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ABSTRACT

Trade executions for major stocks come in bursts of activity, which can be partly attributed to the
presence of self- and mutual excitations endogenous to the system. In this paper, we study transaction
reports for five FTSE 100 stocks. We model the dynamic of transactions between counterparties
using both univariate and multivariate Hawkes processes, which we fit to the data using a parametric
approach. We find that the frequency of transactions between counterparties increases the likelihood
of them to transact in the future, and that univariate and multivariate Hawkes processes show promise
as generative models able to reproduce the bursty, hub dominated systems that we observe in the
real world. We further show that Hawkes processes perform well when used to model buys and sells
through a central clearing counterparty when considered as a bivariate process, but not when these
are modelled as individual univariate processes, indicating that mutual excitation between buys and
sells is present in these markets.

1 Introduction

Stock trading plays an important role in the economy, providing finance for companies so they can grow and giving
investors the opportunity to have a share in the profits of publicly-traded companies. From a regulatory perspective,
stock markets require constant monitoring, both from a prudential perspective, as well as from a conduct perspective, to
avoid the harms of market manipulation, market abuse, and money laundering.

Under MIFID II regulations, transaction level data for trades of MIFID II regulated financial instruments is reported
to the relevant regulatory bodies. However, the usage and sharing of this data is highly restricted due to its sensitive
contents. This means that the generation of synthetic transaction level data with realistic properties is of great importance
as these could be shared as a surrogate for real data, allowing for instance to outsource the development and training
of advanced machine learning models. Regulators have already begun to seek solutions for this, for example through
running hackathons and techsprints to collaborate across regulated firms, start-ups, academia, and professional services
to develop high quality, synthetic financial datasets [1]. Synthetic financial data generation has also been the focus of
financial services firms; a detailed discussion can be found in Assefa et. al. [2].

Market data has received significant interest from the academic community, mainly focusing on time series of stock
prices due to the availability of this data. Although many techniques have been developed in an attempt to infer the
generative processes that result in the observed prices [3, 4, 5, 6], due to data sharing constraints there has been less
focus on the microscopic behaviors of financial systems through the study of the transactions themselves. The temporal
dimension has been studied by observing the arrival times of orders in limit order books, electronic records of the
outstanding orders in individual stocks, as this gives a view of the supply and demand in the market. However, since
they lack counterparty information, these studies do not take into consideration how the relationships between market
participants give rise to the temporal dynamics observed. Our research is unique in its consideration of cross sectional
properties observed in the counterparty information of transactions, in combination with temporal properties observed
through the transaction timestamps.

Transaction times are an example of a temporal point process, composed of a time series of binary events that occur in
continuous time. Temporal point processes have been used extensively in modelling financial transactions, for example
Barcy et. al. [7] who model arrival times of buy and sell orders. Temporal point processes have been studied extensively,
both following a parametric approach as in this paper, and also non-parametrically, using for instance the approach
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recently proposed in Dalmasso et. al. [8], which makes use of a Variational Autoencoder, applying convolutions to
transaction times across interacting sellers and buyers and making use of a recurrent model to encode the sequential
structure. Whilst their approach is able to capture some properties of the real transaction network, they were unable to
reproduce the overall degree distributions, and, as a black box method, they are unable to draw any further insights
from the model parameters or performance. In contrast, we consider fully parametric approaches in this paper, and we
discuss an interpretation of the parameter values themselves in providing information about the underlying behaviours
of transaction sequences.

The Poisson process is the most commonly used point process, with applications across finance [9, 10, 11] and other
applications, in particular in combination with network methods [12, 13, 14, 15, 16]. However, Poisson processes
do not allow for any memory within the process, and are not able to reproduce many of the properties we observe in
this paper for transaction sequences, such as burstiness - the tendency for transactions to arrive in bursts of activity.
For this study, we consider Hawkes processes [17], which offer additional flexibility to capture these properties as
they are based on a counting process in which the intensity function depends on all previously occurred events. Given
that burstiness of stock transactions has not been previously studied, we first provide evidence of burstiness for five
FTSE100 instruments before demonstrating the utility of the Hawkes process for modelling these systems.

Hawkes processes have been extensively applied in finance (for detailed reviews of a large range of financial applications,
see [7, 18]), although there are relatively few examples in the literature where the Hawkes process is combined with
network models. One such example is presented by Linderman et. al. [19], who developed a probabilistic model that
combines the mutually-exciting point process with random graph models to produce an implicit network for use cases
such as trades on a stock market which are likely to cause subsequent activity on stocks in related industries. They
make use of Markov Chain Monte Carlo methods for inference of the resulting model. They apply their methods to
discover the latent structure underlying financial markets, which is of use to reveal interpretable patterns of interaction
and to provide insight into the stability of markets. Our work differs from their approach as we consider a univariate
Hawkes process in which edges are chosen to transact according to some attribute. Another relevant application of
Hawkes Processes is in the modelling of Limit Order Books, for which there are several examples in the literature
[20, 21, 22, 23]. One such example was presented recently in Morariu-Patrichi et. al. [24], who propose an extension to
the Hawkes process to allow them to account for the state of the Limit Order Book, meaning that the effects of price,
volumes, bid-ask spread or other properties of the order book have influence on the arrival rate of orders. Following a
similar approach for the trade executions themselves would be an interesting next step for our research. For this study,
we focus on the use of the original Hawkes process for simplicity and interpretability. Given their utility in modelling
processes in which events trigger future events, Hawkes processes are also prevalent in non-financial applications, for
example in disease modelling [25, 26] and social networks [27, 28].

In this paper, since we are not just considering transaction sequences in a univariate sense, but are also exploring the
inter-relations between market participants, we make observations of both the burstiness of transaction sequences to
evaluate the temporal dimension of transaction sequences, as well as several cross-sectional properties of the systems
considered and look to reproduce these with our methods. Properties such as the degree distribution have been a core
focus of research in financial networks [29, 30, 31] which often display fat tailed distributions due to the large range
of different market participant types. Higher order properties, capturing the relationships between nodes, have also
received attention, such as reciprocity [30, 32] and assortativity [33, 34], as well as the rich club coefficient [35, 36]
which measures the extent to which well connected nodes connect to each other. Assessing our methods against all of
these properties allows us to assess their capability to reproduce the behaviours of these systems that are driven by the
relationships between market participants.

The main results of this paper are as follows:

1. FTSE100 transaction sequences display bursty characteristics with an observed temporal stability.

2. Frequency based selection of counterparties to transact enables us to reproduce key cross-sectional properties
of the datasets considered.

3. Models which produce transaction sequences specific for each edge – which we will refer to as “edge level”
from this point onwards – show a stronger performance than those where a single Hawkes process is used to
generate events independently of the pair of counterparties involved. We will refer to the latter as “overall
network level” in the following.

4. Multivariate Hawkes processes which capture mutual excitation between pairs of counterparties show stronger
performance in reproducing cross-sectional properties of the systems than those which only allow self-
excitation.

5. Strong performance is observed when applying a model which captures mutual excitation between buy and
sell sequences to trades executed via a single hub.
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2 Methods

When considering transaction networks, there are a number of different excitation mechanisms which may result in
a trade. There may be some level of mutual excitation, in which the presence of a trade between two individuals
excites future trades between other pairs of individuals, and there may be excitation on the level of an individual pair
of traders, where the presence of a trade between them excites (or inhibits) the presence of a trade between them in
the future. There will also be trades that are controlled by exogenous factors, such as news events. Further to this,
we can also not rule out the possibility of an inherent excitation in the transaction sequence as a whole, regardless of
who the participants are. This is supported by our observations in section 3.1, where we see for all datasets considered
a consistent level of burstiness for transaction sequences across all participants. In order to take us a step closer to
understanding the generative process underlying these networks, we compare a number of different approaches using
the Hawkes process to simulate transactions. We compare the use of both univariate (at the edge level and overall
network level) and multivariate Hawkes processes, and compare to both univariate and multivariate Poisson processes
as null models.

