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Abstract

The transition from defined benefit to defined contribution pension plans shifts the re-
sponsibility for saving toward retirement from governments and institutions to the individ-
uals. Determining optimal saving and investment strategy for individuals is paramount for
stable financial stance and for avoiding poverty during work-life and retirement, and it is a
particularly challenging task in a world where form of employment and income trajectory
experienced by different occupation groups are highly diversified. We introduce a model
in which agents learn optimal portfolio allocation and saving strategies that are suitable
for their heterogeneous profiles. We use deep reinforcement learning to train agents. The
environment is calibrated with occupation and age dependent income evolution dynamics.
The research focuses on heterogeneous income trajectories dependent on agent profiles and
incorporates the behavioural parameterisation of agents. The model provides a flexible
methodology to estimate lifetime consumption and investment choices for heterogeneous
profiles under varying scenarios.
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1 INTRODUCTION

1 Introduction

Retirement financing has been experiencing a clear transition trend from defined benefit (DB)
schemes to defined contribution (DC) schemes, as reported by OECD [1], [2], [3]. DB schemes
require scheme sponsors as ultimate guarantors of the schemes, and many DB schemes’ deficit
require their sponsors to bail out. Employers are preferring DC schemes, because the risk and
responsibility of managing funds, longevity risk, and market risks are transferred to contrib-
utors in DC schemes. Furthermore, the contribution rates in DC schemes in the UK are on
average significantly less, 5.1%, in comparison to DB average contributions of 28.5% [4]. The
effects of shocks during the accumulation phase are critical, some people were raiding retire-
ment accounts amid COVID-19. Pensioners in under-pensioned groups [5] were draining pots
and faced significant wage shocks, and this will have an effect on lower future cumulative pot
and earnings, exceptional government policies were critical to alleviate the effects of COVID-19
on pension savings and wages but a significant shock with effects to the labour market could
not be avoided. It has become apparent how different professions can be affected differently
by economic shocks, bringing the attention to the role of profile heterogeneity also in the con-
text of pension management. For instance, the rise of the gig economy and irregular workforce
participation modes enable more flexible work-life conditions, but introduce larger variations to
income trajectories due to the lack of guaranteed income streams.

Previous research has addressed the income distribution and its relationship with age [6],
that can be used to investigate the effects of demographic shifts and aging population on in-
come. The increasing heterogeneity of career paths and income trajectories requires addressing
the questions of how much to save in a more granular way, as well as how to allocate the savings
between spendable liquid investments and illiquid retirement investments. In the literature the
life-cycle models of income, consumption, and portfolio allocation have been analysed with var-
ious perspectives. Samuelson approached lifetime portfolio selection [7] as dynamic stochastic
programming in discrete time and solved the many-period generalisation corresponding to life-
time planning of consumption and investment decisions. Merton formulated the continuous-time
version [8] of the same approach for portfolio selection under uncertainty. Later he extended
these results [9] to more general utility functions, price behaviour assumptions, and for income
generated also from non- capital gains sources. A comprehensive study [10] proposes a life-cycle
model of consumption and portfolio choice, as an intertemporal portfolio optimisation problem
where labor income is assumed to be a risk-free asset, and calibrates it with real-world data by
solving numerically, where asset choices are risky and risk-free. Coco et al. [10] present a model
where risky income is invested in either risky asset or riskless asset, both are liquid and can be
used for consumption, they model the income process explicitly and analytically; they solve the
optimal portfolio allocation problem at a given age by numerical solution of their model with
backward induction. A following study by Campanale et. al. [11] present a model, which in-
cludes explicit formulation of income process; but differs from previous research by introducing
liquidity friction to risky asset, by charging an excess cost if consumption is financed through
the risky asset. The model must be solved numerically via special algorithm, and the solution
is described by authors as slow and difficulty, due to three continuous state variables, two con-
tinuous controls, and fixed transaction cost breaking the concavity of the objective function.
The Campanale model assumes that a person has the freedom to switch between liquid and
illiquid asset types, which is not the case with locked pension savings. Campanale et al. uses
dynamic programming to optimise the Epstein-Zinn[12] preference utility of a household, given
specific labour income process consisting of deterministic G(t) of third-order polynomial, and
idiosyncratic shock. In the Campanale et al. model, the most important calibration challenge
is the transaction cost, which also includes psychological and nonmonetary costs.

Further studies focus on liquid and non-liquid retirement savings accounts where liquidity is
constrained by introducing cost to liquidate retirement savings[13] and [11]. Previous research
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2 MODEL

fails to address the heterogeneity of contributor profiles and falls short of addressing the id-
iosyncratic challenges of avoiding consumption crisis during unemployment periods and saving
an adequate pension pot for retirement.

Advances in agent-based modelling of complex financial systems, increased computational
power, and advances in techniques for optimising agent behaviour in complex environments
are enablers and drivers of the research. Our research uses a novel methodology to address
complex problems of financial systems, one such effort in the recent literature is the model
called AI Economist[14], which uses AI-assisted deep reinforcement learning and implements an
agent-based model to address the needs of socioeconomic challenges introduced by designing
and testing economic policies, where modules called social planners are trained to discover tax
policies in dynamic economies that can effectively trade off economic equality and productivity.
A two-level deep reinforcement learning approach is applied to learn dynamic tax policies, based
on economic simulations in which both agents and a government learn and adapt.

We introduce a simple model of contributor agents, who decide how much to save and
how to allocate the savings, this decision is effected by simplified behavioural dynamics and
information flow in the peer network. Agents decide and optimise their allocation strategy using
a deep neural network trained with reinforcement learning. We introduce a simple simulation
environment for the agents; which encapsulates employment and income dynamics. Our research
represents a bridge between agent-based modelling of the pension system and deep reinforcement
learning for finance.

We provide results from trained agents reflecting behaviour in par with the literature on
aggregate level and agent-specific optimal behaviour with higher granularity for heterogeneous
profiles. The model is dynamic, scalable, and can be calibrated to different scenarios. The
results show that the balance between near-term consumption safety and retirement savings
can be achieved by profile-specific allocation strategies.

