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ABSTRACT

Objective: Restenosis is a significant complication of revascularization treatments in coronary and peripheral arteries,
sometimes necessitating repeated intervention. Establishing when restenosis will happen is extremely difficult due to the
interplay of multiple variables and factors. Standard clinical and Doppler ultrasound scans surveillance follow-ups are the
only tools clinicians can rely on to monitor intervention outcomes. However, implementing efficient surveillance
programs is hindered by health care system limitations, patients’ comorbidities, and compliance. Predictive models
classifying patients according to their risk of developing restenosis over a specific period will allow the development of
tailored surveillance, prevention programs, and efficient clinical workflows. This review aims to: (1) summarize the state-of-
the-art in predictive models for restenosis in coronary and peripheral arteries; (2) compare their performance in terms of
predictive power; and (3) provide an outlook for potentially improved predictive models.

Methods: We carried out a comprehensive literature review by accessing the PubMed/MEDLINE database according to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search strategy
consisted of a combination of keywords and included studies focusing on predictive models of restenosis published
between January 1993 and April 2023. One author independently screened titles and abstracts and checked for eligibility.
The rest of the authors independently confirmed and discussed in case of any disagreement. The search of published
literature identified 22 studies providing two perspectives—clinical and biomechanical engineering—on restenosis and
comprising distinct methodologies, predictors, and study designs. We compared predictive models’ performance on
discrimination and calibration aspects. We reported the performance of models simulating reocclusion progression,
evaluated by comparison with clinical images.

Results: Clinical perspective studies consider only routinely collected patient information as restenosis predictors. Our
review reveals that clinical models adopting traditional statistics (n = 14) exhibit only modest predictive power. The latter
improves when machine learning algorithms (n = 4) are employed. The logistic regression models of the biomechanical
engineering perspective (n = 2) show enhanced predictive power when hemodynamic descriptors linked to restenosis
are fused with a limited set of clinical risk factors. Biomechanical engineering studies simulating restenosis progression
(n = 2) are able to capture its evolution but are computationally expensive and lack risk scoring for individual patients at
specific follow-ups.

Conclusions: Restenosis predictive models, based solely on routine clinical risk factors and using classical statistics,
inadequately predict the occurrence of restenosis. Risk stratification models with increased predictive power can be
potentially built by adopting machine learning techniques and incorporating critical information regarding vessel
hemodynamics arising from biomechanical engineering analyses. (JVS—Vascular Science 2023:4:100128.)
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Restenosis is the reoccurrence of stenosis, an abnormal
narrowing (=50%') of blood vessels, causing limited
blood flow. Restenosis usually pertains to arteries that
have undergone surgical or endovascular procedures to
treat the vascular damage from atherosclerosis.”

Some of the high-susceptibility sites subjected to
clinically significant atherosclerotic diseases are the
coronary® (coronary artery disease [CAD]) and the periph-
eral arteries” (peripheral artery disease [PAD]). Prelimi-
nary, conservative treatment for CAD and PAD includes

From the Department of Medical Physics and Biomedical Engineering, Univer-
sity College London?; the Wellcome-EPSRC Centre for Interventional Surgical
Sciences®; the Department of Vascular Surgery, Royal Free Hospital NHS
Foundation TrustS; the Division of Surgery & Interventional Science, Depart-
ment of Surgical Biotechnology, Faculty of Medical Sciences, University Col-
lege London, Royal Free Campus® and the Department of Mechanical
Engineering, University College London.®

Correspondence: Vanessa Diaz-Zuccarini, PhD, Torrington Place, UCL Mechan-
ical Engineering, London, WCIE 7JE (e-mail: v.diaz@ucl.ac.uk).

The editors and reviewers of this article have no relevant financial relationships to
disclose per the Journal policy that requires reviewers to decline review of any
manuscript for which they may have a conflict of interest.

2666-3503

Copyright © 2023 by the Society for Vascular Surgery. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/ jvssci.2023.100128


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:v.diaz@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jvssci.2023.100128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvssci.2023.100128&domain=pdf

2 Ninno et al

JVS—Vascular Science
2023

Table I. Common demographic, clinical, angiographic, altered hemodynamics- and morphology-related risk factors
identified in the literature as increasing the risk of restenosis

Lesion-related

Long lesion length, small vessel diameter, minimal
lumen diameter after PCI alone/stenting, ACC/AHA
type C lesion, chronic total occlusion, tortuous and
calcified lesion, restenotic lesion

High OSI (>0.2)

OSI: identifies regions on the vessel wall subjected to
highly oscillating WSS over the cardiac cycle

Low HOLMES (<0.5 Pa™)

