique tokens
(unigrams), once stop words were removed (the list of all stop
words used by TBLAT is available in Supplementary Section
S1) and the same cleaning procedure was applied as in the
case of clinical notes. Of the total set, 4769 tokens are present
as “canonical” tokens in the gold standard (i.e. the corpus of
256 005 canonical tokens) with 3858 being associated in the
gold standard with typographical errors. The 2093 tokens not

Figure 1. High-level overview of the proposed term-BLAST-like alignment approach.

Table 1. Clinical token corpus statistics.

Number of clinical notes 2 692 451
Number of tokens 159 236 294
Unique tokens 700 475
(GS) Unique “canonical” tokens (length > 4) 256 005
(GS) Unique typographical errors 51 337
Unique tokens in ontology concepts 6862
Ontology tokens in gold standard 4769
Ontology tokens with typographical errors 3858
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present in the gold standard, and hence in the clinical notes
corpus, represent predominantly medical terms with a length
larger than 15 (e.g. “glutarylcarnitine”) and highly specialized
phenotypes—e.g. “pseudohypoaldosteronism.”

2.4 Scoring matrix

Inspired conceptually by the method used to construct the
PAM (Point Accepted Mutation) and BLOSUM (BLOcks
SUbstitution Matrix) substitution matrices that underpin the
most widely used approaches in sequence alignment, we built
a similar scoring matrix aimed at encoding the probability of
one 3-mer, belonging to a “canonical” (correct) token, transi-
tioning into another 3-mer, belonging to a typographical er-
ror, given the gold standard corpus described in Section 2.3 as
background. Below are the steps applied to each row in the
gold standard corpus to build the matrix:

1) Generate 3-mers for the “canonical” token and all asso-
ciated typographical errors. For example, the token ab-
normal would be represented by the list [abn, bno, nor,
orm, rma, mal]. Similarly, a typographical error abnr-
mal would be represented by [abn, bnr, nrm, rma, mal].

2) Aggregate the frequency of position-based transitions
across the entire corpus for all 3-mers contained by
“canonical” tokens to all other 3-mers contained by ty-
pographical errors. For example, given the pair abnor-
mal—abnrmal, the 3-mers belonging to the “canonical”
token abnormal would record the following position-
based transitions: (i) [0] abn ! abn; (ii) [1] bno ! bnr;
(iii) [2] nor ! nrm; (iv) [3] orm ! rma; (v) [4] rma !
mal

There are a few remarks worth noting. Firstly, while the
consolidation described above includes the identical token
(i.e. actions is associated to actions in the gold standard),
the identity association was removed when computing the fre-
quencies (i.e. only typographical errors were included in the
frequency calculation). Secondly, the 3-mer transitions were
computed from left to right—i.e. from the “canonical” token
to one of the typographical errors and always driven by the
indices of the 3-mers composing the “canonical” token—i.e.
3-mer at index 0 in the “canonical” token against 3-mer at in-
dex 0 in the typographical error, 3-mer at index 1 against
3-mer at index 1, and so on. This leads to three possible sce-
narios, subject to the difference in length between the
“canonical” token and the typographical error: all 3-mers in
the “canonical” token have a transition into 3-mers in the ty-
pographical error if the two have the same length; some 3-
mers in the “canonical” token do not have a transition if
“canonical” token is longer than the typographical error and
vice-versa; and some 3-mers in the typographical error do not
have a transition if “canonical” token is shorter than the ty-
pographical error.

For example, the state transitions for the 3-mer abn are:
abn: 0.492562; bno: 0.203306; abo: 0.034711; bnr:
0.021488; bon: 0.021488; abd: 0.016529; bor: 0.01157.
To complete the final scoring matrix, we removed all transi-
tions with a value of less than 0.01. The scoring matrix is
available for download at: https://github.com/monarch-initia
tive/fenominal.