For the univariate case at the overall network level, we are fitting the Hawkes process to the transaction sequence,
disregarding the information on which edge is transacting. This means that for these methods, we also need a method to
select which edge will transact at each time period. Given our observations in a previous study of the predictability of
subsequent transactions given the importance of nodes and edges in snapshot networks of similar equity networks [37],
we first consider whether the spectral measure of edge importance we propose can be used in a weighted selection to
choose which participants should transact. This measure of importance captures the sensitivity of the network’s leading
eigenvalue λ to changes in an individual edge Aij , and can be approximated as:

∂λ

∂Aij
= 2x0,ix0,j (1)

Where x0,i and x0,j are the ith and jth components of the eigenvector corresponding to the leading eigenvalue. We also
compare this to selecting the edge for each transaction according to the frequency of their historical transactions, and
also to simply selecting edges randomly as a null model.

For the multivariate case, the Hawkes process inherently produces the information on the participants transacting with
each other, so we do not need to make use of the above approach for selecting the participants for each transaction.

2.1 Transaction sequence generation methods

2.1.1 Poisson processes

The Poisson process is one of the most widely used point processes, used in scenarios where events occur at a constant
rate. Formally, the Poisson process is a renewal process in which the interarrival times have an exponential distribution,
with a density of interarrival times of

fX(x) = λe−λx (2)

for x > 0, and here X is the set of interarrival times and λ refers to the arrival rate of the process [38]. A key feature of
the Poisson process is that it is memoryless, which is a disadvantage when considering financial transactions, in which
the market responds to activity.

2.1.2 Hawkes processes

Hawkes processes are point processes defined by the following conditional intensity function:

λi(t) = µi +

D∑
j=1

∑
tjk<t

φij(t− tjk) (3)

where µi is the background rate of the process i, sometimes referred to as the baseline, tjk are the timestamps of all
events of node j, and φij are the kernels - functions which govern the clustering density of the point process, and are
sometimes also referred to as excitation functions. In the literature, the Hawkes kernels usually take the form of an
exponential or power law [39], and in this paper, we consider exponential excitation functions, so φij takes the form

φij(t) = αijβe−βt1t>0 (4)

3
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Hawkes type Granularity Dataset
Univariate Overall transaction sequence All venues

Single venue
Off venue

Univariate Edge level All venues
Single venue

Off venue
Multivariate Edge level All venues

Single venue
Off venue

Univariate Buys/sells Single CCP
Bivariate Buys/sells Single CCP

Table 1: Summary of different applications of Hawkes Processes considered in this paper

where αij is the kernel intensity governing the extent to which excitatory behaviour dominantes over the background
process, and β is the kernel decay governing the timescale over which a transaction influences future transactions. The
baseline parameter µi can either be constant or can be time varying in nature. While estimation of the process in the
case of a time varying baseline has been tackled by Chen et. al. [40], who take a non-parametric approach to estimate
the process, for simplicity and following observations of stationarity in the properties of the process, we opt to consider
a constant baseline in this study.

When using the Hawkes process as a univariate model for a single transaction sequence, i = 1 and the Hawkes process
reduces to

λ(t) = µ+
∑
tk<t

φ(t− tk) (5)

Written as a probabilistic model which defines the probability of a transaction at time t given the history of the process
up to time t,Ht,

P(N(t+ h)−N(t) = 1|Ht) = λ(t|Ht)h+ o(h) (6)
where h is an infinitesimally small number [41]. The historyHt is the time-ordered sequence of previous events.

Table 1 outlines the different ways we make use of the Hawkes process and the dataset subsets we apply these to.

2.1.3 Parameter estimation

A univariate Hawkes process is controlled by three parameters, which can be estimated using Maximum Likelihood
Estimation. The log-likelihood can be expressed in this case as [42]

L = log

∏n
i=1 λ(ti)

exp
∫ T
0
λ(t)dt

=

n∑
i=1

log λ(ti)−
∫ T

0

λ(t)dt (7)

However, considering the multivariate Hawkes Process with mutual excitation between edges, the number of parameters
to be estimated increases as O(2n+ n2), as each edge will have its own baseline intensity and kernel decay parameters,
as well as cross terms within the kernel matrix to capture the influence of each edge level process on every other process.
This means that even for a modest number of processes, a standard Maximum Likelihood approach is computationally
infeasible 1. Instead, we make use of the ADM4 method developed by Zhou et. al. [42], using the implementation
provided by the tick package[43], to estimate the µi and αij parameters for a process with a given decay parameter β,
and we use a brute force approach to find the value for β which produces a sequence with a burstiness closest to the
real sequence. The ADM4 method first of all makes use of the sparsity and low-rank properties of common network
systems, and it applies sparse and low-rank regularisation to the likelihood function. Since the resulting likelihood is
non-differentiable and difficult to optimise, it then combines the idea of alternating direction method of multipliers and
majorization minimization to convert the optimisation problem to several sub-problems that are much easier to solve.
The performance of this method is demonstrated in [42], in application to both simulation and real-world datasets. A
drawback of this method is that it is only implemented with a constant kernel decay across all processes, whereas we
know from our exploration later in this paper that the individual processes are highly heterogeneous in terms of their
burstiness. Fast estimation of a multivariate Hawkes with the flexibility of a varying kernel decay would thus be a useful
area for future research efforts.

1On a 2nd generation Intel Xeon Platinum 8000 series processor, the parameter estimation for a system with 200 cross terms took
over 8 hours to complete.
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2.2 Edge selection methods

Following our observations of the role of importance in predicting subsequent presence of edges in equity transaction
networks [37], the first method we consider for selecting edges is to select the edge to transact at each timestamp
probabilistically, with the edges weighted by the product of the nodes’ importance. There are a number of limitations
to this method - first, a balance needs to be struck between having a model in which the full set of node importances
is updated at each timestamp, and runtime, since to recompute all node importances at each timestamp would be
computationally expensive for a reasonable length of transaction sequence. In this paper, we make the compromise
of updating node importances every 10 transactions, as this was found to have an acceptable runtime. Secondly, this
method only allows edges which contain nodes which have previously appeared to be selected to transact, not allowing
the inclusion of new nodes. This method could also be used with other definitions of node importance or centrality,
which would be an interesting avenue for future work.

We also consider selection of edges to transact according to their transaction frequency in the real data. This method
has a significantly lower computational cost than the importance based selection. However, it still only allows for the
inclusion of nodes that existed in the training set. Finally, we compare both methods to randomly selecting the edge to
change from the set of edges that exist in the real data.

2.3 Model evaluation

In order to evaluate any models proposed, we need to assess their ability to reproduce the behaviours observed in real
networks, both at large and small aggregations, and both aggregate statistics and the more granular individual node or
edge behaviours. Several researchers have presented methods for the evaluation of network models, for example Zhang
et. al. [44] focus on the symbiotic effect, or in other words the extent to which the most important nodes connect to
each other, as a criterion for whether or not Barabasi-Albert models and variations on this model, are suitable for the
network at hand. Their method quantifies the difference between the degree based and betweenness based rich club
curves, and they apply their methods to four widely studied networks demonstrating their ability to detect varying levels
of the symbiotic effect. Wang et. al. [45], propose an approach making comparisons of likelihoods of the observed
network being driven by different models, as a means of finding the best model without relying on pre-selected model
features. This method has benefits since it does not rely on selecting specific properties of the system to reproduce,
however lacks in the interpretability and doesn’t allow any insights to be gained into the interplay between temporal and
cross sectional properties of the system.

