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Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations. Here, we present
an active (Bayesian) inference account of bistable perception and posit that perceptual transitions between different interpretations
(i.e. inferences) of the same stimulus ensue from specific eye movements that shift the focus to a different visual feature. Formally,
these inferences are a consequence of precision control that determines how confident beliefs are and change the frequency with
which one can perceive—and alternate between—two distinct percepts. We hypothesized that there are multiple, but distinct, ways in
which precision modulation can interact to give rise to a similar frequency of bistable perception. We validated this using numerical
simulations of the Necker cube paradigm and demonstrate the multiple routes that underwrite the frequency of perceptual alternation.
Our results provide an (enactive) computational account of the intricate precision balance underwriting bistable perception. Impor-
tantly, these precision parameters can be considered the computational homologs of particular neurotransmitters—i.e. acetylcholine,
noradrenaline, dopamine—that have been previously implicated in controlling bistable perception, providing a computational link
between the neurochemistry and perception.
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Introduction
Bistable perception ensues from observing an ambiguous stim-
ulus with two possible interpretations e.g. the Necker cube or
Rubin’s vase. Here, alternation of the visual percept arises when
the stimulus offers two distinct explanations that cannot be per-
ceived simultaneously (Brascamp et al. 2018). For example, whilst
observing the Necker cube, individuals switch between perceiving
a cube oriented leftward or rightward. Experimentally, it has
been shown that neurotransmitters are crucial for modulating
this phenomenon (van Loon et al. 2013)—specifically, implicating
catecholaminergic (Pfeffer et al. 2018), dopaminergic (Schmack
et al. 2013), cholinergic (Sheynin et al. 2020), and noradrenergic
(Einhauser et al. 2008) neurotransmission in modulating the fre-
quency of perceptual switching. The latter work studied nora-
drenaline indirectly via pupil dilation—see (Larsen and Waters
2018). In our study, we provide a computational account of how
these particular neurotransmitters can influence bistable percep-
tion. For this, we rely on how their computational homologs—i.e.
precision modulation under active (Bayesian) inference (Parr and
Friston 2017)—can induce perceptual alternation.

Active inference is a Bayesian formulation of brain function
that casts perception and action as “self-evidencing” (Hohwy
2016) or minimizing free energy across time (Friston et al. 2017;
Kaplan and Friston 2018; Friston 2019; Da Costa et al. 2020). It
characterizes perception as an inferential process (Von Helmholtz
1867; Clark 2013) across the space of all possible hypotheses

that could have given rise to a particular stimulus (Friston 2005).
These inferences are a consequence of how confident (or pre-
cise) beliefs are over particular model distributions. Broadly, such
models comprise sequences of “hidden” states or causes which
generate observable sensory data. For example, if the probability
of a sensory input given its cause is extremely precise, then one
can confidently attribute that sensory observation to a particular
cause. Contrariwise, an imprecise probability distribution implies
an ambiguous association between cause and effect and sensory
observations can do little to resolve the uncertainty about their
causes. This is precisely why precision control can influence
the type of inferences made and induce bistable perception by
mimicking the role of specific neuromodulators (Moran et al.
2013; Schwartenbeck et al. 2015; Parr et al. 2018; Vincent et al.
2019).

Here, we use particular precision parameters to investigate the
computational mechanisms that underwrite bistable perception.
We hypothesized that there are multiple, but distinct, ways in
which precision control can interact to give rise to bistable per-
ception. These precision manipulations influence the frequency
with which one can perceive (and alternate between) two distinct
percepts and speak to an intricate precision balance underwriting
bistable perception. Explicitly, we evaluate multiple combinations
of precision, over three distinct model distributions that may
give rise to bistable perception. These are (i) sensory precision,
(ii) precision over state transitions, and (iii) precision over probable
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Table 1. Overview of precision parameters, and how they may affect bistable perception.

Precision parameter Neuromodulators Bistable perception effects Computational role

Sensory (ζ ) Cholinergic (Sheynin et al. 2020): increased ACh during
bistable perception increased the visibility of
individual percepts and decreased the frequency
of perceptual transition.
(Pfeffer et al. 2018): found no effect of cholinergic
release during perception transitions.

Sensory precision positively correlates with the
visual accuracy of perceived orientation and
negatively with the switch frequency.

State transition (ω) Noradrenergic Catecholamines (i.e. a mixture of dopamine and
noradrenaline) negatively correlates with the
duration of holding one percept during a
multistability task (Pfeffer et al. 2018)

State transition precision modulates the evolution
of a perceived orientation, and precise state
transitions reduce switch frequency.

Policy (γ ) Dopaminergic (Schmack et al. 2013): DRD4-2R (gene) that targets
dopaminergic release also influences perceptual
switches. However, DRD4-4R and -7R do not show
any modulatory effects.

Policy precision is linked to confidence about
actions (i.e. eye movements) and can decrease the
switch frequency.

action plans, as these are thought to be mediated by acetylcholine
(ACh) (Moran et al. 2013; Parr et al. 2018), noradrenaline (Vincent
et al. 2019), and dopamine (Schwartenbeck et al. 2015), respec-
tively.

To demonstrate perceptual switching—as a function of vari-
ous precisions—we instantiate an active inference model of the
Necker cube paradigm (Gregory 1980). Here, we will use agent
and model to mean one and the same thing. In this exam-
ple, the agent is presented with an ambiguous, static image,
i.e. the Necker cube, and infers its cause, namely, a cube fac-
ing either to the right or left. How quickly and often the agent
alternates between the two inferred (i.e. perceived) orientations
is determined by the confidence with which particular beliefs
are updated—modulated by the different precision parameters.
We discuss the correspondence between these precision terms,
their neuromodulatory homologs and role in facilitating bistable
perception in Table 1. Inevitably, these associations are vast over-
simplifications. However, they are useful heuristics that appear
to be consistent with much of the data on neuromodulatory
function.