2.5 Token-level alignment score

The alignment score defined by the standard sequence align-
ment algorithms (BLAST or FASTA) usually sums up the val-
ues listed in a substitution matrix when considering the
comparison between nucleotides or amino acids in a query se-
quence and sequences in a database. A second component of
the score is a gap penalty aimed to penalize noncontiguous
alignments between the two sequences.

Our method uses the same principles, applied however in a
different manner. The alignment score sums up values for 3-
mer transitions found between the query and the candidate
tokens using the scoring matrix. In addition, it also caters for
scenarios when such transitions are missing, while penalizing
the lack of coverage for all 3-mers in the candidate token.
More concretely, the frequency values of the error types (e.g.
“shift,” “single replacement”—see Section 2.3) are used as a
penalty in conjunction with identity transition values to fill in
areas not covered by the scoring matrix because of the lack of
data in the gold corpus.

2.6 HPO-focused token score distributions

To understand how “close” an alignment is between a query
sequence and a sequence retrieved from a background data-
base, algorithms like BLAST recommend interpreting the
score by observing its percentile placement in the context of
the overall score distribution, which is computed by moving
the query sequence in all possible positions against candidate
sequences retrieved from the database.

We adopted the concept of computing score distributions
to support the interpretation of the score by using gold stan-
dard listed in Table 1. Our focus was phenotype concepts de-
fined by HPO, and as such, we considered the tokens
contained within all HPO classes as target dictionary—i.e. the
4769 ontology tokens that exist as “canonical” tokens in our
dataset, out of the total of 6862 possible unique ontology
tokens (see Table 1). Note that in our case, HPO acts as the
proxy for the background database used by BLAST. For each
token, we aimed to capture the entire space an alignment
score could take if all 3-mers composing the token would sys-
tematically transition through all possible values in the scor-
ing matrix. The actual score was computed as per the BLAST
method, by summing up the values recorded in the substitu-
tion matrix between pairs of 3-mers representing a transition
from a “canonical” token to a typographical error. The pro-
cedure leads to a score distribution, which enables us to assign
to a random alignment score the same interpretation used in
BLAST.

To exemplify the score computation, Table 2 lists the state
transitions for all 3-mers composing the token abnormal. A

Table 2. State transition table for all 3-mers composing the token

abnormal.

abn bno nor orm rma mal

abn 0.49 bno 0.32 nor 0.41 orm 0.34 rma 0.34 mal 0.40
bno 0.20 abn 0.18 orm 0.06 for 0.09 orm 0.08 rma 0.07
abo 0.03 nor 0.13 orr 0.04 nor 0.08 erm 0.06 all 0.03
bnr 0.02 abo 0.02 eno 0.04 rma 0.06 mal 0.04 ali 0.02
bon 0.02 bnr 0.01 bno 0.02 rmo 0.01 mat 0.04 ala 0.02
abd 0.01 bon 0.01 ino 0.02 hor 0.01 arm 0.02 sma 0.02
bor 0.01 nro 0.01 ono 0.02 rmi 0.01 man 0.02 ima 0.02

abd 0.01 ort 0.01 rom 0.01 nor 0.01 orm 0.02
dno 0.01 sno 0.01 mac 0.01 oma 0.01
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maximal alignment score is achieved by summing up all iden-
tity state transitions, i.e.:

• abnþ bnoþ norþ ormþ rmaþmal¼ 0.49þ 0.32þ 0.41
þ0.34þ 0.34þ0.40¼2.3

Similarly, an alignment score computed over a series of ran-
dom transitions would be:

• aboþ bnoþ norþ ormþ rmaþmal¼ 0.03þ 0.32þ 0.41
þ0.34þ 0.34þ 0.40¼ 1.84

As such, for the token abnormal, the score distribution
ranges from an alignment score of 0.06 (5% alignment score)
to 2.3 (100% alignment score).

