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Abstract

Data representation is integral to meta-learning and is effectively done using

kernels. Good performance requires algorithms that can learn kernels (or fea-

ture maps) from collections of tasks sampled from a meta-distribution. In

this thesis we exploit natural assumptions on the meta-distribution to design

meta-kernel learning algorithms, leading to two novel state-of-the-art (SOTA)

meta-classification and regression algorithms. The first method, Meta-Label

Learning (MeLa) [Wan+22] leverages the meta-classification assumption that

each task is generated from a global base dataset by randomly sampling C

classes, anonymising the labels, then sampling K instances from each class.

Anonymity of task-labels prohibit us from pooling task-instances with the

same global class. MeLa recovers, in some cases perfectly, the underlying true

classes of all task-instances allowing us to form a standard dataset and train

a feature map in a supervised manner. This procedure leads to SOTA perfor-

mance while being faster and more robust than alternative few-shot learning

algorithms. For meta-regression the notion of global classes is not well-defined.

In Implicit Kernel Meta-Learning (IKML) [FCP22] we leverage the assump-

tion that the optimal task-regressors belong to an RKHS with a kernel that

is translation-invariant. We learn such a kernel from a kernel family charac-

terized by a neural network through a pushforward model using Bochner’s

theorem. The model is trained by optimizing the meta-loss with random fea-

ture kernel ridge regression as the base algorithm. IKML achieves SOTA on

two meta-regression benchmarks while allowing to trade accuracy for speed at

test-time. We provide a bound on the excess transfer risk, allowing to specify
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the least number of random features necessary to achieve optimal generaliza-

tion performance.



Impact Statement

This thesis explores how to design meta-learning algorithms that leverage nat-

ural assumptions about the data generating process. As such it has immedi-

ate impact, both towards furthering the field and challenging common meta-

learning assumptions, and applications in industry and government.

Academically, the algorithms contributes to pushing the state-of-the-art

while being theoretically motivated. Furthermore, they address questions

which have been left unanswered by the literature; for MeLa they show that

pretraining is possible even without access to global labels which makes pre-

training useful even when this assumption is not met (as in the initial formula-

tion of the few-shot classification setting). For IKML, it provides a framework

for learning invariances and so is applicable to many settings at once, while in

particular showing improvement in the few-shot regression setting. The theo-

retical bound provided is of independent interest and the tools used could be

useful to the few-shot and meta-learning communities at large. Finally, the

kernel learning approach of IKML could be applied to other settings where

learning the kernel would be of interest, such as Bayesian optimization and

learning dynamical systems in the form of the dynamic mode decomposition

and similar techniques.

The industrial potential benefits of this thesis are several, we enumerate

them for MeLa and IKML independently. MeLa allows pre-training when

local labels are anonymous which may occur in practice for example when the

labelling is done by a user without a prespecified list of labels (or when the

labels are consistent but wrong such as when a user swaps sweater and jumper
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for tagging an image of a jumper). The main impact for this would be in social

platforms and personalized tagging, for example smart apps, and so has clear

commercial application, especially with increasing focus on the user and the

increasing prevalence of smartphones in the world. IKML on the other hand

could have direct impact to multi-task and meta-learning regression problems,

one extremely important example which is prediction related to energy supply

and demand together with energy market forecasts, such as in spot markets.
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x
(j)
i i’th instance sampled conditionally on the label y(j)ρ

ŷ Predicted output
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X Input space

Y Output space

Z Data space Z = X × Y

Zn Cartesian n-product of set Z

H Hypothesis space, RKHS

Θ Meta-parameter space

Ω Domain of parameters, domain of frequency, regularizer

T Number of tasks

n Number of datapoints

ntr, nval Number of train / validation data points

K, k Number of ways / local classes

M Number of random features

Titer Number of iterations

V, gv, Nv Number of clusters, centroid of cluster v, number of points assigned

to cluster v

P(A) Set of distributions on set A

ρ Distribution over data points

µ Meta-distribution

πµ Marginal distribution reconstructed from µ generating few-shot classifi-

cation tasks

N Gaussian distribution

δS Dirac delta over set S
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ψ#N Push-forward of N by function ψ

D ∼ ρn D is a set of n iid samples from ρ

ρY Classes associated with few-shot learning task ρ

D Set of all datasets

T Set of tasks

D(T ), Dglobal Dataset of flattened set of tasks T

Dtr Train set

Dval Validation set

τ Frequency-distribution

ϕθ Feature map with parameters θ

ϕpre
θ Feature map with parameters θ (pretraining)

ϕsim
θ Feature map with parameters θ (representation learning)

ϕ∗
θ Feature map with parameters θ (meta-fine tuning)

ϕθ(D) Dataset of mapped inputs, ϕθ(D) = (ϕθ(x), y)(x,y)∈D

kϕ,mϕ Memory and computational complexity of evaluating a neural network

ϕ

ψ Push-forward function

ϕ(x, ω) Integral feature map of IKML with instance x and frequency ω

ℓ(y, ŷ) Supervised loss function applied to (y, ŷ)

ℓce Cross-entroy loss function

L(θ,D) Meta-loss of meta-parameters θ applied to dataset D

L̂ Estimator of meta-loss
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R(f),Rρ(f) Supervised learning risk of function f (with respect to distribu-

tion ρ)

R̂(f), R̂(f,D) Empirical supervised learning risk of function f (with respect

to dataset D)

E(θ) Transfer risk of θ

ÊT (θ) Empirical transfer risk of θ for T tasks

EGLS Meta-risk when using GLS as algorithm

L(θ, S,D) Meta-loss of θ over task D when using random feature sample S

L̃(θ, S,D) Meta-loss of θ over task D when using random feature sample S

using D for train and validation set

EM Meta-risk for IKML when using random feature sample S

E(θ, µ) Transfer risk of θ with respect to meta-distribution µ

θ, θ∗, θ̂ Meta-parameter, optimal meta-parameter, meta-parameter estimator

Aλ, A, w Algorithm mapping from datasets to estimators (with regularization

strength λ), inner algorithm

AKRR, wKRR KRR algorithm

GLS(W, θ,D) Global Label Selector algorithm with parameters W, θ applied

to dataset D

WGLS
T , θGLS

T Weights and representation parameters of GLS minimizing the

empirical transfer risk of T tasks

W pre
N , θpreN Weights and representation parameters of pretraining minimizing

the empirical risk of T flattened tasks into N samples

W [Y ],W [ρY ] Rows of W corresponding to index in set Y or support ρY
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∇θf Gradient of f with respect to θ

K Kernel function

Kτ Kernel parameterized by frequency-distribution τ

Kτ̂θS Empirical random feature kernel constructed from random feature sam-

ple S sampled from τθ

‖x‖ Norm of an element x

‖X‖F Frobenius norm of matrix X

〈x, y〉 Scalar product between x and y



Chapter 1

Introduction

Contemporary society generates data on a scale previously unseen in the his-

tory of humanity [Gor+08]. With social media we are generating data in form

of images and text, while digitalization in government and industry generates

data associated with their operations and procedures. Machine learning algo-

rithms make use of datasets in order to generate insights (unsupervised learn-

ing), take optimal decisions (reinforcement learning) or to predict the outcome

for new, similar datapoints (supervised learning). In this thesis we will focus

on the last part, supervised learning [Vap91], in the context of meta-learning.

In supervised learning we have access to a dataset of input-output pairs

from a data generating process. Using prior knowledge about the data-

generating process and problem at hand we select an algorithm. This algo-

rithm takes the dataset and infers a prediction rule which takes inputs and

maps them to outputs. Three key properties that a supervised learning algo-

rithm should have is that 1) the algorithm is computationally efficient, 2) the

inferred prediction rule can be evaluated efficiently, 3) the inferred prediction

rule has good performance, meaning that the prediction rule generalizes to

unseen data from the same data generating process.

In the real world, supervised learning is typically applied or used as fol-

lows. A practitioner wants to learn a rule which maps from inputs to outputs

from a dataset. The practitioner first selects a loss which encodes how bad

predicting ŷ for some input x, when the true output is y. To find this rule
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the practitioner uses a supervised learning algorithm. The algorithm finds the

best (approximate) fit to an objective which is a sum of losses, where each

loss depends on a datapoint z = (x, y) from the dataset and the prediction ŷ

gotten by applying the rule to x. The objective additionally incorporates a

regularizer which encodes prior knowledge about what rules are reasonable for

the problem at hand. The rule which minimizes the objective is then tested on

holdout data or deployed in the real-world to accomplish some goal, hopefully

leading to satisfactory performance.

The above workflow has been the backbone of machine learning since its

conception and is in some cases optimal from the point of view of statistical

learning theory. Precisely, the regularized empirical risk minimization (RERM)

framework of [Vap91], which defines a family of algorithms, is many times the

best you can do under standard assumptions of statistical learning theory

in terms of at what rate the generalization error goes down in the size of the

dataset [SB14; CD07; HK19]1. Many algorithms such as regularized maximum

likelihood estimators fall into this framework, and in particular the kernel ridge

regression algorithm (KRR) [CD07].

Meta-learning is a paradigm that generalizes supervised learning; it aims

to learn a supervised learning algorithm from a collection of supervised learn-

ing problems which generalizes to new supervised learning problems (the name

comes from the fact that it operates on a meta-level compared to supervised

learning) [VD02; Hos+22]. However, we also know from the previous para-

graph that in the sense of standard assumptions on the supervised learning

problem, we cannot improve upon RERM. Additionally KRR has been shown

to be successful in practice and not just a theoretical construct [CD07; RCR17].

If there are supervised learning algorithms which are theoretically sound,

which are successful both in theory and practice, why not just turn any meta-

learning problem into a supervised learning problem by pooling all of the data

and proceed by using RERM? Below we explain the issue, but also the benefits,

1Technically, it is minimax optimal (potentially within a log-factor).
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of this approach.

Although the size and number of datasets continue to increase, the data

is typically not added to pre-existing datasets. Instead, it is distributed over

many similar but distinct problems (corresponding to the datasets and natural

processes generating these datasets), which we call tasks [Car97]. Supervised

learning cannot handle this situation correctly as supervised learning has no

concept of multiple tasks. A naive approach would be to employ a supervised

learning algorithm on each task independently, so called Independent Task

Learning (ITL). If tasks are related this approach is not ideal since it does not

leverage the relationship and similarity between tasks at all and thus throws

away information. Learning from the tasks in a way that takes these relation-

ships into account should lead to better performance than assuming them to

be completely independent [Rud17].

A common way to tackle the problem of having multiple tasks is that of

multi-task learning. Multi-task learning considers a collection of tasks, with

corresponding datasets, which we want to perform well on. Compared to

standard supervised learning we may use all of the datasets available to learn a

rule for each task which may outperform the rules learned through independent

task learning. In practice, this is often done by coupling the predictors of each

task through a regularizer on the multi-task RERM problem. In this case the

rules are learned by minimizing the average error over all tasks and datapoints

of each task in addition to a regularizer which encodes prior belief about how

the tasks are related [EP04].

While multi-task learning resembles meta-learning, there are important

differences which makes them different: multi-task learning assumes that the

tasks given are fixed and that we want to generalize on new data from the same

tasks. In comparison, meta-learning generalizes this by assuming that the tasks

are not fixed, but themselves generated from nature through a hierarchical

process which ties the tasks together statistically [Bax98]. Thus meta-learning

is a strictly harder problem since we do not know what kind of tasks we may
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see in the future (although it is sampled from the same meta-distribution) and

thus have to generalize within and across tasks, while in multi-task learning

the tasks are fixed and finite which means we only need to generalize within

tasks, not across.

Datasets in the real world increasingly take on the form of many small

datasets / tasks which are grouped together due to for example being collected

in the same way. Thus, as opposed to one dataset D of input-output pairs of

datapoints, we get a collection of datasets (Dt)
T
t=1 where each dataset Dt of

input-output pairs is related but distinct to the other datasets Dt′ where t 6= t′.

One reason for this is personalization of data due to social platforms and apps

together with availability of smartphones and internet [Gre22]: a user on an

online platform2 generates data through interacting with the platform and

we would like to predict some value of interest. One example would be the

utility scores of potential images to show the user given the images the user has

scored in the past, but in general this formulation works for any type of content.

Call any image (or content) x and the score y. To put this in the context of

meta-learning, in this case, we have T users and each user generates a dataset

Dt of content-score pairs (x, y). We will use this problem as a prototype for

meta-learning.

For each user t we want to learn a rule ft which accurately predicts the

right score for some content x, so that ft(x) ≈ y. A simple way to do this

would be to just use a supervised learning algorithm such as RERM to get

T rules (ft)
T
t=1, one for each user, which corresponds to ITL. If we have a

lot of data for each user, this strategy may perform well. However, if the

user has not scored a lot of content then the rule will typically not perform

well and this strategy will fail. While each user is unique, there are often

many similarities between them. The aim of meta and multi-task learning

is to leverage these similarities in order to learn rules (f ′
t)
T
t=1 which perform

better than the independent task learning rules (ft)Tt=1 which do not take these

2For example an online marketplace or a social media platform.
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similarities into account. Formally, this way of learning comes down to learning

an inductive bias [Bax00] of an algorithm suitable for the type of problems we

are considering, here scoring of content for users

Now we introduce a supervised learning algorithm A(θ, ·) parameterized

by θ which takes as inputs datasets D and outputs rules f ′
θ. The inductive

bias in this case is specified by θ, so different θ’s lead to different inductive

biases. In meta-learning, we can learn θ using a similar approach to RERM. We

choose the inductive bias by finding the θ which minimizes the meta-objective

corresponding to the average error over all available tasks and a regularization

term which takes into account θ and how we think the tasks are related. If

f ′
θ,t = A(θ,Dt), then an example of a regularizer is a term which penalizes

rules f ′
θ,t which are far from the average of the rules 1

T

∑T
t=1 f

′
θ,t

3 [EP04]. In

this case, typical users with a small amount of data benefit from other users

with more data. Finally, the difference between multi-task and meta-learning

comes down to what we want to generalize to. For multi-task learning, we

want the learned rules to perform well on the users we have, while in meta-

learning we may have a completely new user at test time with dataset D for

which we want to learn a rule f ′, given the collection of tasks (Dt)
T
t=1. Finally,

while the setting is usually called meta-learning [FAL17], it is also known as

learning-to-learn [TP98].

In meta-learning, each task consist of a dataset sampled from some dis-

tribution and a loss particular to the task. In practice this loss is often fixed

across tasks due to the metric of success being shared by all tasks. Due to the

availability of data and interest from the computer vision community, meta-

learning has most prominently been developed for and applied to the problem

of few-shot image classification [Dhi+20; FAL17; RL17]. We will go into detail

about the few-shot learning problem in chapter 2 but quickly outline the field

here. Few-shot image classification assume that tasks come from an under-

lying base dataset with a large number of classes, for example the ImageNet

3We assume that all operations here are well-defined.
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(LSVRC2013) dataset [Den+09] which is a dataset, scraped from the internet,

of images belonging to 1000 classes of common objects in the real world. Each

task is sampled by first sampling C classes at random from this dataset and

then sampling N data points from each of the C classes, where C and N are

natural numbers which specify the few-shot classification setting. The goal

is to do image-classification for such tasks by using meta-learning to learn a

supervised learning algorithm. We use this as a starting point for observing

and discussing the current state of the field.
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Matching Nets (Cosine Matching Fn)Matching Nets (Cosine Matching Fn)

Category-agnostic mapping WRNCategory-agnostic mapping WRN
AM3-TADAMAM3-TADAM

LSTLST
AmdimNetAmdimNet

PT+MAP (transductive)PT+MAP (transductive) SOT(transductive)SOT(transductive)
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Figure 1.1: Evolution of state-of-the-art (SOTA) on 5way-1shot miniImagenet
few-shot classification [pap22]. The cyan curve is the current SOTA at the
point in time indicated on the x-axis, with each dot being the performance of
an algorithm and the string the name of the algorithm. Grey points are other
algorithms not achieving SOTA. See [pap22] for an exact description of the
algorithms in the chart. The plot starts at July 2016 and ends at July 2022.
SOTA accuracy on this benchmark has climbed from below 50% to over 80%
in less than 5 years.

While the performance of meta-learning algorithms on few-shot image

classification benchmarks have steadily improved over time (see Fig. 1.1 and

the landmark papers [Vin+16; SSZ17; Rus+18; Lee+19] for a rough timeline)

this improvement is hard to attribute to an improvement of the meta-learning

algorithms themselves. This is due to different papers using slightly differ-
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ent evaluation schemes and rules for what is allowed in the benchmarks. In

particular

• use of better feature maps for images in more recent years, often with

additional pre-training (e.g. [Rus+18]),

• using external data sources to improve performance, for example in the

form of pretrained models [Hu+22],

• different works using vastly different computational budgets resulting

in different number of iterations, batches and hyper-hyperparameter

and validation schemes when benchmarking the algorithms against each

other.

Furthermore, recent papers have questioned the reliance on complicated adap-

tation algorithms, stressing that a simple fine-tuning algorithm together with

a good pre-trained feature map achieves SOTA [Tia+20; Dum+21; Dhi+20].

Similarly, [Rag+20] shows that MAML [FAL17] primarily learns a good fea-

ture embedding and rely very little on fine-tuning on tasks to achieve good

performance. Furthermore, most benchmarks are restricted to the setting of

few-shot image-classification and it is unclear to what extent the improved

benchmarks generalize from image classification to other domains. We can

summarize the observations as follows:

• Modern meta-learning algorithms do not work well because they learn

to adapt but because they learn good feature representations of the data,

and

• it is unclear how much meta-learning improves over standard transfer

learning when using pre-training.

The two above points are the motivating questions for chapters 3 and 4

of this thesis. For the first point, we note that while pretraining has become

an integral step in basically all SOTA few-shot image classification algorithms,

the original setting of few-shot learning does not permit pretraining out of the



1.1. Organization of Thesis 33

box. This is due to the setting which assumes access to tasks with local rather

than global labels. To pretrain a feature map given a set of tasks (Dt)
T
t=1 it is

necessary to aggregate the tasks into one dataset which is not possible since

the labels of one task only make sense in the context of that task, even if the

tasks share some global classes. This means that pretraining using supervised

learning, while effective, is not directly possible if we follow the strict definition

of the few-shot learning setting. However, since we know that pretraining is

very effective, we still want to use something which mimics what is done in

practice when the global labels are unavailable, such as using auxiliary labels

as we do in chapter 3.

Secondly, the pretraining procedure by aggregating all of the tasks into

one dataset is in practice only possible for classification. In the setting of meta-

regression it is not clear how to perform pretraining. Instead we consider how

to define a well-suited inductive bias for natural signals in the meta-regression

setting. Taking inspiration from Fourier representation of continuous signals,

in chapter 4 we create an algorithm which selects from a family of function

spaces a hypothesis space, adapting the resolution of the signals or functions we

use to learn automatically to the data. We do this using a kernel formulation

which allows for working in the feature space implicitly and learn this feature

map.

1.1 Organization of Thesis

The thesis is organized as follows; in chapter 2 we introduce the necessary con-

cepts and definitions, first supervised learning in Sec. 2.2, then meta-learning

in Sec. 2.3, an overview of few-shot image classification and pre-training in

Sec. 2.4, and a literature review of the meta and few-shot learning field in

Sec. 2.5. In chapter 3 we introduce Meta Label Learning (MeLa), based on

the pre-print [Wan+22] which is an extended version of [WPC21], a cluster-

ing method for image few-shot classification which can recover the underlying

global labels when only given tasks with local labels. In chapter 4 we in-
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troduce Implicit Kernel Meta-Learning (IKML), based on the paper [FCP22],

a framework for meta-learning a kernel of a specific form using a generative

modelling formulation. Finally, in chapter 5 we conclude with a summary of

contributions, conclusions and future directions.



Chapter 2

Background

2.1 Summary
In this chapter we outline the background necessary to read the thesis and un-

derstand the research context within which it exists. We build up the necessary

background to present and define the setting of meta and few-shot learning;

providing definitions and settings from machine learning that will be used in

the meta-learning setting. Additionally we provide a literature review of the

meta and few-shot learning field and tangential fields relevant to the subse-

quent chapters of the thesis.

2.2 Supervised Learning
Intuitively, supervised learning concerns itself with how to learn an input-

output function f from a collection of inputs and outputs (x, y) such that

the chosen function f is approximately equal to the function f ∗ that best

describes the relationship between x and y, so that f(x) ≈ f ∗(x) for all x that

are typically seen.

Formally, given an input set X and output set Y , a supervised learning

problem, which we call a task, is characterized by a data generating distribution

ρ ∈ P(Z), where P(Z) is the set of all distributions on Z, on the joint set

Z = X ×Y , called the data space, and a loss function ℓ : Y×Y → R measuring

prediction errors. The goal for a supervised learning problem is to find a map
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f : X → Y minimizing the risk

Rρ(f) = E(x,y)∼ρℓ(f(x), y). (2.1)

In practice, the data generating distribution is unknown and only a finite

number n of examples D = (xi, yi)
n
i=1 sampled iid from ρ are available (denoted

by D ∼ ρn). Let YX = {f : X → Y} be the space of all functions from X to

Y and D be the space of all datasets of any size on Z, that is D = ∪n≥1Zn1.

To learn f we need to define a rule which codifies how we pick f given

a dataset D. We call such a rule a learning algorithm and we will sometimes

refer to such a rule as just an algorithm. A learning algorithm is a function

A : D → YX , mapping datasets D ∈ D to functions h : X → Y which will

be used as candidate solutions to (2.1). Typically, learning algorithms are

parametrized as A(·) = A(θ, ·), by a vector of so-called hyperparameters θ ∈ Θ

for a choice of meta-parameter space Θ, that allow to adapt the algorithm to

the specific problem. Typical examples of hyperparameters include the regu-

larization constant in Tikhonov regularization or the number of iterations and

iteration scheme of an early-stopping procedure [see e.g. YRC07], but more

complex models such as modern neural network architectures may have tens

of hyperparameters to tune or more (as an example see the optional arguments

of the PyTorch documentation on the MLP architecture). For a learning al-

gorithm, we call the space of possible candidate solutions the hypothesis space

and typically denote it by H, and the goal of supervised learning is to design

such learning algorithms that are efficient in terms of both computation and

generalization.

As the true risk is typically not available, we use the empirical risk, where

for a function f : X → Y and a dataset D = (xi, yi)
n
i=1 ∈ D the empirical risk

is defined to be

R̂(f,D) =
1

n

n∑
i=1

ℓ(f(xi), yi), (2.2)

1For a cartesian product of sets Z = Z1 × · · · × Zm the power notation Zn is defined to
be Zn

1 × · · · × Zn
m. In our case, Zn = Xn × Yn.

https://pytorch.org/vision/main/generated/torchvision.ops.MLP.html?highlight=mlp
https://pytorch.org/vision/main/generated/torchvision.ops.MLP.html?highlight=mlp
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as a proxy for the true risk. We usually split a dataset D into two disjoint

datasets, D = (Dtr, Dval), where Dtr is called the train set and Dval is called

the validation set. Let ntr and nval be the number of instances in Dtr and

Dval respectively. The names derive from the fact that, given a fixed θ, we

use the train set to produce an estimator using the chosen algorithm, so that

the estimator is f̂ = A(θ,Dtr). However, there is no universal rule for how to

choose θ, but one popular way is to use cross-validation by trying to minimize

the validation error

R̂(Aλ(θ,Dtr), Dval) =
1

nval

nval∑
i=1

ℓ(Aλ(θ,D
tr)(xi), yi) (2.3)

where λ is the regularization strength which we will define below.

One very successful way to formulate algorithms is the regularized empir-

ical risk minimization framework of [Vap91; Vap00]. The RERM framework

recasts the output of the algorithm Aλ(θ, ·) as one of finding the minimizer in

the hypothesis space of the regularized empirical risk,

Aλ(θ,D) = argmin
h∈H

R̂(h,D) + λΩ(h), (2.4)

where Ω : H → R+ is a regularization function with regularization strength

λ ∈ R+ which may be fixed or learned, R+ is the positive real line, and H

is the hypothesis space. To ease notation we drop λ and only write A(θ,D).

If h is parameterized by a vector w then Ω often takes the form of L2 reg-

ularization Ω(hw) = ‖w‖2. The way that θ changes the inner problem is

algorithm-dependent, but a common choice is to let Ω(h) be parameterized by

θ, for example Ω(hw; θ) = ‖θ − w‖2, while another is to parameterize a feature

map ϕθ : X → Hϕ which maps instances to some feature space Hϕ and replace

all instances x by ϕθ(x). From here on we assume that all meta-algorithms

A(θ,D) take the form of (2.4), i.e. as solution to an optimization problem in

the form of RERM of the dataset D where the objective is parameterized by

θ in some way. This formulation will play a mayor part in how we formulate
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meta-learning strategies.

2.2.1 Kernel Methods and Feature Learning

Linear models use functions linear in x, hw(x) = 〈w, x〉, as the space of hypothe-

ses. They are widely used as they are interpretable and for ridge regression

[HK70] (when the RERM problem (2.4) is a least squares problem, meaning

that Y ⊆ R,X ⊆ Rd, ℓ(y, y′) = (y − y′)2 and Ω(hw) = ‖w‖2), also known

as Tikhonov regularization, the solution hwRR has a closed form. Expressing

a dataset D = (xi, yi)
n
i=1 as the design matrix X = (x1, . . . , xn)

⊤ and output

vector, which we will with abuse of notation call y, the solution

wRR = argmin
w∈Rd

1

n

n∑
i=1

(〈w, xi〉 − yi)2 + λ‖w‖2 (2.5)

can be shown to be wRR = (X⊤X+λId)
−1X⊤y where Id is the identity matrix

of size d. While the linearity may seem restrictive at first, the important part

is that hw(x) is linear with respect to w and reproducing kernels may extend

the hypothesis space to functions which are highly non-linear in x through a

feature map ϕ so that hw(x) = 〈w, ϕ(x)〉 which we elaborate on below.

Reproducing kernels are a well-established tool in machine learning, at

the root of most non-parametric algorithms [SS01]. They consist of positive

definite functions K : X × X → R that may be interpreted as a similarity

between data points. A fundamental result dating back to Moore and Aron-

szajn [see e.g. Aro50; CS02; SS01, and references therein] establishes that a

kernel is in one-to-one correspondence with a (possibly infinite dimensional)

Hilbert space HK of real-valued functions on X , such that for every x ∈ X and

f ∈ HK , the function K(x, ·) ∈ HK and 〈f,K(x, ·)〉K = f(x), where 〈·, ·〉K
denotes the inner product in HK . A kernel is in duality with the notion of

feature map: given a mapping ϕ : X → H into a Hilbert space H, the inner

product Kϕ(x, x
′) = 〈ϕ(x), ϕ(x′)〉H is a reproducing kernel. The converse is

also true, namely for any kernel K there exists a feature map ϕK : X → HK

such that K(x, x′) = 〈ϕK(x), ϕK(x′)〉HK
[Aro50]. A key practical advantage of
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kernels is that they allow to learn functions parametrized as f(x) = 〈f, ϕK(x)〉

even when HK is infinite dimensional (namely the feature vector ϕK(x) has

infinitely many entries). Kernels are appealing since they allow us to use linear

models in some space different to the original input space X which also means

that we can learn models which are non-linear when viewed as a function from

X to R.

Kernel ridge regression performs Tikhonov regularization using the least-

square loss function over the space of hypotheses associated to a reproducing

kernel. More precisely, assume Y ⊆ R and ℓ is the L2 loss. Given a dataset

D = (xi, yi)
n
i=1, and a kernel function K : X × X → R, KRR is the algorithm

AKRR(K,D) = argmin
h∈HK

R̂(h,D) + λ‖h‖2HK
, (2.6)

with λ ∈ R+ a regularization parameter. Thanks to the reproducing property

of the kernel, (2.6) can be solved in closed form. We have for any x ∈ X , that

AKRR(K,D)(x) =
n∑
i=1

αiK(xi, x),

with α = (G+ λnIn)
−1y ∈ Rntr ,

(2.7)

where G = (K(xi, xj))
n
i,j=1 ∈ Rn×n is the kernel (Gram) matrix.

Since kernels implicitly define a feature map, they form a framework for

how to learn features and thus feature learning. One particular instance of

this is the multiple kernel learning framework, see [GA11], which tries to learn

a combination of pre-specified kernels by optimizing some objective function.

This line of work directly leads to learning a distribution over bivariate func-

tions such that the expectation of this function yields a kernel [Li+19]. Feature

learning of this kind has been pursued before in the setting of supervised learn-

ing [SD16] and for few-shot learning [Zha+19]. Other similar directions include

for example Kernel VAE [LCd19]. Feature learning has a long history of ap-

plication in supervised and multi-task learning [Car97; ZY21], for example,

[AEP08; AEP07] showed that it is possible to learn sparse features in a multi-
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task setting by alternatingly minimizing a non-differentiable convex objective

with respect to the task weights and the features map.

2.3 Meta-Learning
We are now ready to introduce meta-learning, building on the notation and

terminology of supervised learning introduced in Sec. 2.2. While meta-learning

can be defined for other settings, such as reinforcement learning [FAL17], un-

supervised learning [HLF19] and generative modelling [Hew+18], in this thesis

we will deliberately only focus on the supervised learning case. In the con-

text of meta-learning, we call the supervised learning algorithm A the inner

algorithm and θ ∈ Θ parameterizing A the meta-parameter.

The meta-learning paradigm lifts the notion of cross-validation to the level

of multiple tasks; assuming that we have access to many supervised learning

problems (or tasks as we call them) sharing some form of similarity, meta-

learning aims to find a single meta-parameter vector θ that works well across

all tasks. More formally, we assume that the tasks are sampled from a meta-

distribution µ, and we assume that we use the same loss ℓ throughout the

tasks. From each ρ ∈ P(Z) sampled from µ, we then sample a pair of datasets

D = (Dtr, Dval) ∼ ρn with n = ntr + nval (even though in our case we assume

ntr and nval to be fixed for simplicity, the discussion can be extended to more

general settings). To work on this higher level in accordance with how we

formulated supervised learning, we let the meta-loss of a train and validation

set D = (Dtr, Dval) be the cross-validation error

L(θ,D) = R̂(A(θ,Dtr), Dval). (2.8)

Then, meta-learning is formulated as the problem of finding the meta-

parameters θ ∈ Θ for a learning algorithm A(θ, ·) minimizing the transfer

risk or meta-risk [Den+18]

E(θ) = Eρ∼µED∼ρn L(θ,D). (2.9)
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What sets meta-learning apart from supervised learning is that the data

generating process is assumed to take on a hierarchical nature where there

is a meta-distribution on distributions, and each distribution defines a super-

vised learning problem. Each distribution, or task, sampled from the meta-

distribution gives rise to a dataset.