HOLMES: identifies regions on the vessel wall
simultaneously subjected to low TAWSS and high OSI

risk factor modification combined with antiplatelet,
anti-thrombotic, and lipid-lowering medical therapy.®
Surgical and endovascular approaches might later be
adopted to restore blood flow. Surgical treatment
consists of bypass procedures, commonly using an
autologous healthy blood vessel (ie, saphenous vein,
radial, and mammary arteries).® Endovascular proced-

ures are increasingly employed in revascularization
strategies for either CAD or PAD’® because they are
minimally invasive, require local over general anesthesia,
and have a quicker recovery period. These include
percutaneous transluminal angioplasty (PTA) alone
(percutaneous coronary intervention [PCI] for the
coronary arteries), with or without drug-coated balloons
(DCB), PTA or PCl with balloon-expandable stent, and
self-expandable stent implantation. Stenting might
involve bare metal stents (BMS), drug-eluting stents
(DES), or bioresorbable stents. Despite the advantages
of their minimally invasive nature, revascularization

treatments can lead to restenosis, sometimes
necessitating repeated intervention.”’® Restenosis is a
complex, multifactorial phenomenon as well as a
challenging clinical problem with high prevalence,
occurring in up to 60% and 30% of cases at 1-year
follow-up for PAD'® and CAD treatment," respectively.

In some patients, restenosis leads to adverse conse-
quences, such as stable/unstable angina and acute
myocardial infarction in case of CAD or gangrene and
leg amputation in case of PAD, or—worst-case
scenario—death.

Different demographic, clinical, and angiographic risk
factors triggering the development of restenosis are
identified in the literature®'?'® This information is
routinely collected and commonly grouped under three
categories (Table |): patient-, lesion-, and procedure-
related predictors.”'®

In addition, altered hemodynamics in the arterial
(mechanical) environment with respect to the healthy
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Table Il. Definitions of clinical endpoints investigated by the reviewed papers for the development of predictive models

Restenosis: (1) recurrent diameter narrowing >50% at the first site dilated, (2) loss of at least 50% of the gain in the diameter

narrowing

Target lesion revascularization: defined as the need for repeated minimally invasive revascularization or bypass graft placement for
stenosis in the treated lesion at the index endovascular procedure or occurring within 5 mm of the stent (‘edge effect”)
Target lesion failure: defined as a composite multiple clinical endpoints such as cardiovascular death, target lesion

revascularization, and target vessel myocardial infarction

vessel,'” caused by balloon inflation and/or stent or

bypass implantation, also seems to play a role in resteno-
sis progression (Table |). The vessel lumen is lined with
endothelial cells subjected to mechanical forces exerted
by the blood flow, determining their function, gene
expression, and structure.!® These mechanical forces
typically refer to the wall shear stress (WSS), defined as
the tangential force of the flowing blood over the endo-
thelial surface of the blood vessel. Under physiological
conditions, values of WSS range from 1 to 7 Pa in the pe-
ripheral arteries of the lower limbs'® and between 1 and
2 Pa in the coronary arteries.?® However, when the arte-
rial cross-section narrows due to plaque presence (drasti-
cally reduced but not entirely removed by endovascular
procedures), the blood speed rapidly increases, resulting
in significantly increased WSS?' values. On the other
hand, distal to the stenosis, WSS often becomes relatively
low (<0.5 Pa) due to flow separation and recirculating
vortical structures.?’ Stent implantation also reduces
the compliance of the vascular segment, leading to a
compliance mismatch with other parts of the blood
vessel?? which might affect blood flow. Intrusions of
the stent struts into the lumen can also cause local
flow separation and hence low WSS regions, which
may turn pathogenic.?’

In general, vessel locations undergoing revascularization
exhibit disturbed flow and coincide with preferred sites
for restenosis to develop.® More specifically, in regions
where WSS values are lower than 0.5 Pa,'°?*%* a proathero-
genic endothelial phenotype is stimulated, and vascular
remodeling or neointimal hyperplasia (NIH) takes place
as a compensatory phenomenon to maintain the hemo-
dynamic value within the physiological range.

The native curvature and tortuosity of the vessel might
also have a significant role in hemodynamic changes?>%®
and are considered geometric risk factors for vessel re-
occlusion over time?’ (Table ).

Quantitative information on vessel lumen remodeling
and the distribution of WSS and WSS-related indices
along the vessel wall can be obtained by fusing medical
images and patient-specific computational fluid
dynamics (CFD) analyses. CFD is a powerful tool used to
study complex, pathophysiological flows by numerically
solving the continuity and Navier-Stokes equations
governing fluid motion. To be solved, boundary condi-
tions (BCs)—parameters or relationships describing the

hemodynamic conditions at the boundaries of the vessel
geometry—need to be defined. These calculations allow
the computation of WSS and WSS-derived indices linked
to restenosis progression (Table 1) and cannot be
measured or estimated otherwise.

However, some patients appear to be at increased risk
of developing restenosis than others, although the occlu-
sion’s timescale and extent cannot be identified a priori.
Determining whether a patient will develop restenosis is
currently not possible with available tools and methods.

Current clinical pathways impose standard clinical and
Doppler ultrasound (DUS) surveillance follow-ups to
check on patients’ conditions after revascularization.?¢°
Nevertheless, implementing an efficient surveillance pro-
gram is not straightforward, especially in an over-
stretched health system dealing with large numbers of
patients with CAD and PAD.