Supplementary Section S2 in the material provides a compre-
hensive overview of the coverage across all 4769 “canonical”
ontology tokens given the underlying score distributions when
the tokens are grouped according to their length. This is relevant
in the context of establishing a cut-off, which drives the control
of the sensitivity and specificity of the matching strategy. In prin-
ciple, subject to the underlying application, this could be set dy-
namically or fixed using some principles. Here, we showcase the
impact of the length of the token over the coverage of typo-
graphical errors and provide guidance on how it can be used to
generalize the alignment score.

There are two conclusions that can be drawn from the
shape of the trends in Supplementary Section S2. Firstly,
shorter tokens are more volatile and require a lower value for
the alignment score to have a reasonable coverage. This is evi-
dent for lengths of 5–8, where the coverage drops almost line-
arly. From a length of 9, the alignment score becomes more
stable, while from a length of 10 and upwards it becomes
clear that a fixed cut-off set around the 70th percentile is
justifiable.

The actual value of the alignment score cut-off can be de-
duced using the distributions depicted in Fig. 2. The boxplots
capture the scores and alignment percentiles for token lengths
of 5–10. The recommendation is to choose a target percentile
based on the desired coverage—while noting that a larger cov-
erage will have an impact on precision—and then find the as-
sociated score by looking up the minimal value of the score
distribution for the selected percentile. The evaluation dis-
cussed in the next section provides concrete usage scenarios
for cut-offs.

2.7 Software availability

fenominal (Fabulous phENOtype MINing ALgorithm) is a
Java 17 software library that implements the TBLAT algo-
rithm. fenominal aims to provide a module-based framework
to perform HPO CR, with a particular focus on applications
in resource-constraint clinical-sensitive environments—i.e.
clinical settings where the data can only be accessed inside the
organization’s firewall. The package includes a command-line
interface that can be used to parse text files. Detailed instruc-
tions for use are available. The software is available under the
GNU General Public License v3.0 at https://github.com/mon
arch-initiative/fenominal. fenominal is also available on
Maven Central at https://search.maven.org/artifact/org.monar
chinitiative.fenominal/fenominal (version 0.7.9 was current at
the time of this writing).

2.8 Experimental setup
2.8.1 Tools
The evaluation was carried out using the following tools:

Doc2HPO (Liu et al. 2019)—via API, with default parame-
ters, during 10–13 August 2022, as per instructions pro-
vided at https://github.com/stormliucong/doc2hpo;

Figure 2. Distribution of alignment scores for all tokens derived from the HPO. The box plots at 5%, 10%, 15%, . . ., 100% are shown (Note: odd

numbers are omitted from the X-axis label). Each box plot represents the corresponding percentile scores for the tokens. For instance, the 5% alignment

score for “abdomen” is 0.05497, and this score, as well as the corresponding score for other tokens, is used to generate the box plots.
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ClinPheno (Deisseroth et al. 2019)—MacOS download,
version available on 10 August 2022 from http://bejerano.
stanford.edu/clinphen/;

Monarch Initiative annotator (Shefchek et al. 2020)—via
API, with default parameters (match over five characters
long), during 10–13 August 2022;

NCBO Annotator (Jonquet et al. 2009)—via API, with de-
fault parameters, during 10–13 August 2022;

PhenoTagger (Luo et al. 2021)—release v1.1 downloaded
from https://github.com/ncbi-nlp/PhenoTagger with mod-
els v1.1 downloaded from https://ftp.ncbi.nlm.nih.gov/
pub/lu/PhenoTagger/models_v1.1.zip and installed as per
the instructions available on 10 August 2022; runs were
executed with default parameters.