Briefly, sensory precision (of the likelihood function) deter-
mines the confidence in beliefs about the causes of outcomes.
This definition can therefore be read as (selective) attention in
psychology (Feldman and Friston 2010; Mirza et al. 2019). In
other words, by modulating the sensory precision in a context
specific manner, the model can selectively attend to the stimuli
that are task-relevant (Mirza et al. 2021). Similarly, precision over
state transitions models the volatility of hidden states. If this is
extremely precise, the agent would have high confidence about
the evolution of states over time. Conversely, with a low state
transition precision, the agent’s beliefs about future states would
become progressively more uncertain (i.e. high Shannon entropy).
Lastly, the precision over probable action plans (i.e. policy selec-
tion) determines the confidence in the selected action trajectory
or policy. We expected that increasing each of these precisions
would decrease the frequency of visual perception alternation
induced by precise beliefs over the perceived orientation (or the
visual context), independently of the other precision terms. We
analyzed the posterior probability of orientation under different
precision values. We hypothesized that all three precision terms
would induce a similar change in belief updating and the ensuing
switch rate (see Table 1). In other words, the differential effects of
the precision manipulations were assessed in terms of what the
synthetic subject “believed” at the time of each perceptual switch.

This paper is structured as follows. First, we review formal (i.e.
computational) accounts of bistable perception. Next, we briefly
introduce active inference with a special focus on precision. This
provides a nice segue to introduce our generative model for
simulating bistable perception of the Necker cube; a canonical
paradigm in the bistable perception literature (Kornmeier and
Bach 2005; Wernery et al. 2015; Choi et al. 2020). The model is then
used to test our hypotheses regarding the multiple and distinct
routes through which bistable perception can arise. Finally, we dis-
cuss the results to understand how our simulated manipulations
of precision relate to neuromodulation in the brain.

Computational accounts of bistable
perception
Previously, there have been many attempts to account for bistable
perception phenomena ranging from dynamical systems models
(Fürstenau 2007, 2010, 2014) through to predictive processing
frameworks (Dayan 1998; Hohwy et al. 2008; Brascamp et al.
2018; Leptourgos et al. 2020a; Leptourgos et al. 2020b). The latter
explanation includes a formulation (Wang et al. 2013; Sterzer et al.
2017; Weilnhammer et al. 2017; Robinson 2018) that character-
ize perceptual switches as a consequence of prediction errors
emerging from residual evidence for the suppressed percept. In
this account, bistable perception emerges from a progressive
increase of the prediction error not explained by the extant per-
cept, engendering the alternate explanation (Weilnhammer et al.
2017). We extend this account of bistable perception using active
inference. Explicitly, we illustrate that variations in precision (over
distinct model parameters) can give rise to bistable perception by
influencing how confidently sensory observations are inferred.

Our account is also aligned with another model of bistable per-
ception introduced by Weilnhammer et al. (2021). They observed
that bistable perception emerged from a fluctuation in the sen-
sory information available to the brain. This fluctuation can be
explained by saccadic suppression—the suppression of sensory
pathways during saccades (Crevecoeur and Kording 2017)—and
can lead to increased perceptual alternation. Under predictive
processing accounts, this suppression relies upon changes in the
precision the brain assigns to sensory data at different times
during the action-perception cycle. This highlights that eye move-
ments are necessary for understanding bistable perception and
can therefore provide behavioral evidence of sensory precision
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modulations. Importantly, this aligns with our model by demon-
strating that bistable perception is (i) modulated via different
levels of (sensory) precision and (ii) experimentally linked to eye
movements, namely, active vision or inference.

Separately, Parr et al. (2019) used active inference to investigate
the computational mechanisms that underwrite bistable percep-
tion. They postulated that bistable perception is a consequence
of alternations in (covert) attentional deployment toward certain
stimulus features when two different percepts may be supported
by different stimulus features (e.g. luminance contrast at different
places in the visual field). The alternation is a consequence of
accumulation of uncertainty about the percept relating to the
unattended features. By choosing to deploy attention to resolve
this uncertainty, we switch our focus and therefore our per-
cept. The numerical experiments accompanying this hypothesis
showed that changes in different precision parameters influenced
the frequency of transitions, given the inferences being made.
This process has been linked to eye movements focusing on
distinct parts of the illusory object, which is in line with a call
for active vision formulations of bistable perception (Safavi and
Dayan 2022).

Materials and methods
Here, we briefly describe active inference and precision param-
eters that underwrite the computational mechanisms that may
give rise to bistable perception.

Active inference
Active inference, a corollary of the free energy principle, is a
formal way to describe the behavior of self-organizing (dynamical)
systems that interact with an external environment. It postulates
that these systems self-organize by minimizing their surprisal
about sensory observations (o), i.e. maximizing their (Bayesian)
model evidence (Friston et al. 2010; Sajid et al. 2022) or “self-
evidencing”(Hohwy 2016). Surprisal is the negative logarithm of an
outcome probability, i.e. −ln P(o). Formally, this involves the opti-
mization of a free energy functional i.e. an upper bound on sur-
prisal (Beal 2003; Da Costa et al. 2020; Sajid et al. 2021). This func-
tional can be decomposed in terms of complexity and accuracy,
and its minimization thus means finding an accurate explanation
for sensory observations that incurs the least complexity cost:

F =EQ(s) [log Q(s) − log P (o, s)]

=EQ(s) [log Q(s) − log P(s) − log P (o|s)]
=EQ(s) [log Q(s) − log P(s) ]−EQ(s)[ log P (o|s)]
=DKL [Q(s)‖P(s)]︸ ︷︷ ︸

Complexity

−EQ(s) [log P (o|s)]︸ ︷︷ ︸
Accuracy

(1)

Here, DKL is the Kullback–Leibler divergence measuring a sta-
tistical distance between two distributions, o and s refer to the
outcome and hidden states (or causes), respectively. Free energy
depends upon a generative model that comprises a probability
distribution P that describes the joint probability of (unobserved)
causes and (observed) consequences. This generative model is
usually specified in terms of a (likelihood) mapping from hid-
den causes to outcomes and priors over the hidden causes. The
approximate posterior distribution Q in (1) expresses the (pos-
terior) probabilities of hypotheses about hidden states, based on

the agent’s observations. Uncertainty about anticipated observa-
tions is reduced by selecting those policies (i.e. probable action
trajectories) that minimize their expected free energy (G) (Parr and
Friston 2019):

G (π , t) = DKL

[
Q (st|π)

∥∥∥P (st)
]