To make this concrete we will consider the meta-learning problem where

each task is a linear regression problem such that the marginal distribution

is ρX = N (0, 1) and the conditional distribution of the output Y given some

input x is defined by a coefficient vector β such that Y |x = β⊤x + ϵ where

ϵ ∼ N (0, 1). The choice of N (0, 1) for the marginal distribution ρX and the

noise distribution is chosen for simplicity, the example works by replacing these

by more general distributions. In this case the meta-distribution µ defines a

distribution on β. Assuming that we know the functional form f(x) = w⊤x, we

can use ridge regression as our algorithm to learn a w from a dataset D. Now,

the benefit of using meta-learning depends on the form of µ. Assume that we

have T tasks with n datapoints in each task dataset where we have pooled

the task train and validation set into one big dataset for each task. One very

simple meta-learning algorithm is to simply aggregate all of the available data

into one dataset and use this together with a supervised learning algorithm to

learn a global model which we use on each task we want to predict on. We

use this meta-learning strategy below to showcase when meta-learning may

be beneficial and when it may be worse than using ITL (so called negative

transfer).

In the degenerate case that µ = δβ∗ , we could pool all tasks and increase

the size of each dataset of each task from n to Tn which in general will lead to a

great improvement over ITL. However, if the meta-distribution is very flat, for

example the uniform distribution over the sphere, meta-learning should hardly

improve over ITL. The distribution µ dictates if meta-learning is beneficial in

this case. If we do not know the functional form, so that we use a form of

f(x) which is not linear, then we may even have negative transfer where ITL
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is strictly better than meta-learning. The takeaway of this example is that the

benefit and dangers of meta-learning depends on the distribution over tasks

in addition to the misspecification of the model and the algorithm we use to

learn on each task.

For each dataset we want to learn a rule that generalizes to unseen data

from the same task. As shown in the example above, one way to do this is to

pool all of the available task datasets and learn a global model, reducing it to a

supervised learning problem. This is unsatisfactory due to several reasons 1) a

global model will focus on the majority of the data and may not perform well

on tasks which are uncommon 2) having access to just a few data points from

a task may tell us a lot about how this task differs from other tasks and enable

much better performance when fine-tuning than using a global model 3) the

above procedure would not work when tasks become available sequentially

(such as in online learning).

In practice the meta-risk E is replaced by the empirical meta-risk. For an

iid sample of tasks (ρt)Tt=1 ∼ µT with corresponding datasets (Dt)
T
t=1, such that

Dt = (Dtr
t , D

val
t ), and a choice of supervised learning algorithm A, the bi-level

formulation of meta-learning is the optimization problem [Fra21, Sec. 5.2.2]

min
θ∈Θ

1

T

T∑
t=1

R̂(ht(θ), Dval
t ) (2.10)

subject to ht(θ) = A(θ,Dtr
t ) for all t = 1, . . . , T. (2.11)

As most algorithms A(θ, ·) performs RERM, the constraint in (2.11) requires

us to solve an inner optimization problem if we want to optimize the objective

with respect to θ.

In specific cases such as (kernel) ridge regression, A(θ,Dtr
t ) solves (2.4)

in closed form, but in general it can only be solved approximately using opti-

mization techniques. Sometimes (2.4) can be solved efficiently up to arbitrary

precision, notably for linear models with convex loss and regularizer. How-

ever, when using neural networks, we can only hope to find a local minimium.
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Algorithm 1 Meta Learning (SGD)
Input:

meta-dataset (Dt)
T
t=1

total number of iterations N .
initial meta-parameters θ0,
step-sizes (γ(n))Nn=1,

For n = 1, . . . , N
Sample a task Dn = (Dtr

n , D
val
n ) from (Dt)

T
t=1

Form approximate meta-loss L̂(θn, Dn)
Get ∇θL̂(θn, Dn) using for example autodiff [Bay+18]
Update θn+1 ← θn − γ(n)∇L(θn, Dn)

Return θN

The commonly used approach for optimizing an objective when using neural

networks is to perform stochastic gradient descent (SGD), or other commonly

used iterative gradient based stochastic optimization functions such as ADAM

[KB15]. For simplicity we show how stochastic gradient descent works on the

meta-objective (2.10) in Algorithm 1.

For an initial point θ0 and a learning rate schedule γ : N→ R+, where N

is the set of natural numbers, for each n ∈ N we perform the one-step stochas-

tic gradient descent update by first sampling a task Dn uniformly at random

from (Dt)
T
t=1 and then perform the update step θn+1 = θn − γ(n)∇θL(θn, Dn)

[BCN18]. Note, however, in the general case we can only solve the inner

problem (2.4) approximately meaning that we only have access to an approx-

imate minimizer. In this case we get an approximation of the meta-loss

L(θn, Dn) which we denote L̂(θn, Dn) and we use this as a proxy for the

true meta-loss. In practice, this means that we perform the update steps

θn+1 = θn − γ(n)∇nL̂(θn, Dn). For example, in regression settings, a common

choice of inner algorithm is ridge regression [HK70] and the meta-parameter

parameterize a representation or embedding shared across the tasks that we

wish to meta-learn [Ber+19] while another famous meta-learning algorithm is

MAML [FAL17] which uses a hypothesis space of neural networks parameter-

ized by θ. For MAML, the meta-algorithm A(θ,Dtr) performs a few steps of

gradient descent on R̂(h,Dtr) with respect to h starting from θ. The initial
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point θ is optimized in the outer level with respect to the meta-loss.

2.4 Few-Shot Learning using Meta-Learning

Few-shot learning (FSL) [FFP06] considers a meta-training set of tasks T =

{(Dtr
t , D

val
t )}Tt=1, with support set Dtr

t = {(xi, yi)}ntr
i=1 and query set Dval

t =

{(xi, yi)}nval
i=1 sampled from the same distribution. This corresponds to the

standard meta-learning setup with slightly different notation and terminology,

where the support and query set corresponds to the train and validation set

respectively. As indicated by the name, few-shot learning focuses on the case

when Dtr
t and Dval

t contain a small number of samples ntr and nval respectively.

Similarly to the meta-learning setting, we denote by D the space of datasets.

Typically few-shot learning considers classification which we will also do from

here on in this section.

A peculiarity of this setting is that often it is assumed that Dtr∩Dval = ∅

to make sure that the validation set of the task does not contain any of the

instances of the train set of the task. In practice, this is extremely rarely

violated since each task is created by sampling from a base dataset which has

a large number of instances per class, and if we work with a distribution with

a density this will not happen almost surely. Since we require the iid sampling

of datasets of each task for the concentration inequalities in this thesis to work

and since the constraint is almost always satisfied as is, we will not assume

this intersection property unless noted otherwise.

The meta-learning formulation for FSL is the same as that outlined in

Sec. 2.3, which we restate here with the terminology of few-shot learning. We

want to find the best base learner A(θ, ·) : D → H that takes as input support

sets Dtr, and outputs predictors h = A(θ,Dtr), such that predictions y = h(x)

generalize well on the corresponding query sets Dval. The base learner is meta-

parametrized by θ ∈ Θ. Formally, the meta-learning objective for FSL is

E(Dtr,Dval)∈T R̂
(
A(θ,Dtr), Dval

)
, (2.12)
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where E(Dtr,Dval)∈T := 1
|T |
∑

(S,Q)∈T is the empirical risk over the meta-training

set T . The task loss R̂ : H×D → R is the empirical risk of the learner h over

query sets, based on some inner loss ℓ : Y × Y → R, where Y is the space of

labels,

R̂(f,D) = E(x,y)∈Dℓ(h(x), y). (2.13)

The equation (2.12) is sufficiently general to describe most existing methods.

For instance, model-agnostic meta-learning (MAML) [FAL17] parameterizes a

model hθ : X → Y as a neural network, and A(θ,D) performs one (or more)

steps of gradient descent minimizing the empirical risk of hθ on D. Formally,

given a step-size η > 0,

hθ′ = A(θ,D) with θ′ = θ − η∇θR̂(hθ, D). (2.14)

Clearly, base learners A(θ, ·) are key to model performance and various

strategies have been explored. A successful paradigm for few-shot learning us-

ing meta-learning is that of meta-representation learning [Rag+20; Lee+19;

Ber+19; Fra+18]. The meta-representation learning paradigm defines the

meta-learning algorithm as being composed to two parts, a feature map and

a supervised learning estimator working on the inputs mapped through this

feature map. The feature map is typically a neural network suited for the data

modality (such as CNNs or ResNets for image data) while the supervised learn-

ing estimator tends to be closed form or the solution to a convex problem (such

as KRR or logistic regression) which removes the inner optimization error due

to having to satisfy the constraints of the bi-level formulation of meta-learning

(2.10). By mapping all inputs of a task through the feature map and solv-

ing the inner problem using the estimator on the train set of the task we get

a predictor. This predictor is then applied to the validation set of the task

which allows us to get the cross-validation error. The feature-map is updated

using the gradients of the validation error with respect to the parameters of

the feature map.
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This can be formalized by parameterizing the base learner as

A(θ,D) = w(ϕθ(D))ϕθ(·), (2.15)

where ϕθ(D) = (ϕθ(xi), yi)
n
i=1, separating it into parts of a global feature ex-

tractor ϕθ : X → Rm and a task-adaptive classifier w : D → {f : Rm → Y},

where here D is the set of all datasets with inputs living in the output space

of ϕθ. This specializes (2.12) by learning a feature extractor ϕθ shared (and

fixed) among tasks. Only the classifier returned by w(·) adapts to the current

task, in contrast to having the entire model hθ : X → Y adapted (e.g. (2.14)

for MAML). While this may appear to restrict model adaptability, [Rag+20]

has demonstrated that meta-representation learning matches MAML’s perfor-

mance. Moreover, they showed that feature reuse is the dominant contributor

to the generalization performance rather than adapting the representation to

the task at hand.

The task-adaptive classifier w(·) may take various forms, including nearest

neighbor [SSZ17], ridge regression classifier [Ber+19], embedding adaptation

with transformer models [Ye+20], and Wasserstein distance metric [Zha+20].

In particular, the ridge regression estimator

wRR(D) = argmin
W∈Rl×d

E(x,y)∈D‖Wx− y‖2 + λ1‖W‖2F , (2.16)

where ‖·‖F is the Frobenius norm, l is the number of output dimensions and

x ∈ Rd, admits a differentiable closed-form solution and is computationally ef-

ficient for optimizing (2.12) when using (2.15) as the category of meta-learning

algorithms.

2.4.1 Conditional Meta-Learning
Conditional formulations of meta-learning [DPC20; WDC20] extends (2.12) by

considering base learners of the form A(τ(Z), Dtr), where the meta-parameters

θ = τ(Z) is conditioned on some “contextual” information Z ∈ Z about the

task. Note that Z here is an arbitrary set, although we will see that it will
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most often coincide with the data space defined previously. Assuming each task

in the meta-training set T to be equipped with such contextual information,

(2.12) can be re-expressed as

min
τ :Z→Θ

E(Dtr,Dval,Z)∈T R̂
(
A(τ(Z), Dtr), Dval

)
, (2.17)

namely the problem of learning a function τ : Z → Θ which, given some

contextual information Z in a suitable space Z, returns a good task-specific

meta-parameter θ = τ(Z). While the contextual information could encode

virtually any information available on individual tasks (e.g. a textual meta-

description of the task/dataset), most recent work on the topic focus on the

case where it corresponds to the task’s support set itself, namely Z = Dtr,

since this is always available by construction.

The conditional formulation seeks to capture complex (e.g. multi-modal)

distributions of meta-training tasks, and uses a unique base learner tailored to

each one. In particular, [Vuo+19; Yao+19; Rus+18] directly learn data-driven

mappings from target tasks to meta-parameters, and [Jia+18] conditionally

transforms feature representations based on a metric space trained to capture

inter-class dependencies. Alternatively, [Jer+19] considers a mixture of hierar-

chical Bayesian models over the parameters of meta-learning models in order

to condition on target tasks. In [WDC20], Wang et al. showed that conditional

meta-learning can be interpreted as a structured prediction problem and pro-

posed a method leveraging recent advances in the latter field. From a more

theoretical perspective, [DPC20] proved that conditional meta-learning is the-

oretically advantageous compared to unconditional approaches by incurring

smaller excess risk and being less prone to negative transfer. As we will dis-

cuss in Sec. 3.3, conditional meta-learning is closely related to our theoretical

analysis on feature pre-training.
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2.4.2 Feature Pre-Training

Feature pre-training has been widely adopted in the recent meta and few-shot

learning literature [e.g. Man+20; OLL18; Che+18; WDC20; WTH21; YLX21;

Ye+20; Bat+20; Req+19; Zha+20], and is arguably one of the key contributors

to performance of state-of-the-art models. Instead of directly learning the

feature extractor ϕθ by optimizing the empirical meta-risk, pre-training first

learns a feature extractor via standard supervised learning.

Formally, the meta-training set T is “flattened” into Dglobal by merging

all tasks:

Dglobal = D(T ) = {(xi, yi)}Ni=1 =
⋃

(Dtr,Dval)∈T

(Dtr ∪Dval). (2.18)

Pre-training then learns the embedding function ϕθ on Dglobal using the

standard cross-entropy loss ℓce for multi-class classification:

(W pre
N , θpreN ) = argmin

θ,W∈RC×m

R̂(Wϕθ, Dglobal), (2.19)

where W is the linear classifier over all classes with cardinality C. After pre-

training, the feature extractor is either fixed [e.g. Rus+18; Ye+20; WDC20;

Zha+20; Tia+20] or further adapted [e.g Bat+20; Bat+22; Gol+20; Req+19]

via meta-learning.

There is limited theoretical understanding and consensus on the effect of

pre-training in FSL. In [Rus+18; Bat+20; YLX21], the pre-training is only con-

sidered a standard pre-processing step for encoding the raw input and model

performance is predominantly attributed to the proposed meta-learning algo-

rithm. In [Gol+20] the authors similarly argued that meta-trained features are

fundamentally better than pre-trained ones, observing that adapting the pre-

trained features with several base learners resulted in worse performance com-

pared to the meta-learned features. In contrast, however, several works also

empirically demonstrated that pre-training contributes significantly towards

performance. [Tia+20] first showed that combining the pre-trained features
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with suitable base learners already outperforms various meta-learning meth-

ods, while [El +22] observed that pre-training dominates top entries for the

2021 Meta-learning Challenge.

2.5 Literature Review of Meta-Learning and

Few-Shot Learning
The field of meta-learning or learning-to-learn [Bax00; TP98] can trace its ori-

gins to works such as [Bax00; Sch87] and the field of multitask learning [Car97].

Well-developed theory exists in the batch case [MJ05; MPR16] and lately sim-

ilar results have been developed in the online setting [BKT19; Den+19].

Meta-learning operates on top of an inner algorithm, tuning it to perform

better on new tasks. The meta-algorithm acts at an outer level, relying on

the inner algorithm to compute a meta-loss and corresponding meta-gradient,

based on which a meta-parameter associated to the inner algorithm is updated

[see e.g. Fra+18]. For example, in regression settings, a common choice of

inner algorithm is ridge regression and the meta-parameter is a representation

or embedding shared across the tasks that we wish to meta-learn [Ber+19].

In the past few years increasing interest has lead to many new challenging

benchmark datasets such as Omniglot [LST15; LST19] and derivations of Im-

ageNet [Den+09] in particular mini [Vin+16] and tiered-ImageNet [Ren+18],

together with competitive meta-learning algorithms [FAL17]. This was made

possible by formulating the meta-learning problem as that of trying to solve a

specific bi-level optimization problem [RL17; Fra+18] which reduces to trying

to find hyperparameters θ with low meta-risk (2.9). Ideally, for a pre-specified

algorithm A and a meta-dataset (Dt)
T
t=1, we want the meta-algorithm to out-

put θ̂((Dt)
T
t=1) ≈ θ∗ ∈ argminθ∈Θ E(θ).

This view has lead to a multitude of algorithms [FAL17; KZS15; Li+17;

Ren+18; Rus+18; SSZ17; Vin+16], heuristically grouped into the categories

of metric-based [SSZ17], optimization-based [FAL17] and black-box-based

[Vin+16] meta-learning. In practice most deep meta-learning algorithms use
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aspects from all three categories by considering the feature map as part of

the hyperparameters and optimizing this jointly with the rest of the hyper-

parameters with respect to the meta-loss [FAL17]. In this case learning the

hyperparameters can be seen as learning a good inductive bias for tasks we

are likely to see. A common theme is to learn a shared representation which

lead to faster adaptation of a base learning algorithm to new tasks. Often the

representation is modeled by a neural network. Recently [Tia+20; Rag+20]

observed that the representation is the most important part of meta-learning

algorithms. A common trend in few-shot and meta-learning is the view that

few-shot learning works primarily by learning an algorithm which can adapt

fast, many works have started to question this [Zin+19; FAL17], noting that

this is not the full story and the feature map is very important for getting

good performance. See also [Col+22] for a recent theoretical investigation for

this in the context of gradient based meta-learning methods.



Chapter 3

MeLa

3.1 Summary

In this chapter, based on the pre-print (under review) [Wan+22] which is an

extended version of the paper [WPC21], we answer an important question in

few-shot learning; why is pre-training so effective as a strategy for few-shot

learning (FSL) for image classification? Few-shot learning is a central prob-

lem in meta-learning, where learners must efficiently learn from few labeled

examples. Within FSL, pre-training has been shown to be integral to reaching

good performance but the way that this interacts with FSL and bolsters per-

formance is poorly understood, and requires assuming that global labels are

available which may not be true in practice.

We address the above issues by first showing the connection between pre-

training and meta-learning. We discuss why pre-training yields more robust

meta-representation and connect the theoretical analysis to existing works and

empirical results. Secondly, we introduce Meta Label Learning (MeLa), a

novel meta-learning algorithm that learns task relations by inferring global

labels across tasks. This allows us to exploit pre-training for FSL even when

global labels are unavailable or ill-defined. Lastly, we introduce an augmented

pre-training procedure that further improves the learned meta-representation.

Empirically, MeLa outperforms existing methods across a diverse range of

benchmarks, in particular under a more challenging setting where the number
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of training tasks is limited and labels are task-specific. We also provide an

extensive ablation study to highlight its key properties.

3.1.1 Contribution

The contributions of this chapter are several. Firstly, we show that pre-training

directly relates to meta-learning by minimizing an upper bound on the meta-

learning loss. In particular, we show that pre-training achieves a smaller

expected error and enjoys a better convergence rate compared to its meta-

learning counterpart. More broadly, we connect pre-training to conditional

meta-learning [DPC20; WDC20], which has favorable theoretical properties

including tighter bounds. Our result provides a principled justification of why

pre-training yields a robust meta-representation for FSL, and the associated

performance improvement.

Secondly, motivated by the above result, we propose an augmentation pro-

cedure for pre-training in order to improve representation learning for FSL. The

augmentation procedure quadruples the number of training classes by consid-

ering rotations as novel classes and classifying them jointly. This significantly

increases the size of training data and leads to robust representations. We em-

pirically demonstrate that the augmentation procedure consistently performs

better across different benchmarks.

Thirdly, we introduce a way to tackle independent task learning, where for

each task we only have access to local labels. We call the resulting clustering

algorithm Meta Label Learning (MeLa), a novel algorithm that automatically

infers a notion of latent global labels consistent with local task constraints. In-

ferring labels allows to perform pre-training even when the global labels are not

available or not even defined, leading to improved performance. Empirically,

we demonstrate that MeLa is competitive with training on oracle labels.

Fourthly, for experiments, we introduce a new generalized FSL (GFSL)

setting. In addition to independent task annotation, we also adopt a fixed-size

meta-training set and enforce no repetition of samples across tasks. This chal-

lenging setting evaluates how effectively meta-learning algorithms generalize
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from limited number of tasks, and prevents the algorithms from trivially un-

cover task relations by implicitly matching identical samples across tasks. We

empirically show that MeLa performs robustly in both standard and GFSL

settings, and clearly outperforms state-of-the-art models in the latter.

A code repository for creating / downloading the datasets and run the

pipeline of MeLa on the different benchmarks has been made available at

https://github.com/IsakFalk/mela.

3.1.2 Organization

In Sec. 3.2 we introduce the setting of the work and put it in context with prior

work. In Sec. 3.3 we show theoretically the relationship between pre-training

and meta-learning through an upper bound and based on this, in Sec. 3.4 we

introduce three different algorithms (augmented pre-training, MeLa, meta fine-

tuning) for use in the few-shot learning pipeline which improves performance

and allows for pre-training when global labels are missing. In Sec. 3.5 we

benchmark MeLa against other competitive few-shot learning algorithms and

perform ablation studies.

3.2 Introduction
Deep neural networks have facilitated transformative advances in machine

learning in various areas [e.g. Sil+17; Goo+14; He+16; Bro+20; KSH12;

Mni+15]. However, state-of-the-art models typically require labeled datasets

of extremely large scale, which are prohibitively expensive to curate. When

training data is scarce, neural networks often overfits which degrades perfor-

mance significantly. Few-shot learning aims to address this loss in performance

by developing algorithms and architectures capable of learning from few labeled

samples.

Meta-learning [Hos+22; Van19] is a popular class of algorithms created

for tackling FSL. Broadly, meta-learning seeks to learn transferable knowledge

over many FSL tasks, and to apply such knowledge to novel ones. Existing

meta-learning methods for tackling FSL may be loosely classified into three

https://github.com/IsakFalk/mela
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categories; optimization [e.g. FAL17; Ber+19; WTH21], metric learning [e.g.

Vin+16; SSZ17; Sun+18], and model-based methods [e.g. HDL17; QBL18].

The diversity of existing strategies poses a natural question: can we derive any

“meta-insights” from them to facilitate the design of future methods?

Among the existing methods, several trends have emerged for design-

ing robust few-shot meta-learners. Chen et al. observed that data aug-

mentation and deeper networks significantly improves generalization perfor-

mance [Che+18]. The observations have since been widely adopted [e.g.

Tia+20; Bat+20; Lee+19]. On the other hand, network pre-training has also

become ubiquitous [e.g. El +22; WDC20; Rod+20; WTH21], and dominates

state-of-the-art models. Sidestepping the task structure and episodic training

of meta-learning, pre-training learns (initial) model parameters by merging

all FSL tasks into one “flat” dataset of labeled samples followed by standard

multi-class classification. The model parameters may be further fine-tuned to

improve performance.

Despite its popularity, the limited theoretical understanding of pre-

training leads to diverging interpretations of existing methods. Most works

consider pre-training as nothing but a standard pre-processing step, and at-

tribute the observed performance almost exclusively to their respective algo-

rithmic and network design choices [e.g. Ye+20; Rus+18; YLX21]. However,

extensive empirical evidence suggests that pre-training is crucial for model per-

formance [WTH21; WPC21]. Tian et al. demonstrated that simply learning

task-specific linear classifiers over the pre-trained representation outperforms a

number of various meta-learning strategies [Tia+20]. Wertheimer et al. further

showed that earlier FSL methods may also benefit from pre-training, resulting

in improved performance [WTH21].

3.2.1 Related Work

This chapter is based on a the pre-print [Wan+22] which is an extended ver-

sion of [WPC21] with the following contributions in addition to those of the

original work: 1) a deeper theoretical insight into the role of pre-training from
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the perspective of the risk (rather than the empirical risk as in [WPC21]), and

quantifying its benefit in terms of sample complexity, 2) an augmented training

procedure for FSL, 3) the Generalized Few-Shot Learning (GFSL) experimen-

tal setting, 4) significantly more empirical evidence to support the proposed

algorithm.

Our proposed method is most closely related to meta-representation

learning [Rag+20; Lee+19; Ber+19; Fra+18], see Sec. 2.4 and 2.4.2, which

parametrizes the base learner as A(θ,D) = w(ϕθ(D))ϕθ(·), separating it into

parts of a global feature extractor ϕθ : X → Rm and a task-adaptive classifier

w : D → {f : Rm → Y}, so that for a dataset D ∈ D, where we recollect thatD

is the set of all possible datasets, w(D) = f is a function mapping from inputs

x ∈ Rm to the output space Y , and where finally ϕθ(D) = (ϕθ(x), y)(x,y)∈D.

3.3 Pre-Training as Meta-Learning
In this section, we characterize how feature pre-training relates to meta-

learning as a loss upper bound. More precisely, we show that pre-training

induces a special base learner with its corresponding meta-learning loss upper

bounded by the cross-entropy loss ℓce. Consequently, pre-training already pro-

duces a meta-representation suitable for FSL, matching the empirical results

from [Tia+20; Ye+20]. In addition, we show that pre-training incurs a smaller

risk compared to its meta-learning counterpart, and more generally induces a

conditional formulation that exploits contextual information for more robust

learning.

3.3.1 Notation

We consider a few-shot classification setting with a total of C classes (global

labels). Denote by µ the meta-distribution for task sampling and distribution

ρ for sampling support and query sets (Dtr, Dval) for each task. Task distribu-

tions ρ are associated with k ≤ C class labels y(1)ρ , . . . , y
(k)
ρ ∈ {1, . . . , C}. De-

note by ρY the subset of {1, . . . , C} of k task labels. Given a matrix W ∈ RC×m

and a vector Y ∈ {1, . . . , C}n of indices, we denote by W [Y ] = W [ρY ] ∈ Rk×m
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the submatrix of W obtained by selecting the rows corresponding to the unique

indices ρY in Y . Lastly, given a dataset D = (xi, yi)
n
i=1, let DY ∈ {1, . . . , C}n

denote the vector with entries corresponding to the labels (yi)
n
i=1 and for a

feature map ϕθ and we recall the definition ϕθ(D) = (ϕθ(xi), yi)
n
i=1.

3.3.2 Meta-Learning Expected Error

The meta-risk for our specific case takes the form

E(θ, µ) = Eρ∼µE(Dtr,Dval)∼ρR̂(w(ϕθ(Dtr)), ϕθ(D
val)), (3.1)

where we have made the dependency on µ explicit.

This is the meta-learning risk incurred by a meta-parameter θ, namely

the error incurred by training the classifier via w(ϕθ(D
tr)) (e.g. (2.16)) and

testing it on the query set ϕθ(Dval), averaged over (Dtr, Dval) pairs sampled

from tasks ρ, which in turn are sampled from meta-distribution µ. The risk is

the ideal error we wish to minimize.

3.3.3 Global Label Selection

Let us consider a special FSL scenario where global labels are available to

the model (in contrast to the standard setting where only local labels are

available, see Sec. 2.4). Since we have access to global labels, we can design

a new algorithm that learns a single global multi-class linear classifier W at

the meta-level (i.e. shared across all tasks), and simply select the required

rows W [Dtr
Y ] when tackling a task. More formally, we can define a special base

learner called global label selector (GLS) such that

A((W, θ), Dtr) = GLS(W, θ,Dtr) = W [Dtr
Y ]ϕθ(·). (3.2)

Illustrated in Fig. 3.1b, this “algorithm” does not solve an optimization

problem on the dataset Dtr, but only selects the subset of rows of W corre-

sponding to the classes present in Dtr as the task-specific classifier. Similar to



3.3. Pre-Training as Meta-Learning 57

(a) Global vs. Local la-
bels

(b) Global to Local Classifier

Figure 3.1: (a) Colored squares represent samples. Tasks A and B can be
“merged” meaningfully using global labels, but not local ones. (b) A global
classifier can be used as local classifiers given the indices Y of the intended
classes to predict.

(3.1), we define the meta-risk for GLS as

EGLS(W, θ, µ) = Eρ∼µE(Dtr,Dval)∼ρR̂(W [Dtr
Y ]ϕθ(·), Dval), (3.3)

the error incurred by using the meta-representation ϕθ and the global linear

classifier W to tackle the meta-learning problem associated with µ.

Analogous to standard meta-learning (where we only learn θ), since W

and θ are now both shared across all tasks, we may learn them jointly by

solving the following minimization problem

min
W,θ

1

T

T∑
t=1

R̂(W [Dtr
t,Y ]ϕθ(·), Dval

t ), (3.4)

where the sum is taken over all tasks in the meta-train set T . This strategy, to

which we refer as meta-GLS, learns both the representation and linear classifier

at the meta-level, with the sole task-specific adaptation process being the

selection of columns of W using the global labels.

3.3.4 GLS Finds a Good Meta-Representation
As the intuition suggests, learning a global W shared among multiple tasks

(rather than each classifier w(ϕθ(Dtr)) accessing exclusively the tasks’ training

data), can be very advantageous for generalization. This is evident when the
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(global) classes are separable for a meta-representation ϕθ. In this case, due to

the separability assumption, for any inner algorithm w(·), we have that

min
W
EGLS(W, θ, µ) ≤ E(θ, µ), (3.5)

namely, that given the same representation, finding a global classifier is more

favorable than solving each task in isolation. This tells us that in the ideal

scenario of separability, GLS provides a family of algorithms (indexed by W

and θ) which dominates that of meta-representation learning (indexed by w

and θ) in the sense of (3.5).

3.3.5 Pre-training and GLS
Existing works such as [Tia+20; El +22] demonstrates that pre-training offers

a robust alternative to learn the meta-representation ϕθ(·). We will show that

GLS is related to pre-training, under some mild assumptions.

Assumption A. The meta-distribution µ samples tasks ρ. Sampling from

each ρ is performed as follows:

1. For each class y
(j)
ρ in ρY , with j = 1, . . . , k, we sample n examples

x
(j)
1 , . . . , x

(j)
n i.i.d. according to a conditional distribution π(x|y = y

(j)
ρ )

shared across all tasks. All generated pairs are collected in the support

set Dtr = (x
(j)
i , y

(j)
ρ )n,ki,j=1.

2. The query set Dval is generated by sampling m points i.i.d. from πρ(x, y),

namely Dval ∼ πmρ with

πρ(x, y) = π(x|y)Unifρ(y) (3.6)

and Unifρ the uniform distribution over the labels in ρY .

In essence, the assumption characterizes the standard process of constructing

meta-training tasks for FSL. In particular, let πµ(x, y) be the marginal proba-

bility of observing (x, y) in the meta-training tasks, i.e. firstly sampling a task
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ρ from µ, followed by sampling a class y uniformly by Unifρ(·) and finally x

by π(·|y). It then follows that sampling a dataset Dglobal from πµ is equivalent

to sample a meta-training set T from µ and flatten it into D(T ) according to

the pre-training procedure described in (2.18).

We can therefore introduce the (global) multi-class classification risk as-

sociated to πµ

R(Wϕθ(·), πµ) = E(x,y)∼πµ ℓce(Wϕθ(x), y). (3.7)

We notice that pre-training amounts to minimizing R̂(Wϕθ, Dglobal) over the

dataset Dglobal obtained by sampling iid from πµ, therefore the above risk can

be seen as the ideal objective of the pre-training estimator. Under the above

assumptions, the following result relates the two problems to each other, the

proof may be found in Appendix A.