Stratification models could predict post-intervention in-
dividual risk of reocclusion within a defined time interval,
allowing tailored surveillance and developing more effi-
cient clinical workflows for both CAD and PAD.

Aim of the review. This review provides a critical evalu-
ation of available restenosis prediction models for CAD
and PAD. The focus is on studies providing either the
risk of restenosis or simulating reocclusion progression
over a prescribed period, after intervention. An overview
of the key advances in this area is provided by describing
how the models work, and also, by assessing their predic-
tion ability, with an outline of future developments
regarding their potential improvements in predictive
power.

METHODS

The papers reviewed herein were identified by access-
ing the PubMed/MEDLINE database according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The first author
(F.N.) searched published literature up to 2023,
combining the following keywords and Medical Subject
Headings (MeSH) terms: “prediction,” “models,” “resteno-
sis,” “neointimal hyperplasia,” “target lesion revasculariza-
tion,” “target lesion failure,” “stent,” “angioplasty,” “coronary
arteries,” “peripheral arteries,” “clinical variables,” “compu-
tational fluid dynamics,” “hemodynamics.”
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ML methods
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Fig 1. Flow chart showing the process for the literature search and selection of the works. TLF, Target lesion failure;

TLR, target lesion revascularization.

Selection criteria for article inclusion were publications
written in the English language addressing prediction
models of restenosis or, more widely, target lesion revas-
cularization (TLR)*° and target lesion failure (TLF)*
(Table 1) for patients undergoing revascularization pro-
cedures in the coronary or peripheral arteries.

Both titles and abstracts of the publications identified
were reviewed using the aforementioned search strat-
egy. The first author (F.N.) independently checked eligi-
bility and discussed and confirmed with the rest of the
authors (3.7, S.B, V.D.Z) in case of any disagreement.
Case reports, articles whose full-text manuscripts could
not be accessed, and review papers were excluded.
Fig 1 shows the flow chart of the literature search and
selection process. Risk of bias analysis for the included
studies using the Risk of Bias in Systematic Reviews
(ROBIS) tool*? was conducted to ensure the integrity
and reliability of the systematic literature review.

The authors classified the studies meeting eligibility
criteria into two groups (encompassing two different per-
spectives): clinical and biomechanical engineering,
based on considered predictors, methodology, and tools
used. The clinical perspective studies resulted in another
two sub-groups: studies using traditional statistical
models and those adopting more advanced predictive
tools, such as machine learning (ML) algorithmes.

The performance of the prediction models for resteno-
sis was assessed based on discrimination and calibration
aspects. For models simulating reocclusion progression,
their performance was evaluated by direct comparison

with available clinical data acquired at specific time
points.

RESULTS

Eighteen clinical perspective studies were identified
and summarized in Table Ill. The common point of all
these works is that they consider clinical, demographic,
and angiographic variables as the only potential predic-
tors of restenosis.

Four biomechanical engineering perspective studies
were reported in this review and summarized in Table
IV. In this case, the common ground is the use of WSS-
related indices (Table |) as predictors of restenosis.

Further details are discussed in the following section,
together with a comparison regarding the predictive po-
wer of the models identified.

Most clinical studies">*™“ appear to rely on traditional
statistics, although more advanced ML methods are
introduced in recent ones.*“*® The schemes followed
by the models adopting either methodology are illus-
trated diagrammatically in Fig 2.

Biomechanical engineering models for restenosis pre-
diction that include hemodynamic indices have
emerged only recently. This is probably due to the fact
that hemodynamic indices cannot be easily retrieved in
clinical practice, in contrast with clinical, angiographic,
and demographic information. These numerical investi-
gations require expertise in image processing, three-
dimensional (3D) vessel reconstruction, and CFD ana-
lyses, as shown schematically in Fig 3.
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Table lll. Clinical perspective studies predicting risk of restenosis, classified into studies using classical statistical models
and machine learning (ML) techniques respectively

Weintraub et al*® Verify whether Significant Multivariable AUC ROC = 0.62 Clinical variables

(1993) clinical, variables from stepwise logistic ~ Overlap index = provide limited
Coronary arteries angiographic, the comparison regression 0.76 (P < .0001) ability to predict
PClI alone (single and procedural between model Correlation restenosis in a
lesion) variables restenosis and between particular
4006 patients correlating with no restenosis average patient.
from the clinical restenosis — groups in the predicted and Probability of
database at identified from learning group observed restenosis can
Emory the dataset — in used as restenosis rates be determined
University the learning restenosis confirm the with some
(single-center group could predictors goodness-of-fit uncertainty in
study) predict of the model well-

restenosis in a
validation group

characterized
(ie, single lesion)
patients who
have already
undergone
angioplasty

(Continued on next page)
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Stolker et al**
(2010)

Coronary arteries

PCI with DES
(single/multiple
lesion)

8829 patients
from the EVENT
registry (multi-
center study)
undergoing DES
implantation

Develop a risk
model for TLR
and late TLR
using
demographic,
clinical and
patient-level
angiographic
data from the
EVENT registry

Significant
variables from
univariable
logistic
regression
analyses and
variables
frequently
reported in the
literature to be
strong
predictors of
restenosis

Multivariable Hosmer-
backward Lemeshow
stepwise logistic goodness-of-fit
regression test (P = .95)
model

JVS—Vascular Science

2023

Risk model
incorporating 6
clinical and
angiographic
variables only
identifies
individuals at
extremely low
(<2%) and
modestly
increased (>7%)
risk of TLR
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Table Ill. Continued.