︸ ︷︷ ︸
Risk

−EQ(st |π)P(ot |st) [ln P (ot, st)]︸ ︷︷ ︸
Ambiguity

(2)

where π refers to a policy, and t is a (future) time-step. G(π )
is the sum of G(π , t) for each future time-step. For the pur-
poses of this paper, in which our agent considers only the next
point in time, this sum has only one term—i.e. G(π ) = G(π , t).
The expected free energy equips the agent with a formal way
to assess different policies in terms of how likely they are to
fulfill an agent’s preferences and information gain about the
hidden states of the world. Variational free energy (F) scores
the ability of the agent’s generative model to explain observed
outcomes, whereas the expected free energy (G) quantifies the
free energy of outcomes in the future, expected under a particular
policy or action. A policy is then selected based on the expected
free energy of each policy, which is modulated by the precision
parameter γ :

Q (π) = σ [−γ G (π)] (3)

where σ refers to the softmax function. Thus, the higher the
value of γ , the more precise beliefs about actions. In other words,
policy selection becomes more confident. In summary, active
inference dictates that (variational and expected) free energy is
minimized under a particular model of the environment i.e. a
generative model (Friston et al. 2017). These generative models
encode particular hypotheses about the current states of affairs.
Practically, the agent represents a joint probability over poli-
cies, model parameters, and likelihood and transition functions,
respectively:

P (o, s, π , A, B|ζ , ω, γ ) = P (π |γ ) P (A|ζ ) P (B|ω)

×P (s1)

T∏
t=2

P (st|st−1, π , B, ω)

︸ ︷︷ ︸
Transitions

T∏
t=1

P (ot|st, A, ζ )

︸ ︷︷ ︸
Likelihood

(4)

The A parameter encodes the probability distribution of state–
outcome pairs (i.e. likelihood distribution), and B encodes the
probability distribution of hidden states transitions (i.e. the tran-
sition distribution). Both are specified as categorical distribu-
tions. Precision terms ζ , ω, γ are inverse temperature parameters.
With high precision, the category with the highest probability
converges to 1, whereas for low precision, categories tend to
have equal probability (Parr and Friston 2017; Sajid et al. 2020b).
The above probability distributions describe transitions between
states in the environment that generate outcomes. Their tran-
sitions depend on actions, which are sampled from the poste-
rior beliefs over the policies. Consequently, the sampled actions
change the state of the world, giving rise to new outcomes;
and continuing the perception-action loop. For the purposes of
this paper, we will assume priors over the precision parameters
are themselves infinitely precise. This means that the preci-
sion value is constant throughout a trial. For more mathemat-
ical details of Equation 4, see Supplementary Materials (A) and
Table S1.
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Precision modulation
We posit that these precision parameters (ζ , ω, γ ) can indepen-
dently modulate bistable perception, since they can shape percep-
tual confidence and the frequency with which the inferred state of
the world alternates. ζ is the sensory precision over the probabili-
ties of the likelihood distribution A in the generative model, where
(hidden) states map onto observations. Thus, sensory precision
expresses the confidence with which the model can infer a cause
from observations. Practically, high precision (e.g. > 16) ensures
the model can be confident that a particular outcome will be
generated reliably by the latent state. Conversely, low precision
(e.g. < 0.2) implies an ambiguous relationship between causes
and outcomes—and observations do little to resolve uncertainty
about their causes. The probabilistic mapping from the current
state st to the next st+1 is denoted by the state transition matrix
B. The term ω encodes the precision of the state transition matrix
and it expresses the confidence with which the model can predict
the present from the past. Precision over beliefs about policies
is encoded by γ , which corresponds to the models’ ability to
confidently select the next action.

We hypothesized that the increase of all three precision terms
would lead to a decreased perceptual transition frequency. Fur-
thermore, we hoped to address how to distinguish the influence of
each precision term (i.e. neuromodulators) on bistable perception
via frequency of eye movements, acuity (measured using post-
switch perceptual confidence), and, finally, via the modulatory
effects on neuronal responses encoding distinct percepts of the
Necker cube.

Precision and neuromodulatory systems
These precision parameters have previously been associated
with specific neuromodulatory systems (Parr and Friston 2017;
Parr et al. 2018; Sajid et al. 2020a)—see (Table 1). Briefly,
sensory precision (ζ ), state transition precision (ω), and policy
precision (γ ) can be read as cholinergic, noradrenergic, and
dopaminergic neurotransmission, respectively. Some empirical
studies suggest a link between the cholinergic release and
(the frequency of) perceptual transition. For example, Sheynin
et al. (2020) demonstrate that enhanced potentiation of ACh
transmission attenuates perceptual suppression during binocular
rivalry. Similarly, increased noradrenergic release has also been
associated with an altered frequency of perceptual fluctuations
(Pfeffer et al. 2018). Pfeffer et al. (2018) demonstrate that high
catecholamine levels altered the temporal structure of intrinsic
variability of population activity and increased the frequency of
perceptual alternations induced by ambiguous visual stimulus.
Finally, dopaminergic alteration has also been associated with
faster perceptual transition frequency (Schmack et al. 2013).

Simulations of Necker cube paradigm
In the remaining sections, we model bistable perception, and
the intricate precision balance that undergirds it, using simula-
tions of the Necker cube paradigm. A key finding of Einhäuser
et al. (2004) was that eye movements shift toward the domi-
nant orientation before the perceptual shift. This implies that
the perceptual shift is caused by the new visual data acquired
following an eye movement. Similarly, the time-discretization—
implicit in the active inference scheme—involves a sequence of
(perceptual) belief updates interspersed with actions. This emu-
lates the finding of Einhäuser et al. (2004); in that the perceived
switch takes place after the (saccadic) action, when the focus of
visual sampling has changed. It also complements this finding, in

Table 2. Precision (hyper-) parameters used to simulate bistable
perception. These range from high to low precision values.

Precision parameter Values

Sensory ζ 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10
State transition ω 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10
Policy γ 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10

that the saccades are themselves selected upon the basis of the
perceptual inference made during the last fixation.