Theorem 1. Under Assumption A, let πµ(x, y) be marginal distribution of

observing (x, y) in the meta-training set. Then, for any (global) classifier W ,

EGLS(W, θ) ≤ R(Wϕθ, πµ). (3.8)

Moreover, if the global classes are separable,

min
W,θ
EGLS(W, θ) = min

W,θ
R(Wϕθ, πµ). (3.9)

The result shows that the GLS error is upper bounded by the global multi-

class classification error. Hence, minimizing the global multi-class classifica-

tion error also indirectly minimizes the meta-learning risk. In practice, this

shows that pre-training is explicitly linked to meta-learning by learning a meta-

representation suitable for FSL through this upper bound, if we use the GLS

algorithm.



3.3. Pre-Training as Meta-Learning 60

3.3.6 Generalization Properties

Thm. 1 shows that under the class-separability assumption, pre-training is

equivalent to performing meta-GLS. We now study which of the two ap-

proaches is more sample-efficient from a generalization perspective.

Let (WGLS
T , θGLS

T ) denote the meta-parameters learned by an algorithm

minimizing (3.4) over a dataset T comprising of T separate tasks. Applying

standard results from statistical learning theory, we can obtain excess risk

bounds characterizing the quality of θGLS
T ’s predictions in terms of the number

T of tasks the algorithm has observed in training. We perform the decomposi-

tion

EGLS(W
GLS
T , θGLS

T , µ)− EGLS(W
∗, θ∗, µ) = EGLS(W

GLS
T , θGLS

T , µ)

± EGLS(W
GLS
T , θGLS

T , D(T ))

± EGLS(W
∗, θ∗, D(T ))

− EGLS(W
∗, θ∗, µ)

≤ (A) + (B) + (C)

where (W ∗, θ∗) = argminW,θ∈Ω EGLS(W, θ, µ), which is assumed to exist, and Ω

is the domain on W, θ which will be explained below, and the final terms are

(A) =
∣∣EGLS(W

GLS
T , θGLS

T , µ)− EGLS(W
GLS
T , θGLS

T , D(T ))
∣∣

(B) = EGLS(W
GLS
T , θGLS

T , D(T ))− EGLS(W
∗, θ∗, D(T ))

(C) = |EGLS(W
∗, θ∗, µ)− EGLS(W

∗, θ∗, D(T ))|.

Since WGLS
T , θGLS

T minimize EGLS(W, θ,D(T )), the term (B) is nega-

tive, so bounding (A) + (C) is enough to upper bound the excess risk

EGLS(W
GLS
T , θGLS

T , µ)−EGLS(W
∗, θ∗, µ), which may be done using Rademacher

Complexities.

For instance, following [SB14, Chapter 26] we have that in expectation
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with respect to the sampling of T

ET EGLS(W
GLS
T , θGLS

T , µ) ≤ min
(W,θ)∈Ω

EGLS(W, θ, µ) + 2LGLSRT (Ω)

≤ min
(W,θ)∈Ω

EGLS(W, θ, µ) +
2LGLSCΩ√

T
,

where LGLS denotes the Lipschitz constant of EGLS as a function of (W, θ), while

Ω ⊆ Rm×C × Θ is bounded, where Ω is the space of hypotheses for the multi-

class classifier Wgθ(·), the full assumptions can be found in Appendix A.1.

The assumptions includes that the feature map has ‖ϕθ‖ = 1 and ‖W‖2,1 ≤ Bλ

where Bλ is the radius of a ball which increase as λ→ 0 and the 2, 1–norm is

defined as ‖W‖2,1 =
∑

z≤C‖Wz‖2. Here, RT (Ω) is the Rademacher complexity

of Ω [SB14], which measures the overall potential expressivity of an estimator

that can be trained over them. For neural networks, [GRS18] showed that

RT (CΩ) may be further bounded by RT (Ω) ≤ CΩ/
√
T , where CΩ is constant

depending on the specific neural architecture, with deeper networks having a

larger constant. The bound indicates that the risk incurred by GLS becomes

closer to that of the ideal meta-parameters as the number of observed tasks T

grows.

We can apply the same Rademacher-based bounds to (3.7) and the pre-

training estimator from (2.19), obtaining

ETR(W pre
N , θpreN , πµ) ≤ min

(W,θ)∈Ω
R(W, θ, πµ) +

2LpreCΩ√
N

, (3.10)

where N is the number of samples in Dglobal and Lpre is the Lipschitz constant

of the global multi-class classification risk. By combining the above bound

with the result from Thm. 1 we conclude that

ET EGLS(W
pre
N , θpreN , µ) ≤ min

W,θ
EGLS(W, θ, µ) +

2LpreCΩ√
N

, (3.11)

which is an excess risk bound analogous to that obtained for meta-GLS. The

key difference is that the bound above depends on the number N of total
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samples in Dglobal, rather that the total number T of tasks.

Comparing the rates of meta-GLS and the pre-training estimator, we ob-

serve that typically N � T (for instance N = nT when each task has the

same number of n samples). Additionally, since Lpre is comparable or smaller

than LGLS (see Appendix A.1), we conclude that given exactly the same data

(T for meta-GLS and Dglobal = D(T ) for pre-training), pre-training achieves

a smaller error than meta-GLS and the estimator approach this error faster

than the meta-GLS estimator. For instance, in the case of a 5-way-5-shot FSL

problem, pre-training improves upon the meta-GLS bound on excess risk by

a factor of
√
N/T =

√
n =
√
100 = 10. Given the relation between GLS and

standard meta-learning that we highlighted in Sec. 3.3.3, our analysis provides

a strong theoretical argument in favor of adopting pre-training in meta-learning

settings.

Note that the above analysis is done for any meta-distribution µ which

satisfy the assumptions of the results. The fact that the bound does not take

into account µ except for implicitly in the meta-risk, as the Rademacher upper

bound is independent of it, means that the bound fails to tell us anything

about transfer (positive or negative) or the actual quality of the optimal GLS

estimator Wϕθ. Thus it cannot answer questions of the kind related to when

and how to perform meta-learning and how to design algorithms to avoid

negative transfer. This would require a different type of analysis of the one we

carried out here.

3.3.7 Connection to Conditional Meta-Learning

More generally, we observe that GLS is also an instance of conditional meta-

learning: the global labels of the task provide additional contextual information

about the task to facilitate model learning. Global labels directly reveal how

tasks relate to one another and in particular if any classes to be learned are

shared across tasks. GLS thus simply map global labels of tasks to task classi-

fiers via W [Dtr
Y ]. In contrast, unconditional approaches (e.g. R2D2 [Ber+19],

ProtoNet [NAS18]) learn classifiers by minimizing some loss over support sets,
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losing out on the access to the contextual information provided by global la-

bels. As discussed in Sec. 2.4.2, the benefits offered by the global labels has

been extensively validated empirically.

In addition to our result, Denevi et al. [DPC20] also proved that con-

ditional meta-learning is advantageous over the unconditional formulation by

incurring a smaller excess risk, especially when the meta-distribution of tasks

is organized into distant clusters. We refer readers to the original paper for a

detailed discussion. In practice, global labels provide clustering of task samples

for free and improve regularization by enforcing each cluster (denoted by global

label yjρ) to share classifier parameters W [yjρ] across all tasks. This provides

further explanation to why pre-training yields a robust meta-representation

with strong generalization performance.

3.3.8 Leveraging Pre-Training in Practice

The discussion above suggests that pre-training should be sufficient when meta-

training and meta-test data are sampled from the same distribution. However,

practical FSL scenarios assume that the meta-testing set shares no class labels

with the meta-training set, since the goal of meta-learning is precisely to gen-

eralize to novel classes unseen during training. For these practical scenarios,

extensive evidences indicate that the pre-trained representation is also robust

for learning novel classes by simply replacing the GLS selector with regular

classifier w(ϕθ(Dtr)) [TKI20; El +22]. More formally, the connection between

meta-training and meta-testing classes may also be captured by the assump-

tion that that they share a common representation, the theoretical setting

analyzed in [Du+20].

Moreover, while pre-training might offer a powerful initial representation

θ, it may be advisable to further improve θ by directly optimizing the empirical

meta-risk using the desired classifier to tackle novel classes. The general strat-

egy of pre-training followed by what we call meta fine-tuning is extensively used

in state-of-the-art methods [e.g. Ye+20; Rod+20; Zha+20]. Empirical results

suggest that careful meta fine-tuning outperforms standalone pre-training. We



3.4. Methods 64

investigate this aspect empirically in Sec. 3.4.3 and Sec. 3.5.

3.4 Methods
In this section, we propose three practical algorithms motivated by our the-

oretical analysis. In Sec. 3.4.1, we introduce an augmentation procedure for

pre-training to further improve representation learning in image-based tasks.

In Sec. 3.4.2, we tackle the scenario where global labels are absent by automati-

cally inferring a notion of global labels. Lastly, we introduce a meta fine-tuning

procedure in Sec. 3.4.3 to investigate how much meta-learning could improve

the pre-trained representation.

3.4.1 Augmented Pre-Training for Image-Based Tasks

In general, pre-training is a standard process with well-studied techniques for

improving the final learned representation. Many of these techniques, including

data augmentation for image-based tasks [Che+18], auxiliary losses [Man+20]

and model distillation [Tia+20], are also effective for FSL (i.e. the learned

representation is suitable for novel classes during meta-testing). In particular,

we may interpret data augmentation techniques as increasing N in Sec. 3.3.6,

thus improving the error incurred by pre-training and consequently the learned

representation ϕθ.

Beyond standard augmentations (e.g. random cropping and color jitter-

ing) investigated in [Che+18], we further propose an augmented procedure

for pre-training via image rotation. For every class y ∈ Y in the original

dataset, we create three additional classes by rotating all images of class y

by r ∈ {90◦, 180◦, 270◦} respectively. All rotations are multiples of 90◦ such

that they can be implemented by basic operations efficiently (e.g. flip and

transpose) and prevent pre-training from learning any trivial features from vi-

sual artifacts produced by arbitrary rotations [GSK18]. Pre-training is then

performed normally on the augmented dataset. Additionally, standard aug-

mentations are also applied on the augmented dataset.

The augmented dataset quadruples the number of samples and classes
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Algorithm 2 MeLa
Input: meta-training set T = (Dtr

t , D
val
t )Tt=1

ϕsim
θ = argminϕθ E(Dtr,Dval)∈T R̂(w(ϕθ(Dtr)), ϕθ(D

val))
Global clusters G = LearnLabeler(T , ϕsim

θ )
ϕpre
θ = Pretrain(D(T ), G)
ϕ∗
θ = MetaLearn(G, T , ϕpre

θ )
Return ϕ∗

θ

compared to the original dataset. According to our analysis from Sec. 3.3.6,

pre-training on the augmented dataset may yield a more robust representation.

Further, we also hypothesize that the quality of the representation also depends

on the number of classes available in the pre-training dataset, since classifying

more classes requires learning increasingly discriminating representations. Our

experiments show that 1) augmented pre-training consistently outperforms the

standard one, and 2) quality of the learned representation depends on both

the dataset size and the number of classes available for training.

3.4.2 Meta Label Learning

The ability to exploit pre-training crucially depends on access to global labels.

However, it is problematic to assume easy access to global labels. As discussed

in Sec. 3.2, global labels may be unavailable or inaccessible in practical applica-

tions, when meta-training tasks are collected and annotated independently. As

we will illustrate with the experiment in Sec. 3.5.4, different tasks may present

conflicting labels over the same set of data based on different task requirements.

This leads to ill-defined global labels and makes pre-training not directly appli-

cable. Therefore, we consider the more general setting where only local labels

from each task are known. This setting was also adopted by most of earlier

meta-learning methods [e,g FAL17; SSZ17; Vin+16; Ber+19; Lee+19]. In the

local label setting, we propose Meta Label Learning in order to automatically

infer a notion of latent global labels across tasks. Naturally, the inferred labels

enables pre-training and bridges the gap between the experiment settings with

and without global labels.

Alg. 2 outlines the general strategy for learning a few-shot model using
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MeLa. We first meta-learn an initial representation ϕsim
θ . Secondly, we cluster

all task samples using ϕsim
θ as a feature map while enforcing local task con-

straints. The learned clusters are returned as inferred global labels. Using the

inferred labels, we can apply pre-training to obtain ϕpre
θ , which may be further

fine-tuned using meta-learning objectives to derive the final few-shot model

ϕ∗
θ. We present in Sec. 3.4.3 a simple yet effective meta fine-tuning procedure.

The similarity metric used in this algorithm is simply the Euclidean metric of

the feature mapped inputs, so for two inputs x, x′ and a feature map ϕθ, the

similarity metric is d(x, x′) = ‖ϕθ(x)− ϕθ(x′)‖2. All feature maps are ResNet

models and the feature space output dimension m is 640, see Appendix A.2

for specific details.

For learning ϕsim
θ , we directly optimize the empirical meta-risk using ridge

regression (2.16) as the base learner. We use ridge regression for its computa-

tional efficiency and good performance. Using ϕsim
θ as a base for a similarity

measure, the labeling algorithm takes as input the meta-training set and out-

puts a set of clusters as global labels. The algorithm consists of a clustering

routine for sample assignment and centroid updates, and a pruning routine for

merging small clusters.

3.4.2.1 Clustering

The clustering routine leverages local labels for assigning task samples to ap-

propriate global clusters and enforcing task constraints. We observe that for

any task, the local labels describe two constraints: 1) samples sharing a local

label must be assigned to the same global cluster, while 2) samples with dif-

ferent local labels must not share the same global cluster. To meet constraint

1, we assign all samples {x(j)i }ni=1 of class y(j)ρ to a single global cluster by

v∗ = argmin
v∈{1,...,V }

∥∥∥∥∥ 1n
n∑
i=1

ϕsim
θ (x

(j)
i )− gv

∥∥∥∥∥
2

. (3.12)

with V being the current number of centroids.

We apply (3.12) to all classes y(1)ρ , . . . , y
(k)
ρ and all instances within a task.
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If multiple local classes map to the same global label, we simply discard the task

to meet constraint 2. Otherwise, for each task class j and the corresponding

v∗ centroid index, we proceed to update the centroids gv∗ and sample count

Nv∗ using

gv∗ ←
Nv∗gv∗ +

∑n
i=1 ϕ

sim
θ (x

(j)
i )

Nv∗ + n
and Nv∗ ← Nv∗ + n. (3.13)

3.4.2.2 Pruning
We also introduce a strategy for pruning small clusters. We model the sample

count of each cluster as a binomial distribution Nv ∼ B(Tn, p), due to having

T total number of tasks and each task having n classes. Assuming no collisions

within each task, and that each class of each task is assigned to cluster inde-

pendently we have that Nv ∼ B(Tn, p). We set p = 1
V

, assuming that each

cluster is equal likely to be matched by a local class of samples. Any cluster

with sample count below the following threshold is discarded,

Nv < N̄v − q
√

Var(Nv), (3.14)

where N̄v is the expectation of Nv, Var(Nv) the variance, and q a hyper-

parameter controlling how aggressive the pruning is. This procedure can be

seen as a way to remove outliers since it removes clusters which have improb-

ably few classes assigned to them. In general, a lower value of q prunes the

number of cluster more aggressively which may potentially lead to zero clusters

which is a failure mode of the algorithm.

Alg. 3 outlines the full labeling algorithm. We first initialize a large num-

ber of clusters by setting their centroids with mean class embeddings from

random classes in T . For V initial clusters, dV
k
e tasks are needed since each

task contains k classes and could initialize as many clusters. The algorithm

then alternates between clustering and pruning to refine the clusters and es-

timate the number of clusters jointly. The algorithm terminates and returns

the current clusters G when the number of clusters does not change from the
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Algorithm 3 LearnLabeler
Input: embedding model ϕsim

θ , meta-training set T = (Dtr
t , D

val
t )Tt=1, number

of classes in a task k
Initialization: sample tasks from T to initialize clusters G = {gv}Vv=1,

While |G| has not converged:
Nv = 1 for each gv ∈ G
For (Dtr, Dval) ∈ T :

Match Dtr ∪Dval to its centroids M = {gq}Vq=1 using (3.12)
If M has k unique clusters

Update centroid gq for each gq ∈M via (3.13)
G← {gv | gv ∈ G,Nv ≥ threshold in (3.14)}

Return G

previous iteration. Using clusters G, local classes from the meta-training set

can be assigned global labels with nearest neighbor matching using (3.12). For

tasks that fail to map to k unique global labels, we simply exclude them from

the pre-training process.

The key difference between Alg. 3 and the classical K-means algo-

rithm [Llo82] is that the proposed clustering algorithm exploits local infor-

mation to guide the clustering process, while K-means algorithm is fully un-

supervised. We will show in the experiments that enforcing local constraints

is necessary for learning robust meta-representation.

Alg. 3 also indirectly highlights how global labels, if available, offers valu-

able information about meta-training set. In addition to revealing precisely

how input samples relate to one another across tasks, global labels provides

an overview of meta-training set, including the desired number of clusters and

their sizes. In contrast, Alg. 3 needs to estimate both properties when only

local labels are given.

3.4.3 Meta Fine-Tuning

As discussed in Sec. 3.3, while pre-training already yields a robust metra-

representation for FSL, GLS, the base learner associated with pre-training

is inapplicable for meta-testing when novel classes are presented. It is thus

desirable to adapt the pre-trained representation by directly optimizing the
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empirical meta-risk, such that the new meta-representation better matches the

base learner intended for novel classes. We call this additional training meta

fine-tuning, which is adopted by several state-of-the-art FSL models [Zha+20;

Ye+20; WDC20; LLB21].

For meta fine-tuning, existing works suggest that model performance de-

pends crucially on preserving the pre-trained representation. In particular,

[Rus+18; Ye+20; WDC20; LLB21] all keep the pre-trained representation

fixed, and only learn a relatively simple transformation on top for the new

base learners. Additionally, [Gol+20] showed that meta fine-tuning the entire

representation model using MetaOptNet [Lee+20] or R2D2 [Ber+19] lead to

worse performance compared to standard meta-learning, negating the advan-

tages of pre-training completely.

Given the observations above, we present a simple residual architecture

that preserves the pre-trained embeddings and allows adaptation for the new

base learner. Formally, we consider the following parameterization for a fine-

tuned meta-learned embedding ϕ∗
θ,

ϕ∗
θ(x) = ϕpre

θ (x) + h(ϕpre
θ (x)), (3.15)

where ϕpre
θ is the pre-trained representation and h a learnable function (e.g. a

small fully connected network). We again use (2.16) as the base learner and

optimize the empirical meta-risk directly. Our experiments show that the pro-

posed fine-tuning process achieves results competitive with more sophisticated

base learners, indicating that the pre-trained representation is the predominant

contributor to good test performance.

3.5 Experiments
We evaluate MeLa on various benchmark datasets and compare it with existing

methods. The experiments are designed to address the following questions:

• How does MeLa compare to existing methods for generalization perfor-

mance? Additionally, we also introduce the more challenging GFSL set-
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ting in Sec. 3.5.2.

• How do different model components (e.g. pre-training, meta fine-tuning)

contribute to generalization performance?

• What is the additional cost in terms of time and memory of using MeLa?

• Does MeLa learn meaningful clusters? Can MeLa handle conflicting task

labels?

• Given the importance of pre-training, how can we improve the quality

of the pre-trained representation?

• How robust is MeLa to hyper-parameter choices?

3.5.1 Benchmark Datasets
Mini/tiered-ImageNet. [Vin+16; Ren+18] has become one of the default

benchmark for FSL. Both datasets are subsets of ImageNet [Rus+15] with

miniImageNet having 60K images over 100 classes, and tieredImageNet

having 779K images over 608 classes. Following previous works, we report

performance on 1 and 5-shot settings, using 5-way classification tasks.

3.5.1.1 Variants of mini/tiered-ImageNet
We introduce several variants of mini/tiered-ImageNet to better understand

MeLa and more broadly the impacts of dataset configuration on pre-training.

Specifically, we create mini-60 that consists of 640 classes and 60 samples per

class. The base dataset of mini-60 contains the same number of samples as the

base dataset of miniImageNet, though with more classes and fewer samples

per class. Mini-60 is deliberately constructed so that the classes of the meta-

train, validation and test sets of miniImageNet are contained in the classes

of the meta-train, validation and test set respectively, of mini-60, enabling a

fair comparison of test performance of model trained on each dataset in turn.

We designed mini-60 to investigate the behavior of MeLa when encountering

a dataset with a high number of base classes and low number of samples
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per base class. We also use mini-60 to explore how data diversity present in

the training data affects the learned representation. Analogous to mini-60,

we also introduce tiered-780 as a variant to tieredImageNet, where we take

the total number of samples in tieredImageNet and calculate the number

of samples over the full 1000 ImageNet classes while avoiding meta-test set

overlap between the two datasets.

3.5.1.2 Meta-Dataset
[Tri+20] is a meta-learning classification benchmark combining 10 widely

used datasets: ILSVRC-2012 (ImageNet) [Rus+15], Omniglot [LST15], Air-

craft [Maj+13], CUB200 [Wel+10], Describable Textures (DTD) [Cim+14],

QuickDraw [Jon+16], Fungi [SC18], VGG Flower (Flower) [NZ08], Traffic

Signs [Hou+13] and MSCOCO [Lin+14]. We use Meta-Dataset to construct

several challenging experiment scenarios, including learning a unified model

for multiple domains and learning from tasks with conflicting labels.

3.5.2 Experiment Settings
The standard FSL setting [FAL17; SSZ17; Ye+20; WTH21; Bat+22] assumes

that a meta-distribution of tasks is available for training. This translates to

meta-learners having access to an exponential number of tasks synthetically

generated from the underlying dataset, a scenario unrealistic for practical ap-

plications. Recent works additionally assume access to global labels in order to

leverage pre-training, in contrast with earlier methods that assume access to

only local labels. We will highlight such differences when comparing different

methods.

3.5.2.1 GFSL Setting
This is a more challenging and realistic FSL setting. Specifically, we only allow

access to local labels, since global labels may be inaccessible or ill-defined. In

addition, we employ a no-replacement sampling scheme when synthetically

generating tasks from the underlying dataset1. This sampling protocol limits
1For instance, miniImageNet (38400 training samples) will be randomly split into

around 380 tasks of 100 samples
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the meta-training set to a fixed-size, which is a standard assumption for most

machine learning problems. The fixed size also enables us to evaluates the

sample efficiency of different methods. Secondly, no-replacement sampling

prevents MeLa and other meta-learners from trivially learning task relations,

a key objective of meta-learning, by matching same samples across tasks. For

instance, an identical sample appearing in multiple tasks would allow MeLa

to trivially cluster local classes. Lastly, the sampling process reflects any class

imbalance in the underlying dataset, which might present a more challenging

problem.

3.5.3 Performance Comparison in Standard Setting

We compare MeLa to a diverse group of existing methods on mini- and

tieredImageNet in Table 3.1. We separate the methods into those requiring

global labels and those that do not. We note that the two groups of methods

are not directly comparable since global labels provides a significant advantage

to meta-learners as discussed previously. The method groupings are intended

to demonstrate the effect of pre-training on generalization performance.

Table 3.1 clearly shows that “global-labels” methods leveraging pre-

training generally outperform “local-labels” methods except MeLa. We high-

light that the re-implementation of ProtoNet in [WTH21] benefits greatly from

pre-training, outperforming the original by over 10% across the two datasets.

Similarly, while RFS and R2D2 both learn a fixed representation and only

adapt the classifier based on each task, RFS’s pre-trained representation clearly

outperforms R2D2’s meta-learned representation. We further note that state-

of-the-art methods such as DeepEMD and FEAT are heavily reliant on pre-

training and performs drastically worse in GFSL setting, as we will discuss in

Sec. 3.5.4.

In the local-labels category, MeLa outperforms existing methods thanks to

its ability to still exploit pre-training using the inferred labels. MeLa achieves

about 4% improvement over the next best method in all settings. Across both

categories, MeLa obtains performance competitive to state-of-the-art methods
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Table 3.1: Test accuracy of meta-learning models on miniImageNet and tieredImageNet.

miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Global Labels

Simple CNAPS [Bat+22] 53.2±− 70.8±− 63.0±− 80.0±−
LEO [Rus+18] 61.7± 0.7 77.6± 0.4 66.3± 0.7 81.4± 0.6
TASML [WDC20] 62.0± 0.5 78.2± 0.5 66.4± 0.4 82.6± 0.3
RFS [Tia+20] 62.0± 0.4 79.6± 0.3 69.4± 0.5 84.4± 0.3
ProtoNet (with pre-train) [WTH21] 62.4± 0.2 80.5± 0.1 68.2± 0.2 84.0± 0.3
FEAT [Ye+20] 66.7± 0.2 82.0± 0.1 70.8± 0.2 84.8± 0.2
FRN [WTH21] 66.4± 0.2 82.8± 0.1 71.2± 0.2 86.0± 0.2
DeepEMD [Zha+20] 65.9± 0.8 82.4± 0.6 71.2± 0.9 86.0± 0.6

Local Labels

MAML [FAL17] 48.7± 1.8 63.1± 0.9 51.7± 1.8 70.3± 0.8
ProtoNet [SSZ17] 49.4± 0.8 68.2± 0.7 53.3± 0.9 72.7± 0.7
R2D2 [Ber+19] 51.9± 0.2 68.7± 0.2 65.5± 0.6 80.2± 0.4
MetaOptNet [Lee+19] 62.6± 0.6 78.6± 0.5 66.0± 0.7 81.5± 0.6
Shot-free [RBS19] 59.0± n/a 77.6± n/a 63.5± n/a 82.6± n/a
MeLa (pre-train only) 64.5± 0.4 81.5± 0.3 69.5± 0.5 84.3± 0.3
MeLa 65.8± 0.4 82.8± 0.3 70.5± 0.5 85.9± 0.3
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Table 3.2: Test Accuracy on Aircraft, CUB and VGG Flower (Mixed dataset). A single model is trained for each method over all
tasks.

Aircraft CUB VGG Flower Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet 35.1± 0.4 51.0± 0.5 32.7± 0.4 46.4± 0.5 56.7± 0.5 73.8± 0.4 41.7± 0.7 57.5± 0.7
MatchNet 31.4± 0.4 39.4± 0.5 42.7± 0.5 54.1± 0.5 62.5± 0.5 70.0± 0.1 45.7± 0.1 54.5± 0.1

R2D2 67.7± 0.6 82.8± 0.4 53.8± 0.5 69.2± 0.5 65.4± 0.5 83.3± 0.3 61.9± 0.5 78.6± 0.4
DeepEMD 34.7± 0.7 47.8± 1.4 39.3± 0.7 52.1± 1.4 61.3± 0.9 74.5± 1.4 45.1± 0.7 58.1± 1.2

FEAT 61.7± 0.6 75.8± 0.5 59.6± 0.6 73.1± 0.5 62.9± 0.6 76.0± 0.4 60.9± 0.7 75.0± 0.5
FRN 60.7± 0.7 77.6± 0.5 61.9± 0.7 77.7± 0.5 65.2± 0.6 81.2± 0.5 63.1± 0.7 79.7± 0.5
MeLa 78.2± 0.5 89.5± 0.3 73.8± 0.6 88.7± 0.3 76.6± 0.4 91.5± 0.2 76.2± 0.3 89.9± 0.2
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such as FRN, FEAT and DeepEMD despite having no access to global labels.

This indicates that MeLa is able to infer meaningful clusters to substitute

global labels and obtains performance similar to methods having access to

global labels. We will provide further quantitative results on the clustering

algorithm in Sec. 3.5.7.

3.5.4 Performance Comparison in Generalized Setting

We evaluate a representative set of few-shot learners under GFSL. For this

setting, we also introduce two new experimental scenario using Meta-Dataset

to simulate task heterogeneity.

In the first scenario, we construct the meta-training set from Aircraft,

CUB and VGG flower, which we simply denote by "Mixed". Tasks are sampled

independently from one of the three datasets. For meta-testing, we sample

1500 tasks from each dataset and report the average accuracy. The chosen

datasets are intended for fine-grained classification in aircraft models, bird

species and flower species respectively. Thus the meta-training tasks share

the broad objective of fine-grained classification, but are sampled from three

distinct domains. A key challenge of this scenario is to learn a unified model

across multiple domains, without any explicit knowledge about them or the

global labels within each domain.

The results show that MeLa outperforms all baselines under GFSL setting.

In particular, MeLa achieves a large margin of 10% improvement over the

baselines, including state-of-the-art models FEAT, FRN and DeepEMD, the

methods equal to MeLa in Table 3.1. In particular, FEAT and DeepEMD

performed noticeably worse, indicating the methods’ reliance on pre-trained

representation and the difficulty of meta-learning robust representations from

scratch with complex base learners. FRN is designed to also work without

pre-training, and outperforms FEAT and DeepEMD as expected.

In the second scenario, we consider meta-training tasks with heteroge-

neous objectives, leading to conflicting task-labels and consequently ill-defined

global labels. For the Aircraft dataset, each sample from the base dataset has
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Table 3.3: Test accuracy on H-Aircraft in the generalized setting.

1-shot 5-shot

ProtoNet 47.8± 0.5 66.8± 0.5
MatchNet 65.6± 0.2 78.7± 0.2
R2D2 75.1± 0.3 86.4± 0.2
DeepEMD 51.3± 0.5 65.6± 0.8
FEAT 77.6± 0.6 87.3± 0.4
FRN 81.9± 0.4 91.0± 0.2
MeLa 84.8± 0.3 92.9± 0.2

Oracle 84.4± 0.3 93.1± 0.2

three labels associated with it, including variant, model and manufacturer2

that form a hierarchy. We sample tasks based on each of the three labels

and creates a meta-training set containing three different task objectives: clas-

sifying fine-grained differences between model variants, classifying different

airplanes, and classifying different airplane manufacturers. To differentiate

from the original dataset, we refer to this meta-training set as H-Aircraft. The

training data is particularly challenging given the competing goals across dif-

ferent tasks: a learner is required to recognize fine-grained differences between

airplane variants, while being able to identify general similarities within the

same manufacturer. The training data also exhibits class imbalance. For in-

stance, the dataset is dominated by samples from Boeing and Airbus and the

meta-training set reflects that in GFSL setting.

Table 3.3 shows that MeLa outperforms all baselines for H-Aircraft. To

approximate the oracle performance when ground truth labels were given, we

optimize a supervised semantic softmax loss [Rid+21] over the hierarchical

labels. Specifically, we train the (approximate) oracle to minimize a multi-task

objective combining individual cross entropy losses over the three labels. MeLa

performs competitively against the oracle, indicating the robustness of the

proposed labeling algorithm in handling ill-defined labels and class imbalance.

2E.g. “Boeing 737-300” indicates manufacturer, model, and variant
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The experimental results suggest that MeLa performs robustly in both the

standard and GFSL settings. In contrast, baseline methods perform noticeably

worse in the latter, due to the absence of pre-training and limited training data.