2.8.2 Corpora
We used three corpora in our experiments, all in conjunction
with HPO version 02–2022 from February 2022.

GSCþ: This is a manually curated dataset that consists of
228 manually annotated abstracts of scientific publications
(Lobo et al. 2017). To ensure consistency, we realigned the
annotations to HPO version 02–2022 by replacing retired
HPO IDs with the most up-to-date IDs specified via the
alt_id property. The operation left no orphan annotations
in the corpus. GSCþ was used in two settings:

• GSCþ (baseline)—the original corpus, to record a baseline
against a perfectly clean set of text entries

• GSCþ (typo)—the original corpus with all tokens present
in the set of ontology tokens with typographical errors—
i.e. the 3858 mentioned in Table 1 replaced systematically
with the associated typographical errors.

Table 3 lists the high-level statistics of GSCþ (baseline). As
a note, “canonical” tokens in the table refer to tokens con-
tained by gold standard corpus of typographical errors (i.e.
the set of 256 006 tokens from Table 1) that had nonidentical
typographical errors associated with them. The most relevant
aspect in Table 3 is the percentage of corpus annotations con-
taining tokens that can be used to perform an appropriate val-
idation—i.e. 85.2%. The annotations comprised a total of
3685 “canonical” tokens—i.e. 64.4% of the entire set of
tokens—with 571 “canonical” tokens being unique—i.e.
55.2% of the total set of unique tokens. Similarly, Table 4
lists the high-level statistics of GSCþ (typo), generated by sys-
tematically replacing the 3685 “canonical” tokens in GSCþ
(baseline) with typographical errors. This resulted in 61 902
annotations (after removing those that did not contain a
“canonical” tokens) comprising 95 191 typographical error
tokens.

Electronic Health Record (EHR): A set of 100 anonymized
clinical notes from Shriners Children’s—corpus named EHR
hereafter. Tables 3 and 4 also list the statistics of the EHR
corpus containing 100 clinical notes from Shriner’s Children’s
patients with a diagnosis of cerebral palsy. The source notes
were retrieved from the EHR in rich text format and decom-
pressed using the system vendor’s APIs on their propriety
compression format. Once decompressed, notes were stripped

of their embedded rich text formatting commands. The final
step taken in data preparation was to use structured data
from the health record to search and replace key PHI terms
from the clinical notes, including medical record number,
names, and addresses, thus yielding a limited dataset suitable
for research.

We chose to introduce this second corpus in order to diver-
sify both the type of textual entries, as well as the underlying
domain. The corpus was manually annotated by T.G. and
P.N.R., which led to 1815 annotations using 252 unique
HPO concepts. Although smaller in number of documents,
the corpus is significantly larger in total number of tokens
(59 470), as well as the unique number of tokens (5672),
while maintaining a comparable coverage of “canonical”
tokens across the HPO annotations (79.9%). The overlap be-
tween GSCþ and the EHR corpora was limited—51 unique
HPO concepts and 101 unique “canonical” tokens.

GenTypo: Finally, the GenTypo corpus was generated
from the remainder of 2093 ontology tokens not present in
the gold standard token corpus listed in Table 1. The aim of
using this second corpus is to test the versatility of the method
on tokens not seen before in establishing the alignment score
distributions and cut-offs. GenTypo was created by systemat-
ically introducing shift, single replacement, and inversion ty-
pographical errors into each of the 2093 ontology tokens.
The number of errors was also increased proportionally with
the length of the tokens:

• for lengths less than 10, we introduce one error,
• for lengths of 10–17, we introduce three errors,
• for all other lengths, we introduce four errors.

This resulted in a total of 38 108 unique typographical errors.
This list was used to systematically replace “canonical” tokens
in randomly chosen ontological concepts containing them,
which resulted in 38 108 unique ontology labels. For example,
the “canonical” token acylglycine in HP:0012073
(“Abnormal urinary acylglycine profile”) was used to generate
24 new labels using 24 typographical errors, such as:
“Abnormal urinary ackylglycine profile,” “Abnormal urinary
acfydlrglycine profile,” or “Abnormal urinary aclgycine

Table 3. Baseline corpora statistics.