Gai et al’® (2021)

Develop a novel

Significant

Multivariable

AUC ROC = 0.72

The prediction

Coronary arteries prediction variables from forward (95% ClI: 0.64- model based on

PCl with DES model for the comparison stepwise logistic 0.80) PDW, TC, LDL-C,
(single/multiple restenosis based between regression Hosmer- SBP and
lesion) on platelet restenosis and model Lemeshow number of

968 patients — not parameters, no restenosis goodness-of-fit lesions is an
specified where lipid levels, groups in the test (P = .655) effective model
data are clinical and learning group to predict
retrieved but angiographic used as restenosis and
referred to the characteristics restenosis conducting risk

Xinjiang predictors and stratification in
population confirmed by patients with
univariable, DES
multivariable implantation
logistic
regression
models and

ROC analyses
(AUC ROC >0.5)

(Continued on next page)
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Table Ill. Continued.

Dai et al“® (2022) Develop and Significant Multivariable c-index = 0.68 Development
Coronary arteries validate an easy- variables (P < stepwise logistic (95% ClI, 0.619- and validation
PCl with DES to-use .20) from regression 0.740) of a model
(single/multiple predictive univariable model Hosmer- including 8
lesions) model for logistic Lemeshow accessible
1653 patients from repeat regression goodness-of-fit variables to
Zhongshan vascularization analyses test (P = .198) modestly
Hospital (single- after DES predict

center study)

implantation in
patients with
CAD

restenosis after
DES
implantation. It
shows
advantages in
discriminative
ability and
clinical
usefulness
compared with
the empirical
model including
recurrent
angina only
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Table Ill. Continued.

Chen et al*®
(2023)

Peripheral arteries

PTA with DCB or
BMS (single/
multiple lesions)

181 patients from
First Affiliated
Hospital of Xi'an
JiaoTong
University
(single-center
study)

Development
and internal
validation of
nomograms for
predicting
restenosis after
endovascular
treatment of
PAD

LASSO Cox regression c-index = 0.864
regression analysis (95% ClI, 0.801-
analysis to select 0.927)

restenosis Calibration plots —
predictors predicted value

of the model is
in good
agreement with
the real value

Ninno et al 9

This study
developed a
nomogram to
predict
restenosis after
endovascular
procedures in
patients with
PAD. The
nomogram
requires
external
validation to
determine the
model’s
applicability

Coughlan et al*®
(2023)

Coronary arteries

PCI with DES
(single/multiple
lesions)

1986 patients from
two centers in
Germany (multi-
center study)

Development
and validation
of a model to
predict repeat
PCI for recurrent
DES restenosis
at 1-year follow-

up

LASSO Multivariable c-index = 0.61
regression logistic

analysis to select regression

restenosis analysis

predictors

Development of
the ISAR score, a
four-item
scoring system
that can be
used to
estimate the risk
of repeat PCI for
recurrent DES
restenosis at 1-
year follow-up

(Continued on next page)
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Sampedro-
Gomez et a
(2019)

Coronary arteries

PCI with DES or
BMS (single/
multiple lesion)

263 patients from
(GRACIA)-3 trial
(multi-center
study) for
patients
undergoing ST-
elevation acute
myocardial
infarction and
consequent PCI

|46

Jiang et al*®

(2022)
Coronary arteries
PCI with 2nd

generation DES
(single/multiple
lesions)

1501 patients from
Guizhou
Provincial
People’s
Hospital (single-
center study)

Develop an ML
model using
daily available
demographic,
clinical, and
angiographic
data to predict
12-month
follow-up stent
restenosis better
than the state-
of-the-art
logistic
regression
models

Test that RF
model has
better
performance
than logistic
regression
model in
restenosis
prediction due
to higher
robustness

Two strategies
pursued in
parallel:

1) Selection based
on ANOVA

2) Random forest
(RF) classifier
attributing
scores to each
predictor

Stepwise logistic

regression
model —

Stepwise Akaike
information
criterion

RF model —

Conditional
permutation
importance,
mean decrease
accuracy, mean
decrease Gini

Application and
comparison of 6
different ML
classifiers: RF,
ERT, GB, SVM,
L2-regularised
and non-
regularized
logistic
regression
trained with the
two different
selection
techniques for
restenosis
predictors (12
models in total)

1) Multivariable
stepwise logistic
regression
model

2) RF model

AUC PR (ERT)
= 0.46 (95% Cl,
0.29-0.63)
AUC ROC (ERT)
= 0.77 (95% Cl,
0.66-0.89)