3.5.4.1 Connection to Theoretical Results

We comment on the empirical results so far in relation to our theoretical anal-

ysis. The empirical results strongly indicate that pre-training produces robust

meta-representations for FSL by exploiting contextual information from global

labels. This is consistent with our observation that pre-training would achieve

a smaller error than its meta-learning counterpart. On the other hand, the

results also validate our hypothesis that the pre-trained representation can be

further improved, since the pre-trained representation is not explicitly opti-

mized for handling novel classes. In particular, FEAT, FRN, DeepEMD and

MeLa all outperform the pre-trained representation from [Tia+20] by further

adapting it.

3.5.5 Timings and Complexity of MeLa

We evaluate the time it takes to run the MeLa pipeline specified in Alg. 2

both in terms of actual time running on a computer (wall-time) in the table of

Table 3.5 and computational and memory complexity derived in Appendix A.3.

In terms of wall-time, the table Table 3.5 shows that across all of the

datasets used (Mixed, miniImageNet and tieredImageNet), the proportion

of time the algorithm spend in each part is approximately the same. About

20% of the time is spent in the RepLearn (representation learning), 0−5% is

spent in the LearnLabeler (inferring pseudo-labels through the clustering

and labelling algorithm), around 77% spent in the PreTrain step (pretrain-

ing with the inferred labels) and about 0.5 − 2% spent in the MetaLearn

step (meta-learning step after pre-training). In all, this shows that the ad-

ditional steps of RepLearn and LearnLabeler increase the training time

by about 20% over the standard procedure which seems like a small price

to pay considering that pretraining in the GFSL setting is not possible at
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all without performing RepLearn and LearnLabeler (or some other po-

tential labelling procedure). Finally, the reason for the comparably smaller

cost of RepLearn versus PreTrain is that RepLearn does not require the

class-augmentation which increase the size of the dataset by 4, and for the

tieredImageNet dataset, requires a smaller residual network than that of the

pretraining step (ResNet12 vs ResNet18).

Additionally, we tabulate the time and memory complexity below for one

update step with batch size 1 for the different parts of the training pipeline

Alg. 2. For a representation network ϕθ : X → Rdϕ , we let the computational

and memory complexity of mapping an instance x to ϕθ(x) be given by O(kϕ)

and O(mϕ) respectively. As w is KRR, it has a computational and memory

complexity of O(d2ϕntr + d3ϕ + dϕntrNway) and O(dϕNway) respectively which

depend on the train set size ntr and input dimension dϕ and the number of

ways Nway. The validation set size is nval and we let n = ntr + nval.

3.5.6 Ablations on Pre-Training

Given the significance of pre-training on final performance, we investigate how

the rotation data augmentation and data configuration impact the performance

of the pre-trained representation. For dataset configuration, we focus on the

effects of dataset sizes and the number of classes present in the dataset.

3.5.6.1 Rotation-Augmented Pre-Training

In Sec. 3.4.1, we proposed to increase both the size and the number of classes

in a dataset via input rotation. By rotating the input images by the multiples

of 90◦, we quadruple both the size and the number of classes in a dataset. In

Table 3.4, we compare the performance of standard pre-training against the

rotation-augmented one, for multiple datasets. We use the inferred labels from

MeLa for pre-training.
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Table 3.5: Wall-time in seconds for all stages of Alg. 2 using the hyper-parameters in Table A.1.

Dataset RepLearn LearnLabeler PreTrain MetaLearn Total

Mixed

Time (s) 1408 28 5031 72 6539
Percentage 21.5 0.4 77 1.1 –

miniImageNet

Time (s) 1668 56 6108 144 7976
Percentage 20.9 0.7 76.6 1.8 –

tieredImageNet

Time (s) 15012 4002 63384 384 82782
Percentage 18.1 4.8 76.6 0.5 –
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Table 3.6: Computational and memory complexity of one update for the different steps in the train pipeline Alg. 2. Cglobal is the
number of global classes.

Step Computational Memory

RepLearn O(nkϕsim + d2ϕsimntr + d3ϕsim + dϕsimnNway) O(mϕsim + dϕsim(n+Nway))

LearnLabeler O((nshots + V )Nwaydϕsim) O(Nwaydϕsim)
PreTrain O(kϕ) O(mϕ + C)
MetaLearn O(n(kϕpre + kϕ∗) + d2ϕ∗ntr + d3ϕ∗ + dϕ∗nNway) O(mϕpre +mϕ∗ + dϕ∗(n+Nway))
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Table 3.4: Test accuracy comparison between pre-trained representations:
standard vs. rotation-augmented.

1-shot 5-shot

standard rotation standard rotation

miniImageNet 62.0± 0.4 64.5± 0.4 79.6± 0.3 81.5± 0.3

mini-60 63.9± 0.7 67.7± 0.5 81.5± 0.5 84.1± 0.5

tieredImageNet 69.1± 0.5 69.5± 0.6 83.9± 0.3 84.3± 0.4

tiered-780 78.0± 0.6 78.2± 0.6 89.9± 0.4 90.1± 0.4

H-Aircraft 79.2± 0.5 84.8± 0.3 89.4± 0.3 92.9± 0.2

The results suggest that rotation-augmented pre-training consistently im-

proves the quality of the learned representation. It achieves over 3% improve-

ments in both miniImageNet and H-aircraft, while obtaining about 0.5%

in tieredImageNet. It is clear that rotation augmentation works the best

with smaller datasets with fewer classes. As the dataset increases in size and

diversity, the additional augmentation has less impact on the learned represen-

tation.

3.5.6.2 Effects of Class Count
We further evaluate the effects of increasing number of classes in a dataset while

maintaining the dataset size fixed. For this, we compare the performance of

miniImageNet and tieredImageNet with their respective variants mini-60

and tiered-780.

Table 3.4 suggests that given a fixed size dataset, having more classes

improves the quality of the learned representation compared to having more

samples per class. We hypothesize that classifying more classes lead to more

discriminative and robust features, while standard ℓ2-regularization applied

during pre-training prevents overfitting despite having fewer samples per class.

Overall, the experiments suggest that pre-training is a highly scalable pro-

cess where increasing either data diversity or dataset size will lead to more ro-
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Table 3.7: The effects of no-replacement sampling on the clustering algorithm.

Dataset miniImageNet tieredImageNet mini-60
Replacement Yes No Yes No Yes No

Tasks Clustered (%) 100 98.6 99.9 89.5 98.7 97.8
Clustering Acc (%) 100 99.5 96.4 96.4 72.8 70.1
1-shot Acc (%) 65.8± 0.4 65.8± 0.5 70.5± 0.5 70.5± 0.5 68.4± 0.7 68.4± 0.5
5-shot Acc (%) 82.8± 0.3 82.8± 0.4 85.9± 0.3 85.9± 0.3 84.0± 0.5 84.0± 0.5

bust representation for FSL. In particular, the number of classes in the dataset

appears to play a more significant role than the dataset size.

3.5.7 Ablations on the Clustering Algorithm

The crucial component of MeLa is Alg. 3, which infers a notion of global labels

and allows pre-training to be exploited in GFSL setting. We perform several

ablation studies to better understand the proposed clustering algorithm.

3.5.7.1 The Effects of No-Replacement Sampling

We study the effects of no-replacement sampling, since it affects both the

quality of the similarity measure through ϕsim
θ and the number of tasks available

for inferring global clusters. The results are shown in Table 3.7.

In Table 3.7, clustering accuracy is computed by assigning the most fre-

quent ground truth label in each cluster as the desired target. Percentage of

tasks clustered refers to the tasks that map to k unique clusters by Alg. 3. The

clustered tasks satisfy both constraints imposed by local labels and are used

for pre-training

For both sampling processes, MeLa achieves comparable performances

across all three datasets. This indicates the robustness of Alg. 3 in inferring

suitable labels for pre-training, even when task samples do not repeat across

tasks. This shows that Alg. 3 is not trivially matching identical samples across

tasks, but relying on ϕsim
θ for estimating sample similarity. We note that mini-

60 is particularly challenging under no-replacement sampling, with only 384

tasks in the meta-training set over 640 ground truth classes.
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3.5.7.2 Effects of Pruning Threshold

In Alg. 3, the pruning threshold is controlled by the hyper-parameter q. We

investigate how different q values affect the number of clusters estimated by

the labeling algorithm and the corresponding test accuracy.

The results in Table 3.8 suggest that MeLa is robust to a wide range of q

and obtains representations similar to that produced by the ground truth labels.

While it is possible to replace q with directly guessing the number of clusters in

Alg. 3, we note that tuning for q is more convenient since appropriate q values

appear to empirically concentrate within a much narrower range, compared to

the possible to numbers of global clusters present in a dataset. In practice we

tuned q by hand in order to get a reasonable number of clusters and to avoid

the degenerate case of pruning all clusters until no clusters remained.

Table 3.8: Test accuracy (pre-train only) and cluster count for various pruning
thresholds, 5-shot setting.

miniImageNet (64 classes) tieredImageNet (351 classes) mini-60 (640 classes)
Oracle Pre-train: 81.5% Oracle Pre-train: 84.5% Oracle Pre-train: 85.2%

q No. Clusters MeLa q No. Clusters MeLa q No. Clusters MeLa
3 64 81.5± 0.4 3.5 351 84.3± 0.4 4.5 463 84.0± 0.4
4 75 81.1± 0.4 4.5 373 84.1± 0.3 5.5 462 83.8± 0.4
5 93 80.9± 0.4 5.5 444 84.0± 0.5 6.5 472 84.0± 0.4

3.5.7.3 Inferred Labels vs. Oracle Labels

From Tables 3.7 and 3.8, we observe that it may be unnecessary to fully recover

the oracle labels (when they exists). For mini-60, MeLa inferred 463 clusters

over 640 classes, which implies mixing of the oracle classes. However, the

inferred labels still perform competitively against the oracle labels, suggesting

the robustness of the proposed method. The results also suggest that we may

improve the recovery of the ground truth labels by sampling more tasks from

the meta-distribution.
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3.5.7.4 The Importance of Local Constraints
The clustering process enforces consistent assignment of task samples given

their local labels. To understand the importance of enforcing these constraints,

we consider an ablation study where Alg. 3 is replaced with the standard K-

means algorithm. The K-means algorithm is fully unsupervised and ignores

any local constraints. We initialize the K-means algorithm with 64 clusters

for miniImageNet and 351 clusters for tieredImageNet, the true numbers

of classes in respective datasets.

Table 3.9: Test Accuracy (Pre-train only) using Alg. 3 vs. K-mean Clustering.

miniImageNet tieredImageNet
Cluster Alg. Cluster Acc 1-shot 5-shot Cluster Acc 1-shot 5-shot

Alg. 3 (MeLa) 100 64.5± 0.4 81.5± 0.3 96.4 69.5± 0.5 84.3± 0.3
K-mean 84.9 60.7± 0.5 76.9± 0.3 28.2 64.8± 0.6 78.8± 0.5

Table 3.9 indicates that enforcing local constraints is critical for general-

ization performance during meta-testing. In particular, test accuracy drops by

over 5% for tieredImageNet, when the K-means algorithm ignores local task

constraints. Among the two constraints, we note that (3.12) appears to be

the more important one since nearly all tasks automatically match K unique

clusters in our experiments (see tasks clustered in Table 3.7).

3.5.7.5 Domain Inference for multi-domain tasks
In addition to inferring global labels, we may further augment Alg. 3 to infer

the different domains present in a meta-training set, if we assume that all

samples within a task belongs to a single domain. Given the assumption,

two global clusters are connected if they both contain samples from the same

task. This is illustrated in Fig. 3.2a. Consequently, inferred clusters form an

undirected graph with multiple connected components, with each representing

a domain. We apply the above algorithm to the multi-domain scenario from

Sec. 3.5.4, where the meta-training set consists of Aircraft, CUB and VGG

datasets.

Fig. 3.2b visualizes the inferred domains on the multi-domain scenario.
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(a) Domain Inference via Connected Compo-
nents

(b) UMAP visualization of differ-
ent domains in the multi-domain
dataset

Figure 3.2: (a) The coloured clusters (red, green, blue and yellow) are con-
nected since they both contains samples from the same task. Domains can
be inferred by computing the connected components of the inferred clusters.
(b) UMAP visualization of the three inferred domains from the 5-shot Mixed
dataset containing Aircraft, CUB and VGG. Circles are the means (using the
pretrained features) of the instances in each task averaged per local class while
triangles are the learned centroids, all vectors are embedded using UMAP. The
three domains are recovered perfectly.

For each inferred cluster, we project its centroid into a 2-dimensional point us-

ing UMAP [McI+18]. Each connected component is assigned a different color.

Despite some mis-clustering within each domain, we note that Alg. 3 clearly

separates the three domains present in the meta-training set and recovers them

perfectly.

Domain inference is important for multi-domain scenario as it enables

domain-specific pre-training. Recent works [e.g. Liu+21; LLB21; DSM20] on

Meta-Dataset have shown that combining domain-specific representation into

a universal representation is empirically more advantageous than training on

all domains together. Lastly, we remark that multi-domain meta-learning is

also crucial for obtaining robust representation suitable for wider range of novel

tasks, including cross-domain transfer.

3.5.8 Timings and Complexity Analysis



Chapter 4

Implicit Kernel Meta-Learning

4.1 Summary

In this chapter, based on the paper [FCP22], we device a learning framework for

learning the probability distribution representing a random feature kernel that

we wish to use within KRR. We introduce two instances of this meta-learning

framework, learning a neural network pushforward for a translation-invariant

kernel and an affine pushforward for a neural network random feature kernel,

both mapping from a Gaussian latent distribution. We learn the parameters

of the pushforward by minimizing a meta-loss associated to the KRR objec-

tive. Since the resulting kernel does not admit an analytical form, we adopt a

random feature sampling approach to approximate it.

We call the resulting method Implicit Kernel Meta-Learning (IKML). We

derive a meta-learning bound for IKML, which shows the role played by the

number of tasks T , the task sample size n, and the number of random features

M . In particular the bound implies that M can be the chosen independently

of T and only mildly dependent on n. We introduce one synthetic and two

real-world meta-learning regression benchmark datasets. Experiments on these

datasets show that IKML performs best or close to best when compared against

competitive meta-learning methods.
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4.1.1 Contribution

The principal contribution of this chapter is a method for meta-learning regres-

sion together with a bound on the excess risk which highlights how problem-

specific quantities impact the number of random features needed to generalize.

In particular, our method can be used to learn within a family of translation

invariant kernels that is well-suited when using kernel ridge regression as the

class of base learning algorithms. According to Bochner’s Theorem [see e.g.

RR+07], these kernels are parameterized by a distribution in the frequency

space. In line with [Li+19], we parametrize this distribution as a neural net-

work pushforward. The weights of the network are learned from a sequence of

datasets within a meta-learning setting. Although we focus on distributions

in the context of Bochner’s theorem, our framework extends directly to radial

kernels using Schoenberg’s theorem [Sch38]. Additionally we experiment with

using a neural network random feature kernel, an extension of R2D2 [Ber+19],

and show competitive performance.

Finally, we introduce three novel meta-learning regression benchmark

datasets, one synthetic and two real-world and show that our algorithm ranks

at the top or close to competing meta-learning regression algorithms. We

believe these results, including the theoretical guarantees together with the

flexibility and ease of our method, make it a competitive candidate to be used

as a plug-in meta-learning algorithm in general contexts.

A code repository for creating / downloading the datasets and run the

implementation of the algorithm and benchmarks has been made available at

https://github.com/IsakFalk/IKML.

4.1.2 Organization

Sec. 4.3 introduces the meta-learning representation setting for regression. We

describe our proposed method in Sec. 4.4, analyze it in Sec. 4.5 and benchmark

it in Sec. 4.6. discuss our findings in Sec. 5.2.2.

https://github.com/IsakFalk/IKML
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4.2 Introduction

There has been considerable interest in meta-learning for few-shot image clas-

sification [Vin+16; FAL17; SSZ17; Rus+18; Ren+18; Li+17; KZS15] but less

attention has been given to designing meta-learning algorithms for regression.

Most few-shot regression benchmarks fall under that of interpolating sinu-

soidals or a variety thereof [FAL17; OLL18; FXL18] which lacks many aspects

of real-world regression problems such as being multivariate and noisy. This

highlights the importance of more realistic meta-learning regression datasets

and how to design meta-learning algorithms in this setting. The focus here is

to close this gap.

Meta-learning algorithms employ a variety of different kinds of base al-

gorithms, ranging from metric based to optimization based, and to black-box

ones. A common theme is to learn a shared representation which lead to

faster adaptation of a base learning algorithm to new tasks, indeed this fea-

ture map is integral for good performance in practice. Often the representation

is modeled by a neural network. Recently [Tia+20; Rag+20] observed that the

representation is the most important part of meta-learning algorithms.

In this section we build upon the above empirical observation and extend

this thinking further. Explicitly, we device a meta-learning algorithm that

learns a feature map implicitly in an RKHS with desirable properties by im-

plicitly learning the representation via a kernel function from a large class of

kernels defined by a random feature form. This kernel is in turn implicitly

parametrized by a neural network pushforward which is learned by a meta-

algorithm. When using the random feature family of translation-invariant ker-

nels this has two main advantages: since kernel algorithms can be expressed in

terms of inner products of features which are simple to compute we do not have

to work with this high-dimensional feature space directly. We show that mod-

eling the kernel directly leads to improved performance in the meta-learning

regression case. A second advantage is that translation invariant kernels might

be used as “plug-in” representations. We also experiment with using a neural
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network random feature representation, effectively combining ensembling with

with random features.

4.2.1 Related Work
Recent advances in the image few-shot classification setting [FFP06; Lak+11]

starting with the work of [FAL17; SSZ17; Vin+16] has lead to renewed interest

in meta-learning, notably from the deep learning community by formulating

it as an optimization problem [RL17]. While classification has received a lot

of interest, regression has been given less attention. Some examples are given

by [Tos+19; Tit+21; Pat+20] who apply Gaussian processes [WR06] together

with deep kernel learning [Wil+16] to regression while in [Álv+10] they learn

using an inducing function (a generalization of inducing points), similar to

our frequency distribution, for multi-task Gaussian processes. From the ridge

regression point of view; [Kon+20] investigate theoretically the meta-mixed

linear regression setting while [NCL21] applied KRR to meta-learn dataset

compression.

The ideas in this section can be traced directly from [Zhe+20; SD16;

Li+19] which leverage the characterization provided by Bochner’s theorem for

kernel learning [OSW05; Cri+06]. In [SD16] they fine-tune a convex combi-

nation of sampled kernels in a supervised learning setting using kernel target

alignment [Cri+06]. We also mention the work [Zhe+20] which apply varia-

tional inference to optimize a latent variable model for few-shot learning, and

[Li+19] where they learn an implicit kernel using a pushforward in the case

that the learning objective is linear in the kernel evaluations.

4.3 Meta-Representation Learning
We review the setting outlined in Sec. 2.3. The problem in meta-learning

is to find the minimizer of the transfer risk E(θ) when we only have access

to a meta-train set (Dt)
T
t=1. The standard approach is to use the empirical

meta-risk

Ê(θ) = 1

T

T∑
i=1

R̂(A(θ,Dtr
t ), D

val
t )
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instead of E(θ) and try to solve the bilevel optimization problem of (2.10). If

the meta-loss L(·, D) is (sub)differentiable, we can adopt standard stochastic

first order method (e.g. SGD or Adam [KB15]) to approximate the optimal

meta-parameters θ̂opt = argmin Ê(θ).

In practice, the above approach might pose computational challenges

since, by the chain rule, differentiating L requires computing ∇θA(θ,D). De-

pending on the inner algorithm A, its gradient with respect to the meta-

parameters θ might be hard to compute or not even exist. In the literature,

a wide range of meta-learning strategies have been proposed, considering dif-

ferent choices of inner algorithm A and meta-parameters θ. In practice it is

common to simply fix A to be a learning procedure that operates on datasets,

where we first map all of the inputs in the dataset through some feature map

ϕθ : X → Rm (e.g. a neural network). This way of splitting the meta-learning

algorithm into a feature map and a learning algorithm A which only depend on

θ through the feature mapped instances is called meta-representation learning,

see Sec. 2.4, as the meta-learning problem is recast as one of finding a good

feature map ϕθ that works well when used with A across tasks sampled from

µ.

For example, [Ber+19] considered the case that A performs ridge regres-

sion and θ parameterizes the weights of a neural network. Leveraging the

closed-form solution of the ridge regression estimator, this allows us to effi-

ciently compute the gradient ∇θA(θ,D). In settings where A is minimizing

the empirical risk but with a loss function that does not admit a closed form,

the bi-level optimization perspective [Fra+18] is often adopted which amounts

to interpreting A as returning the T -th iteration of an iterative optimization

algorithm. This allows to access ∇θA(θ,D) by recursively differentiating along

the iterates and use this to update the feature map in the outer loop.
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4.4 Implicit Kernel Meta-Learning
We now introduce the proposed meta-learning strategy. While most previous

work focused on learning a shared data representation or feature map [FAL17;

Ber+19; Fra+18] across tasks, here we propose the dual approach of learning

a shared kernel function.

4.4.1 Learning Translation Invariant Kernels

The definition of positive definite function underlying the notion of reproducing

kernel is very general. Therefore, to formulate the problem of meta-learning

a kernel, we need first to identify a suitable family. In [RR17] they introduce

a “recipe” for random feature kernels defined by a random feature map φ :

X ×Ω→ Ro, where o is the dimension of the space where φ maps to (see (4.1)

for how φ is used with the kernel) and a distribution τ so that any kernel in

this family has the form

K(x, x′) =

∫
Ω

φ(x, ω)⊤φ(x′, ω) dτ(ω). (4.1)

Given the focus here towards regression settings, we first consider the class

of translation invariant kernels, which are particularly suited to deal with such

settings and are interpretable (see e.g. Fig. B.2). Let X = Rd. A kernel K is

called translation invariant ifK(x, x′) = g(x−x′) for some function g : Rd → R;

a well-known example is the Gaussian kernelK(x, x′) = e−∥x−x′∥2/σ2 with σ > 0.

A famous theorem by Bochner [see e.g. RR+07; Rud62; SS15], adapted here to

real-valued kernels, establishes that any properly re-scaled continuous bounded

translation invariant function K : Rd ×Rd → R is a kernel if and only if there

exists a probability measure τ ∈ P(Rd) such that

K(x, x′) = Kτ (x, x
′) ≡

∫
cos(〈ω, x− x′〉) dτ(ω), (4.2)

which can be written in the form of (4.1) by expanding the cosine using the

trigonometric identity cos(x − y) = cos(x) cos(y) + sin(x) sin(y). We call any
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kernel that can be written in the form of (4.1) a Bochner kernel. Eq. (4.2)

implies that we can represent the class of translation invariant kernels as T =

{Kτ | τ ∈ P(Rd)}. Thus we can translate the problem of learning a kernel to

that of learning a probability distribution. This perspective is in line with the

implicit kernel learning approach devised in [Li+19] for generative modeling

and single task settings. The second type of kernel is inspired by the success

of using neural network to extract features and is given by letting φ(x, ω) be

a neural network with ω the weights and τ a distribution over ω.

4.4.1.1 Pushforward Models

To learn the underlying distribution τ we consider a parametrization in terms

of a pushforward model. More formally, let N be the unit Gaussian distribu-

tion over a latent space Z and let ψθ : Z → Rd be a vector-valued function

parameterized by a vector θ ∈ Θ (e.g. a neural network with weights θ).

We denote by τθ = ψθ#N the probability distribution such that, the process

of sampling ω ∼ τθ is equivalent to first sampling z ∼ N and then taking

ψθ(z) = ω.1 This is the strategy adopted to model the generator distribution

in generative adversarial networks (GAN) settings and in the implicit kernel

learning approach of [Li+19]. Several alternatives for the latent distribution

N are possible (e.g. uniform). Under the notation above, we adopt as inner

algorithm,

A(θ,D) = AKRR(Kτθ , D), (4.3)

namely KRR trained with a translational invariant kernel Kτθ meta-

parametrized by the pushforward map τθ. Below we give an example where a

parametrization of τθ yields an analytic form for the corresponding Kτθ ; see

Appendix B.1 for a derivation.

Example 1 (Affine Pushforward Maps). Let θ = (Q, b) with Q ∈ Rd×d and

b ∈ Rd and consider the affine pushforward map ψ(Q,b)(s) = Qs + b. In these

1Formally, for any B ⊆ Rd, τθ(B) = N ({z | ψθ(z) ∈ B}).
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settings, the kernel Kτ(Q,b)
can be expressed analytically as

Kτ(Q,b)
(x, x′) = cos(〈b, x− x′〉)e−‖Q⊤(x−x′)‖2/2. (4.4)

The example above identifies a relevant family of kernels that are particularly

amenable for meta-learning. Thanks to the analytic form of affine pushforward

kernels, we can easily compute meta-gradients and thus directly minimize the

transfer risk Ê(θ). On the other hand, if we consider more expressive maps

ψθ, we will hardly be able to obtain Kτθ in analytic form. Still, this may be

well worth the effort: while for large training sets the difference between (4.4)

and a more sophisticate kernel may be less severe since any universal kernel is

optimal [CD07], in the few-shot learning setting (where we have small training

sets) the inductive bias plays an important role and being able to modify the

kernel in a flexible way is key.

4.4.2 Stochastic Meta-Learning

The discussion above highlighted that except for a few special cases (see e.g.

Example 1), given a distribution τθ it is not possible to compute the kernel Kτθ

(and its gradient with respect to θ) analytically. In principle, this might prevent

us from applying meta-learning algorithms of the form in (4.3). To circumvent

this issue, we consider a strategy based on random features [RR+07; RR17].

Rather than evaluating Kτθ , we sample a set S = (sj)
M
j=1 from N and then

approximate the ideal Bochner kernel by the random features kernel

Kτ̂θS(x, x
′) =

1

M

M∑
j=1

cos(〈ψθ(sj), x− x′〉), (4.5)

where τ̂θS = 1
M

∑M
j=1 δψθ(sj) is an empirical distribution associated to τθ and δω

denotes a Dirac’s delta centered in ω ∈ Rd which we call frequency. Thanks to

the characterization of Kτθ as an expectation in (4.2), we have that

Kτθ(x, x
′) = ES∼NMKτ̂θS(x, x

′), (4.6)



4.4. Implicit Kernel Meta-Learning 94

namely Kτ̂θS is an unbiased estimator of Kτθ . Note that the notation S ∼ NM

means that S is a set of M elements, each one sampled iid from N with

replacement and ES∼NMf(S) means the expectation of f(S) with respect to

S being sampled in this way. In addition to unbiasedness it is also possible to

prove non-asymptotic results bounding the distance between the two kernels

in sup norm [RR+07].

4.4.2.1 Stochastic Meta-Learning

We now introduce a stochastic variant to the meta-learning approach from

Sec. 2.3, by defining the meta-loss associated to a set of random features

L(θ, S,D) = R̂(AKRR(Kτ̂θS , D
tr), Dval), (4.7)

and the corresponding transfer risk

EM(θ) = Eρ∼µED∼ρnES∼NML(θ, S,D), (4.8)

which we will also denote E(θ, S) when wanting to highlight the dependence

on S explicitly.

We propose to address the stochastic meta-learning problem

min
θ∈Θ
EM(θ). (4.9)

Alg. 4 (which is a version of Alg. 1) provides the pseudocode for a (meta)

stochastic gradient descent algorithm applied to this problem. At each itera-

tion t′ = 1, . . . , Titer, we sample a new task ρt′ and datasets Dt′ = (Dtr
′t , D

val
t′ ) ∼

ρnt′ and a set of random features St′ ∼ NM and then perform a gradient descent

step in the direction of ∇θL(θt′ , St′ , Dt′), but note that many other strate-

gies to update the parameters using gradients are available, such as Adam

[KB15]. The gradient can be computed by means of automatic differentiation

(AutoGrad) [see e.g. Bay+18]. While using a large number of random fea-

tures may seem expensive, both training and prediction times are linear in M ,
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Algorithm 4 Implicit Kernel Meta-Learning
Input:

meta-dataset (Dt)
T
t=1

total number of iterations Titer
step-sizes (γt′)

Titer
t′=1,

number of random features M ,
initial meta-parameters θ0,

For t′ = 1, . . . , Titer
Sample a task Dt′ = (Dtr

t′ , D
val
t′ ) from (Dt)

T
t=1

Sample M random features S from N
Form Kτ̂θt′S

and compute L(S, θt′ , D) as in (4.7)
Get ∇θL(θt′ , S,D) =AutoGrad(L(·, S,D), θt′)
Update θt′+1 ← θt′ − γt′∇L(θt′ , S,D)

Return θTiter

see Appendix B.5 for a detailed analysis of the computational complexity and

wall-time estimates. We refer to this method as Implicit Kernel Meta-Learning

(IKML).

4.5 Generalization Bound

We now study the generalization ability of the proposed meta-learning method.

In particular, our goal is to study the effect of the number of random features

on the performance of the meta algorithm. To present our observations we

focus for simplicity on the case that the meta loss uses the task dataset for

both training and validation, that is we use the empirical risk

L̃(θ, S,D) = R̂(AKRR(Kτ̂θS , D), D), (4.10)

which is the empirical error of KRR with kernel (4.5) on the dataset D instead

of (4.7). For a collection of datasets (Dt)
T
t=1 and a sample S = (sj)

M
j=1 from

N , define the multitask empirical risk

ÊT (θ, S) =
1

T

T∑
t=1

L̃(θ, S,Dt). (4.11)
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We aim to bound the excess transfer risk

EM(θ̂)− E(θ∗), (4.12)

where θ∗ ∈ Θ is such that E(θ∗) = minθ E(θ) and θ̂ is the minimizer of the

multitask empirical risk, which we call the multitask empirical risk minimizer

(MERM) which in practice we approximate by the solution returned by Alg. 4.

Theorem 2. Assume that Z = X × Y ⊆ Rd × [0, 1], µ is a meta-distribution

on Z, the loss ℓ(ŷ, y) = (ŷ − y)2 and kernel family K = {Kτθ | θ ∈ Θ} is a

family of Bochner kernels parameterized by some latent distribution N with

support on Rl and a family of measurable functions {ψθ : Rl → Rd | θ ∈ Θ}.

For any n,M, T ∈ N let the training task datasets D1, . . . , DT be given by

iteratively sampling a task ρt ∼ µ and Dt ∼ ρnt and S ∼ NM , the family

of inner algorithms being KRR with kernels Kτθ ∈ K and fixed regularization

parameter λ > 0 and θ̂ being the MERM over the task datasets and random

features. Then, for δ ∈ (0, 1), with probability at least 1 − δ over the datasets

and random features

EM(θ̂)− E(θ∗) ≤ O

√MRn,M,T

Tλ
√
n

+

√
log 1

δ

T

+ (4.13)

O

(
1

λ
√
n

)
+ (4.14)

O

(
1√
Mλ3

(
1 +

√
G∗
n log n

λ2n

))
(4.15)

where

Rn,M,T = E(Dt)Tt=1∼µ̂TES,ϵ sup
θ∈Θ

n,M,T∑
i,j,t

ϵi,j,t〈ψθ(sj), xti〉, (4.16)

the random variables ϵi,j,t being i.i.d Rademacher and D ∼ µ̂ means first sam-

pling ρ ∼ µ and then D ∼ ρn, and G∗
n = Eρ∼µED∼ρn

∥∥(Kθ∗(xi, xj))
n
i,j=1

∥∥
∞.