GSCþ EHR

Number of documents 228 100
Number of annotations 2773 1815
Unique HPO concepts 461 252
Total number of tokens in the corpus 5724 59 470
Unique tokens in the corpus 1035 5672
Annotations containing

“canonical” tokens
2362 (85.2%) 1450 (79.9%)

Total “canonical” tokens 3685 (64.4%) 1095 (19.3%)
Unique “canonical” tokens 571 (55.2%) 260 (23.7%)

Table 4. Typo corpora statistics.

GSCþ EHR

Number of documents 228 100
Unique HPO concepts 461 252
Annotations containing typographical errors 61 902 57 789
Total typographical error tokens 95 191 37 242
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profile.” These labels were then used as input text in our experi-
ments discussed in Section 3.2.

3 Results

We performed a comprehensive evaluation of our approach,
in conjunction with five state-of-the-art HPO CR tools dis-
cussed in Section 2.8.1.

3.1 Assessment of CR performance

CR, as a task, is conceptually composed of two parts: bound-
ary detection and entity linkage. Boundary detection refers to
finding the spans of text that represent candidate-named enti-
ties, while entity linkage—given a target ontology—focuses
on finding the best concept that matches the candidate-named
entity. The alignment strategy proposed in this article is fit for
this second component, and as such, in a practical scenario
would require candidates to be provided as input.
Consequently, the validation and results discussed here start
from a set of potential named entity candidates and record
the ability of finding the best matching HPO concept.

From a process perspective, we used the text spans corre-
sponding to the manual annotations recorded in the corpora in-
troduced in Section 2.8.2 to create fake sentences—e.g. the text
span “dysplastic hip joints” was converted to “Dysplastic hip
joints.” These were then provided to the tools listed in Section
2.8.1—in addition to ours—as input candidates for matching.
All HPO IDs resulted from the annotations produced by the
tools were aligned to HPO version 02–2022 using the same pro-
cedure as for the GSCþ corpus. Moreover, in order to ensure a
fair comparison of the results, the evaluation metrics considered
only the children of HP:0000118 (Phenotypic abnormality),
since PhenoTagger was trained to perform CR on this subset of
HPO.

To ensure, we record the best performance of the tools, in
some cases, we ran several experiments using different forms
of the corpora. In particular, we wanted to emphasize the dif-
ference made by using the full-text entries versus named enti-
ties for approaches relying on BERT models, where the lack
of context could negatively influence the annotation outcome.
Consequently, as presented in the next section, PhenoTagger
and ClinPheno were also run in baseline on the complete
abstracts. To be able to produce results with Doc2HPO, we
created well-formed sentences. Finally, due to the sensitive na-
ture of the content, the EHR corpus was analyzed only with
tools available in offline mode—i.e. PhenoTagger and
ClinPheno.

We used the standard metrics for evaluating named entity
or CR performance: Precision, Recall, and F1. Precision is de-
fined as the ratio between the correctly identified positives
(true positives) and all identified positives. Recall is the ratio
between the predicted true positives and the actual annotation
outcomes produced by the tool. F1¼ 2� Precision�Recall/
(PrecisionþRecall).

3.2 Experimental results

Table 5 lists the results achieved by all tools, as well as exact
matching on the GSCþ (baseline) and EHR corpora (in exact
matching, a hit is recorded when the compared tokens are
equal). Their results serve two purposes. Firstly, we wanted to
establish a sense of performance when the tools are applied in
the absence of typographical errors. Overall, the difference in
F1 score between the top-scoring approaches was roughly

7% (PhenoTagger—full text versus ClinPheno), and the maxi-
mal difference was 24% (PhenoTagger—full text versus
ClinPheno—full text). It is important to note the significantly
higher recalls achieved by PhenoTagger and ClinPheno on the
manually annotated concepts in the two corpora. Secondly, in
the case of PhenoTagger and ClinPheno, we intended to cap-
ture the difference made by using full text versus named enti-
ties as input. While for PhenoTagger we observe a difference
of 5% in F1, ClinPheno performed significantly better on
named entities than on full text. These results validate the out-
comes discussed below on typographical errors.