In evaluating our models, we focus on reproducing the burstiness as a key temporal property of transaction sequences,
as this not only allows us to assess the fit of the Hawkes process, but also allows us to gain insights from the burstiness
observed and the parameter values that give rise to this. Burstiness can be directly derived from the sequence of
inter-transaction times, by comparing to the statistical properties of the inter-transaction times for a Poissonian sequence.
Starting from the coefficient of variation of the inter-contact times (στµτ ), which equals 1 for a Poissonian sequence, the
burstiness can be defined as

B =

στ
µτ
− 1

στ
µτ

+ 1
=
στ − µτ
στ + µτ

(8)

where στ is the standard deviation of the inter-contact times, and µtau is the mean. B = 1 indicates a very bursty
sequence, B = 0 a Poissonian sequence and B = −1 an entirely periodic sequence [46].

We also need to consider the cross sectional properties that our models produce, either through the direct edge selection
methods in the case of the univariate modelling approach, or in terms of the connections that a multivariate Hawkes
process brings about. We consider the a range of cross-sectional properties:

• Degree distribution - the fraction of nodes in the network with degree k

P (k) =
nk
n

(9)

where nk is the number of nodes with degree k and n is the total number of nodes

• Assortativity - Assortative mixing in networks is the tendency for nodes to connect to other nodes that are
like them. In this paper we consider degree assortative mixing, which is quantified in terms of the quantity
eij , which is the fraction of edges in a network that connect a vertex of degree i to one of degree j. The
assortativity coefficient then quantifies the level of assortative mixing, given by:

r =

∑
i eii −

∑
i aibi

1−
∑
i aibi

=
Tr(e)− ||e2||
1− ||e2||

(10)
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where e is the matrix whose elements are eij , ai =
∑
j eij and bi =

∑
j eji are the fraction of each type of

end of an edge that is attached to vertices of type i, and ||x|| means the sum of all elements of the matrix x
[47].

• Reciprocity - Reciprocity is defined for a directed graph as the ratio of the number of edges pointing in both
directions to the total number of edges in the graph G

r =
|(u, v) ∈ G||(v, u) ∈ G|

|(u, v) ∈ G|
(11)

similarly, for a single node, reciprocity is the ratio of the number of edges in both directions to the total number
of edges attached to the node in question [48].

• Rich club index - the rich club phenomenon in networks is characterised when the hub nodes with high
degrees are on average more intensely connected than the nodes with smaller degree [49]. This can be
measured using the rich club coefficient at each degree k, which is the fraction of of the actual and potential
number of edges among the set of nodes with degree higher than k:

φ(k) =
2E>k

N>k(N>k − 1)
(12)

where Nk is the number of nodes with degree larger than k and Ek is the number of edges among those nodes.

Here, we are considering higher and higher order properties allowing us to study the cross-sectional behaviour of the
systems studied at first the node level through the degree distribution, then the level of neighbours through assortativity
and beyond through network level reciprocity and rich club distributions.

3 Results

3.1 Data exploration

In this paper, we make use of transaction reports containing the details of 5 different FTSE100 constituent instruments,
reported under MIFID II regulations. These datasets were available in their raw transaction form, containing information
on price, volume, transaction time and anonymized identities of market participants, and the instruments studied were
selected at random. The transactions are reported to the nearest microsecond, providing a highly detailed view of the
behaviour of these markets at the lowest level of granularity. Although all of the instruments are FTSE100 stocks which
will be dominated by high frequency trading strategies, for the day considered they vary significantly in the number of
transactions, with the smallest being 16,000 transactions (on average approximately one transaction every 2 seconds)
and the largest 110,000 transactions (on average approximately one transaction every 0.2 seconds). It is also worth
noting that when working with these trade reports, we need to account for duplicate reporting, in which more than one
counterparty involved in the trade report the same trade. Whilst care has been taken in doing this for this paper by
identifying trades occurring at the same time and quantity between matching counterparties, we note that reporting
quality issues may result in trades being duplicated with differences. Further work is needed to fully account for this.

As the majority of trading in these liquid instruments is through market exchanges, one of the prevalent properties of
these systems is the dominance of central institutions, usually central counterparty clearing houses (CCPs). A CCP is an
institution that sits between parties involved in a transaction, to absorb any counterparty credit risk. For the instruments
in question, all show 30− 40% of trades intermediated by the same central clearing house. For most major venues we
see order book trades cleared through a single CCP for each instrument, however with the existence of interoperability
agreements which give clearing members the opportunity for netting across CCPs covered by these agreements, it is
not uncommon to see trades cleared through several CCPs for the same instrument2. Despite this, we do see a large
proportion of trades through one venue, as can be seen in figure 1. We thus consider application of Hawkes processes in
various different ways, to different subsets of these systems: we consider application to all the visible trades for these
instruments, trades through a single exchange, trades executed off exchange3 and trades only with the largest participant,
a prominent clearing house. It is theoretically possible to disintermediate the central clearing house, however most of
the trading in these cases will be on Central Limit Order Books, the buyers and sellers either side of the clearing house
will not deliberately trade with each other, but are matched according to the order matching system in place [50]. Also,
by trading via the clearing house, the risk of the trade is absorbed by the clearing house. For these reasons, we decide
not to disintermediate the central clearing house as it represents a true node in the transaction network.

2This is not the situation for many other asset classes, for example ICE futures contracts will be cleared through ICE only.
3Off exchange trades of exchange listed securities occur for a number of reasons, for example they may occur between different

arms of a large institution in different jurisdictions in order to move client money between these different arms
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Figure 1: Transaction counts by venue, showing the top 4 venues and off venue trades separately and the remaining
venues aggregated (‘other’).

Data All Single venue Off venue Single CCP
A 0.35 0.24 0.25 0.27
B 0.48 0.32 0.23 0.39
C 0.37 0.22 0.27 0.28
D 0.30 0.20 0.14 0.20
E 0.46 0.33 0.18 0.35

Table 2: Burstiness of the 5 stocks, considering the entire dataset, only trades on the venue with the most trading activity,
only off venue trades and only trades through the main clearing house (CCP).

Of the trades operated through the major venues, we also see different types of market - for example, the second and
third largest venues for all instruments considered in this paper are both examples of dark order book trading venues4.
These are venues in which there is a complete lack of transparency of the order book, allowing large institutional
investors to place trades that do not impact the markets [51]. On the other hand, the fourth largest is a lit order book
venue, where the full book of orders is visible to all market participants. We would expect very different trading
mechanisms for lit vs. dark order books, as the former allows the market price to respond more readily than the latter.

Considering these subsets for all 5 instruments, the overall network burstinesses are presented later in this paper in table
4, and in figure 3, we present the network level burstiness computed across rolling windows containing 200 transactions,
with the window size chosen as an optimal size in containing enough data points for each window for all datasets.
We can see from these that all instruments have a similar burstiness for the full transaction set, and in general the off
venue subset shows the lowest burstiness and in some cases shows a visible dip in the burstiness around midday. If we
consider applying an Augmented Dickey-Fuller test for stationarity to the burstiness calculated in a rolling window of
200 transactions, the null hypothesis of a unit root present (which would indicate non-stationarity) is rejected at 5%
significance for all except one of the transaction sequences.

4The top four venues are the London Stock Exchange, the LSEG’s Turquoise Lit venue, and the BATs Europe and Chi-X Europe
venues operated by Cboe Europe.