Proof Sketch. We discuss the key elements of the proof and present the full

details in Appendix B.2. We write EM(θ̂)− E(θ∗) = ES[EM(θ̂, S)− E(θ∗)] and
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decompose the term inside the expectation as

E(θ̂, S)−Ê(θ̂,S)︸ ︷︷ ︸
(A)

+ Ê(θ̂,S)−ÊT (θ̂,S)︸ ︷︷ ︸
(B)

+ ÊT (θ̂, S)−ÊT (θ∗,S)︸ ︷︷ ︸
(C)

+ ÊT (θ∗,S)−Ê(θ∗,S)︸ ︷︷ ︸
(D)

+ Ê(θ∗,S)−E(θ∗,S)︸ ︷︷ ︸
(E)

+ E(θ∗,S)−E(θ∗)︸ ︷︷ ︸
(F )

where Ê(θ, S) and ÊT (θ, S) are the average empirical error and the multitask

empirical error, for the meta-parameter θ and random features S – see the

section on the bound in the appendix. Bounding the terms (A) and (E) leads

to (4.13) while bounding the terms (B) and (D) leads to (4.14). The term (C)

is the optimization error and is negative if we can minimize the empirical risk

objective. Finally the term (F) is bounded using [Tro19, Theorem 2.1] and

auxiliary results presented in the appendix.

There are several implications of the above theorem which we now com-

ment upon. The first term in the r.h.s. of (4.13) contains the unnormalized

Rademacher complexity Rn,M,T of the set {(〈ψθ(sj), xti〉)
n,M,T
i,j,t=1 : θ ∈ Θ} ⊆

Rn×M×T . This is a measure of the capacity of the RKHS’s we consider as part

of using the kernel family K and quantifies the kernel families ability to fit

random noise. While this quantity requires a case by case analysis it is often

of order
√
T . Since in meta-learning the number of tasks is very large this term

is negligible in many practical scenarios. For example, following the reasoning

in [One+20] we obtain that Rn,M,T = O(
√
nMT ). The number of random fea-

tures should then be chosen so that the quantity (4.15) is smaller than (4.14).

G∗
n represents the size of best RKHS needed to explain the data averaged over

the possible datasets sampled from the environment. In some sense it repre-

sents the degrees of freedom of the best model θ∗ given the meta-distribution.

A direct computation gives the condition

M = Ω

(
n

λ
+
G∗
n log n

λ3

)
.
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Since G∗
n ∈ [1, n], we conclude that the number of random features needed by

the algorithm in order to be competitive with meta-learning without random

feature approximation is independent of the number of tasks and only mildly

dependent on n. For example, assuming λ = 1/
√
n we obtain that M =

Ω(n
3
2 log n) or M = Ω(n

5
2 log n) when G∗

n = 1 or G∗
n = n, respectively. The

case that G∗
n = O(n) requiring more random features corresponds to a low rank

Gram matrix, meaning that the tasks are strongly related. This is however

worth the effort since in this case the optimal risk E(θ∗) we compare to will

be very small, because the optimal low rank kernel makes learning very easy.

Finally we note that λ being in the denominator of all terms is an artifact

due to comparing to the best KRR algorithm θ∗ instead of the quantity E∗ =

Eρ∼µRρ(fρ) where fρ = E[y|·] is the optimal predictor for the distribution ρ

[see Den+19, for a discussion].

While the above bound shows that IKML in the idealized setting of being

able to find the MERM θ̂, which is not possible in practice and to account for

this would incur an additional optimization error term in the bound, has a risk

which tends towards that of the ideal minimizer θ∗, there are still some things

which it fails to explain and has some parts which are unrealistic. Firstly, it

does not take into account more detailed conditions on µ which would allow

for a more detailed understanding of learning in the meta-learning setting such

as questions relating to negative transfer and how much IKML would improve

over ITL using KRR. Secondly, we have not analyzed the approximation error

which would occur if the optimal kernel would fall outside that of the pre-

specified collection of kernels K. Still, we believe the bound is encouraging as

it shows that IKML learns and provides insight into how to choose the number

of random features for learning to occur which is practically useful.

4.6 Experimental Results

We evaluate the performance of the proposed meta-learning strategy on both

synthetic and real experiments against several baselines.
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4.6.1 Synthetic Multivariate Regression

For IKML to be effective in realistic meta-learning regression scenarios it is

important that it can approximate non-trivial functions defined on Rd where

d � 1. To investigate this we create two synthetic high-dimensional meta-

learning regression settings where each task is sampled from an RKHS H with

a “complicated” kernel Ko. In particular, we choose Ko to be the kernel given

by Bochner’s theorem and a pushforward, where we consider two settings, one

of no misspecification using a 3-layers Multi-Layer Perceptron (MLP) with 32

hidden units per layer, ReLU activation functions and a 16-dimensional latent

Gaussian distribution, and one of severe misspecification where we use a 5-

layers MLP with 128 hidden units per layer, ReLU activation functions and a

32-dimensional latent Gaussian distribution. The network was initialized with

weights given by the PyTorch [Pas+19] default initialization scaled by 100 and

200 respectively for the no misspecification and the severe misspecification

setting. Since this kernel lacks an analytic form, we sample 10000 frequencies

and use the random features kernel from (4.5) in its place. The tasks are

generated from a distribution on f ∈ H and a marginal distribution on inputs

fixed across all tasks. For each task we sample n = ntr + nval = 50+ 50 inputs

(xi)
n
i=1, a function f and create the task (xi, f(xi))

n
i=1, for more details see

Appendix B.4.3.

We compare the following meta-learning algorithms:

IKML. Alg. 4 parameterizing the pushforward ψθ for the measure τθ with a

three-layer MLP with hidden dimension set to 32 and the dimension of the

latent space Z = R16. The number of random features is set to M = 104 for

the no misspecification settings and M = 5000 for the severe misspecification

setting.

Gaussian MKL meta-KRR (GMKL). Multiple Kernel Learning (MKL)

with KRR as inner algorithm. The meta-algorithm consists in learning the

weights of a kernel K =
∑k

j=1 λjKj that is a convex combinations of Gaussian

kernels Kj(x, x
′) = exp(− 1

2σ2
j
‖x− x′‖2) with lengthscale σj taken from an log-
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equidistant grid from 10−3 to 103. The meta-learning algorithms learns the

weights λ parameterized in terms of the vector z ∈ Rk as λj = exp(zj)∑k
i=1 exp(zi)

.

MAML [FAL17]. Optimizing through inner gradient descent with MLP to

learn a good initalization in the outer loop. We use a three-layer MLP with

32 hidden units and ReLU activation functions.

R2D2 [Ber+19]. Ridge regression as inner algorithm, learning a shared fea-

ture map in the outer loop. We use a three-layer MLP with 32 hidden units

and ReLU activation functions.

Oracle. Running a separate instance of KRR on each task, with the same

kernel Ko used to generate the tasks, and finding λ by cross validation on the

test set.

Figure 4.1: Learning curves of meta-test RMSE over three runs (mean ± 1
std) of Gaussian MKL meta-KRR, MAML, R2D2 and IKML together with
the KRR Oracle on the synthetic no misspecification meta-learning problem
introduced in Sec. 4.6.1 for d = 1, 5, 10. We generate Ko once for each exper-
iment and resample tasks for each run. Note that for low dimensions, MKL
and R2D2 performs comparably to IKML. For d = 20 the algorithms fail to
learn (left out). We stipulate that this is due to the number of train and val-
idation points in the task not being enough to learn in this relatively higher
dimensional setting.

As can be seen from Fig. 4.1 and 4.2 IKML performs best in all settings

(correctly and misspecified setting) for all dimensions, highlighting that it man-

ages to learn well even when the kernel is misspecified. R2D2 is the closest

competitor except for low dimensions where Gaussian MKL manages to learn

something in addition to IKML and R2D2. MAML struggles in all cases ex-

cept for the 1-dimensional case. We ran experiments for d = 20 but none of
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Figure 4.2: Learning curves of meta-test RMSE over three runs (mean ± 1
std) of Gaussian MKL meta-KRR, MAML, R2D2 and IKML together with
the KRR Oracle on the synthetic meta-learning misspecification problem in-
troduced in Sec. 4.6.1 for d = 1, 5, 10. We generateKo once for each experiment
and resample tasks for each run. IKML performs better for all settings while
R2D2 initially learns for d = 5 and 10. For d = 20 the algorithms fail to learn
(left out). We stipulate that this is due to the number of train and validation
points in the task not being enough to learn in this relatively higher dimen-
sional setting.

the algorithms learn well, probably due to the size of the train and validation

sets of a task being too small.

4.6.2 Real-World Data Experiments
We evaluate the proposed approach on two new real world meta-learning re-

gression datasets adapted to the meta-learning setting from the UCI reposi-

tory [DG17]. Apart from IKML and Gaussian MKL meta-KRR, we used the

following algorithms in our experiments: LS Biased Regularization [Den+19]

(LSBR). Running linear ridge regression with biased regularization λ‖f − θ‖2

in the inner algorithm, learning the bias θ in the outer loop.

ANP [Kim+19]. Learns to map datasets to stochastic processes over func-

tions using neural networks to do meta-learning. Predictor is the conditional

mean of the stochastic process.

Gaussian Oracle KRR (GO). Gaussian KRR addressing each task as a

separate learning problem but cross-validating the kernel bandwidth and regu-

larization parameters σ2 and λ on the average validation error directly on the

meta-test set.

We chose the baselines from landmark papers in the few-shot learning

(MAML, R2D2, ANP, LSBR) and multiple-kernel learning (GMKL, GO) liter-



4.6. Experimental Results 102

ature applicable to regression. We think these are natural baselines to compare

against.

For both meta-learning datasets, we run the algorithms above in an online

fashion where we use a meta-batch of 4 tasks per iteration sampled from the

meta-train set. For IKML we fix the number of random features to 20000

which is on the order of Ω(n5/2 log(n)) if we would have pooled the train and

validation set of 25 datapoints to one train set of size 50. Note however that

further experiments show that in practice we can get away with as little as

2500 random features while mainting performance. Every 250 steps we sample

1000 tasks from the meta-validation set and evaluated the average meta-loss for

each algorithm and save the model parameters. After training we sample 3000

tasks from the meta-test set. For the meta-test evaluation, for all algorithms,

we use the meta-parameters with the lowest meta-validation error and get the

test performance for all algorithms. We measure performance in terms of the

root mean square error (RMSE). This procedure was run 5 times over different

random seeds in order to get learning curves and results on the meta-test set.

Below we describe the datasets and comment on the empirical evidence.

4.6.2.1 Air Quality

The Beijing Air Quality dataset [Zha+17] is a time-series dataset measuring

air-quality and meterological factors at 12 air-quality monitoring sites. The

meterological data for each site is matched with the closest of available weather

stations. The data was collected hourly and from the period March 1st, 2013

to February 28th, 2017. For further details we refer to Appendix B.3.1.

We generate a task of train and validation size ntr, nval by randomly pick-

ing a station and picking a contiguous subsequence of size n = ntr + nval at

random from the split. We append the feature “t” which is the local order of

data points and then randomly assign ntr of the n points to the train set and

the rest to the validation set. This can be seen as a reconstruction problem:

given data from sensor of which some have failed, we want to infer the output

given an input at some points in time. We choose to use ntr = nval = 25.
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After experimenting we use the following configuration of the algorithms;

For Gaussian MKL meta-KRR we use 20 Gaussian kernels with lengthscale

sampled geometrically from 1 to 1012 and learn the coefficients and regularisa-

tion parameter using the same parameterization as in the synthetic experiment

with Adam and a meta-learning rate of 0.001. For LS Biased Regularization

we learn the bias and regularisation parameter using Adam with meta-learning

rate 0.01. We parameterized MAML with a 2-layer MLP with 64 hidden di-

mensions and with inner learning rate 10−7 and one adaptation step, learning

the initialization using Adam with meta-learning rate of 0.001. We found that

using a very small inner learning rate and few steps was important to get

MAML to converge. For R2D2, IKML and ANP we cross-validated to find

the best set of hyparparameters, see Appendix B.4.5 and Table B.1 in the

appendix for more information. For Gaussian meta-KRR we learn the length-

scale and regularisation parameter using Adam with a meta-learning rate of

0.001. We benchmark a neural network IKML, called IKML-MLP in where

we use a 4-layer MLP with 64 hidden units, 8 output features and 500 random

features trained using Adam with learning rate of 3 · 10−4, see Appendix B.4.2

for details.

From the Air Quality column of Table 4.1 we can see that IKML performs

best with R2D2 and IKML-MLP close seconds. In general we can see that on

this dataset the algorithms which learn a feature map linked with a closed

form estimator performs best with the exception of GMKL.

4.6.2.2 Gas Sensor

The Gas Sensor Modulation dataset [BJM18] is a collection of multivariate

timeseries collected in a controlled environment using MOX sensors for CO

detection sampled at 3.5 Hz. Each task corresponds to a subsampled time-

series from an experiment. As noted in [BJM18] the regression tasks are hard

due to being heteroscedastic, non-normal and non-linear as a function of time

but with tasks sharing a lot of structure, making it suitable as a meta-learning

regression dataset. For further details we refer to Appendix B.3.2.
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Table 4.1: Test RMSE on Beijing Air Quality and Gas Sensor. Best results in
bold.

Model Air Quality
RMSE

Gas Sensor
RMSE

GMKL 23.27 ± 0.16 9.61 ± 0.07
LSBR 21.68 ± 0.29 12.44 ± 0.14

MAML 34.96 ± 3.58 2.81 ± 0.12
R2D2 20.23 ± 0.55 1.95 ± 0.06

Gaussian meta-KRR 25.08 ± 0.48 9.80 ± 0.09
GO 25.94 ± 0.91 12.78 ± 0.10

IKML 19.14 ± 0.93 2.80 ± 0.10
IKML-MLP 20.77 ± 0.57 2.06 ± 0.09

ANP 33.77 ± 0.70 2.12 ± 0.09

Table 4.2: Test RMSE / MAE / SMAPE on Beijing Air Quality and Gas
Sensor datasets for R2D2, IKML and ANP.

Air Quality
Model RMSE MAE SMAPE
R2D2 20.23 ± 0.55 11.67 ± 0.40 0.24 ± 0.01
IKML 19.14 ± 0.93 10.62 ± 0.19 0.22 ± 0.00
ANP 33.77 ± 0.70 21.08 ± 0.40 0.35 ± 0.01

Gas Sensor
Model RMSE MAE SMAPE
R2D2 1.95 ± 0.06 0.94 ± 0.09 0.18 ± 0.05
IKML 2.80 ± 0.10 1.61 ± 0.26 0.24 ± 0.03
ANP 2.12 ± 0.09 1.06 ± 0.06 0.09 ± 0.01

We benchmark the algorithms for ntr = nval = 20. After experiment-

ing we use the following configuration of the algorithms; For Gaussian MKL

meta-KRR we use 20 Gaussian kernels with lengthscale chosen geometrically

from 1 to 108 and learn the coefficients and regularisation parameter using

the same parameterization as in the synthetic experiment with Adam and a

meta-learning rate of 0.001. For LS Biased Regularization we learn the bias

and regularisation parameter using Adam with meta-learning rate 0.01.

We parameterized MAML with a 4-layer MLP with 64 hidden units with

inner learning rate 10−4 and one adaptation step, learning the initialization

using Adam with meta-learning rate of 10−4. For R2D2, IKML and ANP we
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cross-validated to find the best set of hyparparameters, see Appendix B.4.5

and Table B.1 in the appendix for more information. For Gaussian meta-KRR

we learn the lengthscale and regularization parameter using Adam with a meta-

learning rate of 0.001. IKML-MLP is as for Gas Sensor, but with 2 layers and

100 random features.

From the Gas Sensor column of Table 4.1 we can see that IKML and

MAML gets the lowest meta-test error after R2D2 and IKML-MLP, in contrast

with the Air Quality results where MAML performed poorly. This is probably

due to Gas Sensor having less noise and thus making MAML easier to optimize

(MAML is well-known to be hard to train [AES19]).

4.6.2.3 Additional Metrics
RMSE is a well-established regression metric due to its grounding in statistical

modelling, where maximum likelihood estimation of conditional output models

with Gaussian noise can be shown to be equivalent to minimizing the (R)MSE

of this model. However, it is not the only metric of interest and solely relying

on it as a metric of success may be misleading due to RMSE being sensitive

to outliers and not taking into account the magnitude of the true value of the

output y and the prediction ŷ. Given a collection of magnitudes of differences

(we call such a value a deviance here) between the true outputs and the pre-

dictions of a model h, (|yi − h(xi)|)ni=1, for some dataset D = (xi, yi)
n
i=1, the

RMSE is defined to be
√

1
n

∑n
i=1|yi − h(xi)|

2. RMSE is sensitive to outliers

which means that a few large deviances |y − h(x)| will contribute most of the

RMSE. In many cases this is not the behaviour we want from a metric hence

the need for additional ones.

To test the abilities of IKML more holistically we evaluate it and two

other strong baselines (R2D2 [Ber+19] and ANP [Kim+19]) on two additional

metrics: mean absolute error (MAE) and symmetric mean absolute scaled

error (SMAPE)2 [CWJ21]. MAE is less sensitive to outliers since it does not

square each deviance, being defined as 1
n

∑n
i=1|y − h(x)|. In the case when

2Note that we present this as a ratio instead of as a percentage.
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the practical bad outcome of a large and very large deviance are similar this

is a better metric to use than the RMSE. SMAPE is a metric which takes

into account not only the deviance but also the magnitude of the prediction

and outputs, being defined as 1
2n

∑n
i=1

|yi−h(xi)|
|yi|+|h(xi)| . The impact of this is that

SMAPE is not only a function of the deviance but also the raw values of the

output and the prediction, unlike RMSE and MAE which are defined solely in

terms of deviances. When the output space has a meaningful zero point this

means that SMAPE takes into account how well the model predicts outputs

of small magnitude. This is not true for RMSE and MAE; consider a model

h(x) = 0, the deviance when using this model at an output y is simply |y|

which can be arbitrarily small since it only depends on the magnitude of y,

while for SMAPE each contributing term in the sum in this case is 1.

For the algorithms R2D2, IKML and ANP, with the same setting and

training strategies as outlined for Air Quality and Gas Sensor datasets using

RMSE, MAE and SMAPE as metrics we tabulate the results in Table 4.2.

From Table 4.2 we see that IKML performs the best on all metrics on the Air

Quality dataset with ANP performing poorly and the metrics of the algorithms

correlating well with each other. For Gas Sensor R2D2 performs best except for

SMAPE where ANP performs much better. The reason for this is due to Gas

Sensor having many values close to zero which means that a low RMSE or MAE

does not necessarily translate into a lower SMAPE metric, which probably

means that ANP predicts outputs with small output magnitude better than

R2D2 and IKML, but does not predict better than R2D2 and IKML on outputs

of typical magnitude.

4.6.2.4 Impact of Number of Random Features on RMSE and

Time
In this section we investigate how the number of random features during train

time impacts wall-time taken to train and number of random features during

train and test time impacts performance for IKML. Using the Beijing Air

Quality and Gas Sensor datasets we run IKML using the same hyperparameters
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as in Sec. 4.6.2 except for the number of random features which we let be in

the set of {500, 1000, 5000, 10000, 20000} during training and testing. We first

choose a number of random features for training. After we finish training, we

use the parameters with the lowest validation error during training (using the

same number of random features we chose for training) and test the model

with these parameters, varying the number of random features from 500 to

20000 in the same set.

Table 4.3: Test RMSE on Gas Sensor dataset for IKML as a function of number
of random features during train and test time.

Random Features (test) 500 1000 5000 10000 20000
Random Features (train)

500 3.03 3.02 3.02 3.02 3.02
1000 3.09 3.09 3.09 3.09 3.09
5000 3.08 3.08 3.07 3.07 3.07
10000 3.55 3.52 3.51 3.51 3.52
20000 2.97 2.96 2.96 2.95 2.95

Table 4.4: Timings (seconds) of training for the Gas Sensor dataset for IKML
as a function of number of random features during training.

Random Features (train) 500 1000 5000 10000 20000

739 760 781 779 836

In terms of performance, Tables 4.3 and 4.5 show that over the range

of random features defined in the set above, performance is similar with a

slight decrease in test RMSE as the number of random features increase. An

exception is row 4 in Table 4.3, with value 10000 which is slightly higher than

the other rows of the table, which is due to an outlier run during training.

For Table 4.5 we see a decrease as we go from 1000 to 5000 random features

during training after which the performance is essentially the same for 5000 to

20000 random features. In terms of timings, as can be seen Tables 4.4 and 4.6,

the wall-time increases very slightly with the number of random features used

during train time, but the increase is extremely small.
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Table 4.5: Test RMSE on Beijing Air Quality dataset for IKML as a function
of random features number of during train and test time.

Random Features (test) 500 1000 5000 10000 20000
Random Features (train)

500 22.12 22.06 22.01 22.01 22.02
1000 22.01 21.98 21.89 21.90 21.91
5000 19.63 19.65 19.55 19.55 19.54
10000 19.32 19.27 19.21 19.16 19.19
20000 19.42 19.30 19.27 19.26 19.24

Table 4.6: Timings (seconds) of training for the Beijing Air Quality dataset
for IKML as a function of random features during training.

Random Features (train) 500 1000 5000 10000 20000

482 497 487 489 515



Chapter 5

Conclusion and Future Work

In this section we summarize the contributions of this thesis to the field of

meta-learning, few-shot learning and machine learning, and add concluding

remarks and future work related to chapters 3 and 4.

We end with a discussion of future work in the direction of currently

important topics in machine learning; conditional meta-learning, incorporating

further invariances into meta-learning and time-series. We outline how MeLa

and IKML could be adapted to work in these settings and potential advantages

of these methods in these contexts. Meta-learning as a field is still developing,

but it is my belief that the tools we have developed in the, maybe restrictive,

setting of few-shot supervised learning can be adopted to many other settings

of great importance for academia and industry.

5.1 MeLa

5.1.1 Summary of Contributions

We answer several important questions in few-shot classification and introduce

an effective clustering algorithm to recover the base classes in this setting. We

provide both theoretical and experimental justification for why pre-training

is an effective and ubiquitous strategy for few-shot image classification. This

justification is done by explicitly linking pre-training with conditional meta-

learning and showing that pre-training minimizes an upper bound on the meta-

learning risk. Inspired by this we introduce a data-augmentation technique
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for few-shot learning which introduces virtual classes, en-largening the meta-

dataset, and a clustering algorithm, MeLa, that can recover base classes from

a meta-dataset of tasks with only local classes. MeLa allows us to use pre-

training even when base classes are not available to us, or they are ill-defined,

and achieves SOTA performance against both settings where base classes are

assumed and not assumed to be available. Finally, we introduce a more realistic

few-shot classification setting where instances are not allowed to be shared

between tasks and the number of tasks is fixed. We empirically show that our

algorithm performs robustly in both standard and our introduced few-shot

setting and clearly outperforms SOTA models in the latter.

5.1.2 Conclusion and Future Work

In this work, we focused on the role played by pre-training in meta-learning

applications, with particular attention to few-shot learning problems. Our

analysis was motivated by the recent popularity of pre-training as a key stage

in most state-of-the-art FSL pipelines. We first investigated the benefits of

pre-training from a theoretical perspective. We showed that in some settings

this strategy enjoys significantly better sample complexity than pure meta-

learning approaches, hence offering a justification for its empirical performance

and wide adoption in practice.

We then proceeded to observe that pre-training requires access to global

labels of the classes underlying the FSL problem. This might not always be

possible, due to phenomena like heterogeneous labeling (i.e. multiple label-

ers having different labeling strategies) or contextual restrictions like privacy

constraints. We proposed Meta-Label Learning as a strategy to address this

concern. We compared MeLa with state-of-the-art methods on a number of

tasks including well-established standard benchmarks as well as new datasets

we designed to capture the above limitations on task labels. We observed

that MeLa is always comparable or better than previous approaches and very

robust to lack of global labels or the presence of conflicting labels.

More broadly, our work provides a solid foundation for understanding
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existing FSL methods, in particular the vital contribution of pre-training to-

wards generalization performance. We also demonstrated that pre-training

scales well with the size of datasets and data diversity, which in turn leads to

more robust few-shot models. Future research may focus on further theoretical

understanding of pre-training and better pre-training processes.

Some open questions remaining are the following; we would want to extend

the clustering algorithm to properly incorporate multi-domain meta-datasets,

where we have many base datasets. In this case we would need to model

this structure and go beyond the binomial construction used for the pruning.

We would like to apply MeLa to bigger and more realistic datasets such as

meta-dataset [Tri+20] which would require require some engineering due to

the large-scale nature of this dataset.

Finally we would like to continue with a more detailed analysis of pre-

training and meta-learning to properly work out how they are related and not

just look at rates, in addition to understanding the conditions necessary on

the meta-distribution to derive bounds which give a more detailed insight into

when FSL may or may not suffer compared to standard meta-learning or in-

dependent task learning, being able to take into account positive and negative

transfer. A downside of the current bound is that it does not take into account

the meta-distribution in a very comprehensive sense, similarly to the bound

for IKML. In this way it does not add any knowledge in terms of under what

conditions on the meta-distribution Me

5.2 IKML

5.2.1 Summary of Contributions

We introduce IKML, a framework for meta-learning an RKHS (or equivalently;

an infinite-dimensional feature map) from a family of kernels having certain

inductive biases, where we focus on the case of translation-invariant kernels,

which performs well for meta-regression when the inner algorithm is KRR. As

the kernel is encoded implicitly through a neural-network pushforward of a
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simple distribution, we use random features to get an approximation which

is approximately equal to the true kernel with high probability. We derive a

bound on the excess risk, assuming that we can find the true empirical risk

minimizer, showing how problem-specific quantities impact the number of ran-

dom features needed to generalize at test time. We show that the number

of random features required for good performance is small and can be used

to trade off performance against speed at test-time. Additionally, we intro-

duce a heuristic kernel family given by a neural network random feature kernel

which extends R2D2. For both kernels we show competitive performance to-

gether with interpretability. Finally, we introduce three novel meta-learning

regression benchmark datasets and make them available to the community.

5.2.2 Conclusion and Future Work

We introduced a framework for implicit kernel meta-learning, IKML, in context

of translation-invariant and deep random kernel families. Our approach focuses

on problems where data does not present a clear input structure (in contrast

e.g. to image classification settings) and using a plug-in translation invariant

kernel might be a safer strategy. Our approach leverages the characterization of

random feature kernels, in particular the translation invariant kernels granted

by Bochner’s theorem and ideas from the random features literature to learn it

in practice. We derive a novel bound on the excess transfer risk shedding light

on how to choose the number of random features. To validate our method we

introduced two real-world meta-learning regression datasets.

IKML achieve best or close-to-best performance on all of the datasets

against state-of-the-art methods designed for few-shot image classification. We

hypothesize that when the data does not have enough structure (e.g. in most

regression settings), learning a deep representation – as done by state-of-the-

art methods such as MAML or R2D2 – may be less effective. We leave further

investigation of this question to future work.

Some problems remain, mainly with the derived bound. The bound would

be more complete if we took into account the optimization error which is the
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error due to not being able to finding the minimum θ̂. Additionally, the bound

does not take into account a more fine-grained analysis of the types of meta-

distributions we are likely to encounter in practice which could lead to faster

rates and more insight into when using IKML is better than doing standard

KRR with a fixed kernel, so called negative transfer.

We close by mentioning a couple of relevant directions for future research:

Conditional Meta-Learning: Is it possible to extend the framework to con-

ditional meta-learning? One way would be to use KTA similar to [SD16] and

adjusting the initial starting kernel similar to MAML.

Theoretical Guarantees: Can we show that IKML converges to a stationary

point for benign settings? This would require understanding the bias-variance

decomposition of the gradient.

Alternative Kernel Classes: Can we extend IKML to other kernel families?

An example is dot-product kernels [KK12].

Vector-Valued Kernels and Multi-Output Regression: We have for sim-

plicity focused on the case where Y ⊆ R but in principle it should be possible

to extend IKML to multi-output or vector-valued regression [ÁRL12; MP05]

where Y ⊆ Rl and allows for leveraging the correlation between the differ-

ent output dimensions and correlations between inputs and outputs, encoded

as cross-covariance matrices or operators. Using random fourier features for

vector-valued kernels [BHB16] and modeling the regularizer using one of the

methods in [ÁRL12] would be a fruitful future direction to pursuit.

5.2.3 Artifacts
Code and data necessary to reproduce the results of chapters 3 and 4 (including

results in the appendix Appendices A and B) can be found at

MeLa

https://github.com/IsakFalk/mela,

IKML

https://github.com/IsakFalk/IKML.

https://github.com/IsakFalk/mela
https://github.com/IsakFalk/IKML
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5.3 Concluding Remarks and Future Work
Machine learning is currently grappling with growing pains as it is developing

from a field which has been mainly academic to a tool being deployed in the

real world. This development, while very exciting, has also shown that prob-

lems such as non-independence of samples in the form of dataset shift during

deployment and data-distributions shifting over time (for example, time-series

data) is very real when going from benchmarks to deployment. If machine

learning is to be used in industry without potentially catastrophic failures

and to additionally become trustworthy so that it can be used in deployment

and reach wide-scale use, we need to solve the above problems. To use the

definition of a technology in [Lem06, p. 5]1:

Machine learning is not yet a technology; it requires expert knowl-

edge in order to train and deploy, and furthermore it has a propen-

sity to be brittle and deteriorate under dataset shift.

These types of questions are naturally answered in the setting of meta-

learning as it assumes that the data is heterogeneous and further in few-shot

learning the meta-train, validation and test sets are assumed disjoint which by

itself is a type of dataset shift. By extending meta-learning in the direction of

meta-learning algorithms which are robust to dataset shift, takes into account

natural data invariances and work on time-series data, either on the task or

dataset level [see e.g. Den+19, for steps in this direction], we move closer to

machine learning that is deployable in the real world and is reliable, that is,

can be considered a technology. Below we propose some potential directions

for future work in the vein of the above.

5.3.1 Conditional Meta-Learning
Recently it has been shown that conditional meta-learning has beneficial prop-

erties when compared to standard meta-learning, as outlined in Sec. 2.4.1.
1The authors propose linear programming as an example of a mature technology as it

is reliable and can be used by practitioners without advanced knowledge of the underlying
theory and tricks.
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While we have investigated how MeLa relates to conditional meta-learning

theoretically, another direction for IKML would be to investigate how to turn

this algorithm conditional. While there may be many ways to do this, one

principled way would be to use kernel target alignment similar to [SD16] and

adjusting the initial starting kernel similar to MAML [FAL17]. Kernel target

alignment comes with theoretical backing [CMR12] and it may be possible to

derive better generalization bounds when compared to standard, unconditional

IKML, similarly to what is done in [DPC20].