Our research differs from previous studies also in terms of extensive behavioural modeling
and parameterisation of the agents. It captures effect of information transmission and empha-
sizes consumption sensitivity against negative shocks, and covers the utility perception.

In addition, our model makes it possible for contributors to account for occupation-specific
dynamics of life-time income trajectories, which in turn makes it possible to prepare against
profile-specific income shocks by allocating savings to cash buffer at the right time frames of
their lives.

Our research represents a significant first step to model pension finances in an agent-based
model with deep reinforcement learning which permits model configurations with increased
complexity and realism, in our paper we presented a simple two asset version with simple
environment dynamics.

2 Model

We introduce a simple model where the agents interact with the simulation environment and
optimise their savings behaviour. During each cycle, agents observe the environment in which
they are situated; they choose to allocate their income between consumption, liquid and illiquid
assets.

Each agent has a heterogeneous profile reflecting the occupation and demographic character-
istics; these characteristics are determinants of the unique income and consumption trajectories
of each agent. Agents also have characteristic behavioural parameters such as shock sensitivity,
consumption utility, and peer-influence factor; which effect the way agents perceive the world
and assign value to their stances. In particular, agents are bootstrapped in a social graph which
is used for the transmission of information, such as employment status.

Each month, agents receive their income according to their employment. Simulated em-
ployment and market dynamics, such as asset return rates, are exogenous and provided by the
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2.1 Agent and Environment Cycle 2 MODEL

modeler according to empirical observations. The employment dynamics is dependent on hetero-
geneous profiles (occupation and demography) and includes the new employment of unemployed
agents.

The agent first decides how much to save and how much to consume, and secondly the agent
allocates the saved amount among a liquid asset and illiquid asset towards pension savings, each
with different return rates. In order to make this financial decision, the agent’s profile, income,
behavioural parameters, and peer information observed from the own social network are given
as an input to a deep policy network.

Deep reinforcement learning and parallel simulation of nearly 30000 agents in 100M timesteps
is used for training the deep policy network. The policy network learns an optimal saving and
investment strategy for pension savings and avoiding a consumption crisis during unemployment
due to insufficient liquid savings.

2.1 Agent and Environment Cycle

In order for the simulation to be integrated with existing frameworks, the AEC(Agent Environ-
ment Cycle)[15] is followed to also provide a standardised GYM-Like API. The simulations are
vectorised and run in parallel. For the purpose of this research, the simulations are conducted
in parallel utilising 32 processors, where each processor runs a cohort of more than a thousand
agents. For each time step, all of the agents observe and act simultaneously.

Agents observe the environment; these observations include information regarding the mar-
ket, graph, and agent’s own state including occupation, age, income, and wealth.

The agent action ai, t is shaped by policy πi, during learning the reward ri, t for the agent
is the sum of total discounted utility and penalty for consumption crisis, which denotes the
situation where the agent cannot finance its consumption ci,t governed by consumption dynamic
C. Agent behaviour is shaped by influences from peers, individuality factor, consumption utility,
and shock response characteristics.

The agent policies are modelled with a deep neural network, which takes as input agent
specific observations and hidden-state:

ai,t ∼ π(onetworki,t , oagenti,t , omarketi,t , hi,t; θ) (1)

The parameter variable θ is not agent specific, but common for all contributor agents and the
hidden state is updated during action inference of policy network.

• onetworki,t : Observation of the network

• oagenti,t : Observation of own behavioural factors, income, and resources.

• omarketi,t : Observation of the market, such as

• hi, t : Hidden state. The updating of hidden state can be interpreted as agents updating
their Risk Profile given observations and previous state. And in the future the hidden-state
can be used as Risk Profile embedding.

The action space is as follows:

• asavei,t : Decides to save x% (and consuming (100− x)%)

• aliquidi,t : Decide to allocate y% to liquid asset x% (and allocating the illiquid asset (100−
x)%) .

• Saving and liquidity percentages are discretised into bins such as [0, 0.25, 0.5, 0.75, 1] in
the model.
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Figure 1: Agent and Environment

The full list of variables can be found in the Appendix.
The utility of an agent is expressed as the sum of the utility of consumption and of savings.

ui,t = uconsumptioni,t + usavingsi,t (2)

Both the consumption and the savings utility functions are considered linear in this study.
Constant relative risk aversion(CRRA) [16] is defined as :

crra(l, η) =

{
l1−η−1
1−η η ≥ 0, η 6= 1

ln(l) η = 1
(3)

Individual consumption is calculated by multiplying the consumed amount with agent specific
consumption utility factor,

uconsumptioni,t =
∑
t=0...t

[crra(Ci,t, qi,t)] (4)

The utility of the saved amount equals the monetary value of the total savings.

usavingsi,t = xi,t (5)

If the agent is unemployed or allocated insufficient funds to fulfil minimum consumption required
by the modeller, then the liquid funds are used to finance consumption. If the funds are
insufficient, a consumption crisis occurs, which impacts reward negatively with a consumption
crisis penalty. If the agent consumes a lesser percentage then it is required to finance at least
minimum consumption limit, then the invalid action penalty occurs. Consumption crisis is
penalised if liquid savings cannot finance the decided consumption at time step t:

Pi,t =

{
ψ if Ci,t > xliquidi,t

0 if Ci,t ≤ xliquidi,t

Invalid Actions, such as insufficient consumption rate allocation, are penalised if the decided
consumption is less than minimum consumption limit despite having excess earnings that could
be used for financing the minimum consumption amount:

APi,t =

{
(m− Ci,t) ∗ ζ if m > Ci,t and Ei,t > Ci,t
0 else

The results of the actions are evaluated as utility difference of the new state of the agents, which
constitutes the raw rewards of the actions.