7
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‘
Figure 2: Transaction counts by counterparty, showing the top 5 counterparties for each instrument separately and the
remaining counterparties aggregated (‘other’).

Figure 3: Network level burstiness across rolling windows of length 200 transactions, for the different data subsets.

8
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Figure 4: Network level density (number of transactions in a given time window) across rolling 10 minute windows

Figure 4 shows the rolling transaction density (number of transactions in a given time window) for 10 minute time
windows, again with the window size chosen optimally to contain enough data points in each window for all datasets.
We see that unlike the burstiness, the transaction density is in general not stationary, and in some cases, shows a visible
trend.

When considering individual edge burstiness, we see that the individual edges tend to show a lower burstiness, with
average edge burstinesses between 0.1 and 0.3 for the five datasets, in comparison to the network as a whole which
shows average burstinesses between 0.3 and 0.5. This suggests that that mutual-excitation is a contributing factor to the
burstiness. In figure 5 we see a significant variation in the edge level burstiness, with some edges showing periodic
behaviour (negative burstiness). The subsets containing only trades with the most active central clearing house show the
largest average burstiness across the edges.

It is worth noting that a key property of these systems is the presence of ‘split’ trades. It is common practice to split
large trades into a series of smaller ones [52], as it allows securities to be traded easily without being constrained
by insufficient liquidity, and can make them more eligible for rapid execution. Split trades appear in transaction
reports in bursts of transactions occuring at the same time or very close together. In order to understand the extent
to which the observed burstiness in these systems is explained by trade splitting, we apply our methods both to the
observed timestamps, and also to timestamps grouped at an edge level, considering transactions as part of the same
order if the transactions in a group have inter-trade times of less than 1 second. Figure 6 shows the rolling burstiness
produced as in figure 3 for all transactions, both for the observed transactions, and for transactions grouped by searching
for bursts of transactions which have an inter-transaction time of less than 1 second. We can see that grouping the
transactions produces a sequence with a slightly lower burstiness, however does not entirely remove the burstiness of
these sequences.

In addition to the single day explorations of these datasets, we also looked to see if there were any consistent patterns
across multiple days in the burstiness, to understand whether the burstiness observed is affected by regular events e.g.
different markets opening. Figures 7a and 7b show the rolling burstiness and density respectively for one of the datasets,
averaged over four different trading days. We can see that although there are a few significant peaks in the burstiness
occurring around the middle of the day, the density shows significantly more prevalent peaks representing variations in
market activity. Further to this, there is a clearly observable rise in the density in the later third of the day, which is
not reflected in the burstiness suggesting that the burstiness can be treated as a noisy but fixed quantity across a day’s
trading.

9
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Figure 5: Histograms of the burstiness of individual edges across the entire observation period, for the 5 different
datasets for their different subsets

Figure 6: Rolling burstiness in windows containing 200 transactions, of all transactions for the instruments considered,
both for the raw transaction timestamps and grouped timestamps.

10
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(a) Burstiness (b) Density

Figure 7: Rolling burstiness and density, averaged across four different days for one of the datasets considered. The
dashed lines represent 3 standard deviations from the mean of the time series. The burstiness is computed with a
window of 200 transactions, and the density over a 10 minute time window.

Figure 8: Rolling burstiness over a window of 200 transactions for the 5 different instruments, considering transaction
sequences of buys and sells separately for transactions executed through the main clearing house.

Finally, we note that in the case of the subset of trades executed through a single clearing house, we can alternatively
consider the transaction sequences of buys and sells separately. Figure 8 shows the rolling burstinesses of the buys and
sells separately for trades executed through the most active clearing house. We can see from these that the burstinesses
of the buys and sells show a similar level of burstiness, although there are periods for certain instruments where the two
transaction sequences differ in their burstinesses. Visually, there also appears to be some influence of higher periods of
burstiness of buys influencing a higher burstiness of sells.

To summarise, we observe in all 5 datasets burstiness appears to be an inherent property of the transaction sequences,
that isn’t solely caused by order splitting, or constrained to a particular type of trading activity. Across all transactions,
the burstiness shows stability across time even when the underlying transaction density varies, however at the level
of sequences between individual participants, the burstiness varies significantly with some participant pairs showing
non-bursty behaviour. To try to take advantage of the bursty properties of the Hawkes process in the following sections

11
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Data Baseline int. Kernel int. Kernel dec.
A (full) 0.45± 0.08 0.55± 0.01 0.62± 0.06

A (single venue) 0.99± 0.16 0.48± 0.01 0.92± NA
A (off exchange) 0.23± 0.19 0.56± 0.02 0.66± 0.40

B (full) 0.09± 0.02 0.35± 0.01 0.63±NA
B (single venue) 0.41±NA 0.72± 0.01 0.77± 0.10
B (off exchange) 2.84± 0.58 0.75± 0.03 0.80± 0.45

C (full) 0.12± 0.04 0.36± 0.01 0.38±NA
C (single venue) 0.42± 0.10 1.05± 0.02 1.33±NA
C (off exchange) 0.03± 0.03 1.29± 0.05 1.30± 0.23

D (full) 0.90± 0.04 0.36± 0.01 1.59±NA
D (single venue) 0.01± 0.01 0.27± 0.01 0.63±NA
D (off exchange) 0.01± 0.01 0.93±NA 0.94±NA

E (full) 0.23± 0.06 0.56± 0.01 0.66±NA
E (single venue) 0.10± 0.10 0.52± 0.10 0.57± 0.11
E (off exchange) 0.04± 0.04 1.31± 0.04 1.54± 0.20

Table 3: Hawkes parameters estimated using a Maximum Likelihood approach for the chosen datasets, across the
different subsystems considered as dynamic networks

we consider a number of different approaches to modelling transaction sequences across the various subsets of the
instruments considered, making use of both univariate and multivariate Hawkes processes to establish the extent to
which self- and mutual exciting behaviour could be responsible for the burstiness we observe.

3.2 Generative models for systems with multiple hubs

When considering transactions for a single instrument that is traded on multiple venues, through a single venue for
which trades are cleared by multiple clearing houses, or considering off exchange transactions, we consider these
systems as dynamic networks, for which the generative process can be modelled as a multivariate Hawkes process at the
edge level. This allows both self excitation at the level of each edge, such that the presence of a transaction between two
counterparties increases the likelihood of them transacting in the future, and mutual excitation, whereby the presence
of a transaction between two counterparties increases the likelihood of transactions between other counterparties. In
order to understand the prevalence of self- and mutual excitation, we also consider two alternative applications of
the Hawkes process - first, considering transactions generated according to a single univariate process, and second,
considering transactions generated according to univariate Hawkes processes at the level of each individual edge. We
further compare these models to models using Poisson processes, considering both a single Poisson process for all
transactions, and individual Poisson processes for each edge. For the scenario where we use a univariate Hawkes
process to model the transaction sequence as a whole, our model consists of two parts - timestamp generation and edge
selection, as a univariate Hawkes process does not inherently produce a cross sectional structure so this needs to be
simulated separately.

3.2.1 Univariate Hawkes processes

The results of using a Maximum Likelihood approach to fit the three parameters of a univariate process to the full
transaction sequence are shown in tables 3 and 4, with the former reporting the estimated parameters and the latter
the burstiness of simulated sequences from the fitted model. Considering the parameter values, there is a reasonable
amount of variation across the different datasets for all three subsets considered, as demonstrated in figure 9. For the
baseline intensity and kernel decay parameters, there is no consistent difference in the parameter value for the different
data subsets across all of the datasets considered, however the Kernel intensity appears to show the largest values for
the off venue subset, and smaller values for the full dataset. Revisiting our earlier observation that the burstiness is
highest for the full dataset and lowest for off venue transactions, this appears contradictory, suggesting that the model is
not able to accurately estimate the parameters in the univariate case.