A generative model of the Necker cube
Our generative model of the Necker cube paradigm has two
hidden states: fixation point and orientation, and two outcome
modalities: where and feature (Fig. 1). The hidden state fixation
point has three levels representing bottom-left, top-right, initial
position fixation locations, and the orientation state has two levels
representing left and right orientation. These fixation point loca-
tions are motivated by Einhäuser et al. (2004) and Choi et al. (2020),
who observed eye movements between these particular fixation
points during perceptual switches. The outcome where reports the
location of the eye-fixation: initial, top-right, or bottom-left. The
outcome feature reports the corner of the cube being observed:
Corner 1 (C1), Corner 2 (C2), or neither (labeled as null).

The likelihood function maps states to outcomes (i.e. state–
outcome pairs). Here, the feature likelihood is dependent on both
fixation point and orientation factors. For the generative process
(i.e. the process we used to generate the observations during
simulation), the where likelihood depends only on the fixation point
factor. Therefore, it generates outcomes independently of the ori-
entation state. Conversely, the generative model’s where likelihood
depends on both fixation point and orientation factors and explicitly
maps each fixation point to a specific orientation (see Fig. 1).
Thus, the bottom-left (top-right) fixation location is only plausible
under left (right) orientation. Next, we equipped the model with
control states (i.e. states whose transition depend on actions)
over eye movements via the fixation point factor. Thus, it can
control whether to fixate over the top-right, bottom-left, or initial
fixation point. The orientation transition is not controllable and the
mapping between current and future states was expressed such
that the left (right) orientation always transitions to the left (right)
orientation (Fig. 1).

Furthermore, the agent was equipped with strong preferences
(measured in nats, i.e. natural units) for avoiding the null outcome
(−20 nats): see Fig. 3. This was to encourage the agent to sam-
ple bottom-left and top-right locations—as the eye movements
between these locations have been shown to be associated with
perceptual transitions in the Necker cube paradigm (Einhäuser
et al. 2004; Choi et al. 2020). At each time point, the agent could
choose from three different actions (i.e. 1-step policy) of either
fixating at the initial, bottom-left, or top-right location. The prior
beliefs about the initial states were initialized to 0.5 for the left
and right orientations, 1 for the initial fixation point and zero
otherwise.

Precision and perceptual alternation
The Necker cube generative model was used to demonstrate the
computational mechanisms that underwrite bistable perception.
For this, we simulated 729 models with different combinations
of the three precision parameters: sensory precision (ζ ), state
transition precision (ω), and policy precision (γ ). The precision
values used are specified in Table 2.
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Fig. 1. A graphical representation of the Necker cube model. the figure provides a graphical illustration of the generative model with two hidden state
factors and two outcome modalities. The first hidden state, the fixation point, has three levels: bottom-left, top-right, and initial fixation (IF). The second
hidden state, orientation, has two levels, right and left orientation. The outcome modality features has three levels: “Corner 1” (C1), “Corner 2” (C2), and
Null. Here, C1 and C2 denote the two opposite corners and their surrounding areas, and the Null outcome is only plausible under the initial fixation
point at the first time-step. There is an identity mapping from fixation point hidden factor to where outcomes. The likelihood function of the generative
model, i.e. the probability of an outcome given a hidden state, is encoded such that (i) the bottom-left fixation point is more informative about the right
orientation as the agent perceives the related C1 corner, (ii) the top-right fixation point is more informative about left orientation as the agent perceives
the related C2 corner there, and (iii) the IF mapped onto a null outcome (i.e. neither C1 nor C2). The fixation point transitions (i.e. representing the state
transitions across time) are completely precise. This encodes the eye movements between different fixation locations. Conversely, orientation transitions
for the generative process are noncontrollable and transition to the same orientation over time. Here, ε = e−8 is a small number that prevents numerical
overflow.

ζ is the sensory precision associated with the likelihood distri-
bution A, i.e. which (hidden) states gave rise to particular obser-
vations (where ε = 8 is a small number that prevents numerical
overflow):

Ai,j,k =
{

σ
(
ζ · log

(
Ai,j,k + ε

))
if j �= k

σ
(
0 · log

(
Ai,j,k + ε

))
otherwise

(5)

Where i represents the outcomes, and j and k represent the
orientation (either left or right) and fixation point (either bottom-
left or top-right) factors, respectively. For more details on the
description of expressions used in the following equations, see
Table S1 in supplementary materials. Note, we have excluded the
initial fixation point for clarity, as its likelihood matrix is unin-
formative in the generative model. The two factors are unequal
either in combination of the bottom-left fixation point and the
right orientation or the contrary (see Fig. 2). The bold A repre-
sents the likelihood matrix of how the data are generated (i.e.
precise mappings from states to where and feature outcomes).

Here, the precision parameter ζ modulates only the columns for
the preferred orientation under a given fixation point [i.e. bottom-
left fixation point (labeled as 1) maps to the right orientation
(labeled as 2) and vice versa], whereas the unpreferred orientation
is parameterized as a uniform distribution. Adjusting the columns
of the likelihood matrix in this way can be regarded as manipulat-
ing the relative sensitivity of neuronal populations—encoding the
probability of each possible (hidden) state to sensory afferents—
during model inversion or perceptual inference.

Explicitly, the link between the generative model likelihood
distribution and Ai,j,k is as follows:

Ai,j,k = P
(
oi|sj, sk, ζ , A

)
= P

(
ot = i|sorientation

t = j, sfixation
t = k, ζ , A

)
(6)

where the likelihood distribution maps hidden states to outcomes
given the sensory precision parameter (ζ ) and generative process
likelihood distribution (A).
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Fig. 2. A graphical illustration of how different precision values change the likelihood and priors of the generative model. (A) A modulation of the
likelihood matrix via the sensory precision (ζ ). Each row is for a different fixation point with bottom-left on the first and top-right on the second, where
the x-axis represents the orientation states and the y-axis the feature outcomes. (B) This panel shows how the state transition precision (ω) perturbations
influence the categorical probability distribution of the orientation transition. The x-axis represents the orientation states at the current time point (t) and
the y-axis the orientation states at the next time point (t + 1). Here, low ω values lead to a flat distribution which limits the capacity to project current
beliefs about orientation states to past and future epochs whereas with high ω the state transition matrix becomes more precise and the capacity to
pass messages between epochs increases. (C) An intuition of how the γ parameter modulates the expected free energy G, which is assumed to be [0, 0,
1]’ for simplicity. For all plots, the scale goes from white (low probability) to black (high probability), and gray indicates gradations in-between. The key
difference to note is how the probability distribution shifts from imprecise to precise mappings as we move from low precision values (e.g. ζ , ω, γ = 0.001)
to high precision values (e.g. ζ , ω, γ > 0.5). Note, ζand ω values above 0.5 look visually similar and have been deliberately excluded. Furthermore, the
different γ values have been scaled up to 10 for a visual clarity.