∆i,t = ui,t − ui,t−1 (6)
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The consumption crisis and invalid action penalties are used to augment the utility difference
to constitute the reward.

ri,t = ∆i,t ∗ f(∆i,t, κi,t)− Pi,t − APi,t (7)

The negative utility difference is augmented with an agent’s shock perception modifier, in order
to amplify the negative shocks according to the agent’s behavioural parameter.

f(∆, κ) =

{
1 if ∆ ≥ 0

eκ if ∆ < 0

ri,0 = usavingsi,0 (8)

The actions are percentage choices between consumption and savings, and investment choices
between pension orientated non-liquid funds and liquid funds that can be used at any time to
finance consumption, these funds have a vital function especially during the times of unemploy-
ment.

The AI Economist’s approach[14] stated as a multi-agent Markov Game can be defined by
the tuple (S, A, r, T , γ, o, I), for the State Space, Action Space, Reward, State Transition Dis-
tribution, Utility Discount Rate, observation, and Agent Indices. The agents observe oi,t, which
is by the agent i observable fraction of the state si,t. The agent learns a policy, π(ai,t|oi,t, hi,t; θi),
and executes an action ai,t according to the policy. The state of the environment is updated
according to T (st+1|st, at). Agents maximise their γ discounted expected return, depending on
the hidden state hi,t, and the policy parameter θi. Following the same reinforcement learning
approach as AI Economist, the agent maximises its expected reward, depending on the actions
a−i and behavioural policies π−i of the other agents, and environment transitions:

max
θi

Eai∼πi,a−i∼π−i,s′∼T

[∑
t

γtri,t

]
(9)

During action execution, the rewards and utilities are calculated and the tuples of observation,
hidden state, and action vectors, as well as rewards are recorded to replay buffer, for future
training. The actions are sometimes random for greedy exploration of the domain, the epsilon-
greedy parameter is provided by the modeller. At regular intervals, the replay buffer is used for
training the deep policy network by utilising the rewards with policy gradients. The model is
trained with A2C, PPO and Policy Gradient methods. A2C training results in slightly better
results, which are presented in the article.

2.2 Behavioural Parameters of Agents

For modeling behaviour, we base our parameterisation on the approach in [17], where the
authors investigated the applicability of the Theoretical Domains Framework outside clinical
uses for cross-disciplinary implementation and other research on behaviour change, and provided
a simplified version containing 14 domains and 84 component constructs. Theoretical Domains
Framework is wide and reports on pension behaviour tend to focus on few factors; for the scope
of our research we chose three factors:

• Consumption Utility: How do they value current consumption? An agent specific con-
sumption utility multiplier factor

• Shock Response Characteristics: How do they respond to the shock? A factor reflect-
ing how sharp do agents react to the shock and how drastic are they decreasing their
consumption.
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Figure 2: Policy Model

• Individuality Factor: How are they being affected by each others beliefs and decisions.

Some agents are optimistic and underestimate the severity of the shocks, and some agents
are pessimist and overestimate the effect of the shocks. The shock sensitivity factor κi,t is a
multiplier of the perceived shock effect, which is normalised for agents of the same occupation.
It can be assigned from a normal distribution, can be controlled for experimentation, or fed
from empirical report. The agents are affected by the peers and the shocks experienced by the
peers(if zi,t−1 = 0). The observations are informative for the closer peers on the graph, and
becomes less informative for other agents with weaker connection on the graph. The shocks
that effect the peers are also weighted with the shock-sensitiveness parameter. The behaviour
parameters that are introduced in this section are fixed during the entire simulation, but later
research can adapt the model to allow the parameters to change during lifetime.

2.3 Deep Policy Network for Optimal Saving, Investment and Liquidity

Agent observations are expressed as a single vector that comprises the concatenation of agent,
market and graph vectors. The observation vector is passed through the deep neural network
towards the LSTM, which updates the agent’s hidden state and outputs a vector for next layer,
which is softmaxed to output a vector representing the action probabilities. A single policy
network is trained for all actions: The action can be as follows ”(’C25’, ’L75’)”, where ”C25”
means consume 25% and save 75%; ”L75” means allocate 75% of your savings to liquid asset,
and 25% of your saving to nonliquid asset.

The hidden states from the model can be thought of as Risk Profile Embedding, which
is updated by observations and processing the Agent Profile with the observed environment
and shocks via a Deep Neural Architecture that can be found on Fig. 2. Reinforcement
Learning is used for adjusting the allocation profile according to the Risk Profile Embedding
also expressed as a hidden state. At each time step, the agent decides to allocate the income
among consumption, savings, and investment classes. This is accomplished by a deep neural
network constituted of several layers of a Feedforward Neural Network with nonlinearity as well
as a recurrent unit of LSTM, which is responsible for acting as the memory of agents, and the
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hidden states can be used as agent representations during further studies. The details of the
neural architecture can be found in the Appendix.

There is a single action space unifying the choices of consumption and liquidity preference,
which means that there are not two different networks for different decisions but one unified
network which represents the collection of actions such as ”(’C25’, ’L75’)”. An alternative choice
was continuous action space of two different actions expressed as a vector of length two, which
is expected to have more capability to capture relationship between similar amounts, especially
if the vast amounts of simulation data are not available. Furthermore, the dimension of the
action space is greatly reduced if the number of discrete consumption and investment type rate
choices are high. Setting the reward function for the agents is the trickiest part of the training
process, different reward function structures tend to give spurious and unintended conclusions
especially due to the existence of both positive-effecting factors and negative-effecting factors,
which makes the hyper-parameter tuning for the penalties paramount; and requires several
trials to find the hyper-parameter enabling successful optimisation of the agents. Failing to
tune the penalties results in unintended shortcuts that obstruct the main goal of optimising
agent behaviour in an understandable and meaningful way.