RF model has
larger AUC ROC
and PR than
logistic
regression
model

Development of
an ERT model
to predict stent
restenosis based
on variables
obtained in
routine clinical
practice. The
model, when
compared with
the state-of-the-
art logistic
regression ones,
shows increased
restenosis
prediction
power

Development of
an ML model
using RF to
predict
restenosis in
patients
implanted with
2nd DES
generation. The
RF model shows
improved
predictive
performance as
compared with
logistic
regression
model due to its
robustness
(accuracy less
affected by
outliers)
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Preliminary steps. Clinical perspective studies, inde-
pendently from traditional statistical or ML models,
entail—as a first step—data screening by applying inclu-
sion and exclusion criteria to reduce the available data-
set to one suitable for analysis. Due to the applied
criteria but also to the lack of consistent data, a smaller
subset of data can be used for analysis. This highlights
one of the most significant limitations in using clinical
data: data collection is not standardized, potentially
leading to inadequate sample size for analyses and pre-
venting direct comparisons between models.

Once the dataset is identified, some initial data pre-
processing is required when using ML algorithms, to
make it amenable to these and to reduce bias in the
findings. For example, Sampedro-Gémez et al*® pre-
processed their data by 1-hot encoding in binary vari-
ables multicategory variables (ie, by representing every
variable as a sequence of O and 1 only) and filling missing
values with the median and the mode for each contin-
uous and categorical variable, respectively. Pachl et al*’
corrected for differences in variable scales and outliers,
performed data normalization and oversampled (under-
sampled) for the underrepresented (overrepresented)
category of patients (not) presenting TLF.

Once the data are finalized, they are randomly split into
the so-called “learning” or “training” and “test” sets (Fig 2).
The “learning” set is usually larger since it is used to build
the model. The “test” set is used to evaluate the model’s
performance. In a few studies, no splitting is performed
and the whole dataset is used for “learning.”=>37->94142
This leads to overly optimistic results in model perfor-
mance (overfitting), which might be corrected by boot-
strapping techniques (Table V). Bootstrapping has

emerged as a popular solution to correct optimistic per-
formance estimates of predictive models"?>38 404545
enhancing model reliability.

In ML approaches, the split into “training” and “test” sets
is performed by k-fold cross-validation“*®“® (Table V). This
process can be replicated multiple times*®“® to coun-
teract highly unbalanced datasets, potentially biasing
the final model’s predictive results. This ensures that a
minimum number of minority cases (ie, patients present-
ing restenosis) is represented in both model training and
evaluation phases.

Moving to the biomechanical engineering perspective,
the first step consists of the acquisition of clinical images
(Fig 3), providing different information according to the
diagnostic technique. Two-dimensional (2D) X ray angi-
ography'” and computed tomography (CT)*°°? scans
allow 3D vessel reconstruction, giving information about
vessel geometry. DUS images provide information about
blood velocity waveforms and are used to define patient-
specific BCs, as explained in the Introduction.

Published biomechanical engineering studies often
deal with a considerably lower number of patients
when compared with clinical ones (Tables Il and V).
This is not surprising considering the data requirements
and computational costs involved in simulating
patient-specific hemodynamics or modeling restenosis
progression, making them complex and time-
consuming to model and analyze, and thus effectively
computationally intractable for very large datasets.

As a second step, vessel geometry reconstruction from
clinical images is crucial for CFD analyses and the
computation of the hemodynamic indices linked to
restenosis progression (Fig 3). CFD results are sensitive
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Table IV. Biomechanical engineering perspective studies on restenosis detailing patient datasets, model details, and
findings

Donadoni et al*® (2020)

Peripheral arteries
(Femoro-popliteal
artery)

Autogenous sapheneous
bypass graft

3 patientsundergoing
femoral-popliteal
saphenous bypass
(single-center study)

CT scans acquired at 8,
19, 24 months (for
patients 1-3,
respectively), Doppler
ultrasound scans
acquired immediately
after surgery

Simulation of NIH
progression using a
multiscale computational
framework and
comparison of results with
a patient-specific clinical
dataset

Multiscale computational
framework informed by
patient-specific imaging
data and hemodynamic
markers (TAWSS and
HOLMES) having as output
the predicted value of NIH
growth along the graft

Low TAWSS, high OSI
and HOLMES indices

Analysis of cross-sectional
areas of the lumen where
restenosis is most severe
and comparison with the
available CT scans

The simulation model
correctly predicts areas of
NIH growth, with values
similar to the stenosis
observed in the CT scans
with the use of the
HOLMES index (max
discrepancy 8% between
stenosis values observed in
patients 1-3 compared with
the CT scan)
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to both the geometry and applied BCs, thus an
accurate reconstruction of the vessel and patient-
specific BCs are required to compute reliable patient
hemodynamics.

Once the CFD simulation is performed, providing as
output WSS, post-processing allows the calculation of
WSS-related indices.