Figure 2A provides a graphical illustration of how the precision
parameter values modulate the feature likelihood. Here, the
sensory precision parameter (ζ ) modulates the mapping from
orientation states to feature outcomes as a function of location
states. Under this parameterization, a high sensory precision
ζ ≥ 0.5 (the matrices on the right in both rows in Fig. 2A) leads to
a precise likelihood mapping for the state pairs bottom-left loca-
tion—right orientation and top right location—left orientation.
Thus, the agent would attribute C1 to the right orientation under
the bottom-left position, and C2 to the left orientation under
the top-right position. Conversely, under a low sensory precision,
the likelihood mapping from an orientation and location to
feature outcomes becomes imprecise (left panels in Fig. 2A). With
this mapping, the agent could not disambiguate between the

causes of C1 and C2 outcomes via the perceived orientation
regardless of the sampled fixation position. We motivate our
choices for these likelihood mappings based on the degree of
visibility of the features, assuming that the cube is opaque. Under
this assumption, one should not be able to see Corner-1 for a left-
oriented cube. Similarly, one should not be able to see Corner-2
for a right-oriented cube (see Fig. 1 for left and right orientations).
These assumptions are translated as likelihood mappings
over the feature outcomes for the aforementioned orientation
and fixation point combinations, whose precision is encoded
by ζ .

The probabilistic mapping from the current state st to the
next st+1 is denoted by the state transition matrix B. The term ω

encodes the precision of the state transition matrix in the same
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fashion as the term ζ :

B = σ
(
ω · log (B + ε)

)
(7)

Where the bold B represents the transition of how the hidden
states change and give rise to new observations, which is defined
as an identity matrix in the generative process. The B matrix
expresses the confidence with which the model can predict the
present from the past and the future, and vice versa. Accordingly,
the link between the generative model transition distribution and
B is as follows:

B = P (st|st−1, ω, B)

= P
(
sorientation

t |sorientation
t−1 , ω, B

)
(8)

where the transition distribution maps current hidden states to
future hidden states given the transition precision parameter (ω)

and generative process transition distribution (B).
Figure 2B provides a graphic illustration of how precision

changes the orientation state transition matrix. An increase in
the precision of orientation state transitions (ω) leads to a precise
mapping between the orientation at the current and next time
points (right panel of Fig. 2B). With a precise transition matrix,
the agent would expect the orientation remain the same over
time. Conversely, under a low precision, the agent would expect
the orientation to change frequently (left panel of Fig. 2B).

As shown in Fig. 2C,γ modulates the confidence over eye move-
ment selection. Specifically, when the γ parameter is high, the
confidence in actions is greater and thus action selection is more
consistent (i.e. the most likely action will be selected). Conversely,
a low γ parameter reduces the precision of posterior beliefs about
policies, which leads to more stochastic action selection (akin to
matching behavior). This is formalized as follows:

P (π |γ ) = Γ (1, β) (9)

where G is the gamma distribution, γ = 1
β

represents the precision
(inverse temperature) of beliefs about policies, and β is the prior
expectation of temperature (inverse precision) of the beliefs about
policies.

Perceptual switch definition
Next, we quantified what constituted a perceptual switch. This
is necessary for quantifying the number of perceptual transitions
given particular precision combinations. Here, a switch is counted
when a particular orientation (e.g. left) has a high posterior prob-
ability (> 0.5) at the current time point (t) but a low posterior
probability (< 0.5) at the previous time point (t − 1):

Ai,j,k =

⎧⎪⎨
⎪⎩

1 if
sleft,t > 0.5 & sleft,t−1 < 0.5

sright,t > 0.5 & sright,t−1 < 0.5
0 otherwise

(10)

In Equation (10), the bold s variables are the probabilities
that parameterize our approximate posterior Q(s). Intuitively, this
means that a switch is defined as a change from a belief that the
left (or right) orientation is most likely to a belief that the right
(or left) orientation is most likely. For the purposes of this paper,
we used a threshold of 0.5, although one could use a threshold
with higher confidence (e.g. 0.6). In that case, the probabilities

between 0.4 and 0.6 for a given orientation might be perceived
as a probability weighted mixture of lines in two dimensions.

Results
Face-validation
Here, we present a numerical simulation that establishes the face
validity of the Necker cube generative model. For this, we simu-
lated the model with arbitrary precision values; specifically, ζ =
0.1, γ = 1 and ω = 0.1 (Fig. 3). We observed alternating inferences
over the orientation as the trial progressed. This was induced by
shifts in eye movements that sampled different corners of the
Necker cube. Under our definition, a perceptual switch is observed
at time point 7, when both conditions outlined above are met
(first row of Fig. 3). Conversely, perceptual switch would not be
counted at timestep 2 because the posterior probability over the
appropriate orientation at the previous timestep 1 is not < 0.5 but
exactly 0.5. Furthermore, this switch is usually accompanied via
an action—see middle panel of Fig. 3.

Simulating perceptual switches
Using the criteria in Equation (10), we measured the number
of perceptual switches under different precision combinations
(Table 2). Each precision combination was simulated 64 times,
using random seed initialization, with a trial length of 32 epochs.
Figure 4 presents the average number of switches under each pre-
cision combination. On average, an increase in precision (regard-
less of the corresponding model parameter) decreases the number
of perceptual transitions independently of other precision terms.
For example, as ω increased from 0.001 to 10, we observed a
decrease in the number of perceptual transitions. This is unsur-
prising given our observation regarding Fig. 2, i.e. beliefs across
time are propagated more confidently for high ω values. Thus,
the orientation does not change frequently during the trial and
reduces perceptual switches. For ζ , the increased precision gives
higher confidence about what is being perceived, thus removing
the uncertainty minimizing behavior that would lead to sampling
the other fixation point, which could increase the chances of a
perceptual switch. It is worth noting, however, that for specific
combinations of high ζ and low ω values there is an increase in
the number of switches (Fig. 4; upper left and middle figures). Fur-
thermore, decreased precision over policy selection (γ ) increases
perceptual switches. This is because low γ values make all policies
more likely, leading to a higher frequency of eye movements, and
eventual perceptual switch.