3 The Environment

At each time step, first the environment operations are executed. Agent environment operations
are executed as follows: first, the market dynamics are executed which ensures that assets are
gaining value according to the calculated interest rates determined by the modeler. Secondly,
essential population dynamics is executed such as ageing of agents, executing death operations
according to the age-specific death probability. The Retirement Process checks if any new agents
are required to retire due to age. If an agent retires, their retirement pension is calculated as
a rate of their previous consumption at employment, according to the recommended guidelines
of the OECD. If an agent is retired, then the agent collects pension from illiquid pension fund
that they contributed during employment life. The agents that are not retired are processed
to determine stochastically if they will lose their employment and, if so, for how long they
will stay unemployed according to the unemployment duration distribution dependent on the
occupation and age. Unemployed agents are assigned new income at their new jobs according
to the income distribution depending on occupation and age. These distributions are fed as
quantiled distribution tables to simulation. The employed agents receive their salary at each
month according to their predetermined income.

The agents decide how to allocate their income between consuming and saving, and decide
to allocate the saved amount in liquid and riskless assets, or illiquid and low-risk assets. The
decision is shaped by learnt policy, and observations, which includes the market dynamics,
information regarding actions and behaviour of peers, and considering the agent’s own profile.

3.1 The Graph and Synthetic Population

A synthetic representative population is used for the initialising agent population, information
such as age, income, profession, education level, and other relevant background information are
included.

We assume the employee network consists of three communities divided by income level as
low, medium, high, and the three communities have significant intercommunity interaction but
limited intracommunity interaction. The graph choice is based on the idea that geographical
and social networks are also characterised by the socioeconomic clusters, and the choice of three
communities with income levels is the simplification of the socioeconomic network. The synthetic
database is generated according to the basic insights from the surveys. Later investigation
could incorporate survey data to bootstrap the population and investigate geographical graph,
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potential social network data, and known network structures to model connection between
agents.

Observation of graphs can be done in several ways; a simplistic way to do is modelling
information transmission between each agent and its vicinity; for the first iteration of the
model this means that the neighbours and their neighbours, and transmission of employment
information. A more advanced graph observation might be modelled as transmission of not just
employment information, but also incorporating additional information such as occupation and
the income or consumption data; moreover, the near-neighbour graph can be represented with
state-of-the-art graph embedding methodology.

onetworka,t =
∑
a,b

∑
b,c

Ab,cδ(Ec,t, 0)

 +
∑
a,b

Aa,bδ(Eb,t, 0) (10)

For the purpose of experimentation and investigation of the model, a synthetic but representa-
tive population can provide both fidelity and flexibility in a controlled environment. As a design
choice for the synthetic population network, we include three clusters, which can be thought
of as three neighbourhoods; these neighbourhoods possess nodes with three different income
groups: high, medium, and low income. Each node is connected to its own neighbourhood
node, and the neighbourhoods are connected to each other with specified weights. Agents are
bootstrapped with one of the general occupation groups, occupation-specific incomes, employ-
ment status, and ages derived from USA Census Data[18]. Census data are used to generate
the synthetic agent population.

3.2 Simulation Processes

The simulation is initialised by bootstrapping the agent population and processes. During
each time step, the simulation dynamics such as getting income, getting employed if vacant,
are applied first, then the agent decides to allocate income for the consumption or saving, and
decides to save by investing in liquid assets, which can be liquidised easily during unemployment,
or illiquid assets which are towards a future retirement, but usually have better return. Agents
are bound by constraints such as the need to consume a minimum amount determined in light
of government statistics[19] that determines a minimum consumption per individual.

The occupation-specific income for new employment is determined according to the summary
tables from USA Census Data. The tables reflect the quantile breakdown, and the agents are
probabilistically assigned to one of the income quantiles.

The unemployment events and employment processes are explicitly modelled and calibrated
with the US Census Data[18]. The probability of unemployment and the duration of unemploy-
ment are determined according to the summary tables of the US Census.

Retirement age and retirement income can be accounted for in the system. For the sake
of simplicity, initial simulations neglect the retirement period, by only focusing contribution
period; but the system is later extended to cover the retirement period. Retirement income
is defined as a fraction of the last income, fractional retirement income is recommended by
international institutions, and this methodology is often also used in the literature[10].

The agent death probabilities are modelled using the Actuarial Life Table [20] in order to
make the model comparable with existing models in the literature.

3.3 Scaling

The agent observations are continuously scaled and standardised, with an online methodol-
ogy. This is due to the fact that the training dataset is generated continuously during sim-
ulation and the distribution of the observed dataset is not known in advance at the start
of the simulation, but it can be learnt to an extent after several epochs, and these learnt
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scales can be utilised in following training and inference as well. The relevant agent vari-
ables(”OCC CODE”, ”income”, ”consumption utility factor”, ”shock sensitivity factor”, ”in-
dividuality factor”, ”non liquid asset”, ”liquid asset”) are transformed to a vector by concate-
nating categorical one hot vectors with the values of the continuous variables; here the standard-
isation of these categorical variables is challenging due to the variability of the aspects such as
accumulated liquid assets. The huge value differences have the potential to introduce instability
during the training of machine learning models. The market state captures important variables
such as interest rates given to different asset classes as a dictionary, the market dictionary is
transformed to a vector as well. The perception of graph by the agent is represented as a
vector, for the sake of simplicity in this first version of the model the graph is represented by
single-valued vector, which is calculated by second-order graph traversal of neighbouring agents
in the network, the income information from neighbouring agents is incorporated according to
the edge weights, as well as the individuality factor of the effected agent.

4 Results

We look at longitudinal trajectory plots and strategy breakdown per total asset size, which
provide granular information regarding the differences between occupations. These plots can
capture various scenarios such as differences between early career and mid career saving rate
strategies among various occupations; which provide more tailored strategies for short-term
consumption security and healthy long-term pension finances. 22 parallel initially identical
cohorts are simulated for 1000 weeks of agent-time in order to generate resulting tables and
plots, which results in 40M agent time-step samples.