Table 4 and figure 10 show the burstiness of sequences generated by Hawkes processes using the parameters in table
3. Although the Hawkes process produces sequences with a positive burstiness, and are in most cases closer to the
real burstiness than a Poisson process fitted to the same data, the 95% confidence intervals obtained when running
the simulations 1000 times do not encapsulate the real burstiness for the majority of the datasets, so we can conclude
that the univariate Hawkes process is not able to produce sequences with the same level of burstiness as the real data.
This supports our observations of counterintuitive parameter values in that the univariate Hawkes process is not fully
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Data Real data Poisson Hawkes
A (full) 0.40 0 (-0.01, 0.01) 0.30 (0.27, 0.33)

A (single venue) 0.30 0 (-0.02, 0.02) 0.13 (0.11,0.14)
A (off exchange) 0.29 0 (-0.02, 0.02) 0.40 (0.34, 0.46)

B (full) 0.54 0 (-0.02, 0.02) 0.27 (0.24, 0.29)
B (single venue) 0.39 0 (-0.01, 0.01) 0.41 (0.35, 0.46)
B (off exchange) 0.31 0 (-0.02, 0.02) 0.08 (0.06, 0.11)

C (full) 0.44 0 (-0.01,0.01) 0.51 (0.48, 0.56)
C (single venue) 0.32 0 (-0.01, 0.01) 0.37 (0.34, 0.40)
C (off exchange) 0.32 0 (-0.02, 0.02) 0.78 (0.48, 0.94)

D (full) 0.34 0 (-0.01,0.01) 0.07 (0.06, 0.08)
D (single venue) 0.26 0 (-0.02, 0.02) 0.21 (0.01, 0.39)
D (off exchange) 0.19 0 (-0.02, 0.02) 0.75 (0.37, 0.96)

E (full) 0.55 0 (-0.02, 0.02) 0.41 (0.38, 0.43)
E (single venue) 0.45 0 (-0.02, 0.02) 0.54 (0.48, 0.60)
E (off exchange) 0.27 0 (-0.02, 0.02) 0.53 (0.43, 0.64)

Table 4: Burstiness of the timestamps generated by Hawkes and Poisson processes, in comparison to the real timestamps

Figure 9: Parameter values for the 5 different datasets, across the three subsets considered. Error bars (where present)
represent the standard error calculated by taking the inverse of the Hessian. The standard error is not calculated when
the Hessian is non-invertible.

capturing the behaviour of these systems, suggesting that mutual excitation could be a relevant generative property of
transaction sequences across the different subsets.

As explained above, when using a univariate Hawkes process, we consider three different methods to select the edge to
change at each time step. To evaluate the performance of these models, we compare their ability to reproduce several
properties of the real data. The first property we consider is the rich club coefficients at different node degrees. Figure
11 the rich club coefficients at different node degrees for snapshots of networks every 10 minutes, for all transactions
for instrument A for illustration. We see that for the real data, the nodes with the largest degree have very low rich
club indices, which is driven by the presence of disconnected star subnetworks containing a single hub node (in all
cases a CCP) connected to a number of other nodes that are only connected to the hub. We see that this property is also
reproduced by frequency based edge selection, however is not for random selection or importance based selection.

Table 5 shows the p-values of a two dimensional, two sided Kolmogorov-Smirnov test applied to each of the results
of each of the different edge selection methods, in comparison to the real data. Here, small p-values mean that the
two samples are significantly different, with the null hypothesis being that the two distributions are the same. We can
see that this null hypothesis is rejected for all of the datasets with random or importance based selection, so these
methods are not able to reproduce this property of the real data. However, we see that for frequency based selection,
considering the full datasets, four of the datasets show a p-value of > 0.05, meaning that for these the null hypothesis is
not rejected and the distributions are not significantly different from the rich club distributions of the real data. For the
dataset for which the null hypothesis is rejected for frequency based edge selection, the p-values are still much higher
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Figure 10: Burstiness of the simulated timestamps using the parameters in table 9, for the 5 different datasets across the
different subsets, in comparison to the burstiness of the real data and a univariate Poisson process fitted to the real data.

Figure 11: Rich club coefficients for the degrees of nodes in the network for the FTSE-A instrument. The colours
represent snapshot networks aggregated every 10 minutes. Inset plots are presented for the frequency and real data with
a reduced x axis scale.
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Data Random Frequency Importance
A (full) 2.99× 10−20 0.38 1.55× 10−20

A (single venue) 1.88× 10−20 0.73 6.12× 10−44

A (off exchange) 3.01× 10−6 0.06 9.00× 10−7

B (full) 4.20× 10−20 0.36 3.86× 10−22

B (single venue) 9.39× 10−18 0.030 2.44× 10−39

B (off exchange) 8.63× 10−7 0.01 2.85× 10−6

C (full) 1.74× 10−33 0.41 7.09× 10−21

C (single venue) 3.53× 10−24 0.001 8.61× 10−37

C (off exchange) 8.21× 10−5 0.01 3.31× 10−5

D (full) 2.41× 10−31 0.035 2.91× 10−32

D (single venue) 2.44× 10−13 0.35 4.70× 10−32

D (off exchange) 7.04× 10−8 0.04 3.59× 10−8

E (full) 4.87× 10−36 0.018 1.76× 10−37

E (single venue) 1.67× 10−24 0.18 1.00× 10−36

E (off exchange) 9.50× 10−9 1.02× 10−4 5.57× 10−8

Table 5: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the distributions of the Rich
Club index over different degrees for the three different edge selection methods in comparison to the real data, for the 5
datasets considered.

Data Random Frequency Importance
A (full) 2.78× 10−48 0.10 4.27× 10−97

A (single venue) 7.12× 10−61 0.15 3.96× 10−167

A (off exchange) 3.73× 10−27 0.01 1.20× 10−30

B (full) 4.24× 10−71 0.99 2.74× 10−146

B (single venue) 1.79× 10−63 0.15 5.46× 10−163

B (off exchange) 4.53× 10−27 4.03× 10−9 1.28× 10−28

C (full) 5.43× 10−40 0.06 9.53× 10−78

C (single venue) 1.86× 10−34 0.12 1.74× 10−93

C (off exchange) 3.40× 10−18 1.75× 10−5 2.29× 10−25

D (full) 2.20× 10−65 0.99 2.59× 10−114

D (single venue) 4.79× 10−72 0.45 3.76× 10−176

D (off exchange) 6.25× 10−34 0.02 6.74× 10−42

E (full) 2.41× 10−91 0.99 2.27× 10−135

E (single venue) 4.71× 10−98 0.24 2.54× 10−184

E (off exchange) 3.73× 10−30 0.99 4.82× 10−32

Table 6: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the degree distributions for the
three different edge selection methods in comparison to the real data, for the 5 datasets considered.

than for the random and importance based selection, suggesting some level of similarity between these distributions
and the rich club distribution of the real data. Similar results are seen for the single venue subsets, where three of
the datasets have p-values > 0.05, however for off-exchange trading the null hypothesis is rejected at 5% confidence,
suggesting that transactions executed off exchange are less dependent on the prevalence of historical trades between the
two counterparties that the frequency based selection models.