As presented in Section 2.8.2, the results listed in Table 6
were achieved by introducing typographical errors to replace
“canonical” tokens present in ontological concepts. As base-
line, unsurprisingly, the Exact matching approach records a
close to null recall. This is, however, considerably improved
by using our alignment strategy with optimal score cut-offs—
a jump from 0.3% to 24.7% on GSCþ and from 0.4% to
40.7% on EHR. The results of the other approaches show
clearly that, with the exception of PhenoTagger, they cannot
handle typographical errors appropriately, and as such, they
could lead to false negatives when applied in a clinical
context.

Finally, Table 7 lists the results achieved on the second cor-
pus (GenTypo) by the top scoring approaches on GSCþ

Table 5. Experimental results achieved on baseline corpora.a

GSCþ EHR

Method P R F1 P R F1

Exact matching 94.2 42.6 58.6 99.8 58.0 73.4
PhenoTagger 67.3 66.3 66.8 68.3 67.9 68.1
PhenoTagger (full text) 77.0 67.9 72.2 59.9 70.0 64.6
ClinPheno 63.7 65.3 64.5 60.3 62.7 61.4
ClinPheno (full text) 73.2 36.0 48.3 45.8 52.5 48.9
Doc2HPO 80.5 49.8 61.5
Monarch Annotator 82.3 50.2 62.3
NCBO Annotator 66.0 49.1 56.3

a Bolded values represent the best F1 in class, while italics denote the best
recall.

Table 6. Experimental results achieved on typo corpora listed in Table 4.

GSCþ EHR

Method Precision Recall F1 Precision Recall F1

Exact matching 93.3 0.3 0.7 80.3 0.4 0.8
PhenoTagger 34.6 17.3 23.1 58.8 19.4 29.2
ClinPheno 28.8 12.3 17.2 43.2 17.2 24.6
Doc2HPO 34.1 7.7 12.6
Monarch Annotator 12.1 3.2 5.1
NCBO Annotator 12.5 3.32 5.2
TBLAT 96.0 24.7 39.3 98.5 40.7 57.6

Bolded values represent the best F1 score in class.

Table 7. Experimental results achieved on GenTypo.

Method Precision Recall F1

PhenoTagger 52.5 26.4 35.1
Doc2HPO 4.4 0.6 1.0
ClinPheno 5.6 1.2 2.0
TBLAT 96.3 73.2 83.2

Bolded value represents the best F1 score in class.
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(typo). While Doc2HPO and ClinPheno recorded a significant
drop in performance, PhenoTagger produced consistent
results, and furthermore, recorded a significant increase in re-
call to 26.4%. On a different note, our alignment strategy
achieved the best performance with a recall of 73.2%. It is
worth reiterating that the GenTypo corpus covered tokens
not seen or used in establishing the score distributions and
cut-off, and as such, they can be considered a valid test set.

3.3 Error analysis

A closer look at the errors produced by our alignment strategy
on the typo corpora revealed that 86.2% were the same HPO
entries not found by the exact matching approach, which is
unsurprising since even a correct alignment would not have
led to a correct entity linkage. 1.4% of the errors led to an in-
correct alignment, which then led to an incorrect entity link-
age. The rest of the 12.4% errors were associated with a lack
of or an incorrect alignment, which led to no entity linkage.