4.1 Labour, Income, Consumption and Wealth

Fig. 3 reflects a similar shape of average simulated income, consumption, and wealth accumu-
lation and decrease over the life cycle compared to Coco et al. [10]. The simulated income
trajectory is a reflection of the observed data, which is used for calibration of the environment,
and the shape of decrease by retirement age is due to the retirement income being defined as
a fraction of last income, which then gradually decreases. The consumption trajectory during
the work-life reflects saving choices of the population. The agent saves during work-life for fi-
nancing potential unemployment periods and for retirement finances. The pension income and
consumption at retirement age of 65 converges to the determined retirement income percentage
of 80% of latest salary. The data becomes noisy for older ages of 80, which might be due to
significantly smaller sample size.

During retirement the pension income is supposed to come from pension savings that have
been non-liquid during work-life, but if the pension savings are depleted any liquid savings can be
used to finance the retirement income on Fig. 15. An interesting outcome of mandating pension
income at retirement to be 80% of employment income is comparatively lower consumption
during employment, which might not be desirable; but our optimiser were forced to high saving
rates due to 80% mandate, which is stipulated by literature, detailed information can be found
in previous sections focusing on literature. There might be various solutions to this problem
that are out of our scope, such as easing pension level mandate, or government contributions,
or higher returns of investment; these potential solutions can be investigated in future research.

4.2 Saving Profiles

The evolution of occupational income in a time frame of nearly 20 years on Fig. 5 reflect
different characteristics for each occupational group, occupations such as ”Sales and Related”
and ”Transportation and Material Moving” reflect significantly lower mean income with lower
variance characteristics; on the contrary, occupations such as ”Legal” and ”Management”, which

10



4.2 Saving Profiles 4 RESULTS

Figure 3: Wealth, consumption and labour income vs age plot

(a) Liquid Asset (b) Non-Liquid Asset

Figure 4: Liquid and Nonliquid asset amounts by occupation at age, where only a selection of
occupations are depicted on plot for clear visibility. The different characteristics of occupation
groups are reflected by plots.
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reflect highest mean income and high variance of income for each occupation group. This plot
reflects even at the simplest level that the income characteristics of each occupation can differ
greatly. The unemployment characteristics reflect great diversity, where occupations such as
”Farming, Fishing and Forestry” possess greater and fluctuating risk profiles, which might be
partially due to the characteristics of seasonality in these specific occupations. No obvious
dependence of saving rate or non-liquid investment rate on age or income level can be found in
the analysis, showing the complexity of the decision making happening in the system.

(a) mean income (b) unemployment

Figure 5: Mean of income and unemployment by occupation at week ts; the values are smoothed
by 30-step moving average and only a selection of occupations are depicted on plot for clear
visibility. The different characteristics of occupation groups are reflected by plots.

The savings profiles in Fig. 6 reflect heterogeneous characteristics, where at the same total
wealth the saving rate differs greatly, which can be due to different income levels and unem-
ployment risks of occupations. The saving rate plot shows increasing noise at higher wealth
levels near 10M, and a much clearer trajectory at lower wealth. An interesting insight is that
at the lowest wealth levels, all occupations display similar saving rates. Minimum consumption
requirement has a direct consequence of lower saving rates by occupations with low income
occupations such as ”Farming, Fishing and Forestry”, ”Building and Grounds Cleaning and
Maintenance”, ”Personal Care and Services”, ”Food Preparation and Serving Related” occupa-
tions have very low saving rate due to their difficulties to finance minimum consumption. Some
general patterns can be identified, such as lower income occupations tend to have lower saving
rates, but it does not imply that income itself can explain saving decisions; as we can observe
varying saving rates among ”Healthcare Practitioners”, ”Legal Professionals”, and ”Business
and Financial Operations”.

4.3 Portfolio Allocation

Compared to the literature on the share of non-liquid assets and age distribution, Fig. 7 reflects
similar shape and rates, where Campanale et al. [11] plots a very similar life-cycle stock share
model profiles when the illiquid and liquid assets are differentiated with transaction costs for
switching between them, our model reflect similar characteristics when the transaction costs
are high. The share of non-liquid asset according to total current wealth also reflects a similar
shape of initial increase followed by plateau.

The relationship between share of non-liquid asset and age inferred in our model is in par
with the literature, furthermore its shape is similar to empirical data presented by Campanale et
al. [11]. Furthermore, Fig. 8 reflects a more heterogeneous relationship with higher granularity
in comparison to the literature. Our model provides similar income, consumption, and wealth
curves with respect to the literature, and portfolio allocation strategies with higher granular-
ity suitable for heterogeneity and various income processes. A downside of the model is the
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(a) Week (b) Total Asset Amount

Figure 6: Saving rate by occupation at week ts and saving rate by occupation at amount capped
at 10M, the values are smoothed by 30-step moving average and only a selection of occupations
are depicted on plot for clear visibility.

(a) Total Asset Amount (b) Age

Figure 7: Nonliquid asset share vs total asset amount and age
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4.3 Portfolio Allocation 4 RESULTS

high level of noise for the portfolio allocation 3d surface 8, which might arise from the higher
complexity of the model.

Figure 8: 3d Surface Plot of share of non-liquid assets in x-axis, with respect to total asset
wealth in y-axis, and corresponding decision of non-liquid asset investment rate in z-axis, the
values are smoothed with 9 step moving average for clearer visibility

Figure 9: Non liquid investment rate by occupation at amount capped at 10M, the values are
smoothed by 30-step moving average and only a selection of occupations are depicted on plot
for clear visibility.

Contrasting general saving rate and the non-liquid investment rate characteristics of occu-
pations with respect to total assets result in interesting findings. The non-liquid investment rate
by total asset among occupations diverges less than the saving rate by total asset, but still the
characteristically differentiating investment strategies are evident in Fig. 9 Saving rate by total
asset generally increases for all occupations with more asset, with exponential like increase,
then it plateaus and slightly varies with noise. Saving rates by highest total asset amounts
fluctuate greatly, which might be due to different dynamics governing their decisions such as
capital income or behavioural parameters weighing more themselves rather than income being
the determinant of the decisions.