The second property we consider is the aggregated degree distributions. Figure 12 shows an example of the degree
distributions for the three different edge selection methods along with the real data. Here we see that the real data
and frequency based edge selection data show similar shaped degree distributions, with a small number of nodes with
very high degree, but the majority of nodes with very low degree. The random and importance based edge selection
methods instead produce networks which have a large number of nodes with a reasonably high degree. Table 6 shows
the p-values of a two dimensional, two sided Kolmogorov-Smirnov test applied to each of the degree distributions of
the simulated data, in comparison to the real data. We can see that the null hypothesis of the samples having the same
distribution is not rejected for all of the datasets for the frequency based edge selection, but we observe very small
p-values for the other two methods confirming that these methods are not able to reproduce the degree distribution of
the real data.
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Figure 12: Cumulative degree distributions for the full networks computed over the entire time period, plotted on a
log-log scale
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Figure 13: Assortativity computed across time in rolling windows of 200 transactions for the 5 different datasets,
presented for the three methods of edge selection along with the real data. In the case of the frequency based method,
the shaded blue area corresponds to 95% Confidence Intervals.

Next we consider the assortativity observed in both the aggregated network across the entire time period, and also in
rolling windows across time. Figure 13 shows the assortativity across time computed over a rolling window for the
5 different datasets for the 3 different methods of edge selection. We can clearly see that the frequency based edge
selection method produces an assortativity that is similar to that of the real data, whereas the random and importance
based selection are unable to reproduce the assortativity of the real data. The blue bands represent 95% confidence
intervals for the assortativity for the frequency based method, and although the real data assortativity falls within
the confidence intervals some of the time, this is generally less than 95% of the time so we cannot conclude that the
frequency based edge selection method is producing sequences with the same assortativity as the real data.

Care must be taken in interpreting the degree distribution and assortativity results for the case of frequency based
selection, as the method of sampling the edges to change probabilistically based on their frequency essentially fixes the
degree distribution for a large enough sample size when the degree distribution is temporally stable. The values that the
assortativity can take when the degree distribution is fixed will be constrained, since the degree distribution constrains
the configuration of the network, which places bounds on the values that the assortativity can take. To understand the
extent to which this explains the observed assortativity, we conduct an experiment in which the edges of the network are
randomly re-wired to destroy any correlations between neighbours while preserving the degree distribution. The results
of the assortativity across a rolling window a tenth of the length of the transaction sequence for both the real network
and the rewired is shown in figure 14. We can see from this that although some of the assortativity is preserved when
rewiring, not all of the observed assortativity in the real data is explained by the constraints imposed by the selection
method.

Finally, we consider reciprocity again both in the aggregated network across the entire time period and in rolling
windows. Figure 15 shows the reciprocity across time computed over a rolling window for the 5 different datasets and 3
methods of edge selection. Again we clearly see that the frequency based method produces a similar reciprocity to
the real data, but the other two methods are unable to reproduce the reciprocity. The reciprocity of the real data also
falls within the 95% confidence intervals of the frequency based selection method more often than in the case of the
assortativity, however this is still less than 95% of the time for four of the five datasets.
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Figure 14: Assortativity computed across time in rolling windows of 200 transactions for dataset A, in comparison
to the assortativity computed for dataset A with edge rewiring applied N times, with N the number of edges in the
network

Figure 15: Reciprocity computed in rolling windows of 200 transactions for the 5 different datasets, presented for the
three methods of edge selection along with the real data.
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True univ. Poiss. multiv. poiss. Univ. HP Multiv. HP
A (full) 0.45 0 (0,0.01) 0 (-0.06, 0.07) 0.48(0.41,0.56) 0.35 (0.33, 0.40)

A (single venue) 0.21 0 (-0.01,0.01) 0 (-0.05, 0.05) 0.15(0.07,0.25) 0.24(0.21,0.26)
A (off exchange) 0.18 0 (-0.01, 0.01) 0 (-0.06, 0.07) 0.18(0.09,0.30) 0.26 (0.21, 0.30)

B (full) 0.60 0 (0, 0.01) 0 (-0.06, 0.07) 0.43 (0.34, 0.58) 0.41 (0.39, 0.46)
B (single venue) 0.16 0 (0, 0.01) 0 (-0.07, 0.07) 0.16(0.08,0.26) 0.28 (0.25, 0.31)
B (off exchange) 0.10 0 (-0.01, 0.01) 0 (-0.06, 0.07) 0.12(0.02,0.23) 0.17 (0.13, 0.21)

C (full) 0.54 0 (0, 0.01) 0 (-0.06, 0.07) 0.54(0.49,0.60) 0.44(0.35,0.62)
C (single venue) 0.37 0 (-0.01, 0.01) 0 (-0.06, 0.07) 0.20 (0.10, 0.33) 0.19 (0.16, 0.22)
C (off exchange) 0.23 0 (0, 0.01) 0 (-0.05, 0.05) 0.16(0.07,0.26) 0.24(0.20,0.29)

D (full) 0.43 0 (-0.01, 0.01) 0 (-0.07, 0.07) 0.26 (0.20, 0.37) 0.58 (0.53, 0.66)
D (single venue) 0.34 0 (0, 0.01) 0 (-0.05, 0.05) 0.22 (0.13, 0.32) 0.20 (0.18, 0.22)
D (off exchange) 0.20 0 (-0.01, 0.01) 0 (-0.06, 0.06) 0.15(0.07,0.23) 0.18(0.15,0.22)

E (full) 0.56 0 (0, 0.01) 0 (-0.06, 0.06) 0.55(0.50,0.59) 0.34 (0.31, 0.38)
E (single venue) 0.18 0 (-0.01, 0.01) 0 (-0.07, 0.07) 0.13(0.05,0.23) 0.28 (0.25, 0.31)
E (off exchange) 0.10 0 (0, 0.01) 0 (-0.06, 0.07) 0.17(0.07,0.28) 0.14 (0.12, 0.17)

Table 7: Burstiness of the timestamps generated by edge level Hawkes and Poisson processes, in comparison to the real
timestamps. Results shown in bold are the cases where the true burstiness falls within the 95% confidence intervals of
the simulation results.

3.2.2 Edge level Hawkes processes

We now consider making use of Hawkes processes to generate transaction sequences at the edge level. When generating
transactions in this way, we no longer need to select the edge to change at each timestamp. We compare both generating
edge transaction sequences for the individual edges independently using univariate Hawkes processes, as well as using
a multivariate Hawkes process which allows the edges to be mutually exciting. As a benchmark, we also compare these
to using edge level Poisson processes. It is worth noting that one of the major drawbacks of using an edge level Hawkes
process, is that the majority of edges in the network only appear once in a single day, so when considering edge level
Hawkes processes, we restrict our networks to edges which appear more than 10 times over the day considered. This
roughly halves the number of counterparties for all of the datasets considered.

We make use of the ADM4 method [53] which uses a fixed, given kernel decay for all kernels. This means that we need
to estimate the decay using a brute force approach, in which we fit the multivariate Hawkes process for a range of decay
values, and observe the burstinesses of the individual edges for the resulting simulations. We then choose the best decay
value for each edge, and take the median of these decays as the optimal burstiness for the final simulation.

Table 7 shows the burstiness of the simulated transactions for the different datasets across the different subsets, in
comparison to the real burstinesses and univariate and multivariate Poisson processes. We see here that the univariate
approach has the best performance, showing the true burstiness falling within the 95% confidence intervals in all cases
for the off exchange data subsets, and 3 of the 5 datasets for the full and single venue subsets. This suggests that
much of the burstiness of the real data can be attributed to self-excitation at the edge level, or in other words, that the
presence of a trading relationship between two counterparties increases the likelihood of future trading relationships.
The multivariate approach shows the true burstiness falling outside the confidence intervals for the majority of the trials,
however the method itself produces results with tighter confidence intervals around the mean, suggesting a higher level
of stability in the resulting simulations.