Models’ development/training. Almost all the clinical
perspective studies using traditional statistical methods
employed a multivariable logistic regression model
(Table V) to predict restenosis occurrence. This statisti-
cal model is the preferred method to analyze prognostic
studies®® when the goal is to quantify the risk of a future
event. This is probably because the model returns prob-
abilities as outputs and allows the classification of new
patients using both continuous and discrete measure-
ments, which is the case when dealing with clinical, de-
mographic, and angiographic predictors. Cox regression
analysis (Table V), adopted by Chen et al*® is a valid
alternative providing as output the probability for that
event to occur at a defined time point.

When ML approaches are adopted, several models
(Table V) are usually built in parallel and eventually
compared in terms of performance.*¢*°

To select the potential restenosis predictors to develop/
train the model, different strategies were followed by the
clinical perspective studies adopting traditional statisti-
cal models and ML approaches.

Some statistical-based studies®™>> considered as reste-

nosis predictors the variables proved to be statistically
significantly different between the patients’ groups
(Table I11), presenting and not presenting with restenosis.

Other studies considered variables either based on clin-
ical relevance®® or frequently reported in the literature as
restenosis markers.! In some others, variables that
resulted as significant from univariable'**“°*! and/or
multivariable logistic regression analyses®“? (Table V)
and satisfied a specific criterion for receiver operator
characteristic (ROC) curve analyses®™ (Table VI) were
selected as predictors. The latter alternatives are more
data-driven and use logistic regression models to test
whether they are linked to restenosis (ie, variable consid-
ered as a predictor when P-value = .05).

An alternative approach to select restenosis predictors
is the least absolute shrinkage and selection operator
(LASSO) regression analysis®®*2“*“> (Table V). This re-
duces the number of potential predictors to a limited
set, improving model interpretability.

In ML-based studies, Sampedro-Gémez et al*® based
predictors’ selection following two parallel strategies: (1)
by performing univariate analysis of variance (ANOVA)
(ie, test whether the mean differences of variables be-
tween patients presenting/not presenting with restenosis
were statistically significantly different) to consider only
the variables having the strongest relationship with reste-
nosis; (2) by considering variable (feature) importance;
through a random forest (RF) classifier (Table V), a score
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! 1) Division into patients presenting/not 1 Access model performance by using an unscen
: presenting with restenosis : dataset to estimate the predictive power of the
| ' model
1 2) Evaluation of differences between the two
! groups (t-test and ¥’ tests) 1 Model performance is usually accessed in
: ! terms of discrimination and calibration
' 3) Predictors selection :
1 I
1 4) Model building up 1

ML methods

[ Original Dataset I

> | Inclusion/Exclusion criteria

v

I Selected dataset |

Data pre-processing

v

(k-fold cross-validation) x N times*

Training set
(k-1 folds)

First step - Model training

N
\\ :

Test set
(Remaining fold)

Access model performance by using the
remaining fold to estimate the predictive power
of the model

Model performance is usually accessed in
terms of discrimination and calibration

Results of model evaluation are stored for
cvery iteration of the k-fold cross validation

1 1) Features selection 1
I 1
: 2) Model building up :
*optional

v

Results averaged to a single estimation to select the
one performing best

Fig 2. Methodological framework followed by clinical perspective studies to build restenosis predictive models for
classic statistical models and machine-learning (ML) methods.

for each predictor was assigned, signifying its contribu-
tion towards restenosis occurrence. Pachl et al*’ did
not explicitly mention any feature selection strategy,
implying that all identified variables were employed in
their model development. Jiang et al*® relied on the
stepwise Akaike information criterion (Table V) to assess

the quality of a set of multivariable stepwise logistic
regression models given a set of predictors, in order to
pick the one performing best. For the RF model that
they built in parallel, they computed the conditional per-
mutation importance, mean decrease accuracy, and
mean decrease Gini (Table V) for predictors’ selection.
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| Medical images acquisition |

I 3D vessel reconstruction |

| CFD analyses |

Computation of WSS and
WSS-related indices

Model development

- e 5 1
1 Mechanistic system of equations
: or agent-based models 1

Outputs of the models compared
with available clinical data

Fig 3. Computational pipeline followed by biomechanical engineering perspective studies to build predictive
models for restenosis. CFD, Computational fluid dynamics; WSS, wall shear stress.

Guldener et al*® introduced the use of a novel self-

organizing-maps (SOMs)-based approach for restenosis
predictors selection (Table V).

As for the biomechanical engineering studies, three
types of prediction models have been developed
(Fig 3): logistic regression, mechanistic, and models hav-
ing a stochastic component (ie, agent-based models).