Non-liquid investment rate per total asset is much higher for low income occupations, and
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only exceptions is for very high amounts of total asset, where higher income occupations can
surpass the low income occupations by non-liquid investment rate. This difference is due to a
necessity for low-income occupations, which results in lower buffer savings in liquid assets that
can be used to finance short-term consumption during periods of unemployment. This finding
can be a guidance for policy makers to come up with instruments to mitigate the risk for income
occupations to face higher risk of consumption crisis, such as unemployment benefits, or early
career pension contributions from the government to support low-income early career workers.
Non-liquid investment rate seems to have an increasing trend for low-income occupations with
respect to total asset. On the other hand, for some of the mid and high occupations, the trend
is first a decrease followed by an increase.

Comparing our results with those of Campanale et al. in Table 1 with high transaction
cost makes it clear that our model refers to a higher non-liquid investment share with respect
to total asset portfolio, but there are exceptions where Campanale et al. determine a high
non-liquid asset share. Furthermore, profile specific differences between occupations is evident
from varying non liquid asset shares with respect to income quartile and age group.

4.4 Effects of Behavioural Parameters

The behavioural parameters of the agents are the consumption utility factor, the shock sensi-
tivity factor, and the individuality factor. These factors capture the behaviour of agents, and
they impact how agents perceive, understand, and act in their environment. The consumption
utility factor is necessary for quantifying how agents value immediate consumption, which can
be interpreted as level of consumerism, or temporal preference and eagerness. The shock sen-
sitivity factor is a parameter helpful for capturing the agent’s perception of the consumption
change, which can amplify the effects of the changes and force agents to avoid abrupt changes,
and an alternative interpretation can be as risk aversion modifier that augments the utility.
The individuality factor models the level of influence an agent’s social network exerts on the
agent. This is achieved by factoring in the information transmitted from the neighbourhood.
The increase in the liquid assets reflect a linear increase; on the contrary, the increase of non-
liquid assets is exponential due to interest income of the assets. The distribution of outcomes
reflect heterogeneous characteristics according to behavioural parameters and the relationship
between parameters and outcomes are non-linear. The details can be found in the Appendix.
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Occupation Quart 1. Quart 2. Quart 3. Quart 4.
Arts-Design-Entertainment-Sports-and Media

20-30 0.681 0.701 0.705 0.754
30-40 0.702 0.769 0.803 0.849
40-50 0.696 0.745 0.805 0.863
50-60 0.721 0.771 0.828 0.871
60-70 0.539 0.752 0.833 0.863

Business and Financial Operations
20-30 0.626 0.648 0.615 0.632
30-40 0.653 0.671 0.712 0.774
40-50 0.659 0.700 0.793 0.848
50-60 0.658 0.692 0.775 0.848
60-70 0.547 0.695 0.759 0.841

Farming-Fishing-and Forestry
20-30 0.774 0.810 0.856 0.901
30-40 0.772 0.893 0.946 0.965
40-50 0.758 0.854 0.938 0.965
50-60 0.751 0.843 0.922 0.963
60-70 0.547 0.799 0.907 0.959

Healthcare Practitioners and Technical
20-30 0.644 0.655 0.653 0.680
30-40 0.674 0.674 0.714 0.793
40-50 0.674 0.716 0.774 0.832
50-60 0.692 0.738 0.793 0.851
60-70 0.663 0.746 0.797 0.857

Legal
20-30 0.644 0.614 0.607 0.632
30-40 0.659 0.649 0.717 0.802
40-50 0.664 0.709 0.760 0.827
50-60 0.670 0.675 0.730 0.828
60-70 0.630 0.699 0.791 0.859

Production
20-30 0.667 0.704 0.751 0.826
30-40 0.682 0.770 0.843 0.900
40-50 0.694 0.779 0.849 0.909
50-60 0.684 0.771 0.858 0.912
60-70 0.589 0.757 0.839 0.904

All Occupations
20-30 0.680 0.723 0.743 0.735
30-40 0.707 0.769 0.806 0.830
40-50 0.708 0.774 0.819 0.847
50-60 0.703 0.774 0.817 0.856
60-70 0.610 0.755 0.815 0.860

Campanale et al. TC high
20-30 0.077 0.471 0.467 0.577
30-40 0.575 0.591 0.547 0.739
40-50 0.539 0.621 0.757 0.704
50-60 0.70 0.765 0.791 0.698
60-70 0.735 0.767 0.751 0.706
70-80 0.562 0.701 0.756 0.667

Table 1: Occupation and Age vs Share of Non-Liquid Investments for Wealth Quartiles, the
results from Campanale et al. with high Transaction Costs(TC) are used for comparison, in
our model there are no transfers between non-liquid and liquid assets before retirement so high
transaction cost results are relatively compatible with our model
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6 FUTURE WORK

5 Conclusion

We modelled a pension ecosystem, where heterogeneous contributors make consumption and
investment decisions with Deep RL, which advances available models by providing better gran-
ularity and accounting for profile heterogeneity.

We provide a novel methodology to optimise agent behaviour for consumption and invest-
ment between pension savings and liquid cash buffer, which is flexible and can be calibrated to
work in various scenarios and capture agent heterogeneity. Our model does not need an explicit
formulation of the income process and can work with empirical data.

Our research represents a first step of end-to-end modelling of pension ecosystem, to provide
a highly capable model to optimise contributor and other actor behaviour, in the existence of
high variability and heterogeneity, as well as dynamic environment. We successfully devised
optimal contributor portfolio allocation strategies between nonliquid pension savings and liquid
cash buffer, as well as optimal consumption decision, which can be calibrated with behavioural
parameters of agents. We accomplish this by minimising the consumption crisis periods of
agents and maximising the retirement savings.