5.3.2 Incorporating Invariances

Assumptions on the data are very common in machine learning, leading to

notions such as sparsity and low-rank models (e.g. LASSO [Tib96]). Recently

a different type of data assumption have become popular based on invariances,

mainly due to the efforts of the geometric deep learning community and ma-

chine learning applied to physical problems [Bro+21; Bro+17]. IKML is linked

to this development through the form of the kernel family. Many kernel fami-

lies with certain properties such as translation-invariance and rotation invari-

ance can be shown to have a dual formulation using some integral transform.

Understanding this link better would allow to specify conditions when IKML

generalizes by incorporating invariances, preferably quantified within an upper

bound on the meta-risk. Work in this direction has already been done in the

KRR case [EZ21; Ele21] and it would be interesting to build upon this work

and extend it to the meta-learning setting of IKML when the data is assumed

to posses these invariant properties.

5.3.3 Meta-learning for Time-Series

Time-series are ubiquitous in many contexts where machine learning is applied,

ranging from economics, social sciences to meterology. Many phenomenon in

both the natural and social sciences can be modelled as time-series, including

climate indicators, GDP and financial instruments. The time-series setting

allows us to weaken the sometimes restrictive assumption of iid samples and
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replace this with some notion of correlation that vary with some time variable t.

While this makes the setting more general, it also makes it much harder since

generalizing from a train to a test set is not as simple as applying standard

concentration inequality tools to get a notion of generalization performance.

In the worst case, the generalization performance depend on the timestamp

that you want to predict on, leading to a family of risks indexed by future

timestamps different from the ones observed in the train set.

Many real-world problems can be cast into the multi-task or meta-learning

setting where each task is a time-series prediction problem. This is clear from

the pressing issue of how to transition from an energy system based on fos-

sil fuels to one based on renewables, as renewable energy requires accurate

forecasting of supply and demand [Swe+20; Wan+19]. The energy grid can

readily be cast as an instance of multi-task time-series regression. Recently

there has been some work on meta-learning algorithms for time series, most

notably [Ore+20] which achieved good performance on the well-known M4 and

M3 time-series benchmarks [MSA18; MH00].

In the context of the methods proposed in this thesis, it is still unclear

how to learn a feature map efficiently for meta-time-series regression. Some

aspects of time-series modelling which makes this hard is the fact that time

series are potentially unbounded and may not be stationary (as the underlying

distribution changes with time) and the fact that many of the losses used are

highly non-convex as they depend not only on the outputs and predictions but

also on their magnitudes in non-trivial ways.

For MeLa it would be interesting to see if can we extend the assumption

on the meta-distribution in few-shot classification of being sampled from some

base dataset to the time-series setting. Assuming that we can recast this as-

sumption successfully, a further question would be if we can extend the theory

linking pre-training to meta-learning to the case of meta-time-series regression.

The works of [Ler+23; Ler+22] could be used as a basis for this. For IKML, the

translation-invariance of the kernel is related to the Fourier transform which
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features extensively in ARMA theory of time-series modelling [BDF91]. Here

it would be interesting to see if we can apply IKML to time-series forecasting

and relate the kernel learned to ARMA models, with theoretical guarantees

similar to the ones given in this thesis.



Appendix A

MeLa

We first restate the notations and assumptions necessary to prove Thm. 1.

From Assumption A, we define the joint distribution πµ(x, y) as the probability

of observing an input-output pair (x, y) when first sampling a task ρ from µ

and then sampling (x, y) according to the “query” distribution πρ in (3.6).

In other words, πµ(x, y) = π(x|y)Unifρ(y)µ(ρ) is the marginal distribution of

(x, y) with respect to ρ.

We observe that for any g : X × Y → R,

E(x,y)∼πµg(x, y) = Eρ∼µE(x,y)∼πρg(x, y). (A.1)

Given Assumption A, Dtr and Dval are sampled independently by the task

ρ. In particular the marginal ρDval of ρ with respect to Dtr corresponds to

πρ. Similarly, we denote ρDtr the distribution over support sets obtained by

marginalizing out the query set. We report one remark following the assump-

tion above.

Remark A.0.1. For any task ρ and any algorithm D 7→ fD returning func-
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tions fDtr : X → Rk, we have

E(Dtr,Dval)∼ρR̂(fDtr , Dval) = EDtr∼ρDtrEDval∼πm
ρ
R̂(fDtr , Dval) (A.2)

= EDtr∼ρDtrEDval∼πm
ρ

1

m

∑
(x,y)∈Dval

ℓ(fDtr(x), y) (A.3)

= EDtr∼ρDtrE(x,y)∼πρℓ(fDtr(x), y) (A.4)

= EDtr∼ρDtrR(fDtr , πρ), (A.5)

where for any f : X → Rk we have denoted by

R(f, πρ) = E(x,y)∼πρℓ(fDtr(x), y), (A.6)

the expected risk of a function f : X → Rk with respect to the loss ℓ and the

distribution πρ.

Using the above remark, we shows how the GLS risk for the meta-distribution

µ is related to multi-class classification risk for the corresponding multi-class

distribution πµ.

Theorem 1. Under Assumption A, let πµ(x, y) be marginal distribution of

observing (x, y) in the meta-training set. Then, for any (global) classifier W ,

EGLS(W, θ) ≤ R(Wϕθ, πµ). (3.8)

Moreover, if the global classes are separable,

min
W,θ
EGLS(W, θ) = min

W,θ
R(Wϕθ, πµ). (3.9)

Proof. We start by studying the GLS risk for a pair (W, θ) of meta-parameters.
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By expanding the GLS objective explicitly with Remark A.0.1, we have

EGLS(W, θ, µ) = Eρ∼µRce(GLS(W, θ, ρ), πρ) (A.7)

= Eρ∼µE(x,y)∼πρℓce(GLS(W, θ, ρ)(x), y) (A.8)

= Eρ∼µE(x,y)∼πρℓce(W [ρY ]ϕθ(x), y). (A.9)

Since ρY is a subset of {1, . . . , C}, by definition of cross-entropy we have

ℓce(W [ρY ]ϕθ(x), y) = − log
exp(W [y]ϕθ(x))∑

y′∈ρY exp(W [y′]ϕθ(x))
(A.10)

≤ − log
exp(W [y]ϕθ(x))∑

y′∈{1,...,C} exp(W [y′]ϕθ(x))
(A.11)

= ℓce(Wϕθ(x), y). (A.12)

We can now apply (A.1) where we take g(x, y) = ℓce(Wϕθ(x), y). Then,

Eρ∼µE(x,y)∼πρℓce(Wϕθ(x), y) = E(x,y)∼πµℓce(Wϕθ(x), y) = Rce(W, θ, πµ),

(A.13)

which concludes the proof for (3.8).

Now, if the global classes are linearly separable, we have

min
W,θ
R(Wϕθ, πµ) = 0. (A.14)

Since ℓce(·) is non-negative, combining (A.14) and (3.8) yields

0 ≤ min
W,θ
EGLS(W, θ) ≤ min

W,θ
R(Wϕθ, πµ) = 0. (A.15)

We thus conclude that

min
W,θ
EGLS(W, θ) = min

W,θ
R(Wϕθ, πµ). (A.16)
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A.1 Comparison between the Lipschitz

Constants of EGLS and R

In this section, we compare the Lipschitz constants associated to the meta-GLS

risk and the pre-training objective function discussed in Sec. 3.3.6, showing

that Lpre is comparable or smaller than LGLS.

We recall that the Lipschitz constant of an objective functional of the

form Eξ∼ρℓ(ω, ξ) is supξ Lξ, where Lξ is the Lipschitz constant of ℓ(·, ξ) for any

ξ in the support of the probability ρ. Additionally, we recall that for a smooth

function ℓ(·, ξ) defined on a set Ω, the Lipschitz constant can be characterized

as

sup
ω∈Ω

ξ∈suppρ

‖∇ωℓ(ω, ξ)‖, (A.17)

where suppρ denotes the support of the probability distribution ρ.

In the following we will assume Ω = B2,1
λ (0)×Θ, where Bλ(0) is a ball of

radius λ with respect to the 2, 1–norm centred at 0, namely that ‖W‖2,1 ≤ λ.

The 2, 1–norm is defined as ‖W‖2,1 =
∑

z≤C‖Wz‖2 and helps to simplify the

following analysis. Θ is the space of parameters for ϕθ and we assume the

representation model to be normalized, namely ‖ϕθ(x)‖ = 1 for all θ ∈ Θ and

x ∈ X . The normalized representational model could easily generalized to any

bounded representation, namely supθ,x‖ϕθ(x)‖ < +∞.

We now compare the Lipschitz constants of EGLS, LGLS and the pre-

training risk from R, Lpre. The key difference between the two objective func-

tions is that meta-GLS applies the cross-entropy loss over subsets of {1, . . . , C}

classes at each time (the classes appearing in a given task), while global multi-

class classification applies the cross-entropy to the entire set of C classes.

Therefore, to highlight the dependency on the number of classes in the fol-

lowing we denote ℓkce the cross entropy evaluated among k classes for k an

integer. Then, under the notation introduced in this section and in Sec. 3.3.6,
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we need to compare

LGLS = sup
(W,θ)∈Ω

(Dtr,Dval)∈suppµ̃

∥∥∇W,θ ℓ(W [Dtr
Y ]gθ(·), Dval)

∥∥ = sup
(W,θ)∈Ω

(Dtr,Dval)∈suppµ̃
(x,y)∈Dval

∥∥∇W,θ ℓ
k
ce(W [Dtr

Y ]gθ(x), y)
∥∥,

with the Lipschitz constant of the global multi-class classifier loss, correspond-

ing to

Lpre = sup
(W,θ)∈Ω

(x,y)∈suppπµ

∥∥∇W,θ ℓ
C
ce(Wgθ(x), y)

∥∥,
where µ̃ denotes the probability of sampling a pair (Dtr, Dval) by first sampling

ρ ∼ µ and then (Dtr, Dval) ∼ ρ.

We first observe that if suppπµ = suppµ̃ then LGLS = Lpre. This happens

if the few-shot learning distribution can sample datasets containing at least one

example per class. We note however that the two quantities are in general very

close to each other when the FSL datasets contain at most k < C classes each,

as shown in the result below.

Theorem 3. With the notation and assumptions introduced above

Lpre ≤ LGLS +O(e−λ)

Proof. We proceed by studying the norm of the gradients of ℓkce with respect

to W and θ separately.

Gradient with respect to W Given a pair of (x, y) and parameters θ and

W ∈ Rk×m, the derivative with respect to Wy the y-th column of W is

∇Wy ℓ
k
ce(Wϕθ(x), y) =

(
eW

⊤
y ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)
− 1

)
ϕθ(x).
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The gradient with respect to a column Wz for z 6= y is

∇Wz ℓ
k
ce(Wϕθ(x), y) =

eW
⊤
z ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)
ϕθ(x).

We conclude that the norm of the gradient with respect to the full W is

∥∥∇W ℓkce(Wϕθ(x), y)
∥∥ =

√√√√(1− eW
⊤
y ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)

)2

+
∑
z ̸=y

(
eW⊤

z ϕθ(x)∑
z≤k e

W⊤
z ϕθ(x)

)2

‖g(x)‖

=
1∑

z e
Wzϕθ(x)

√√√√(∑
z ̸=y

eWzϕθ(x)

)2

+
∑
z ̸=y

e2Wzϕθ(x),

where we have used the fact that representations are normalized ‖ϕθ(x)‖ = 1.

We note that for any W , the norm above is upper bounded by
√
2. This follows

by observing that

1− eW
⊤
y ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)
≤ 1

and the term

∑
z ̸=y

(
eW

⊤
z ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)

)2

≤
∑
z≤k

(
eW

⊤
z ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)

)2

≤ 1

corresponds to the (squared) norm of a vector in the simplex (minus the com-

ponent associated to Wy). Hence it’s ℓ2 norm is no larger than 1. Hence

sup
(W,θ)∈Ω

∥∥∇Wz ℓ
k
ce(Wϕθ(x), y)

∥∥ ≤ √2

Now, we provide a lower bound to the gradient norm. Let z̄ 6= y and

evaluate the gradient at a W such that Wz = 0 for any z 6= z̄ (y included) and
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Wz̄ = λϕθ(x) for λ > 0, we have

∥∥∇W ℓkce(Wϕθ(x), y)
∥∥ =

1

eλ + k − 1

√
(eλ + k − 2)2 + e2λ + k − 2

=
1

1 + k−1
eλ

√(
1 +

k − 2

e2λ

)2

+ 1 +
k − 2

eλ

We note that as λ → +∞, the above equation converges to
√
2 as fast as

O(e−λ). In particular, this implies that for any θ∣∣∣∣∣ sup
(W,θ)∈Ω

∥∥∇W ℓkce(Wϕθ(x), y)
∥∥−√2∣∣∣∣∣ ≤ O(e−λ)

The gradient norm converges to
√
2 exponentially fast with respect to the

upper bound on norm of W . In particular we have that for any number of

classes k,

sup
(W,θ)∈Ω

∥∥∇Wz ℓ
k
ce(Wϕθ(x), y)

∥∥ ≥ √2−O(e−λ).
Since

√
2 is an upper bound, we have that for any k ≤ C and any θ ∈ Θ

sup
(W,θ)∈Ω

∥∥∇Wz ℓ
C
ce(Wϕθ(x), y)

∥∥− sup
(W,θ)∈Ω

∥∥∇Wz ℓ
k
ce(Wϕθ(x), y)

∥∥
≤
√
2− (

√
2−O(e−λ)) = O(e−λ),

which implies that the component of the norm of the gradient of ℓCce is at

most larger than the same component but for ℓkce of a quantity that decreases

exponentially fast with respect to λ.
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Gradient with respect to θWe now consider the gradient with respect to

θ. Given an input-output pair (x, y) and a linear classifier W , we have

∇θℓ
k
ce(Wϕθ(x), y) = ∇θϕθ(x)

⊤

[∑
z ̸=y

eW
⊤
z ϕθ(x)∑

z≤k e
W⊤

z ϕθ(x)
(Wy −Wz)

]
.

To estimate the maximum of the norm of the gradient above with respect

to the parameters W , we will show below that the maximum is achieved by

choosing a class z̄ 6= y such that Wz = 0 for all z 6= z̄ and Wz̄ is the only

non-zero column.

Let Wy = λy v for some vector v ∈ Rm of norm one ‖v‖ = 1 and λy > 0.

We start by observing that the maximum length vector for the gradient above

is obtained by summing vectors that are all aligned, and therefore choosing

Wz = −λzv for any z, with an appropriate scaling λz ∈ R is optimal. The

gradient above becomes

∇θℓ
k
ce(Wϕθ(x), y) = ∇θϕθ(x)

⊤v

[∑
z ̸=y

(λy + λz)e
−λzv⊤ϕθ(x)∑

z≤k e
−λzv⊤ϕθ(x)

]
,

and its sup with respect to W is

max
∥W∥2,1≤λ

∥∥∇θℓ
k
ce(Wϕθ(x), y)

∥∥ = max
∥v∥=1

[∥∥∇θϕθ(x)
⊤v
∥∥ ∣∣∣∣∣ max∑

z≤k |λz |≤λ

∑
z ̸=y

(λy + λz)e
λzv⊤ϕθ(x)∑

z≤k e
−λzv⊤ϕθ(x)

∣∣∣∣∣
]
,

where we have used the fact that the constraint ‖W‖2,1 ≤ λ on the linear

parameters W corresponds to the constraint
∑

z≤k |λz| ≤ λ.

We first note that to achieve the maximum, λz ≥ 0 for all z 6= y, otherwise

the term λy + λz would be smaller than λy + |λz| (note that the term in the

exponential is not affected by the sign of λz, since we can choose v such that

v⊤ϕθ(x) has either sign and
∥∥∇θϕθ(x)

⊤v
∥∥ =

∥∥−∇θϕθ(x)
⊤v
∥∥. This implies that

we do not need the absolute value on the term

max∑
z≤k |λz |≤λ

∑
z ̸=y

(λy + λz)e
λzv⊤ϕθ(x)∑

z≤k e
−λzv⊤ϕθ(x)

.
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Additionally, we note that the maximum above is achieved for any set of (λz)z≤k
such that λz̄ > 0 for some z̄ 6= y and λz = 0 for all z 6= z̄. This follows by

noting that

max∑
z≤k λz≤λ

∑
z ̸=y

(λy + λz)e
−λzv⊤ϕθ(x)∑

z≤k e
−λzv⊤ϕθ(x)

≤ max∑
z≤k λz≤λ

∑
z ̸=y

e−λzv
⊤ϕθ(x)∑

z≤k e
−λzv⊤ϕθ(x)

(λy +max
z ̸=y

λz).

Now, both maxz ̸=y λz and
∑

z ̸=y
e−λzv

⊤ϕθ(x)∑
z≤k e

−λzv⊤ϕθ(x)
are maximized by choosing

all λz to be equal to zero except for one. In particular the inequality above

becomes an equality if λz̄ = λ for some z̄ 6= y and λz = 0 for any z 6= z̄

(including y). Plugging this estimation of the maximum in the gradient norm

derived above, we have

max
∥W∥2,1≤λ

∥∥∇θℓ
k
ce(Wϕθ(x), y)

∥∥ = max
∥v∥=1

∥∥∇ϕθ(x)⊤v∥∥ λe−λv
⊤ϕθ(x)

e−λv⊤ϕθ(x) + k − 1

We note now that, for any λ and v ∈ Rm, the quantity that we are maximizing

in the equation above is strictly decreasing with respect to k. This means in

particular that

max
(W,θ)∈Ω

∥∥∇θℓ
k
ce(Wϕθ(x), y)

∥∥ ≤ max
(W,θ)∈Ω

∥∥∇θℓ
C
ce(Wϕθ(x), y)

∥∥

Putting the two together Let us consider the norm squared of ℓCce. We have

Lpre = sup
(W,θ)∈Ω

∥∥∇W,θ ℓ
C
ce(Wϕθ(x), y)

∥∥2
= sup

(W,θ)∈Ω

∥∥∇W ℓCce(Wϕθ(x), y)
∥∥2 + ∥∥∇θ ℓ

C
ce(Wϕθ(x), y)

∥∥2
≤ sup

(W,θ)∈Ω

∥∥∇W ℓkce(Wϕθ(x), y)
∥∥2 +O(e−2λ) +

∥∥∇θ ℓ
k
ce(Wϕθ(x), y)

∥∥2
= sup

(W,θ)∈Ω

∥∥∇W,θ ℓ
k
ce(Wϕθ(x), y)

∥∥2 +O(e−2λ)

= L2
GLS +O(e−2λ),
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where for the inequality we have used the fact that, for both gradients (with

respect to W or θ), the maximum with respect to W , for a fixed θ is achieved by

selecting a W that is zero along all directions but one. Since
√
a+ b ≤

√
a+
√
b

for any a, b ≥ 0, we conclude

Lpre ≤
√
LGLS +O(e−2λ) ≤ LGLS +O(e−λ),

as required.

The theorem above shows that the Lipschitz constant for the (global) multi-

class classification risk is at most larger than that for GLS by an amount that

decreases exponentially fast as λ increases. From regularization theory we

know that λ grows proportionally to the number of samples observed, hence

we can expect that for all practical purposes Lpre is smaller than LGLS.

A.2 Experimental Details
In this section we specify the datasets and hyperparameter settings for the

experiments in the main body. The training follow the same steps regard-

less of dataset, we specify the available hyperparameters for each step be-

low. We denote the steps (in sequence as they appear) of Alg. 2 by Re-

pLearn, LearnLabeler, PreTrain, MetaLearn, and evaluation by

Eval. The code repository with exact implementation details can be found

at https://github.com/isakfalk/mela. In the code base we use PyTorch

[Pas+19], scikit-learn [Ped+11], numpy [Har+20], matplotlib [Hun07] and

umap [McI+18].

A.2.1 Datasets

A.2.1.1 mini/tieredImageNet

We use the standard miniImageNet and tieredImageNet dataset.

https://github.com/isakfalk/mela
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A.2.1.2 mini-60 and tiered-780
We provide code for generating the datasets of mini-60 and tiered-780 us-

ing the ILSVRC2012 ImageNet dataset and global labels provided (https:

//www.image-net.org/challenges/LSVRC/2012/index.php). Code and in-

structions for creating these datasets can be found in https://github.com/

isakfalk/mela.

A.2.1.3 Meta-Dataset (mixed and H-Aircraft)
We use three component datasets of Meta-Dataset [Tri+20], those of cu_birds,

aircraft and vgg_flower in the dataset summary table of the Meta-Dataset

repository and pre-process them according to the instructions provided.

A.2.2 Model Details
The hyperparameters across all experiments are specified below.

A.2.2.1 Optimization
We use two instances of optimization algorithms, relying on the optimization

library of PyTorch

• SGD: SGD with an initial learning rate of 0.05, weight decay factor of

0.0005 and momentum of 0.9

• AdamW: AdamW [LH19] with learning rate of 0.0001, weight decay

factor of 10−6.

For each optimization algorithm we use the torch multi-step learning rate

scheduler which anneals the learning rate of the optimization algorithm by

γ = 0.1 at selected epochs in lr_decay_epochs.

• MultiStepLR: Learning rate annealing scheduler, which multi-

plies the learning rate by γ at the beginning of epochs in the list

lr_decay_epochs.

A.2.2.2 Augmentation
We use two instances of augmentation (and one option of no augmentation)

https://www.image-net.org/challenges/LSVRC/2012/index.php
https://www.image-net.org/challenges/LSVRC/2012/index.php
https://github.com/isakfalk/mela
https://github.com/isakfalk/mela
https://github.com/google-research/meta-dataset#dataset-summary
https://github.com/google-research/meta-data
https://github.com/google-research/meta-data
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• DataAug: Data augmentation where we use a pipeline of

1. Random cropping using a shape of 84× 84 with padding of 8

2. Color jittering with the PyTorch arguments of (brightness=0.4,

contrast=0.4, saturation=0.4)

3. Randomly flip the image horizontally.

4. Normalization: (channel-wise) using ImageNet sample channel

mean and standard deviation for ImageNet type datasets, min-max

scaling to [−1, 1] for Mixed and H-aircraft datasets

• RotateAug: Rotation-class augmentation as laid out in Sec. 3.4.1 to-

gether with DataAug

• None: No augmentation.

A.2.2.3 Backbone Architecture
We use ResNets [He+16] for the backbone throughout the experiments

• ResNet12: ResNet with block sequence [1, 1, 1, 1], using adaptive aver-

age pooling, drop-blocks for the final 2 ResNet layers and a drop rate of

0.1, with output dimension being 640

• ResNet18: ResNet with block sequence [1, 1, 2, 2], using adaptive aver-

age pooling, drop-blocks for the final 2 ResNet layers and a drop rate of

0.1, with output dimension being 640

A.2.2.4 Residual Adapters for Meta Fine-Tuning
In Sec. 3.4.3, we introduced a residual adapter for meta fine-tuning. The learn-

able network h is a three-layer MLP with ResNet{12/18}+ResFC: MLP

with residual connection and layer-normalization applied to the output. Both

the input and output dimensions are the same as the feature representation

from either ResNet12 or ResNet18 backbone.
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A.2.2.5 Learning the Similarity Measure (RepLearn)

For training embedding ϕsim
θ , when given a task D = (Dtr ∪ Dval) we one-

hot encode the outputs and scale them using f(y) = 2y − 1. We get the

classifier w(ϕsim
θ (Dtr)) using (2.16) on the embedded support set ϕsim

θ (Dtr) (we

add a column of ones to the embeddings for a bias term) with a regularization

strength of λMetaLS = 0.001. As an inner loss we use ℓ = ℓFS where ℓFS is the

few-shot loss using mean-squared error inner loss (2.16). We train for a fixed

number of epochs, where each epoch is a full sweep over the meta-train set in

the GFSL setting or some predefined number of tasks Ttasks in the standard

setting. Number of tasks in each batch is set to 1. We use meta-validation set

for early stopping and model selection.

A.2.2.6 Global Label Inference (LearnLabeler)

Given a trained backbone ϕsim
θ we use the clustering algorithm of Sec. 3.4.2.1

with the hyperparameters q and Kinit where q is the pruning aggression pa-

rameter and Kinit is the initial number of centroids on the same meta-train

few-shot dataset on which ϕsim
θ was trained, which gives rise to centroids G

and in extension the inferred global labels for standard multi-class classifica-

tion.

A.2.2.7 Pre-Training via Multi-Class Classification

(PreTrain)

Given a flat supervised dataset with inferred labels, we train a backbone ϕpre
θ

using the cross-entropy loss as in (2.19) with SGD and one of the data aug-

mentation strategies outlined above. We train for a set number of epochs,

where each epoch is a full sweep over the flattened meta-train set in the GFSL

setting or some predefined number of tasks Ttasks (inferred labels, flattened) in

the standard setting. For the Oracles we use the same procedure on the full flat

supervised dataset with the ground-truth labels. For the H-Aircraft dataset

with multiple ground-truth labels, we use the semantic softmax [Rid+21] with

augmentation DataAug. We use meta-validation set for early stopping and
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model selection.

A.2.2.8 Meta Fine-Tuning (MetaLearn)
We adapt the pre-trained representation ϕpre

θ towards ϕ∗
θ by combining the

original backbone with the residual adapter. We use augmentation DataAug

without rotation and optimize the empirical meta-risk using AdamW. We

train for a set number of epochs, where each epoch is a sweep over the meta-

train sets. Number of tasks per batch i set to 1. We use meta-validation set

for early stopping and model selection.

A.2.2.9 Model Evaluation
During model evaluation (either using meta-validation or meta-testing set), we

obtain the embedding of each task sample using the trained feature extractor.

Each sample embedding is normalized to unit-length before being passed to

the classifier w(·). We follow [Tia+20] and uses logistic regression from Scikit-

learn as the classifier. We set the regularization strength as 1.0 for pre-trained

feature extractor ϕpre
θ and 0.001 for the fine-tuned feature extractor ϕ∗

θ.

A.2.2.10 Hyper-Parameters
The hyper-parameters and the values used in the experiments are listed in

Table A.1.

A.3 Complexity Analysis
In this section we specify the computational and memory complexity of all of

the steps of the MeLa algorithm (Alg. 2). We specify the complexity of each

of the four steps: pretraining the representation (RepLearn), global label

inference (LearnLabeler), pretraining (PreTrain) and meta fine-tuning

(MetaLearn).

For a representation network ϕθ : X → Rdϕ , we let the computational

and memory complexity of mapping an instance x to ϕθ(x) be given by O(kϕ)

and O(mϕ) respectively. As w is KRR, it has a computational and memory

complexity of O(d2ϕntr + d3ϕ + dϕntrNway) and O(dϕNway) respectively which
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Table A.1: Hyperparameters for all datasets.

Pipeline Step miniImageNet tieredImageNet mini-60 tiered-780 Mixed H-aircraft

RepLearn

Architecture ResNet12 ResNet12 ResNet12 ResNet12 ResNet12 ResNet12
Augmentation None None None None None None
Epochs 30 40 30 40 50 50
lr_decay_epochs [20, 25] [28, 36] [20, 25] [28, 36] [30, 42] [30, 42]
Ttasks (if not GFSL) 2800 2800 2800 2800 2800 2800

LearnLabeler

Architecture ResNet12 ResNet12 ResNet12 ResNet12 ResNet12 ResNet12
Augmentation None None None None None None
q 3 3.5 4.5 4.5 3.5 3.5
Kinit 600 1200 700 1100 400 400

Pretrain

Architecture ResNet12 ResNet18 ResNet12 ResNet12 ResNet12 ResNet12
Augmentation RotateAug RotateAug RotateAug RotateAug RotateAug RotateAug

MetaLearn

Epochs 3 3 3 3 3 3
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depend on the train set size ntr and input dimension dϕ and the number of

ways Nway. The validation set size is nval and we let n = ntr + nval.

For simplicity, we assume that the batch size is 1, changing this is trivial,

and we give the complexity in terms of per-gradient update.

A.3.1 RepLearn

First mapping all of the instances using ϕθ yields a computational complexity

of O(nkϕ) and a memory complexity of O(mϕ+ndϕ). Secondly, calculating the

weights of KRR has a computational complexity of O(d2ϕntr + d3ϕ + dϕntrNway)

and a memory complexity of O(dϕNway). Next, predicting on the query set

has a computational complexity of O(dϕnvalNway) and a memory complexity

of O(1). Finally, calculating the empirical loss over the query set when using

cross-entropy has computational and memory complexity which is negligible

compared to previous terms. Finally, taking the gradient of this can be done

in the same computational and memory complexity as getting the loss due

to automatic differentiation. In total, this means we have a computational

complexity of

O(nkϕ + d2ϕntr + d3ϕ + dϕnNway)

and a memory complexity of

O(mϕ + dϕ(n+Nway))

per iteration of gradient descent.

A.3.2 LearnLabeler

We provide computational and memory complexity for one step of this algo-

rithm. Let the number of clusters of a step be V . We first need to calculate

the centroids which can be done in O(nshotsdϕ) computational complexity and

O(dϕ) memory complexity, where nshots is the number of shots per class in

the train set. This is done for the Nway classes in the train set which gives

O(ndϕ) and O(Nwaydϕ) in computational and memory complexity respectively.
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For each of the Nway’s class centroids we need to find the closest of the cur-

rent V centroids. To do this we need to calculate the distance of each class

centroid to all of the V centroids which has computational complexity O(V dϕ)

and memory complexity O(1). Together this has a computational complex-

ity of O(NwayV dϕ) and memory complexity of O(1). As each class index in

the task, and since there are Nway’s of them, are mapped to one of the V

centroids (assuming no ties, else we can choose one at random) we need to up-

date Nway number of centroids. Updating each centroid has a computational

complexity of O(dϕ) and a memory complexity of O(1), which leads to a to-

tal per-iteration update computational complexity of O(Nwaydϕ) and memory

complexity of O(1).

In total, we have that each iteration update for the clustering step has a

computational complexity of

O((n+NwayV )dϕ) = O((nshots + V )Nwaydϕ),

and a memory complexity of

O(Nwaydϕ).

A.3.3 PreTrain

The pre-iteration pre-training is similar to that of RepLearn but simpler.

First mapping all of the instances in a batch of size B using ϕθ yields a com-

putational complexity of O(Bkϕ) and a memory complexity of O(mϕ + Bdϕ).

Calculating the loss is negligible compared to this and taking the gradients

has the same complexity as the forward pass due to automatic differentiation.