Studies adopting logistic regression models'”*" (Table
V) consider different sets of restenosis predictors to
test whether the introduction of hemodynamic indices
result in enhanced predictive power and identify which
variables contribute the most to restenosis. As reported
in Table IV, G8kgdl et al'” implemented three different
muiltivariable logistic regression models: the first
excluding all hemodynamic indices as predictors; the
second, including only hemodynamic indices; and the
third one, combining clinical, demographic, angio-
graphic, and hemodynamics. Colombo et al®' imple-
mented two univariable logistic regression analyses as
part of a study investigating the impact of local hemody-
namics on restenosis in femoral arteries. These studies
were set to investigate if stent length and age correlated
with absence/presence of restenosis at 2-year follow-up.
In addition, univariable and multivariable logistic regres-
sions were also implemented, considering hemody-
namic predictors only. A two-sided Fisher exact test

(Table VII) was also conducted to assess whether stent
overlapping correlated with the absence or presence of
restenosis after 2 years from baseline.

Mechanistic and agent-based models simulate reste-
nosis progression. Donadoni et al*° developed a mecha-
nistic model based on mathematical descriptions of the
biological mechanisms leading to NIH growth. The four
mechanisms triggering NIH progression, namely smooth
muscle cell and collagen turnover, growth factors, and
nitric oxide production, were described by ordinary dif-
ferential equations and linked to computed WSS values.
Corti et al®*> developed a framework coupling WSS
computation with a 2D agent-based model (ABM) simu-
lating cellular dynamics. This emulated cellular behavior
and vessel remodeling based on WSS computation and
systemic inflammatory response, triggered by the endo-
vascular intervention. Both models®®>? were intrinsically
designed so that low values of WSS enhanced smooth
muscle cells’ proliferative and synthetic activity, respon-
sible for vessel reocclusion due to NIH. The output of
both models®?®* was the ‘altered’ vessel geometry due
to restenosis progression. Donadoni et al*° returned a
3D geometry (ie, the new vessel coordinates in the 3D
space), whereas Corti et al®? returned the new lumen
cross-sections on which the disease was simulated and
from which the 3D geometry could be reconstructed.
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Table V. Definitions of the technical terms related to clinical perspective predictive models development/training

Models’ performance evaluation. Prediction models’
performance is normally evaluated regarding two key as-
pects: discrimination and calibration.>*

Discrimination refers to the model’s ability to distin-
guish between patients who will have restenosis and
those who will not. Computing the area under (AUC)
the ROC curve (also called “c-index”) (Table VI) is a popu-
lar choice to do this.>®

As for the clinical perspective, Table Ill shows that the
values for the AUC ROC obtained with statistical-based
models ranged from 061 to 0706 in most
studies, *>*584045 showing modest model discrimination
ability. However, a few statistical-based studies show high
AUC ROC values>>*%*142 yp to 0.924. Nevertheless, this
should be interpreted with caution, because these last
set of models were tested using the same dataset used
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Table VI. Technical terms used in the evaluation of clinical perspective predictive models

for model development/training. Models’ performance on
an unseen dataset cannot be assessed.

Despite not being widely used in logistic regression
models, an alternative measure for model discrimination
is the overlap index (Table VI) between the predicted
probability distributions of restenosis for patients with
or without restenosis in the “test” set. The work of Wein-
traub et al*® is the only one to use this index, reporting
a value of 0.76, which confirms the model's modest
discrimination power.

As for the ML-based models, their discrimination ability
is evaluated on each “test” set of the k-fold cross-
validation (Fig 2 and Table V). The results are then aver-
aged for every “test” set to ascertain the performance
on unseen data. This allows either selecting the best
model“® when developing them in parallel (as explained
in the “Models’” development/training” section) or
combining all individual predictions by the various
models into an “ensemble model.”*” The latter strategy
can integrate predictions from two or more models,
potentially reducing misclassification between patients
presenting or not presenting with restenosis. Then, both
the AUC ROC and the AUC under the precision-recall
(PR) curve (see Table VI) are computed. The AUC PR
value is more informative in classification problems
involving unbalanced datasets.®>*° In the work of Sam-
pedro-Gémez et al,*® the average value of AUC PR for

the best classifier was 0.46, whereas in Pachl et al,*’ it
ranged from 0.10 to 0.12 for the nine different ML models
and the “ensemble model,” showing a good predictive
capacity in the first study, while only a modest predictive
power in the second one. This was also confirmed by the
AUC ROC values, equal to 0.77“° and ranging from 0.58-
0.62,*” respectively.

The prediction results from ML models were also
compared with some of state-of-the-art logistic regres-
sion models."** The results showed that the extremely
randomized tree (ERT) model (Table V) developed by
Sampedro-Gémez et al*® outperformed the multivari-
able logistic regression models implemented by Singh
et al' and Stolker et al.** both in terms of AUC ROC and
PR. The “ensemble model” of Pachl et al*’ performed
better than the models from Singh et al' and Stolker
et al** The RF model developed by Jiang et al*® showed
larger AUC ROC and PR values with respect to a devel-
oped logistic regression model considering the same
restenosis predictors. In contrast, Glldener et al*® re-
ported that the model developed using ML techniques
did not improve the identification of patients at high
risk of restenosis compared with a conventional muiltivar-
iable logistic regression one.