Over 85% of the incorrectly aligned tokens were of length
six or less, with single replacement and gap shift errors, com-
bined with the lack of the addition of a single character, domi-
nating the pool. Prominent examples include: tugor ! rigors
instead of tumor; spnal ! spinal instead of renal; rernal !
renal instead of sternal; reinal ! renal instead of spinal.
Similarly, examples of tokens failed to be aligned included:
nsaiss and nagls ! nails or thrumbs and thumns ! thumbs.
The alignment of longer tokens was affected by the presence
of multiple simultaneous types of errors. Examples include:
annomaliss and anolamies ! anomalies. The same patterns
were present in the GenTypo corpus evaluation, with the re-
call achieving a higher value because of the significantly larger
diversity of tokens and ontology concepts when compared to
the typo corpora. The errors we introduced were also less
complex. They were, however, problematic enough to show-
case the challenges standard phenotype concept recognizers
would to address in a real-world clinical environment.

In conclusion, the challenges we observed were related to
the alignment of short tokens, where every change can have a
significant impact, and of long tokens in the presence of com-
plex typographical errors.

4 Discussion

The results discussed in the previous section show that our
alignment strategy is generalizable to unseen tokens, as well
as tokens of lengths over 10. While our focus has been on
phenotypes and the HPO, in a clinical care context, the algo-
rithm can be similarly employed using other health-related
ontologies or subontologies, such as SNOMED CT or ICD.
Moreover, its applicability is not limited to symptoms/pheno-
types, but rather can be extended to diseases (e.g. Disease
Ontology or Orphanet Rare Disease Ontology), drugs (e.g.
DrugBank), or interventions (e.g. Medical Action
Ontology)—all of which cover medical concepts that are sus-
ceptible to typographical errors.

As a limitation, it is, however, dependent on the type and
number of typographical errors. While we have attempted to
classify and describe most types of typographical errors, more
than 20% of our corpus remained uncategorized. Most of
these entries represent a combination of errors that increase
the complexity of the alignment. The length of the target
tokens also plays an important role in a successful alignment.
Unsurprisingly, shorter tokens were harder to reconcile, due

to the small number of 3-mers. Moreover, every character
change in the target token leads to a change in at least one 3-
mer (if the change occurs at the very beginning of very end)
and usually three 3-mers (if the change occurs somewhere else
in the token).

On a different note, the main driver behind the proposed
method was the applicability in a clinical setting. Our view on
applicability covers two aspects. Firstly, the HPO CR had to
perform well in the presence of typographical errors, and as
shown in Section 3.2 our alignment strategy delivered satis-
factory results. Secondly, most clinical environments are still
resource-constrained—e.g. they use desktop PCs or NUCs,
which are not equipped for data-intensive tasks. Tools such as
PhenoTagger (the state-of-the-art performer) rely on deep
learning models and require appropriate resources to run
(more concretely, at a minimum 3GB dedicated RAM to load
the model in memory). Our alignment strategy, however, can
be coupled with an arbitrary (less resource-intensive) concept
recognizer to improve performance on typographical errors
without introducing additional computational overhead. The
algorithm itself requires a fraction of a single CPU to run and
has a memory footprint of 1.2MB for the scoring
matrixþ�1 MB to store the list of all unique tokens in HPO.
It also does not require any additional setup or access to ex-
ternal resources. In terms of complexity, for a given token t,
the time complexity associated with computing the alignment
score is O(nk), where k is t’s number of 3-mers (i.e. len(t)� 2)
and n is the number of candidate ontology concept unigrams.
n can be reduced to a worst-case scenario of log(n) subject to
the candidate selection strategy, which in practice would be
driven by t’s 3-mers.

5 Conclusion

The aim of this article was to perform a systematic analysis of
the impact of typographical errors on phenotype CR. We
have introduced a gold standard of typographical errors col-
lected from a real-world clinical setting and used the corpus
to showcase the complexity of the domain. All state-of-the-art
tools encountered significant difficulties in dealing with the
types of errors populating the gold standard. In addition, we
proposed a lightweight bioinformatics-inspired alignment
strategy that can be used to augment any of the existing meth-
ods and boost their CR performance. The experimental
results showed a significant improvement in recall on both an
existing corpus, as well as one generated specifically for the
purposes of our evaluation.

Supplementary data

Supplementary data are available at Bioinformatics online.
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