In contrast to the univariate case, when considering edge level models we no longer require a method to select which
counterparties transact at each timestep. In this next section, we restrict ourselves to considering the full datasets as the
network structure diminishes when considering these smaller subsets following the removal of infrequent counterparty
relationships. In our considerations of edge selection methods in section 3.2.1, we considered the rich club and degree
distributions, as well as reciprocity and assortativity. Considering these same properties, starting with the rich club
coefficient distributions, figure 17 demonstrates the similarities in both simulation methods to the real data. This is
confirmed in all cases using the same Kolmogorov-Smirnov test as before, for which the null hypothesis of differences
between the distributions is rejected for both models, for all datasets.

Figures 18 and 20 show the assortativity and reciprocity computed over rolling windows for both methods of applying
Hawkes processes to generate edge level transaction sequences. We can see here that both the assortativity and
reciprocity of the sequences generated using a multivariate Hawkes are similar in value and variance to the real process,
however those generated using the univariate Hawkes process show near a slightly lower variance, albeit at a similar
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Figure 16: Burstiness of the simulated timestamps for both univariate and multivariate edge level Hawkes, for the 5
different datasets across the different subsets, in comparison to the burstiness of the real data.

Figure 17: Distributions of rich club coefficients for the degrees of nodes in networks from snapshots aggregated hourly.

level to the multivariate approach and the real data. This low variance can be understood by visually inspecting the
transaction sequences, as in figure 19, in which we plot the point processes of the individual edges. We can see that the
univariate approach produces a much lower prevalence of low density transaction sequences than observed for the real
data. This is likely a result of poor fit of the Hawkes processes at the individual level, producing similar parameter
values for very different sequences, which corresponds with our observations of wider confidence intervals for the
univariate burstiness, suggesting a lower stability of this model in comparison to the multivariate approach. Although
there is a visually high similarity of both reciprocity and assortativity for the multivariate Hawkes process sequences in
comparison to the real data, in making use of a Levene test to assess whether the sequences have equal variance, and
also making use of a one-sided t-test to assess whether the mean of the difference between the simulated and actual
reciprocity and assortativity is significantly different from 0, in all cases the p-values were <0.5, meaning that we cannot
accept the null hypothesis in either case and validate the similarity between the sequences.

To summarise the performance of both the transaction level and edge level approaches for systems with multiple hubs,
we have presented the burstinesses of all of the Hawkes approaches in a single table in table 8. Here we can see that the
univariate edge level Hawkes process shows the strongest overall performance, although this is heavily dependent on
the wider confidence intervals of this model.
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Figure 18: Assortativity computed across time in rolling windows of 200 transactions for the 5 different datasets,
presented for the two different methods of generating edge level transaction sequences, in comparison to the real data.

Figure 19: Point plots for the individual edges for the two methods of generating edge level transaction sequences, in
comparison to the real data
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Figure 20: Reciprocity computed across time in rolling windows of 200 transactions for the 5 different datasets,
presented for the two different methods of generating edge level transaction sequences, in comparison to the real data.

True univ. HP univ. edge HP multiv. HP
A (full) 0.45 0.30 (0.27, 0.33) 0.48(0.41,0.56) 0.35 (0.33, 0.40)

A (single venue) 0.21 0.13 (0.11, 0.14) 0.15(0.07,0.25) 0.24(0.21,0.26)
A (off exchange) 0.18 0.40 (0.34, 0.46) 0.18(0.09,0.30) 0.26 (0.21, 0.30)

B (full) 0.60 0.27 (0.24, 0.29) 0.43 (0.34, 0.58) 0.41 (0.39, 0.46)
B (single venue) 0.16 0.41 (0.35, 0.46) 0.16(0.08,0.26) 0.28 (0.25, 0.31)
B (off exchange) 0.10 0.08(0.06,0.11) 0.12(0.02,0.23) 0.17 (0.13, 0.21)

C (full) 0.54 0.51(0.48,0.56) 0.54(0.49,0.60) 0.44(0.35,0.62)
C (single venue) 0.37 0.37(0.34,0.40) 0.20 (0.10, 0.33) 0.19 (0.16, 0.22)
C (off exchange) 0.23 0.78 (0.48, 0.94) 0.16(0.07,0.26) 0.24(0.20,0.29)

D (full) 0.43 0.07 (0.06, 0.08) 0.26 (0.20, 0.37) 0.58 (0.53, 0.66)
D (single venue) 0.34 0.21(0.01,0.39) 0.22 (0.13, 0.32) 0.20 (0.18, 0.22)
D (off exchange) 0.20 0.75 (0.37, 0.96) 0.15(0.07,0.23) 0.18(0.15,0.22)

E (full) 0.56 0.41 (0.38, 0.43) 0.55(0.50,0.59) 0.34 (0.31, 0.38)
E (single venue) 0.18 0.54 (0.48, 0.60) 0.13(0.05,0.23) 0.28 (0.25, 0.31)
E (off exchange) 0.10 0.53 (0.43, 0.64) 0.17(0.07,0.28) 0.14 (0.12, 0.17)

Table 8: Burstiness of the timestamps generated by Hawkes processes at the level of all transactions and edge level, in
comparison to the real timestamps. Results shown in bold are the cases where the true burstiness falls within the 95%
confidence intervals of the simulation results.
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Figure 21: Burstiness of the simulated timestamps using a bivariate Hawkes, for the 5 different datasets considering
trades through a single central clearing house, in comparison to the burstiness of the real data.

3.3 Bivariate Hawkes model for buy and sell sequences

When considering trades occurring through a central clearing party, from a networks perspective we have a network
consisting of a single star, and we are limited in the insights we can gain into the behaviour of the system by modelling
it as a dynamic network. Instead, we re-frame the modelling of the system to consider the buy and sell trade executions
as separate sequences, and allow for mutual excitation between the buys and sells. This is similar in approach to the
recently published methods in As before, we make use of Maximum Likelihood estimation to fit the parameters of
the Hawkes process to the transaction sequences. Since we are considering a bivariate Hawkes process, there are 8
parameters to estimate with a 2 × 2 matrix for the adjacency α two decay parameters β, and two baseline intensity
parameters µi.

The estimated parameters for the bivariate Hawkes model are shown in table 9, and the resulting burstiness of the
overall sequences, as well as the buy and sell sequences separately, are shown in table 10 and figure 21. We see here
that all datasets show similar value ranges for the parameters, and that we do not observe higher or lower parameter
values for buys in comparison to sells consistently across the different datasets. Considering the burstiness, we see
that in the majority of cases, the true burstiness falls within the confidence intervals of the simulations for both the full
transaction sequences as well as the buys and sells themselves. For the case of dataset D, which shows a true burstiness
overall outside of the confidence intervals of the simulation, if we look back to figure 8, we see that the burstiness of the
sells drops during the latter part of the day, which explains why our model is unable to reproduce the overall burstiness.
We can also compare to fitting Hawkes processes to the buys and sells separately, also shown in table 10, to help us
understand how much the observed burstiness is driven by self excitation as opposed to mutual excitation. We see here
that although the confidence intervals of the buys and sells contains the true burstiness in many cases, the simulated
transaction sequences as a whole have a consistently lower burstiness than the real transaction sequences. This means
that some of the burstiness of this system is likely to be driven by mutual excitation between buy trades and sell trades.