6 Future Work

Future work can be planned in four dimensions. One dimension is the representativeness and
information richness, which can be enhanced by more in depth shock embedding for capturing
how a shock affects a specific agent, considering shocks such as financial crashes, epidemics, and
natural catastrophes such as earthquakes. A second dimension is a more in depth representation
of each profession using vector representation of professions, which will capture the job simi-
larity and to some extent the relationship between professions. Utilising a more comprehensive
graph encompassing real geographical neighbourhoods, peer network, or employment network,
as well as synthethic networks with well-known structures such as small world will provide more
extensive capabilities to model the world. The thirds dimension of future work is introducing
more actors in the multi-agent model including companies as employers and business-to-business
relationships, which will provide a model less leaning on statistical calibration via real-world
data, and capture second-order effects and endogenous properties. Another pivotal agent that
can increase the impact and self-consistency of the simulated environment is the government
acting as a tax regulator. The fourth dimension is technical improvement to the simulation
system to use vectorised parallel architectures such as GPUs, which will enable us to test more
extensive market conditions more efficiently and in shorter time.
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7 APPENDIX

7 Appendix

7.1 Model Card

Simulation Parameters

Parallel Environment Count 32

Income Calibration Data USA CPS 2019 Median weekly earnings

Unemployment Duration Data USA CPS 2019 Unemployment duration table

use min max scaler 1

time steps 1000

consumption crisis penalty 100000

invalid action penalty modifier 1000

retirement age 65

retirement salary multiplier 0.8

death rate USA SSA Actuarial Life Table

Agent States

”OCC CODE” , ”age”, ”income”,
”consumption utility factor”,
”shock sensitivity factor”,”individuality factor”,
”non liquid asset”, ”liquid asset”]

Market Parameters

monthly market interest rate 0

CPI 0

monthly non liquid asset return rate 0.0125

monthly liquid asset return rate 0.0025

monthly minimum consumption 1073 (2021 USA Poverty Guidelines)

monthly minimum wage 1160

ML Parameters

batch size 14656

n lstm 128

n steps 1

Table 2: Parameters
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7.2 Nomenclature LIST OF SYMBOLS

7.2 Nomenclature

List of Symbols

The next list describes several symbols that will be later used within the body of the document

δ(x, y) Kronecker Delta

η Degree of non-linearity of crra function

κi,t Shock Sensitivity Factor

Ci,t Instant Consumption

Ei,t Current Earnings

ψ Consumption Crisis Penalty Modifier

ζ Invalid Action Penalty Modifier

Aa,b 1 if there is an edge a-> b

ci,t Accumulated consumption value

mi,t Minimum consumption

Pi,t Instant Penalty for Consumption Crisis

pi,t Accumulated penalty

qi,t Consumption Utility Factor

7.3 Neural Architecture

Figure 10: Neural Architecture
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7.4 Graph Plot LIST OF SYMBOLS

7.4 Graph Plot

Figure 11: Graph Plot where occupations are reflected with colours and income is reflected
with the size of nodes, the graph consists of three sub-groups representing three neighbourhood
with three differing income levels as high mid and low income, central nodes of each group are
representing the neighbourhoods.
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7.5 Cross-sectional analysis

(a) Liquid Investment Rate (b) Non-Liquid Investment Rate

Figure 12: Liquid and Nonliquid Investment rate by Occupation at week ts

The Fig. 13 reflects the relationship between liquid investment rate and wealth for amounts
less than 5M USD. 3 distinctive behaviours are observable, one is Computer and Mathematical
Occupations, which start at lowest liquid investment rate, the other group represents the ma-
jority of the occupations representing most of low- and mid-income occupations, which start at
nearly 35% but then lower their liquid investment rates when the total wealth increases, the
third group consist mostly of the high income occupations such as Management Occupations
which increase their liquid investment rate with total asset increase until nearly 500K USD, at
that point they start to decrease their liquid investment rate.

(a) Liquid Investment Rate (b) Non-Liquid Investment Rate

Figure 13: liquid and nonliquid investment rate by occ at amount

Fig. 14 shows that the increase in liquid assets slows with increasing total wealth, which
reflects the fact that the need for security buffer savings decrease and reward of illiquid asset
is higher. On the contrary, the increase of no liquid assets with respect to the total wealth
increase speeds up at higher amounts and converges to a stable linear trajectory.

The distribution of assets with respect to age on Fig. 15 highly differentiates according to
the occupation, where Management and Legal Occupations possess highest value of assets and
Farming, Fisheries and Food Preparation Occupations possess lowest level of assets and also
reflect lowest change of assets with age, which points out that asset differentiation with respect
to age depends heavily on the occupation type, where some occupations show greatly changing
income asset values and some occupations can provide minimal savings opportunity, due to
income merely sufficing to finance current consumption during workforce participation.
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(a) Liquid Asset (b) Non-Liquid Asset

Figure 14: Liquid and Nonliquid Assets by occupation at Total Amount

(a) Liquid Asset (b) Non-Liquid Asset

Figure 15: Liquid and Nonliquid assets by occupation at age

(a) Liquid Asset (b) Non-Liquid Asset (c) Total Asset

Figure 16: Total Asset, Nonliquid Asset, Liquid Asset at week ts by Consumption Utility factor
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7.6 Tables

occupation title saving rate
non liquid
investment rate

share of non
liquid investments

Architecture and Engineering 0.578 0.607 0.730
Arts, Design, Entertainment, Sports, and Media 0.422 0.587 0.756
Building and Grounds Cleaning and Maintenance 0.207 0.576 0.777
Business and Financial Operations 0.512 0.557 0.714
Community and Social Service 0.363 0.623 0.773
Computer and Mathematical 0.596 0.643 0.769
Construction and Extraction 0.374 0.649 0.787
Education, Training, and Library 0.404 0.574 0.743
Farming, Fishing, and Forestry 0.160 0.569 0.845
Food Preparation and Serving Related 0.218 0.574 0.790
Healthcare Practitioners and Technical 0.533 0.576 0.737
Healthcare Support 0.210 0.576 0.777
Installation, Maintenance, and Repair 0.381 0.635 0.786
Legal 0.519 0.550 0.703
Life, Physical, and Social Science 0.471 0.603 0.732
Management 0.590 0.584 0.722
Office and Administrative Support 0.274 0.608 0.778
Personal Care and Service 0.208 0.573 0.778
Production 0.267 0.608 0.782
Protective Service 0.396 0.622 0.777
Sales and Related 0.282 0.578 0.767
Transportation and Material Moving 0.269 0.613 0.789