Thus the computational complexity is

O(Bkϕ)
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and the memory complexity is

O(mϕ +Bdϕ),

where here dϕ is the number of global classes.

A.3.4 MetaLearn
This is essentially the same as RepLearn except that all of the inputs x are

replaced by ϕpre
θ (x) where the ϕpre

θ is the representation and then using a new

feature map ϕ∗
θ. The only difference is that we have to map x first through

ϕpre
θ to the output space of size dϕpre which yields a computational complexity

of O(nkϕpre) and a memory complexity of O(mϕpre + ndϕpre). Secondly, we

have to do the same using the network O(ϕ∗
θ) which yields a computational

complexity of O(nkϕ∗) and a memory complexity of O(mϕ∗ + ndϕ∗). The rest

of the analysis is exactly the same as that of RepLearn except that we do

not take the gradient with respect to ϕpre only with respect to ϕ∗. In total we

have a computational complexity of complexity of

O(n(kϕpre + kϕ∗) + d2ϕ∗ntr + d3ϕ∗ + dϕ∗nNway)

and a memory complexity of

O(mϕpre +mϕ∗ + dϕ∗(n+Nway))

per iteration of gradient descent.



Appendix B

IKML

The supplementary material is organized as follows. In Appendix B.1 we derive

the closed form of the stochastic kernel of the affine pushforward kernel. In

Appendix B.2 we derive the detailed bounds presented in Theorem 1. In Ap-

pendix B.3 we elaborate on the creation of the Air Quality (B.3.1) and the Gas

Sensor (B.3.2) datasets. In Appendix B.4 we include the information on the

numerical experiment presented in the main body. Finally, in Appendix B.5

we comment on the computational complexity of IKML and compare it against

that of R2D2 since they both rely on KRR as the inner algorithm.

B.1 Kernel for Affine Pushforward and

Gaussian Latent

In this section we give the closed form of the kernel when the distribution τ is

the affine pushforward of a standard Gaussian.

We use the following trick to find the closed form kernel. We can rewrite
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the kernel in Bochner’s theorem as

K(x, x′) =

∫
cos(〈ω, x− x′〉) dτ(ω) (B.1)

=

∫
<(cos(〈ω, x− x′〉) + i sin(〈ω, x− x′〉)) dτ(ω) (B.2)

=

∫
< exp(i〈ω, x− x′〉) dτ(ω) (B.3)

= <
∫

exp(i〈ω, x− x′〉) dτ(ω) (B.4)

so finding the kernel is the same as finding the real part of the characteristic

function (CF) of τ . For a Gaussian the CF is well-known and we give it below.

Lemma B.1.1. Let ω ∼ τ = N (µ,Σ) where Σ is pd, then for any ∆ ∈ Rd

∫
Rd

exp(iω⊤∆)dτ(ω) = exp(iµ⊤∆− 1

2
∆⊤Σ∆). (B.5)

Proof. The pdf of ω is f(ω) = (2π)−d/2|det(Σ)|−1/2 exp(−1
2
(ω−µ)Σ−1(ω−µ)).

We make the change of variable ϕ = Σ−1/2(ω − µ) so ω = Σ1/2ϕ + µ where

Σ1/2 and Σ−1/2 exist due to Σ being pd. This means that dω = |det(Σ)|1/2 dϕ

so that we have

∫
Rd

exp(iω⊤∆)dτ(ω) =

∫
Rd

exp(iω⊤∆)f(ω) dω

= (2π)−d/2
∫
Rd

exp(i(Σ1/2ϕ+ µ)⊤∆) exp(−1

2
ϕ⊤ϕ) dϕ

= (2π)−d/2 exp(iµ⊤∆)

∫
Rd

exp(iϕ⊤Σ1/2∆) exp(−1

2
ϕ⊤ϕ) dϕ

= (2π)−d/2(2π)d/2 exp(iµ⊤∆− 1

2
∆⊤Σ∆)

= exp(iµ⊤∆− 1

2
∆⊤Σ∆). (B.6)

Now we parameterize τ using S ∼ N and θ = (Q, b) with Q ∈ Rd×d and

b ∈ Rd so that τ = ψ(Q,b)#N . An affine transformation of a Gaussian random

variable is again Gaussian, and in this particular case it’s easy to show that
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τ ∼ N (b,QQ⊤). Combining (B.4) and Lemma B.1.1 we have

K(x, x′) = <
∫

exp(i〈ω, x− x′〉) dτ(ω) (B.7)

= < exp(ib⊤(x− x′)− 1

2
(x− x′)⊤QQ⊤(x− x′)) (B.8)

= cos(b⊤(x− x′)) exp(−1

2
(x− x′)⊤QQ⊤(x− x′)) (B.9)

= cos(b⊤(x− x′)) exp(−1

2

∥∥Q⊤(x− x′)
∥∥2). (B.10)

B.2 Error Decomposition

B.2.1 Setup

We follow the notation of [Mau09] with some modifications and note that

this differs at places from the notation used in the main body of the paper.

We recall the meta-learning setting. There is some meta-distribution ρ which

generates tasks µ, from µ we are given a train set z = (x,y) ∼ µn, where

(x, y) ∈ X×Y ⊆ Rd×[0, 1]. Given the kernel ridge regression (KRR) algorithm

with a fixed regularization parameter λ > 0 and an RKHS and corresponding

kernel indexed by θ ∈ Θ, where Θ ⊆ RD is compact. We write this family as

HΘ and the family of kernels as KΘ. For a kernel Kθ let ϕθ(x) = Kθ(x, ·) be the

canonical feature map and Hθ the corresponding RKHS. The KRR solution is

ωθ(z) = argmin
w∈Hθ

(
1

n

n∑
i=1

(〈w, ϕθ(xi)〉θ − yi)2 + λ‖w‖2θ

)
, (B.11)

where we use 〈·, ·〉θ and ‖·‖θ to denote the inner product and norm in RKHS

Hθ. We will drop θ when it’s clear what RKHS we are referring to. Given a

weight vector w ∈ Hθ, a prediction on a new datapoint x is given by 〈w, ϕθ(x)〉.

The transfer risk of the algorithm ωθ and a loss ℓ : Y ×Y → R+ is defined

to be

E(θ) = Eµ∼ρEz∼µnE(x,y)∼µℓ(〈ωθ(z), ϕθ(x)〉, y). (B.12)

We have access to T datasets from tasks by sampling (µt)
T
t=1 ∼ ρT which gives
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rise to datasets zt = (xt,yt) ∼ µnt . For the meta-dataset Z = (zt)Tt=1 sampled

by first sampling (µt)
T
t=1 ∼ ρT and then zt ∼ µn, we denote this sampling

process by Z ∼ ρ̂T . Using the KRR algorithm ωθ we let

ℓ̂θ(z
t) =

1

n

n∑
i=1

ℓ(〈ωθ(zt), ϕθ(xti)〉, yti), (B.13)

which is the training error of task t using ωθ. For a sample of latent variables

S = (sk)
M
k=1 ∼ NM so that the random features ψθ(sk) ∼ τθ (that is τθ =

ψθ#N ), in which case we define Kθ = Kτθ and Kθ,S = Kτ̂θS, we let

ℓ̂θ(z
t, S) =

1

n

n∑
i=1

ℓ(〈ωθ,S(zt), ϕθ,S(xti)〉, yti), (B.14)

where ωθ,S is the same as (B.11) where we replace the kernel Kθ by the random

feature kernel Kθ,S and the corresponding RKHS, see Appendix B.2.2. When

the algorithm ω is clear from context we simply write ℓ̂(z) and ℓ̂(z, S). We

opt to select θ using ERM, letting

θ̂ = argmin
θ∈Θ

{
ÊT (θ) =

1

T

T∑
t=1

ℓ̂θ(z
t)

}
. (B.15)

As the problem of (B.15) is non-convex we cannot solve it in general. We let

θ̃ be the output of an optimization procedure θ̃ = Alg(ÊT ) and encode this

optimization discrepancy through the term ÊT (θ̃)− ÊT (θ̂).

B.2.2 Kernel Family

Let H be an RKHS defined by Bochner’s theorem through the kernel defined

by any probability measure τ ∈M1(X ),

K(x, x′) =

∫
ξ(x; v)ξ(x′; v) dτ(v). (B.16)

We will assume that ξ(x; v) = exp(iv⊤x), but the analysis should generalize to

the more general setting. For a real-valued kernel K : X × X → R, it can be
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shown that any such kernel satisfying (B.16) can be rewritten as

K(x, x′) =

∫
(−π/2,π/2]d

cos(〈v, x− x′〉) dτ ′(v), (B.17)

for some measure τ ′ with support on (−π/2, π]d. For IKML we parameterise a

class of measures by ψθ#N where ψθ is an MLP with weights θ and we denote

the kernel and RKHS by Kθ and Hθ.

Given a dataset of inputs x = (xi)
n
i=1, denote the kernel matrix Gθ(x) so

that Gθ(x)ij = Kθ(xi, xj) and let Gθ,λ(x) = Gθ(x) + nλI. Similarly for a set

of latents S ∼ NM we denote the respective matrices Gθ(x, S) and Gθ,λ(x, S)

were we replace every instance of

Kθ(x, x
′) =

∫
cos(〈ψθ(s), x− x′〉) (B.18)

by the empirical mean

Kθ,S(x, x
′) =

1

M

M∑
j=1

cos(〈ψθ(sj), x− x′〉) = ϕθ,S(x)
⊤ϕθ,S(x

′), (B.19)

where

ϕθ,S(x) =
1√
M

((sin(ψθ(si)
⊤x), cos(ψθ(si)

⊤x))⊤)Mi=1 ∈ R2M . (B.20)

We will omit θ and x from Gθ(x) when clear from context. Similarly we let

ℓ̂θ(x,y, S) be the train loss when trained on x,y with random features induced

by S and we omit θ when clear from context.

B.2.3 Auxiliary Results
Let ‖·‖∞ be the operator norm and ‖·‖F the Frobenius norm. For an algorithm

ω and a dataset z, let ℓ̂(z) be the training error of ω on z using loss ℓ.

Definition B.2.1. Given any z = (x,y) or two input sets x1,x2 of size n,

where x ∈ X and y ∈ [0, 1], relative to a fixed loss function ℓ, an algorithm ω
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taking outputs in an RKHS H is said to be

• β-bounded if ‖ω(z)‖ ≤ β and ℓ̂(z) ≤ β.

• have kernel stability L if

ℓ̂(x1,y)− ℓ̂(x2,y) ≤
L

n
‖G(x1)−G(x2)‖F (B.21)

• have random feature stability L if

ℓ̂(x,y, S)− ℓ̂(x,y) ≤ L

n
‖G(x, S)−G(x)‖F . (B.22)

Lemma B.2.1 ([Mau09], Lemma 3). Let G1 and G2 be positive semidefinite

operators on any Hilbert space and λ > 0, then

1. Gi + λI is invertible,

2. ‖(Gi + λI)−1‖∞ ≤
1
λ

and

3. we have

∥∥(G1 + λI)−1 − (G2 + λ)−1
∥∥
∞ ≤

1

λ2
‖G1 −G2‖∞. (B.23)

4. Let ϕ1, ϕ2 satisfy (Gi + λI)ϕi = y. Then

∣∣‖ϕ1‖2 − ‖ϕ2‖2
∣∣ ≤ 2λ−3‖G1 −G2‖∞‖y‖

2 (B.24)

For any dataset z = (x,y) of size n, kernel K with RKHS H and feature

map ϕ, and corresponding KRR algorithm ω, we define the following quantities,
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following [Mau09],

ω(z) = argmin
w∈H

(
1

n

n∑
i=1

(〈w, ϕ(xi)〉 − yi)2 + λ‖w‖2
)
, (B.25)

ℓ̂ω(z) =
1

n

n∑
i=1

(〈ω(z), ϕ(xi)〉 − yi)2, (B.26)

ξω(z) = min
w∈H

(
1

n

n∑
i=1

(〈w, ϕ(xi)〉 − yi)2 + λ‖w‖2
)

= ℓ̂ω(z) + λ‖ω(z)‖2 (B.27)

Proposition B.2.1. For any kernel K of the form (B.17), for any dataset

z = (x,y) or two input sets x1,x2, where x ∈ X , y ∈ [0, 1], of size n and a

sample of random features S ∼ NM we have that

1. ℓ̂ω(z) ≤ 1, ‖ω(z)‖ ≤ λ−1/2, ξω(z) ≤ 1,

2.
∣∣∣ℓ̂ω(x1,y)− ℓ̂ω(x2,y)

∣∣∣ ≤ 2λ−1

n
‖G(x1)−G(x2)‖F ,

3.
∣∣∣ℓ̂ω(x,y)− ℓ̂ω,S(x,y)∣∣∣ ≤ 2λ−1

n
‖G(x)−G(x, S)‖F ,

4. |ξω(x1,y)− ξω(x2,y)| ≤ λ−1

n
‖G(x1)−G(x2)‖F ,

5. |ξω(x,y)− ξω,S(x,y)| ≤ λ−1

n
‖G(x)−G(x, S)‖F

where G(x, S) is the kernel matrix of x using random features induced by S.

Proof. We simply note that

ℓ̂ω(z) + λ‖ω(z)‖2 = ξω(z) (B.28)

= min
w∈H

(
1

n

n∑
i=1

(〈w, ϕ(xi)〉 − yi)2 + λ‖w‖2
)

(B.29)

≤ 1

n

n∑
i=1

(〈0, ϕ(xi)〉 − yi)2 + λ‖0‖2 (B.30)

≤ 1.

Since both ℓ̂ω(z) and λ‖ω(z)‖2 are positive and the sum is less than 1, we

have that ℓ̂ω(z) ≤ 1 and λ‖ω(z)‖2 ≤ 1 which implies that ‖ω(z)‖ ≤ λ−1/2.
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For the second point, using the dual formulation Gλ(x)α = y and

〈ω(z), ϕ(xi)〉 = (G(x)α)i,

ℓ̂ω(z) =
1

n
‖G(x)α− y‖2 = 1

n
‖Gλ(x)α− y − λnα‖2 (B.31)

=
1

n
‖λnα‖2 = λ2n‖α‖2. (B.32)

Using this and the fact that ‖ω(z)‖2 = α⊤G(x)α in ξω,

ξω(z) = ℓ̂ω(z) + λ‖ω(z)‖2 (B.33)

= λ2n‖α‖2 + λα⊤G(x)α (B.34)

= λ(λnα⊤α + α⊤G(x)α) = λ(α⊤Gλ(x)α) = λ(y⊤Gλ(x)
−1y). (B.35)

Thus

∣∣∣ℓ̂ω(x1,y)− ℓ̂ω(x2,y)
∣∣∣ = λ2n

∣∣∣∥∥Gλ(x1)
−1y
∥∥2 − ∥∥Gλ(x2)

−1y
∥∥2∣∣∣ (B.36)

≤ (λ2n)2(λn)−3‖G(x1)−G(x2)‖∞‖y‖
2 (B.37)

≤ 2λ−1n−2‖G(x1)−G(x2)‖∞‖y‖
2 (B.38)

≤ 2λ−1

n
‖G(x1)−G(x2)‖F , (B.39)

where we have used point 4 in Lemma B.2.1 and the fact that ‖y‖2 =∑n
i=1 y

2
i ≤ n as yi ∈ [0, 1] for any i ∈ [n]. Then

|ξω(x1,y)− ξω(x2,y)| ≤ λ
∣∣y⊤Gλ(x1)

−1y − y⊤Gλ(x2)
−1y
∣∣ (B.40)

≤ λ
∣∣y⊤(Gλ(x1)

−1 −Gλ(x2)
−1)y

∣∣ (B.41)

≤ λ(λn)−2‖G(x1)−G(x2)‖∞‖y‖
2 (B.42)

≤ λn(λn)−2‖G(x1)−G(x2)‖F (B.43)

≤ λ−1

n
‖G(x1)−G(x2)‖F . (B.44)

For the third point and fifth point, the proof is the same as above, replacing

Gλ(x1) and Gλ(x2) with Gλ(x) and Gλ(x, S) respectively. Thus all of the
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results follows.

Definition B.2.2 (Complexities). Let (σi)
k
i=1 denote a sequence of indepen-

dent Rademacher variables (Uniform distribution on {−1, 1}) independent of

each other. For a set A ⊆ Rk, the Rademacher and Gaussian complexities are

defined to be

R(A) = Eσ sup
x∈A

2

k

k∑
i=1

σixi. (B.45)

If F is a class of real functions on a space X and x ∈ X k, we write

F(x) = {(f(x1), . . . , f(xk)) : f ∈ F} ⊆ Rk. (B.46)

The empirical Rademacher complexities of F on x is R(F(x)). If µ ∈M1(X )

is a probability measure on X then the corresponding expected complexity is

Ex∼µkR(F(x)).

Theorem 4 ([Mau09], Thm. 4). Let F be a real-valued function class on a

space X and µ ∈M1(X ). For x = (x1, . . . , xk) ∈ X k define

Φ(x) = sup
f∈F

(
Ex∼µf(x)−

1

k

k∑
i=1

f(xi)

)
. (B.47)

Then

1. Ex∼µkΦ(x) ≤ Ex∼µkR(F(x)),

2. if F is [0, 1]-valued, then for any δ > 0 we have with probability greater

than 1− δ in x ∼ µk that

Φ(x) ≤ Ex∼µkR(F(x)) +
√

log(1/δ)

2k
. (B.48)

Corollary B.2.1 ([Mau09], Corollary 1). Let A ⊆ Rk and ϕ1, . . . , ϕk

be real functions, each with Lipschitz constant L. Denote ϕ ◦ A =

{(ϕ1(x1), . . . , ϕk(xk)) : (x1, . . . , xk) ∈ A}. Then R(ϕ ◦ A) ≤ LR(A).
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B.2.4 Decomposition
We want to control the excess meta-risk ES∼NM [E(θ̂, S) − E(θ∗)], where θ∗ =

argminθ∈Θ E(θ). We introduce the following terms

Ê(θ) = EZ∼ρT ÊT (θ) (B.49)

and the corresponding term Ê(θ, S) where we replace the kernel Kθ by Kθ,S.

We decompose the excess meta-risk as follows

ES∼NM [E(θ̂, S)− E(θ∗)] =

ES∼NM [ E(θ̂, S)− Ê(θ̂, S)︸ ︷︷ ︸
(A)

+ Ê(θ̂, S)− ÊT (θ̂, S)︸ ︷︷ ︸
(B)

+ ÊT (θ̂, S)− ÊT (θ∗, S)︸ ︷︷ ︸
(C)

+ ÊT (θ∗, S)− Ê(θ∗, S)︸ ︷︷ ︸
(D)

+ Ê(θ∗, S)− E(θ∗, S)︸ ︷︷ ︸
(E)

+ E(θ∗, S)− E(θ∗)︸ ︷︷ ︸
(F )

]

(B.50)

We bound each of the terms.

B.2.5 Bounding the Estimation Error for the Future

Task
This follows [Mau09, Sec. 4.1], but we present the results in the order that

they are needed. This argument bounds both (A) and (E).

Theorem 5 (Upper bound of estimation error for future task). For any θ ∈ Θ,

any loss ℓ such that for all y ∈ [0, 1] ℓ(·, y) : [−L,L] → R+ has Lipschitz

constant Lip(L), with ω being KRR with regularization parameter λ > 0 and

RKHS induced by Kθ

ES∼NM [E(θ, S)− Ê(θ, S)] ≤ Lip(λ−1/2)ES∼NMEz∼ρ̂R(G(z)), (B.51)

where G = {z = (x, y) 7→ λ−1/2〈v, ϕθ,S(x)〉θ,S : ‖v‖θ,S ≤ 1}. Furthermore, we

also have the upper bound

ES∼NM [E(θ, S)− Ê(θ, S)] ≤ 2λ−1/2Lip(λ−1/2)√
n

. (B.52)
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Proof. We may rewrite term ES∼NM [E(θ, S)− Ê(θ, S)] as

ES∼NKEµ∼ρE(x,y)∼µn
(
E(x,y)∼µℓ(〈ωθ,S(x,y), ϕθ,S(x)〉, y)− ℓ̂θ(x,y, S)

)
.

(B.53)

This is bounded in [Mau09, Thm. 6], and we follow similarly. For a fixed θ ∈ Θ

and any sample S, let W = {w : ‖w‖θ,S ≤ λ−1/2}. By proposition B.2.1, we

have that for any dataset z of size n generated according to our assumptions,

for any θ ∈ Θ, ‖ωθ,S(z)‖θ,S ≤ λ−1/2. Thus, for any µ ∈M1(X × [0, 1]),

E(x,y)∼µn
(
E(x,y)∼µℓ(〈ωθ,S(x,y), ϕθ,S(x)〉, y)− ℓ̂θ(x,y, S)

)
(B.54)

≤ E(x,y)∼µn sup
w∈W

(
E(x,y)∼µℓ(〈w, ϕθ,S(x)〉, y)− ℓ̂θ(x,y, S)

)
(B.55)

= E(x,y)∼µn sup
f∈F

(
E(x,y)∼µf(z)−

1

n

n∑
i=1

f(zi)

)
(B.56)

where we have the family of functions

F = {z = (x, y) 7→ ℓ(λ−1/2〈v, ϕθ,S(x)〉, y) : ‖v‖θ,S ≤ 1}. (B.57)

By Thm. 4 we can upper bound this by the Rademacher complexity, getting

the upper bound

E(x,y)∼µn sup
f∈F

(
E(x,y)∼µf(z)−

1

n

n∑
i=1

f(zi)

)
≤ Ez∼µnR(F(z)) (B.58)

Furthermore, by assumption y ∈ [0, 1] and ℓ(·, y) has a Lipschitz con-

stant upper bounded by Lip(L) when we consider dom(ℓ(·, y)) = [−L,L].

By Cauchy-Schwartz and ‖v‖θ,S ≤ 1, we have that λ−1/2〈v, ϕθ,S(x)〉θ,S ∈

[−λ−1/2, λ1/2] and so L = λ−1/2. Letting ϕi : t 7→ ℓ(t, yi) with domain

[−λ−1/2, λ−1/2] then the Lipschitz constant is Lip(λ−1/2). We let G = {z =

(x, y) 7→ λ−1/2〈v, ϕθ,S(x)〉θ,S : ‖v‖θ,S ≤ 1}.
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Since F = ϕ ◦ G we have by Cor. B.2.1 that

E(x,y)∼µn
(
E(x,y)∼µℓ(〈ωθ,S(x,y), ϕθ,S(x)〉, y)− ℓ̂ωθ,S

(x,y)
)

(B.59)

≤ Ez∼µnR(ϕ ◦ G(z)) (B.60)

≤ Lip(λ−1/2)Ez∼µnR(G(z)). (B.61)

We can further bound Ez∼µnR(G(z)) using a standard RKHS rademacher com-

plexity argument.

By standard arguments of Rademacher complexity of kernels such that

K(x, x) = 1 we have the bound

Ez∼µnR(G(z)) ≤
2λ−1/2

√
n

(B.62)

Substituting the upper bounds Lip(λ−1/2)Ez∼µnR(G(z)) or 2λ−1/2Lip(λ−1/2)√
n

of (B.54) and combining everything we have

ES∼N k [E(θ̂, S)− Ê(θ̂, S)] ≤ Lip(λ−1/2)ES∼NMEz∼ρ̂R(G(z)) (B.63)

ES∼N k [E(θ̂, S)− Ê(θ̂, S)] ≤ 2λ−1/2Lip(λ−1/2)√
n

(B.64)

We note the following about the bound above. The bound Ez∼ρ̂R(G(z)) ≤
2λ−1/2
√
n

is standard and applies to all kernels such that K(x, x) = 1. However,

in the benign case that ES∼NMR(G(z)) � 2λ−1/2Lip(λ−1/2)√
n

, using IKML would

lead to a term much smaller than fixing a kernel and learning the tasks inde-

pendently.

B.2.6 Predicting the Empirical Error for the Future

Task

In this section we focus on the terms (B), (D), each of the form

ES∼NM ÊT (θ, S) − Ê(θ, S) where θ ∈ Θ. To control this term we use [Mau16,
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Sec. 4.2]. We want to control the term ÊT (θ, S) − Ê(θ, S) using a uniform

bound of the form

ÊT (θ, S)− Ê(θ, S) ≤ sup
θ∈Θ

(
1

T

T∑
t=1

ℓ̂θ(z
t, S)− Ez∼ρ̂ℓ̂θ(z

t, S)

)
, (B.65)

where zt = (xt,yt) ∼ µnt and we let Z = (zt)Tt=1 ∼ ρ̂T . This enables us to con-

trol both (B) involving the ERM parameter θ̂ and (D) involving θ∗. We switch

the order of the terms to get the standard form supf∈F Ef(x)− 1
n

∑n
i=1 f(xi).

We define the loss class F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ} and

note that it implicitly depends on the random feature sample S.

Theorem 6. For any θ ∈ Θ, squared error ℓ(y, ŷ) = (y − ŷ)2 such that for

all y ∈ [0, 1], ℓ(·, y) : [−L,L] → R+ has Lipschitz constant Lip(L), with ω

being KRR with regularization parameter λ > 0 and RKHS induced by Kθ,

with probability greater than 1− δ over the choice of meta-train set Z ∈ (Zn)T

we have

ES∼NM [ÊT (θ, S)− Ê(θ, S)] ≤ ES∼NMEZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
. (B.66)

Proof. Relating our setting to [Mau16], for some S we let the loss function

class be

F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ}, (B.67)

and for Z ∈ (Zn)T , we denote Φ(Z) = supf∈F EZ∼ρ̂T f(Z) − 1
T

∑T
t=1 f(Zt).

By 2. of Thm. 4, since ℓ̂θ(z, S) ∈ [0, 1], for any δ > 0 we have with probability

greater than 1− δ over Z ∼ ρ̂T that

Φ(Z) ≤ EZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
, (B.68)

so we focus on controlling the Rademacher complexity EZ∼ρ̂TR(F(Z)). Fol-

lowing [Mau16, Sec. 3.3], note that our notation differs, the translation is

as follows ([Mau16, Sec. 3. 3] → this work) H → {ψθ,S(·), ∀θ ∈ Θ},
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ψt(·) → ℓ̂(·),S(z
t), Et∼ρ[ψt(h)] → Ê(θ), 2

n
R(H, x̄) → R(F(Z)), ϕt(h) → Φθ,S,

we will specify Φθ,S below. To apply [Mau16, Thm. 2] we need find a "Lips-

chitz" constant L such that

ℓ̂θ,S(z
t)− ℓ̂θ′,S(zt) ≤

L√
n
‖Φθ,S − Φθ′,S‖F , (B.69)

where (Φθ,S):,j = ϕθ,S(xj) and Φθ,S ∈ R2M×n, e.g. Φθ,S is the feature matrix

of the kernel Gθ(x, S) so that Gθ(x, S) = Φ⊤
θ,SΦθ,S. We proceed as follows;

assume that for loss ℓ(·, ·) we have kernel stability

ℓ̂θ,S(z)− ℓ̂θ′,S(z) ≤
Lℓ
n
‖Gθ(x, S)−Gθ′(x, S)‖F , (B.70)

this holds true for the least squares loss with Lℓ = 2λ−1 following similarly

from the proof of proposition B.2.1. Since Φ⊤
θ,SΦθ,S = Gθ(x, S) for θ and

similarly for θ′ we can write

‖Gθ(x, S)−Gθ′(x, S)‖F =
∥∥Φ⊤

θ,SΦθ,S − Φ⊤
θ′,SΦθ′,S

∥∥
F

(B.71)

and letting Mmax = max(‖Φθ,S‖F , ‖Φθ′,S‖F ), using the matrix identity A⊤A−

B⊤B = A⊤(A− B) + (A− B)⊤B, we can upper bound it

∥∥Φ⊤
θ,SΦθ,S − Φ⊤

θ′,SΦθ′,S

∥∥
F
≤ ‖Φθ,S‖F‖Φθ,S − Φθ′,S‖F + ‖Φθ′,S‖F‖Φθ′,S − Φθ,S‖F

(B.72)

≤ 2Mmax‖Φθ′,S − Φθ,S‖F . (B.73)

Now

‖Φθ,S‖2F =
1

M

M∑
k=1

n∑
j=1

(sin(ψθ(sk)
⊤xj)

2 + cos(ψθ(sk)
⊤xj)

2) =
1

M

M∑
k=1

n∑
j=1

1 = n,

(B.74)



B.2. Error Decomposition 150

which means that Mmax =
√
n and thus we have the sought Lipschitz property

ℓ̂θ,S(z
t)− ℓ̂θ′,S(zt) ≤

Lℓ√
n
‖Φθ′,S − Φθ,S‖F . (B.75)

From this we have that

R(F(Z)) ≤ 2Lℓ

T
√
nM

(
Eϵ sup

θ∈Θ

T,M,n∑
t,k,i

ϵtki(sin(ψθ(sk)
⊤xti) + cos(ψθ(sk)

⊤xti))

)
.

(B.76)

B.2.7 Random Feature Error

In this section we show how to control the term (F ) in the bound, the term

ES∼NM [E(θ∗, S)− E(θ∗)]. (B.77)

Remember that for a dataset x ∈ X n, random features S and θ ∈ Θ, we let

g(x) = (Kθ(xi, x))
n
i=1 and similarly g(x, S) = (Kθ,S(xi, x))

n
i=1.

We first need some additional results

Theorem 7 ([Tro19], Theorem 2.1). Let A be a self-adjoint matrix of size n.

Given a iid samples (Rk)
M
k=1 of self-adjoint matrices such that ER1 = A and

‖R1‖∞ ≤ B. Let m2(R1) = ‖ER2
1‖∞ and R̄M = 1

M

∑M
k=1RM , then

E
∥∥R̄M − A

∥∥ ≤√2m2(R1) log(2n)

M
+

2B log(2n)

3M
. (B.78)

Lemma B.2.2. For any x ∈ X n, any θ ∈ Θ, ES∼NM‖g(x)− g(x, S)‖2 ≤

2n1/2M−1/2
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Proof. We have that

ES∼NM‖g(x)− g(x, S)‖2 ≤
√

ES∼NM‖g(x)− g(x, S)‖22 (B.79)

=

√√√√ n∑
i=1

ES∼NM (g(x)i −
1

M

M∑
k=1

g(x, sk)i)2. (B.80)

Define Ti,k = Kθ(x, xi) − Kθ,sk(x, xi), then E(Ti,k) = 0, for any i ∈ [n],

(Ti,k)
M
k=1 is an iid sample of random variables and finally |Ti,k| ≤ |Kθ(x, xi)| +

|Kθ,sk(x, xi)| ≤ 2. We can then express

n∑
i=1

ES∼NM (g(x)i −
1

M

M∑
k=1

g(x, sk)i)
2 =

n∑
i=1

ES∼NM

(
1

M

M∑
k=1

Ti,k

)2

(B.81)

=M−2

n∑
i=1

ES∼NM

(
M∑
k=1

Ti,k

)2

. (B.82)

For arbitrary i ∈ [n], we see that

ES∼NM

(
M∑
k=1

Ti,k

)2

≤
M∑
k=1

Esk∼NT
2
i,k + 2

∑
k<l

Esk,sl∼NTi,kTi,l (B.83)

=
M∑
k=1

Esk∼NT
2
i,k + 2

∑
k<l

Esk∼NTi,kEsl∼NTi,l =
M∑
k=1

Esk∼NT
2
i,k, (B.84)

where we used the fact that Ti,k is zero-mean and for fixed i ∈ [n], Ti,k, Ti,l are

independent. Since |Ti,k| ≤ 2 we see that |Ti,k|2 ≤ 4, hence

ES∼NM

(
M∑
k=1

Ti,k

)2

≤ 4M. (B.85)

Thus we see that

ES∼NM‖g(x)− g(x, S)‖2 ≤
√

ES∼NM‖g(x)− g(x, S)‖22 ≤ 2n1/2M−1/2.