4 Discussion

The application of various formulations of Hawkes processes to transaction sequences for FTSE100 stocks gives us a
novel insight into the behaviours of these markets, and shows the promise of Hawkes processes as generative models
for transaction sequences. As these markets are highly heterogeneous, with many different methods of trading giving
rise to different behaviours, we have considered our methods in application to all transactions available for a single day,
as well as only those transactions that are executed on the dominant exchange, and only those that are executed off
exchange.

When considering the univariate approach, we observed counter-intuitive parameter values and although the model was
able to reproduce sequences with a burstiness closer to the real data than the benchmark of a Poisson process, in most
cases this model underestimated the burstiness, suggesting that self-excitation at the transaction level does not accurately
represent the true generative process of these transaction sequence. In selecting which pair of counterparties should
transact at each point in the transaction sequence, selecting based on historical frequency produced cross-sectional
properties that were the most similar to those of the real data, suggesting that historical counterparty relationships
influences the probability that a pair of counterparties will transact in the future.
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Data Baseline int. Kernel int. Kernel dec.

A [0.24, 0.11]

[
0.57 0.42
0.15 0.10

]
[1.23, 0.24]

A (SE) [0.05, 0.07]

[
0.04 0.03
0.07 0.03

]
[0.03, 0.08]

B [0.03, 0.01]

[
0.15 0.0
0.21 0.58

]
[0.15, 0.76]

B (SE) [0.03, 0.01]

[
0.03 0.01
0.04 0.05

]
[0.03, 0.06]

C [0.29, 0.02]

[
0.59 0.01
0.05 0.20

]
[0.67, 0.25]

C (SE) [0.07, 0.02]

[
NA 0.03
0.09 0.21

]
[NA, 0.30]

D [0.20, 0.53]

[
0.21 0.07
0.05 0.27

]
[0.33, 0.37]

D (SE) [0.13, 0.07]

[
0.04 0.03
0.02 NA

]
[0.08, NA]

E [0.00, 0.04]

[
0.42 0.01
0.27 1.07

]
[0.43, 1.67]

E (SE) [0.00, 0.02]

[
0.04 0.02
0.05 0.10

]
[0.04, 0.22]

Table 9: Hawkes parameters estimated using a Maximum Likelihood approach for the chosen datasets, for a bivariate
Hawkes process applied to buys and sells through a central clearing house

Data Real data Univariate Bivariate
A (all) 0.30 0.09 (0.05, 0.13) 0.26 (0.16,0.39)

A (buys) 0.19 0.14 (0.08, 0.21) 0.26 (0.16, 0.37)
A (sells) 0.24 0.17 (0.08, 0.28) 0.21 (0.09, 0.37)

B 0.45 0.12 (0.05, 0.22) 0.49 (0.20, 0.72)
B (buys) 0.35 0.20 (0.10 0.33) 0.36 (0.01, 0.67)
B (sells) 0.41 0.21 (0.09, 0.34) 0.51 (0.22, 0.74)

C 0.34 0.13 (0.08, 0.20) 0.27 (0.10, 0.46)
C (buys) 0.27 0.18 (0.11, 0.25) 0.35 (0.22, 0.49)
C (sells) 0.28 0.21 (0.11, 0.33) 0.27 (0.07, 0.49)

D 0.24 0.09 (0.05, 0.15) 0.12 (0.05, 0.21)
D (buys) 0.20 0.17 (0.08, 0.31) 0.15 (0.05, 0.29)
D (sells) 0.18 0.15 (0.09, 0.24) 0.12 (0.05, 0.24)

E 0.49 0.12 (0.06, 0.19) 0.42 (0.09, 0.77)
E (buys) 0.41 0.19 (0.10, 0.32) 0.34 (0.28, 0.77)
E (sells) 0.43 0.21 (0.11, 0.34) 0.37 (0.09, 0.67)

Table 10: Burstiness of timestamps generated with a bivariate Hawkes process.
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When considering the edge level approaches, the approach making use of a univariate process for each edge was
able to reproduce the burstiness of the real dataset much more often than the mutlivariate approach could, however,
the multivariate approach showed tighter 95% confidence intervals for the burstiness, suggesting that this model was
more stable. The better performance of the univariate edge model is in agreement with the strong performance of
the frequency based edge selection, since both suggest that historical counterparty relationships are influential in the
presence of a future relationship. However, the multivariate approach performed much better than the univariate edge
model in reproducing the cross sectional properties of the transaction networks, suggesting that improvements to this
model, for example allowing the kernel decay to vary across the different edges, would be a promising avenue for
further research.

Finally, we observed strong performance in applying a bivariate model to buys and sells for trades occurring through a
single central clearing counterparty, with the burstiness reproduced in the majority of cases. We also observed a better
performance of the bivariate approach in comparison to a univariate hawkes for buys and sells separately suggesting
that mutual excitation between the buys and the sells contributes to the overall burstiness. Further exploration into the
performance of edge level modelling in conjunction with the bivariate model would be an interesting avenue of further
exploration.

Since we are proposing generative methods of transaction sequences, it is worth discussing the potential uses of
simulated transaction sequences. In an ideal world in which transaction reporting contains no errors, duplicate reports
or nuances which cause deviations from the generative model, these methods would be valuable in anomaly detection,
in flagging transactions which deviate too far from the model, or alternatively systems which show differing aggregate
properties, allowing consideration of how these properties constitute risk. For example, we can see that all 5 systems
considered in this paper show similar burstinesses across time, similar degree distributions, and similar reciprocities
and assortativities across time. The presence of burstiness shows the market response to activity, which drives price
formation, and the stability of prices is integral to the good function of markets as a whole. The degree distributions
we observe demonstrate fat tails in which the majority of participants have a low degree with a small number of hub
nodes with very large degrees, usually central clearing houses which play a large part in mitigating the risks of highly
interconnected networks and the propagation of risk. This is also the dominant property of the rich club distributions,
and the presence of disassortativity, in which nodes tend to connect to nodes that they are dissimilar to, or in other words
play a different role within these networks. The presence of reciprocity suggests that normal functioning markets rely
on the presence of well established relationships between participants - this will usually be due to the presence of the
clearing member- clearing house relationships, whereas if we observe a shift where market participants ’shop around’,
this could be suggestive of a lack of good service and a potential stability risk. It is also worth noting that a number of
problems encountered in finance involve extreme class imbalances, for example fraud detection. A generative model for
transactions could be used as an oversampling method to generate artificial data, to help alleviate class imbalance, as is
explored in Hung et. al. [54], who make use of Generative Adversarial Networks to assist on the classification of credit
card fraudulent transactions, which are highly imbalanced with only 0.17% of transactions of the positive (fraudulent)
class.

Although we have considered application of different models to different subsets of the trading ecosystems studied,
there are several trading mechanisms that we have not yet explored in terms of their influence on the systems’ properties.
For example, in markets such as these which are heavily dominated by trades which are centrally cleared, in order to
provide clearing members with increased opportunities to net their orders and to give a reduction in outstanding gross
exposures in the system, interoperability agreements exist which allow CCPs to link between counterparties allowing
cross-system execution of transactions. These links introduce a direct channel of contagion between these critical
nodes in the financial system, so in order for our methods to fully capture the macroprudential risks in these systems,
these links would need to be included. Further to this, we have considered application of Hawkes processes to trade
executions only, and further research into how the dynamics of the order book influences the generative processes of
these executions would be useful to explore in addition to the other potential avenues suggested.

Availability of data and materials

All five datasets studied in this paper were extracted from a dataset of transaction reports collected by the FCA under
MIFID II regulations. The datasets were used under agreement from the data owners at the Financial Conduct Authority
for the current study, and are not publicly available.

An implementation of the methods referenced in this paper in a mixture of Python and R can be found at [55].
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