The observations above all rest upon a relatively simple insight.
For nonzero precision parameters, the best action is always to
continue to fixate the same location. This is because the obser-
vation associated with our current fixation location supports a
belief in a specific orientation (e.g. right orientation if looking at
lower left). Under this belief, the alternative location (e.g. upper
right) is uninformative as, if the cube were (partially) opaque,
there would be little useful visual information there with the
opposing corner obscured by the near surface of the cube. In
other words, if I am looking to the lower left and infer that the
cube is in the right orientation, I would expect that the corner
in the upper right will not be visible, so have no reason to look
there. As such, the expected free energy will always be lower for
the current location compared with alternatives. The result is
low switching frequency, with switches that occur only when the
action is sampled from the relatively improbable action of moving
our eyes. However, the relative improbability of this action is
modulated by the precision parameters. Increases in uncertainty
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Fig. 3. An example trial with 32 time-steps. The first row represents the posterior probability for the hidden state orientation. The second row shows
which actions, i.e. eye movements, have been selected (cyan dots) and the posterior probability of each policy. This has only 31 time-steps as actions
are modeled for the next step. The last row depicts the sampled outcomes over time with cyan dots and the preferences over outcomes with different
shades in the background. Here, the light and dark shades illustrate that the agent has a strong aversion for the Null outcome (−20 nats) observed only
at the IF point but has a relatively higher preference for the C1 and C2 outcomes observed at the bottom-left and top-right locations, respectively. A
perceptual switch is highlighted using the red dashed boxes, where the red arrow in the second row shows that the switch is (mostly) accompanied
with an action toward the preferred fixation point. The red box in the last row shows that observing the outcome C1 facilitated the perceptual switch
from the left to the right orientation in this instance, as shown in the first row. The example simulation is for the following precision combination:
ζ = 0.1, γ = 1 and ω = 0.1.

Fig. 4. The average number of switches for different precision combinations. We plot the average number of switches across 32 trials—each comprising
of 32 time-steps. Each heatmap is associated with distinct ω values. The x-axis is associated with ζ and y-axis plots the different γ value. The average
switch count ranges from 0 (dark blue) to 15 (yellow).
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Table 3. Fitted polynomial coefficients across different precision values for posterior switch probability (A) and average switch number
(B).

β0 β1 β2 β3 SSE

A. Posterior switch probability(y)

ζ 0.3837∗∗∗ 0.1005∗∗ −0.0069∗ - 0.0030
ω 0.7840 −0.1308 0.0277 −0.0017 0.0053
γ 0.6658∗∗∗ −0.0069∗∗∗ - - 0.0003
B. Average switch rate(y)

ζ 7.5820 2.9380 −1.0210 0.0740 7.1036
ω 19.6500∗∗∗ −4.4870∗∗ 0.2955∗ - 6.9587
γ 9.1480∗∗∗ −0.5155∗∗ - - 3.3096

The relationship between precision and perceptual switching was modeled with the polynomial expansion: y = β0 + β1x + β2x2 + β3x3 + ε, and its fit was
measured using sum of squares of errors (SSE). Here, ∗denotes 10% significance level, ∗∗denotes 1% significance level, and ∗∗∗denotes 0.1% significance level.

about the orientation (via decreases in the sensory or transition
precision) attenuate the differences between the expected free
energy of each action, resulting in more uncertainty in action
selection and increasing the number of switches. The situation
is slightly more complicated for the sensory precision parameter,
as this has a dual role. The first is in determining the confidence
in the orientation (as inferred from potentially unreliable sensory
data). The second is in determining the ambiguity (which con-
tributes to the expected free energy) of each location. Decreases in
the policy precision attenuate the influence of the expected free
energy on action selection, thus making the improbable action
relatively less improbable and increasing switching rate. In short,
changes in switching rates occur when greater uncertainty favors
more stochastic deviations from an optimal policy of maintain-
ing fixation. The greater stochasticity then leads to a greater
variability in action selection, as the difference in probabilities
between competing fixations is reduced, leading to more oppor-
tunities for sampling from the location with a smaller expected
free energy. Alternatively, this can also be expressed as select-
ing policies that minimize ambiguity i.e. expected uncertainty
about sensory outcomes given the hidden states: see Equation
(2). Thus, a policy with low expected free energy is more likely
to be chosen, as it is more likely to furnish precise, unambiguous
outcomes.

Dissociating individual precision manipulations
To dissociate the individual influences of each precision dur-
ing bistable perception, we investigated the (average) posterior
probability of the cube’s orientation after the switch occurred—
alongside average switch rates. Here, the posterior probability
denotes the sleft,t or sright,t value used to identify a switch (Equa-
tion (10)). The differences across each precision were evaluated
by considering each individually and taking its (marginal) aver-
age across all possible combinations (Fig. 5; Table 3). These dif-
ferences revealed that posterior switch probability and average
switch rate for both ζ and ω followed a nonlinear relationship—
as modeled with a polynomial expansion (Table 3). Conversely, we
observed a negative linear association (i.e. first-order polynomial)
for the posterior switch probability and average switch number for
γ (Fig. 5A). This highlights that high posterior switch probability
(i.e. values > 0.5), that determines switch rate, can manifest in
multiple ways—see Supplementary Text (B) for further analy-
sis. Furthermore, there is a degenerate (many to one) mapping
between the switch posterior probability and number of switches
across the different precision terms (Fig. 5C). This speaks to the
multiple but distinct routes through which perceptual transitions
can arise.