Table 3: Occupation vs Rates, the saving rate denotes to the average monthly saving rate of
the members of each occupation, the non liquid investment rate denotes the average of the
decided rate of allocating monthly savings to non liquid investments for each occupation, the
share of non liquid investments denotes the share of non liquid assets with respect to all of the
investments averaged for each occupation
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age non liquid investment rate share of non liquid investments consumption rate Coco et al. consumption rate

21 0.551 0.677 0.648 0.884
22 0.546 0.684 0.634 0.915
23 0.553 0.690 0.629 0.948
24 0.554 0.701 0.628 0.976
25 0.556 0.710 0.623 0.996
26 0.558 0.717 0.611 0.998
27 0.562 0.728 0.608 0.999
28 0.567 0.736 0.607 0.999
29 0.571 0.743 0.609 0.998
30 0.572 0.750 0.606 0.996
31 0.579 0.756 0.598 0.987
32 0.584 0.764 0.595 0.979
33 0.587 0.771 0.596 0.972
34 0.590 0.777 0.591 0.966
35 0.592 0.781 0.591 0.962
36 0.594 0.782 0.588 0.960
37 0.596 0.783 0.583 0.959
38 0.597 0.786 0.578 0.959
39 0.597 0.786 0.575 0.960
40 0.600 0.789 0.571 0.962
41 0.597 0.787 0.563 0.963
42 0.601 0.785 0.562 0.965
43 0.603 0.785 0.561 0.966
44 0.603 0.787 0.562 0.966
45 0.604 0.786 0.559 0.966
46 0.605 0.788 0.561 0.966
47 0.604 0.787 0.559 0.965
48 0.605 0.789 0.557 0.964
49 0.603 0.788 0.555 0.963
50 0.605 0.788 0.555 0.963
51 0.609 0.789 0.557 0.964
52 0.607 0.787 0.558 0.966
53 0.607 0.785 0.564 0.970
54 0.605 0.785 0.563 0.976
55 0.606 0.786 0.568 0.985
56 0.604 0.787 0.569 0.996
57 0.604 0.787 0.569 1.011
58 0.604 0.790 0.573 1.029
59 0.606 0.790 0.572 1.051
60 0.606 0.789 0.578 1.077
61 0.609 0.788 0.578 1.107
62 0.606 0.788 0.572 1.142
63 0.607 0.784 0.572 1.180
64 0.606 0.785 0.570 1.223

Table 4: Age vs Rates: Consumption rates are defined as consumption amount divided to
income. Consumption rates are compared to literature by extracting values from plots of Coco
et al. [10], their research differs by our work such that the income values exclude contributions
toward pension income, and savings are used as a mean to finance consumption deficit especially
during retirement, so during retirement there are positive consumption rates, which mean that
the pension deficit is financed by spending savings. This definition difference causes consumption
rates to be much higher.
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Occupation 20-30 30-40 40-50 50-60 60-70

Architecture and Engineering 0.669 0.68 0.658 0.668 0.325
Arts, Design, Entertainment, Sports, and Media 0.465 0.448 0.445 0.484 0.236
Building and Grounds Cleaning and Maintenance 0.237 0.237 0.236 0.235 0.118
Business and Financial Operations 0.556 0.602 0.594 0.599 0.281
Community and Social Service 0.447 0.422 0.433 0.41 0.2
Computer and Mathematical 0.639 0.672 0.671 0.674 0.319
Construction and Extraction 0.419 0.435 0.432 0.42 0.188
Education, Training, and Library 0.456 0.471 0.472 0.436 0.211
Farming, Fishing, and Forestry 0.181 0.18 0.176 0.184 0.09
Food Preparation and Serving Related 0.236 0.235 0.235 0.236 0.114
Healthcare Practitioners and Technical 0.598 0.615 0.591 0.578 0.308
Healthcare Support 0.236 0.235 0.234 0.234 0.12
Installation, Maintenance, and Repair 0.446 0.427 0.434 0.412 0.212
Legal 0.603 0.584 0.592 0.573 0.322
Life, Physical, and Social Science 0.56 0.549 0.556 0.535 0.286
Management 0.683 0.692 0.692 0.68 0.346
Office and Administrative Support 0.31 0.315 0.317 0.311 0.152
Personal Care and Service 0.238 0.236 0.237 0.236 0.116
Production 0.309 0.305 0.31 0.303 0.147
Protective Service 0.429 0.437 0.445 0.426 0.212
Sales and Related 0.334 0.313 0.323 0.312 0.157
Transportation and Material Moving 0.307 0.302 0.315 0.298 0.152

Table 5: Saving Rate by Occupation and Age
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7.7 Raw Plots and Behavioural Parameter Effect Plot

(a) Mean Income (b) Unemployment

Figure 17: Mean Income and Unemployment by Occupation at week ts

(a) Week (b) Total Asset Amount

Figure 18: Saving Rate by Occupation at week ts and Saving Rate by Occupation at amount
capped at 10M
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Figure 19: 3d Surface Plot of share of non-liquid assets in x-axis, with respect to total asset
wealth in y-axis, and corresponding decision of non-liquid asset investment rate in z-axis
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Figure 20: 3D Scatter Plot of each indicator relative to the behavioural parameters of the agents,
where dark blue indicate lower values and light yellow indicate higher values, which reflect how
the parameters are effecting the values such as accumulated assets, investment rates or share of
non liquid assets. The income vs parameters plot is provided for convenience, the income itself
is not effected by the behavioural parameters
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