(B.86)
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Following [Tro19, Section 2.2] we have the following result

Lemma B.2.3. For any x ∈ X n, any θ ∈ Θ, ES∼NM‖G(x)−G(x, S)‖∞ ≤√
4∥G(x)∥∞n log(2n)

M
+ 2n log(2n)

4M

Proof. Note that due to the identity cos(x− y) = sin(x) sin(y) + cos(x) cos(y)

we have Kθ(x, y) = Es∼N cos(〈x, ψθ(s)〉 − 〈y, ψθ(s)〉) = Es∼Nϕθ,s(x)
⊤ϕθ,s(y).

For the sample x = (xi)
n
i=1 let Zk,i,: = ϕθ,sk(xi) be the matrix of features

corresponding to sample sk, and let Z l
k be the l’th column of Zk. Thus we

have that EZkZ⊤
k = G(x) and G(x, S) = 1

M

∑M
k=1 ZkZ

⊤
k .

To put this in the notation of Thm. 7 we let R̄M = G(x, S) and A = G(x).

To invoke Thm. 7 need to upper bound the quantities ‖ZkZk‖∞ and m2(ZkZ
⊤
k ).

For the first term

∥∥ZkZ⊤
k

∥∥
∞ ≤ ‖Zk‖∞‖Zk‖∞

≤ ‖Zk‖2F =
n∑
i=1

cos(〈xi, ψθ(sk)〉)2 + sin(〈xi, ψθ(sk)〉)2 = n.
(B.87)

For the second term, consider E(ZkZ⊤
k )

2. We can rewrite this in the form

EZkCZ⊤
k where C = Z⊤

k Zk hence symmetric and psd. We can write this as a

sum

ZkCZ
⊤
k = C11Z

1
k(Z

1
k)

⊤ + C22Z
2
k(Z

2
k)

⊤ + C12(Z
1
k(Z

2
k)

⊤ + Z2
k(Z

1
k)

⊤). (B.88)

We can bound 0 ≤ C11 = ‖Z1
k‖

2
2 ≤ n, 0 ≤ C22 = ‖Z2

k‖
2
2 ≤ n and |C12| =

|〈Z1
k , Z

2
k〉| ≤ n. Using the identity ab⊤+ba⊤ = 1

2
((a+b)(a+b)⊤−(a−b)(a−b)⊤)

we can then express ZkZ⊤
k as a sum of four psd matrices (with possibly negative

coefficients)

ZkZ
⊤
k = C11Z

1
k(Z

1
k)

⊤ + C22Z
2
k(Z

2
k)

⊤

+
C12

2
(Z1

k + Z2
k)(Z

1
k + Z2

k)
⊤ − C12

2
(Z1

k − Z2
k)(Z

1
k − Z2

k)
⊤,

(B.89)

then we see that we can majorize ZkZk by the matrix nZ1
kZ

1
k+nZ

2
kZ

2
k+

n
2
(Z1

k+
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Z2
k)(Z

1
k + Z2

k)
⊤ + n

2
(Z1

k − Z2
k)(Z

1
k − Z2

k)
⊤ in the Loewner order and expand-

ing this majorant we see that (ZkZ
⊤
k )

2 � 2nZkZ
⊤
k where we let � be the

Loewner order on psd matrices. It follows that m2(ZkZ
⊤
k ) =

∥∥E(ZkZ⊤
k )

2
∥∥
∞ ≤

2n
∥∥EZkZ⊤

k

∥∥
∞ = 2n‖G(x)‖∞.

We are now ready to state the theorem of the random feature error

Theorem 8 (Random feature error). For any θ ∈ Θ, any loss ℓ such that

for all y ∈ [0, 1], ℓ(·, y) : [−L,L] → R+ has Lipschitz constant Lip(L), with ω

being KRR with regularization parameter λ > 0 and RKHS induced by Kθ we

have that

ES∼NM [E(θ, S)− E(θ)] ≤ 2Lip(λ−1/2)λ−1M−1/2 (B.90)

+ 2Lip(λ−1/2)λ−2M−1/2n−1
√

log(2n)Eµ∼ρEx∼µn‖G(x)‖∞ (B.91)

+
1

2
Lip(λ−1/2)λ−2M−1n−1 log(2n) (B.92)

Proof. For any θ we can bound

ES∼NME(θ, S)− E(θ)

= Eµ∼ρ,(z,z)∼µn+1,S∼NM (ℓ(〈ωθ,S(x,y), ϕθ,S(x)〉, y)− ℓ(〈ωθ(x,y), ϕθ(x)〉, y))

(B.93)

≤ Lip(λ−1/2)Eµ∼ρ,(z,z)∼µn+1,S∼NM |〈ωθ,S(x,y), ϕθ,S(x)〉 − 〈ωθ(x,y), ϕθ(x)〉|.

Then

ES∼NM |〈ωθ,S(x,y), ϕθ,S(x)〉 − 〈ωθ(x,y), ϕθ(x)〉| (B.94)

= ES∼NM

∣∣y⊤(Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S))
∣∣ (B.95)

≤ ES∼NM‖y‖
∥∥Gλ(x)

−1g(x)−Gλ(x, S)
−1g(x, S)

∥∥ (B.96)

≤
√
nES∼NM

∥∥Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S)
∥∥. (B.97)

Using the matrix identity AB − CD = A(B − D) + (A − C)D, the triangle
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inequality, together with Lemma B.2.1 we get

∥∥Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S)
∥∥

≤
∥∥Gλ(x)

−1
∥∥
∞‖g(x)−g(x, S)‖2 +

∥∥Gλ(x)
−1−Gλ(x, S)

−1
∥∥
∞‖g(x, S)‖2

(B.98)

≤ (nλ)−1‖g(x)− g(x, S)‖2 + (nλ)−2‖G(x)−G(x, S)‖∞
√
n (B.99)

and so we consider the terms

ES∼NM‖g(x)−g(x, S)‖2

and

ES∼NM‖G(x)−G(x, S)‖∞. (B.100)

Using Lemma B.2.2 and Lemma B.2.3 we can upper bound (B.99) (together

with factor
√
n) as

√
n
∥∥Gλ(x)

−1g(x)−Gλ(x, S)
−1g(x, S)

∥∥ (B.101)

≤ 2λ−1M−1/2 + 2λ−2M−1/2n−1/2
√
log(2n)‖G(x)‖∞ (B.102)

+
1

2
λ−2M−1n−1/2 log(2n) (B.103)

The final bound follows by pulling Eµ∼ρEz∼µn into the square root using

Jensen and multiplying by Lip(λ−1/2).

Combining the above we have that

Theorem 9 (IKML Excess risk bound). Assume that X × Y ⊆ Rd × [0, 1]

and ℓ(y, ŷ) = (y − ŷ)2. Let Gfuture = {z = (x, y) 7→ λ−1/2〈v, ϕθ,S(x)〉θ,S :

‖v‖θ,S ≤ 1} and F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ}, and let

Z = (xt,yt)Tt=1 ∼ ρ̂T then with probability greater than 1− δ over the sampling
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of Z

ES∼NM [E(θ̂, S)− E(θ∗)] (B.104)

≤ 2Lip(λ−1/2)ES∼NMEz∼ρ̂R(Gfuture(z)) (B.105)

+ ES∼NMEZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
(B.106)

+ ES∼NM (ÊT (θ̂, S)− ÊT (θ∗, S)) (B.107)

+ 2Lip(λ−1/2)λ−1M−1/2 (B.108)

+ 2Lip(λ−1/2)λ−2M−1/2n−1/2
√

log(2n)Eµ∼ρEx∼µn‖G(x)‖∞ (B.109)

+
1

2
Lip(λ−1/2)λ−2M−1n−1/2 log(2n) (B.110)

We note the following

• (B.105) can be replaced by the strictly greater bound

2Lip(λ−1/2)λ−1/2n−1/2,

• we hypothesise that the term ES∼NMEZ∼ρ̂TR(F(Z)) in (B.106) is

O(1/
√
T ) due to standard form of rademacher complexities of bounded

balls in RKHS,

• (B.107) is the optimization error and we assume that this is negligible,

• since we are using the squared loss Lip(L) = 2(L+1) and thus all terms

Lip(λ−1/2) = 2(λ−1/2,+1) = O(λ−1/2).

B.3 Datasets

B.3.1 Beijing Air Quality

The Beijing Air Quality dataset [Zha+17] is a time-series dataset measuring

air-quality and meterological factors at 12 air-quality monitoring sites. The

meterological data for each site is matched with the closest of available weather
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stations. The data was collected hourly and from the period March 1st, 2013

to February 28th, 2017.

Each datum consists of a timestamp, the site name and various features.

We use the feature of interest, “PM2.5” for the fine particulate matter (PM)

concentration and remove the features “PM10”, “wd”, “WSPM” since the first

one correlates heavily with “PM2.5” and “wd”, “WSPM” since “wd” is the

direction of the wind and thus categorical and “WSPM” since this is the wind

speed of the direction. This leaves us with 9 features and one output feature.

The dataset was created as follows:

1. Remove any rows with missing entries.

2. For each station, split the time-series into 3 sub-series of 64/16/20%

starting at the beginning forming the meta-train, validation and test

sets.

Tasks are sampled as follows:

1. Sample a station uniformly at random.

2. Given a train and validation size n = ntr + nval sample a contiguous

sequence of size n at random from the available starting points. We

add a temporal feature t which is just an index from 1 to n to encode

temporal dependency local to the task.

3. From this contiguous sequence randomly assign ntr datapoints to the

train set and nval datapoints to the validation set.

This leaves us with the columns ’SO2’, ’NO2’, ’CO’, ’O3’, ’TEMP’,

’PRES’, ’DEWP’ and ’RAIN’ as features.

B.3.2 Gas Sensor
The Gas Sensor Modulation dataset [BJM18] is a collection of multivariate

timeseries collected in a controlled environment using MOX sensors for CO
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detection. The sensors output voltage recordings sampled at a frequency of

3.5 Hz.

Each timeseries can be chunked up into contiguous subseries correspond-

ing to experiments by looking at the heating cycle, the end of a cycle which

marks a new experiment. We let each subsequence correspond to one task

distribution from which we sample n = ntr + nval datapoints and permute the

indices to make the task into a supervised regression task. The output was

chosen to be the 2nd feature 3 timesteps into the future as this seen to vary

over the tasks and not directly inferable by one of the other features. In total

there are 13 csv files with experiment. Each such file has a set number of ex-

periments after preprocessing, we split each files experiment into 64/16/20%

meta-train, validation and test splits.

The dataset was created as follows:

1. All subsequences were extracted by locating the start and end of a heat-

ing cycle.

2. All extra features which were not gas sensors were dropped.

3. Output feature isolated and lagged.

Tasks are sampled as follows:

1. For a new task we first sample one of the csv files uniformly at random.

2. From the experiments in this csv file we sample a subsequence uniformly

at random which is the task-distribution.

3. Add “t” to the features.

4. From this subsequence we sample n = ntr +nval points at random which

forms out train and validation set.

B.4 Experimental Results

B.4.1 Hardware
All of the experiments were run on a single computer with specifications
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CPU

AMD Ryzen 7 3700X 8-Core Processor

GPU

NVIDIA GeForce RTX 2060 SUPER

RAM

2x16GB DDR4 Vengeance

B.4.2 Algorithms
In this section we elaborate on the algorithm used.

MAML [FAL17] parameterize a set of functions fθ : X → Y , typically

a family of neural networks. For a new task D it optimizes the objective

argminθ Ê(fθ, Dtr) using gradient descent starting from the hyperparameter θ0
so that the fine-tuned weight vector is a function of θ0, θ(θ0). In the outer loop

it optimizes the objective argminθ0 Ê(fθ(θ0), D
val) using gradient descent.

R2D2 [Ber+19] parameterize a feature map ϕθ : X → Rd which give rise

to a kernel Mθ(x, x
′) = 〈ϕθ(x), ϕθ(x′)〉. The inner algorithm is KRR with Kθ.

For a task D it first does KRR in the inner loop giving the KRR estimator

fθ = AKRR(Kθ, D
tr) and in the outer loop it optimizes argminθ Ê(fθ, Dval) using

gradient descent.

LS Biased Regularization [Den+19] performs biased ridge regression

where the functions are given by fθ(x) = 〈θ, x〉. For the inner algorithm it

solves the biased ridge regression problem argminw
1
n
‖Xθ − y‖2 + λ‖θ − θ0‖2

which has a closed form, see [Den+19]. For a task D the algorithm first

finds θ(θ0) using Dtr using biased RR and in the outer loop it optimizes

argminθ0 Ê(fθ(θ0), D
val) using gradient descent.

IKML-MLP is the same as IKML but uses the general random features

representation of the kernel K(x, x′) =
∫
Ω
φ(x, ω)⊤φ(x, ω) dτ(ω). In this case,

we let φ(·, ω) : Rd → Ro be an MLP with ReLU activation functions, some

fixed hidden dimension h and an output dimension o. Let D be the size of ω. In

this case the feature map is complicated, so we opt for a simpler pushforward
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to make it easier to train. In particular, we let the pushforward take on a

“variational form” by letting the pushforward ψθ(s) = ψµ,σ(s) = µ + σ � s

where s, µ, σ ∈ RD and for two matrices A,B, (A � B)ij = AijBij is the

Hadamard product. We train using the same procedure as in Alg. 1. Of note

is that this can be seen as an ensemble method over R2D2 where instead of

ensembling over the learned functions we ensemble over kernel functions.

B.4.3 Toy Regression

B.4.3.1 Setup

We create a synthetic high-dimensional meta-learning regression setting where

each task is sampled from an RKHS H with a “complicated” kernel Ko. In

particular, we choose Ko to be the kernel given by Bochner’s theorem and a

pushforward of a 3-layers Multi-Layer Perceptron (MLP) with 32 hidden units

per layer, ReLU activation functions and a 16-dimensional latent Gaussian

distribution. The network was initialized with weights given by the PyTorch

[Pas+19] default initialization scaled by 100. Since this kernel lacks an analytic

form, we sample 10000 frequencies and use the random features kernel in its

place.

The tasks are generated in H by independently sampling R points (xr)Rr=1

with xr ∼ U[0,0.2]d and R coefficients (αr)
R
r=1 with αj ∼ U[0,1]. Together they

model the target regressor as f(x) =
∑R

r=1 αrK(x, xr). We set R = 3. The

task datasets is created by independently sampling n = ntr + nval = 50 + 50

datapoints (xi, yi)
n
i=1 with xi ∼ U[0,0.2]d and yi = f(xi).

B.4.3.2 Initial and Learned Kernel

For the same setup of the environment as in the synthetic experiments we look

at how the initial and learned kernels differ from the true kernel. We do this for

the algorithms IKML and Gaussian MKL meta-KRR. These algorithms where

chosen since they define translation invariant kernels and are easy to visualize.

We let all of the algorithms (R2D2, MAML, IKML) be parameterized by a 3-

layer MLP but with varying the dimensionality of x. We also tried using 1 and
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2-layer MLPs for the parameterization but the results were almost identical.

For an experiment with dimension d we visualize the kernels of Gaussian

MKL meta-KRR and IKML by sampling 5 directions (vi)
5
i=1 from the unit

ball in Rd. For a direction vi we plot the value of the kernel on the line with

direction vi where on the x-axis we have t from −0.4 to 0.4 and on the y-axis

the value of K(0, t · vi). We plot the result of the first run for each experiment,

other runs look similar.

We plot the learning curves and kernel for each dimension 1, 5, 10, 20.

For each row in Fig. B.2 corresponding to a dimension d the i’th column plots

kernels in the direction of vi with the first row of the subplot corresponding to

the kernels at initialization and the second row the kernels after training. The

sample (vi)
5
i=1 is resampled for each dimension. For IKML we sample 10000

frequencies once and fix them before plotting.

B.4.4 Learning Curves

We show the behaviour of the optimization trajectory of the algorithms R2D2,

IKML and ANP. See Fig. B.1a and Fig. B.1b.

(a) (a) (b) (b)

Figure B.1: Learning curves of meta-validation RMSE for the algorithms
IKML, R2D2 and ANP for (a) Beijing Air Quality (25-shot), (b) Gas Sensor
dataset (20-shot) over 5 runs (mean ± 1 std). R2D2 and ANP were chosen due
to their recency and performance as few-shot learning algorithms compared to
all other algorithms evaluated.
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B.4.5 Cross-Validation for Real-World Datasets
We cross-validated R2D2, IKML and ANP on the 25-shot Air Quality and

20-shot Gas Sensor dataset where we do a grid search over the number

of hidden layers in an MLP with ReLU activation function and the meta-

learning rate. For IKML and R2D2 the number of hidden layers are in

{1, 2, 3, 4, 6, 8, 10, 15, 20} while for ANP we use the same architecture for en-

coder and decoder and use {1, 2, 3, 4} layers, the hidden dimension is fixed to

64, the meta-learning rate are in {10−4, 10−5}. The training setup is the same

as in the main body and the metric is the RMSE on a holdout-set sampled

from the meta-validation split of the best model from the snapshots during

the 30000 iterations. The results can be seen in Table B.1.

Table B.1: Validation results for meta-hyperparameter configurations for
IKML, R2D2 [Ber+19] and ANP [Kim+19] on 25-shot Air Quality dataset
and 20-shot Gas Sensor. Best set of parameters in bold. We run the algo-
rithms for 30000 iterations and evaluate it on the validation set at 250 intervals.
We get the validation RMSE on a holdout set (3000 tasks) using the model
with the lowest evaluation validation error.

25-shot Air Quality 20-shot Gas Sensor
Meta-lr Layers IKML R2D2 ANP IKML R2D2 ANP

10−4 1 101.65 8861.31 1390.14 2.16 2.64 2.38
2 98.37 13761.01 38.61 2.14 1.85 1.72
3 98.07 205.06 38.37 2.14 1.65 1.53
4 21.45 508.55 36.32 2.11 1.49 1.57
6 24.24 21.57 – 2.13 1.46 –
8 23.88 21.96 – 2.06 1.53 –
10 27.30 21.32 – 2.06 1.49 –
15 27.57 22.85 – 2.12 1.48 –
20 40.57 25.01 – 7.20 1.50 –

10−5 1 125.75 3237.35 76.50 19.53 6.45 7.83
2 110.01 1233.41 41.75 2.70 3.20 8.43
3 76.58 431.61 47.24 2.50 2.34 7.42
4 19.05 57.37 43.71 2.41 1.86 6.35
6 20.52 22.68 – 2.43 1.59 –
8 23.86 21.98 – 2.35 1.55 –
10 134.89 22.44 – 2.45 1.53 –
15 28.40 24.80 – 2.46 1.56 –
20 135.18 26.62 – 2.45 1.55 –
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B.4.6 More Shots
Further test-RMSE for various numbers of shots for Air Quality Table B.2 and

Gas Sensor Table B.3. We benchmark LS Biased Regularization, IKML, R2D2,

ANP for both Air Quality and Gas Sensor and additionally IKML-MLP for

Gas Sensor. We reuse the cross-validated models for IKML, R2D2 and ANP

and the hyperparameters used for the other models. We get 5 test-RMSE

scores for Air Quality and 2 for Gas Sensor and report the mean and standard

deviation for Air Quality and mean for Gas Sensor. The low number of shots

in Gas Sensor is due to many of the underlying time series from which each

task is generated having as few as 40 points.

Table B.2: Test-RMSE (mean ± 1 std) for IKML, R2D2, ANP and LSBR
over 5 independent runs on Air Quality for various shots. Same tasks for all
algorithms over each run. Best result for each shot in bold.

Air Quality (shots)
Model 10 25 50 100

IKML 24.32± 5.21 19.14± 0.93 19.36± 1.02 18.88± 0.51
R2D2 21.21± 0.28 20.23± 0.55 23.42± 3.44 20.75± 0.79
ANP 31.05± 0.90 33.77± 0.70 37.30± 0.94 41.08± 1.07
LSBR 21.49± 0.40 21.68± 0.29 23.69± 0.47 27.32± 0.16

Table B.3: Test-RMSE (mean, standard deviation left out due to low number
of runs) for IKML, R2D2, ANP, LSBR and IKML-MLP over 2 independent
runs on Gas Sensor for various shots. Same tasks for all algorithms over each
run. Best result for each shot in bold.

Gas Sensor (shots)
Model 5 10 15 20

IKML 10.04 4.57 3.42 2.80
R2D2 6.00 2.44 2.12 1.95
ANP 2.57 2.44 2.10 2.12
LSBR 13.97 12.21 11.12 12.44
IKML-MLP 4.03 2.64 2.23 1.94
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(a) Learning curves for d =
1

(b) Initial and learned kernels for d = 1

(c) Learning curves for d =
5

(d) Initial and learned kernels for d = 5

(e) Learning curves for d =
10

(f) Initial and learned kernels for d = 10

(g) Learning curves for d =
20

(h) Initial and learned kernels for d = 20

Figure B.2: Parameterization using a 3-layer MLP: Learning curves and initial
vs learned kernels for different input dimension on synthetic dataset (all algo-
rithms using a 3-layer MLP). Column 1: learning curves (meta-test RMSE)
over 3 runs. Column 2: Sub-row 1 kernel before training, Sub-row 2 kernel
at test time. Each column plots the kernel in a random direction drawn from
the unit ball.
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B.4.7 Sensitivity of R2D2 and IKML-MLP

We highlight the qualitative difference between R2D2 and IKML-MLP. We

compare the learning curves and holdout meta-valid and test RMSE. Note that

the test-split is used to asses out-of-sample few-shot performance since we train

and choose best model using train and validation set respectively. In this case

we let the feature map φ(x, ω) be an MLP with ReLU activation functions,

with number of layers and number of hidden units varied. We perform this

analysis on the Air Quality and Gas Sensor datasets with the settings as given

in the main body unless specified and compare the results.

B.4.7.1 Air Quality

We run IKML-MLP and R2D2 for 10000 iterations using Adam with meta-

learning rate 3 · 10−4 and vary the number of layers and and the num-

ber of hidden units in isolation. Both of the algorithms share the same

base feature map φ(·, ω) but IKML-MLP calculates the kernel K(x, x′) =∫
Ω
φ(x, ω)⊤φ(x, ω) dτ(ω) by sampling while R2D2 has a fixed feature map

yielding the kernel K(x, x′) = φ(x,w)⊤φ(x′, w) for a fixed weight w. We use a

feature dimension of 8. The only difference to the setup in the main body is

that we use 10000 iterations insted of 30000.

When we fix the number of layers to be 2, we can see from Fig. B.3 that

IKML-MLP dominates R2D2 in terms of performance both on the validation

and test set. In contrast, when we fix the number of hidden units to be 64

and vary the number of layers, we can see from Fig. B.4 that R2D2 performs

equally well as IKML-MLP. As the network becomes deeper we noticed, for

this dataset, that IKML-MLP requires more random features to train well (in

contrast to the Gas Sensor case). We hypothesis that for noisy tasks, like in the

Air Quality dataset, the number of random features required to get accurate

gradients to be able to train deeper networks increase quickly with depth.

However, on this dataset we see that the number of layers is not required to

be very deep to reach good performance, so in this case it does not pose a

problem.
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B.4.7.2 Gas Sensor
We run IKML-MLP and R2D2 for 10000 iterations using Adam with meta-

learning rate 3 · 10−4 and vary the number of layers and and the num-

ber of hidden units in isolation. Both of the algorithms share the same

base feature map φ(·, ω) but IKML-MLP calculates the kernel K(x, x′) =∫
Ω
φ(x, ω)⊤φ(x, ω) dτ(ω) by sampling while R2D2 has a fixed feature map

yielding the kernel K(x, x′) = φ(x,w)⊤φ(x′, w) for a fixed weight w. We use a

feature dimension of 4. The only difference to the setup in the main body is

that we use 10000 iterations insted of 30000.

Compared to the Air Quality figures Fig. B.3 and B.4 training is much

more stable due to the dataset being much less noisy than that of the Air

Quality dataset. R2D2 and IKML-MLP both train well and have good perfor-

mance, although IKML-MLP overfits less to the meta-split as can be seen on

the holdout performance plots in Fig. B.5 and B.6. In this case 100 random

features were enough for the training to be successful for IKML-MLP which

supports the hypothesis given in the previous section on Air Quality.
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(a) Learning curves

(b) Holdout Performance

Figure B.3: Learning curves (above) and performance plots (below) of R2D2
vs IKML-MLP on the Air Quality dataset when varying the number of hidden
units. IKML-MLP is more robust to hyperparameter settings than R2D2. We
fix the number of hidden layers to 2 and feature dimension to be 8. For IKML-
MLP we fix the number of random features to be 100. Note that performance
plot is log-scaled due to large range of reported numbers.

(a) Learning curves: we optimize the models using the train split

(b) Holdout Performance

Figure B.4: Learning curves (above) and performance plots (below) of R2D2
vs IKML-MLP on the Air Quality dataset when varying the number of layers.
IKML-MLP stabilize training up to a point but for deeper networks we found
that IKML-MLP requires more random features. We fix the number of hidden
units to 64 and feature dimension to be 8. For IKML-MLP we fix the number
of random features to be 400.
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(a) Learning curves

(b) Holdout Performance

Figure B.5: Learning curves (above) and performance plots (below) of R2D2
vs IKML-MLP on the Gas Sensor dataset when varying the number of hidden
units. IKML-MLP is more robust to hyperparameter settings than R2D2. We
fix the number of hidden layers to 2 and feature dimension to be 8. For IKML-
MLP we fix the number of random features to be 100.

(a) Learning curves: we optimize the models using the train split

(b) Holdout Performance

Figure B.6: Learning curves (above) and performance plots (below) of R2D2
vs IKML-MLP on the Gas Sensor dataset when varying the number of layers.
IKML-MLP stabilize training up to a point but for deeper networks we found
that IKML-MLP requires more random features. We fix the number of hidden
units to 64 and feature dimension to be 8. For IKML-MLP we fix the number
of random features to be 100.
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B.5 Computational Complexity and

Walltime Table
In this section we show the computational complexity using big-O notation of

IKML / IKML-MLP and compare it against that of R2D2 since they both rely

on KRR as the inner algorithm. In addition we measure the performance in

practice through wall-time table of IKML, IKML-MLP, MAML and R2D2.

We first recall the complexity of training and validation of KRR in the

dual form when we have a train set Dtr = (xi, yi)
ntr
i=1 and a validation set

Dval = (xj, yj)
nval
j=1. We focus on the dual formulation since generally data set

sizes are small in meta-learning while the feature space dimension is large,

which means that the dual form is more efficient than the primal form.

Assume that we have a kernel K : X × X → R that can be evaluated

in O(κ). For training we need to calculate the dual coefficients α = (G +

ntrλI)
−1y where y is the output vector. This means we first need to calculate

the regularized kernel matrix of the train set, G+ ntrλI ∈ Rntr×ntr , which can

be calculated in O(κn2
tr + ntr) since ntrλI is a diagonal matrix, then invert

this matrix which can be calculated in O(n3
tr) and finally perform the matrix-

vector multiplication which is O(n2
tr). Summing all of the steps gives a final

complexity of O(κn2
tr + n3

tr). Prediction on the validation set Dval means first

calculating the matrix (Mls)
nval,ntr

l,s=1 = (K(xl, xs))
nval,ntr

l,s=1 between the validation

and train set which is done in O(κntrnval). After calculating M , calculating

ŷ = Mα can be done in O(ntrnval) which means that the total number of

operations is O((κ+ 1)ntrnval).

The complexity for both training and validation when using KRR depends

implicitly on κ which will depend on the meta-learning algorithm. For IKML

with Bochner kernel using M random features we first need to sample M

features. This can be done in O(Cm) where C is the time it takes to evaluate

the pushforward neural network. Note that this is a one-time cost before

training and validation. In practice we use batches so that for B tasks we

sample M features once, which reduces this cost further by a factor of the
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Table B.4: Time (seconds) to solve one batch of tasks for IKML, IKML-MLP,
R2D2 and MAML. We measure the time required for solving one batch of tasks:
training, calculating the meta-loss, and updating the hyperparameters. We use
the Air Quality (d = 10) dataset with 25 train and 25 validation points per
task, meta-batch size of 4. All algorithms use a 4-layer MLP with 64 hidden
units. For IKML we let M = 2 · 104, while for IKML-MLP we let M = 100.
We run each algorithm for 5000 steps and normalize the total time by dividing
with 5000. We repeat this 3 times and report the mean and standard deviation.

Algorithm Seconds for one batch (mean ± 1 std)

IKML 0.017± 0.00004
IKML-MLP 0.075± 0.002
R2D2 0.031± 0.001
MAML 0.022± 0.001

number of tasks in a batch. Letting W ∈ RM×d be the matrix of random

features stacked horizontally then the feature map ϕ : X → RM is ϕ(x) =

cos(Wx + b) where b is a vector of iid entries sampled uniformly from [0, 2π],

sampled at the same time as W . Evaluating ϕ once is done in O((d + 1)m).

For one task, we first calculate the M features in O((d + 1)m) and training

This means that training and prediction for IKML costs O(dmn2
tr + n3

tr) and

O(dmntrnval) respectively, both which are linear in M .

For R2D2 the feature map ϕ : X → Rh where h is the dimension of the

feature space is a neural network. Assuming that ϕ takes the form of an L-

layer MLP with weights and biases (Wi, bi)
T
i=1 such that W1 ∈ Rh1×d, b1 ∈ Rh1 ,

and for 1 < l < T , Wl ∈ Rhl×hl−1 , bl and finally WL ∈ Rh×hl , bl ∈ Rh with

nonlinearity σ which can be evaluated in constant time A, then evaluating ϕ(x)

is done in O(
∏L

l=1 hlhl−1 +
∑L−1

l=1 (1 + A)hl + hL) = O(
∏L

l=1 hlhl−1). Running

IKML-MLP, if hl = h for any l we get O(dh2L−1). Except for the extra factor

of h2L−1 the same conclusion as for Bochner holds in this case.
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