Discussion
We investigated how precision manipulation could underwrite
bistable perception. For this, we cast bistable perception, the
phenomenon where perception alternates between distinct inter-
pretations of a static stimulus, as an enactive process associated
with specific eye movements that shift the focus from one visual
feature to another leading to a perceptual transition (Einhäuser
et al. 2004; Choi et al. 2020). This ensues from a dissociation
between the inferred percept and sensory observation (Brascamp
et al. 2018) as distinct features of the visual stimulus are sampled.
Computationally, we show that the frequency of switches between
the two percepts depends on a modulation of (at least) three
precision terms that determine the confidence of posterior beliefs.
Here, we illustrated that there are distinct ways in which pre-
cision (hyper-) parameters—associated with neuromodulators—
can interact to affect bistable perception and how their influences
can be dissociated from each other using post hoc analysis of
posterior beliefs. Below, we relate distinct precision terms to neu-
romodulators based on the previous literature review (Parr and
Friston 2017).

Precision manipulation and neuromodulation
Sensory precision is thought to be modulated via ACh in the active
inference framework (Parr and Friston 2017) and in normalization
models (Schmitz and Duncan 2018). The influence of this neu-
romodulator on bistable perception has been studied in Pfeffer
et al. (2018) and Sheynin et al. (2020) with apparently inconsistent
results of either no influence on the switching rate or decreasing
it, respectively. Based on our analysis, we found that sensory
precision ζ depends on other precisions when it comes to the
switching frequency (Fig. 4) and so looking at the switching rate
alone seems insufficient to dissect the specific contribution of this
neuromodulator. For this reason, we fitted our simulated data to
polynomial expansions to disentangle contribution of individual
precision terms. From this analysis, we see that the increase of
sensory precision should accentuate the acuity of perceived ori-
entation—assumed to be equivalent to the post-switch perceptual
confidence—which is consistent with Sheynin et al. (2020).

The ω precision has previously been associated with noradren-
ergic release (Parr and Friston 2017). A study by Pfeffer et al. (2018)
used a noradrenaline reuptake inhibitor to study this. They found
that after administering a drug boosting noradrenaline, partici-
pants reported a faster switching rate of a bistable stimulus. As
stated above, it is difficult to dissect a specific contribution of
neuromodulators (considering them as precision modulators) in
bistable perception tasks given only the measure of switching rate.
Moreover, bistable perception shows a close link to pupil dilation
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Fig. 5. Dissociating individual precision terms. For (A) and (B), each data point represents the average switch posterior probability (A; y-axis) and the
number of switches (B; y-axis) across different precision values (x-axis). The curves represent the fitted polynomials for each precision value: ζ (blue
diamond), ω (green square), and γ (cyan triangle). (C) The joint-plot of the association between number of switches and posterior switch probability. The
x-axis presents the posterior switch probability, y-axis the number of switches. Here, each plot presents a different precision term.

(Einhauser et al. 2008; Hupé et al. 2009; Kloosterman et al. 2015),
which is linked to noradrenergic release (Larsen and Waters 2018),
and so future work could target pupil dilation in addition to the
eye movements in our current model. However, Brascamp et al.
(2021) have shown that only a specific change in pupils is linked to
noradrenaline. Thus, the link between the neuromodulation and
pupil dilation should be interpreted with caution until connection
to bistable perception is further clarified.

We also showed that high policy precision γ decreases
the frequency with which bistable perception alternates. This
precision parameter is suggested to be related to dopamine
(Parr and Friston 2017), but few studies have looked at the
role of dopamine and bistable perception or binocular rivalry.
Nevertheless, a study by Schmack et al. (2013) showed that
there is an observable alternation of perceptual switches
associated with the dopamine receptor D4 (DRD4) gene carriers
but this effect was found only for a specific allele (DRD4-
2R) but not for others (DRD4-4R and DRD7R). Moreover, Kondo
et al. (2012) found no effect of dopaminergic genes on the rate
of visual perceptual switches. However, for auditory bistable

perception, presence of prominent alleles for synthesizing this
neurotransmitter decreased the number of switches. It is
also not fully understood how these specific genes affect the
dopaminergic neurocircuitry, thus a specific conclusion on
whether and how dopamine targets bistable perception is still
open.

The three neuromodulators mentioned above are just a small
number of all the neuromodulators affecting bistable perception.
For instance, it has been shown that psilocybin, a chemical that
mostly targets the 5HT2a receptor (i.e. a serotonergic receptor),
also modulates perceptual switching (Carter et al. 2005; Carter
et al. 2007). Our focus on the other three neuromodulators was
motivated by preexisting hypotheses about their roles as medi-
ating precision. However, we hope in future work to use the
approach—set out in this paper—to encompass other key neuro-
modulatory systems.

To test our model, one could use pharmacological drugs
to directly manipulate the neuromodulators investigated in
our numerical studies. Specifically, to study the cholinergic
neurotransmission, one can administer the drug donepezil, as
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in Sheynin et al. (2020), or rivastigmine that also reduces ACh
levels (Sadowsky et al. 2005). Note that although both drugs
inhibit acetylcholinesterase, rivastigmine also inhibits butyryl-
cholinesterase, another enzyme that breaks down acetylcholine.
This dual inhibition might give rivastigmine a broader spectrum
of action in certain conditions and increased observed behavioral
differences compared with donepezil. Similarly, dopaminergic
neurotransmission is modulated via the administration of
methylphenidate (Gottlieb 2001). These pharmacological inter-
ventions can, in principle, be used to test the influence of
dopamine on perceptual switch rate, predicted under our model.
Finally, noradrenergic neurotransmission can be manipulated
using a noradrenaline reuptake inhibitor; for instance, atom-
oxetine following Pfeffer et al. (2018). These neuromodulatory
interventions can also be compared with studies of patients
with bipolar disorder, who show both a modulation of the switch
rate in bistable perception (Miller et al. 2003; Ngo et al. 2011; Ye
et al. 2019), as well as irregularities in all three neuromodulators
considered above (Manji et al. 2003). This provides a potential
link to studying bipolar disorder through a computational lens,
using our paradigm. Interestingly, Leopold et al. (2002) showed
that periodical occlusion leads to less switches, which can be
related to the transition precision. Whether this also changes the
levels of noradrenaline (for instance via pupillometry) might be
an interesting future direction to pursue.

Neuroanatomy
The deployment of the precision terms studied here can be
associated with feature-based attention (FBA), as the perceptual
switches here are understood as switches of orientation. This view
is also corroborated with a similarity of brain regions involved in
processing bistable perception and FBA, as both activate regions
such as frontal eye field, intraparietal cortex, temporoparietal
junction, and inferior frontal junction (Brascamp et al. 2018;
Zhang et al. 2018; Loued and Preuschoff 2020). Interestingly,
all the neuromodulators suggested to be related to distinct
precision terms used here are involved in attentional processing
(Thiele and Bellgrove 2018). It is possible that the FBA network
deploys attentional mechanisms partially by regulating distinct
neuromodulators that lead to distinct neurobiological changes
but to overlapping behaviors. This relates to the previously
reported top-down modulation of bistable perception via the
fronto-parietal network (De Graaf et al. 2011).

A range of cortical regions—throughout early visual and atten-
tional networks—have been implicated in multistable percep-
tion in general, and the Necker cube specifically. In fact, such
paradigms are sometimes used in the search for the neural corre-
lates of consciousness (Sterzer et al. 2009; Blake et al. 2014; Koch
et al. 2016; Seth and Bayne 2022); in an attempt to identify brain
regions whose activity correlates with subjective experience. This
follows from their ability to induce changes in our awareness of
different percepts, without changing sensory input. Research has
implicated specific dorsal frontal and parietal regions in facili-
tating these perceptual switches (Inui et al. 2000). These regions
are also associated with attentional processing (Vossel et al. 2014),
aligning well with our account that highlights the central role of
attentional (i.e. precision) modulation in selecting visual informa-
tion. Supporting the significance of attention in these perceptual
processes, early visual pathways have been shown to play a
crucial role in generating these perceptual switches (Kornmeier
and Bach 2005). However, it’s essential to acknowledge a parallel
debate in the field concerning the role of the frontal lobe. While

some argue that the frontal lobe is actively involved in the per-
ceptual experience itself, others contend that its involvement is
more aligned with higher-order processing tasks such as attention
and awareness (Safavi et al. 2014; Block 2020; Michel 2022). This
ongoing debate, although not exhaustively covered here, adds an
additional layer of complexity to our understanding of multistable
perception and its neurobiological underpinnings. For greater
depth and analysis, readers may wish to refer to Long and Toppino
(2004).

Alternative models of eye movements
Our active inference model provides an enactive interpretation of
bistable perception; however, the underlying eye movements were
deliberately kept simple compared with other models of oculo-
motor control. Therefore, integrating our model with established
eye-movement models may improve predictions of behavioral
responses. Here, we review several key frameworks for modeling
eye movements.

One possibility is to use Bayesian inference to simulate more
involved eye movements relating to gaze fixations. For example,
Borji et al. (2013) demonstrated the face-validity of this approach
for recognizing visual images. Their model integrates sensory
information with top-down models to predict eye movements,
using an ideal observer model, like our formulation. Separately,
active vision theory also considers the active component to be
central component of visual perception, for example the Saliency
Map Model (Yoo et al. 2021), Guided Search Model (Wolfe 2021),
etc. These models have been used to include more information
from action and the kinetics of eye movements, as compared
with our discrete-state space formulation. It is worth mentioning
that reinforcement learning (RL) models also view eye movements
and actions as decisions made by an agent seeking to optimize
its performance. Accordingly, some RL schemes are analogous to
our formulation, resting on sequential decision-making that opti-
mizes some target distribution; specifically, the expected return
(Reichle and Laurent 2006). RL has been used to model sac-
cadic suppression and how it affects visual image displacement
(Ziesche et al. 2017).

Limitations and future directions
A key limitation of our work is that we included a limited amount
of possible fixation points that makes the study of eye move-
ments over-simplified. Including more fixation points—and thus
actions—could provide a more applicable model for empirical
studies and fitting of real data. Next, we prespecified the initial
probabilities and precision values instead of updating them dur-
ing each trial. Future work should explore online selection of these
precisions and how they influence bistable perception based on
a task. This is related to mental actions i.e. internal process
that change posterior beliefs by regulating precision (Metzinger
2017; Limanowski and Friston 2018)—and can be added via a
hierarchical model in which slower parts of the model modulate
the precision terms that influence faster dynamics (Hesp et al.
2021). Understanding how the precision parameters are learned,
we could also examine the dynamics of neuromodulators, as so
far, we have studied these effects in a stationary environment.
Lastly, we focused only on the Necker cube to elucidate bistability.
However, other bistable figures—e.g. the Rubin vase—evince a
different connection with eye movements. In those instances, eye
movements help to disambiguate the percept (Naji and Freeman
2004); instead of inducing ambiguous interpretations. Accordingly,
eye movements are not the only actions that should be considered
during bistability, but also head movements, as it has been shown
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that the position of the neck affects bistability (Sato et al. 2022).
This is because neck movements can affect ambiguity, even in the
absence of eye movements. Thus, bistable perception may also
occur in the absence of overt eye movements and could rely upon
covert actions, including the deployment of spatial attention—c.f.
(Maier and Tsuchiya 2021).

Conclusion
We have shown how bistable switches can be manipulated via
three distinct precision terms. Briefly, our formulation provides
a two-fold extension of previous models of bistable perception:
(i) inclusion of specific overt actions pertaining to eye movements;
and (ii) demonstration of a degenerate functional association
between model parameters and how they underwrite bistable
perception. Moreover, we disentangled among the precision influ-
ences, using changes in posterior beliefs to identify perceptual
switches. The remaining question concerns the plausible imple-
mentation of these precision terms in the brain, which is cur-
rently suggested to be related to cholinergic, noradrenergic, and
dopaminergic neurocircuitries to state transition, likelihood, and
policy selection precision terms, respectively. Overall, our results
speak to a degenerate functional architecture that supports the
switching rate of bistable perception (Price and Friston 2002;
Noppeney et al. 2004; Sajid et al. 2020c) i.e. multiple neuromod-
ulatory systems can modulate the perceptual switching rate.
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Software note
The generative model in these kind of simulations changes
from application to application; however, the belief updates are
generic and can be implemented using standard routines (here
spm_MDP_VB_X.m). These routines are available as Matlab code
in the SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/.

The code for the simulations presented in this paper can be
accessed via https://github.com/filipnovicky/Bistable_Perception.
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