As for calibration (also called “goodness of fit"), this is
defined as finding a unique set of model parameters to
provide an accurate restenosis prediction. This is usually
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Table VII. Definition of the technical terms used in evaluating biomechanical engineering perspective predictive models

done by analyzing the discrepancy between the model
predictions for restenosis and the actual occurrence
rates. A significant difference between the two implies
poor model calibration, potentially producing
misleading predictions. Calibration for logistic regression
models in clinical perspective studies was assessed using
calibration plots®**%“>%* or Hosmer-Lemeshow good-
ness-of-fit test">*>> (Table VI). As shown in Table llI, all
models evaluated in terms of calibration aspects showed
P-values > .05, indicating a good fit.

Moving to biomechanical engineering studies, Gékgdl
et al'” evaluated their models’ discrimination by: (1) per-
forming paired t-tests between predicted values and
medical data to access statistical significant differences
between the two; (2) computing the prediction accuracy
with leave-one-out analyses (ie, by testing the model on a
held-out number of patients); and (3) computing AUC
ROC. Calibration was assessed by computing the McFad-
den pseudo R? (see Table VII) and the Houwlingen-
Copas-Hosmer unweighted sum of squares test (see
Table VII). The model including only WSS-related indices
showed promising results, which were further enhanced
by adding the treatment method (ie, PTA alone or with
Nitinol stent). Indeed, the multivariable logistic regres-
sion model including the treatment method and the
WSS-related indices as predictors showed the strongest
statistical significance, the highest accuracy, highest
AUC ROC, and the best optimal fit to the model (Table
IV). The one including only non-related-hemodynamic
markers did not show any statistically significant differ-
ence between the patients presenting and not present-
ing restenosis, had a lower accuracy, lower AUC ROC,
and a weaker predictive power.

In the work of Colombo et al,®' the models were only
evaluated in terms of discrimination using Tjur's pseudo
R? (see Table VII). There was no explicit testing of the
models on a held-out number of patients, but the vari-
ables contributing to restenosis were identified. More
specifically, the univariate logistic regression model
including only the stent length as a predictor was able

to perfectly discriminate between patients having (or
not) restenosis. The two-sided Fisher test also demon-
strated the statistically significant association between
stent overlapping and 2-year follow-up restenosis, mean-
ing that both stent length and overlapping are good pre-
dictors of disease occurrence. In contrast, only the
univariable logistic regression model using the total
area of the vessel subjected to low time-adjusted WSS
(TAWSS) (Table I) as a predictor, produced a nearly statis-
tically significant correlation, suggesting that low TAWSS
could be linked to restenosis development.

In studies,”®®” model accuracy was evaluated by
comparing the simulated results of reocclusion pro-
gression with actual medical images. In Donadoni
et al®*° the simulations were found to be able to cap-
ture the vessel restenosis shown in the medical im-
ages. In particular, CFD analyses showed that the
better-performing hemodynamic index was HOLMES
(Table 1); all locations showing severe restenosis
exhibited altered values of the HOLMES index
compared with the baseline, suggesting that this he-
modynamic index could be a stronger predictor of
restenosis than other indices. In Corti et al>? the pre-
dicted lumen contours for a single patient matched
those in medical images, although the local lumen
geometric variability, especially in the proximal region
of the stented portion, was not fully captured.

DISCUSSION

Clinical and biomechanical engineering models on
restenosis prediction are relatively narrow, each type
focused on only part of the evidence linked to restenosis
development. Traditional statistical models—used in
both  clinical and biomechanical engineering
approaches—rely on predictions performed with rela-
tively easy-to-develop and interpretable models. These
normally consider a limited number of predictors,
selected by either traditional statistical methods or liter-
ature. However, these models are usually based on
strong assumptions and exhibit modest predictive
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power. In contrast, ML methods do not require a priori as-
sumptions and can include all available variables as pre-
dictors, although this is achieved by somewhat
sacrificing model interpretability. The drawback of such
a promising approach is that ML models need large
datasets for accurate predictions, which is a challenge
given the lack of standardized data collection. Neverthe-
less, ML-based clinical perspective studies show
enhanced predictive power compared with those using
only traditional statistical models.

From a biomechanical engineering perspective, when
patient-specific clinical, demographic, and angiographic
information is combined with hemodynamics in tradi-
tional statistical models, the highest predictive perfor-
mance is reported. However, the computation of
hemodynamic variables/indices requires a great deal of
expertise, is time-consuming, and is highly dependent
on the quality of the imaging data and available BCs.
Additionally, models simulating disease progression are
computationally expensive and complex and difficult
to calibrate and validate. Despite these challenges, an
undeniably strong advantage is that their nature allows
for interpretation of the underlying mechanisms of reste-
nosis progression. That been said, they do not provide cli-
nicians with a risk score for any given patient undergoing
vessel reocclusion at a defined follow-up.

The holy grail would be to ideally fuse clinical and he-
modynamic information in an ML-based model, running
on high-quality and large datasets. Currently, predictive
models do not consider all the retrievable information
for the complex, multifactorial phenomenon that is
restenosis, resulting in models with a modest ability to
risk-stratify patients.

In a fast-developing landscape, prediction models for
restenosis would coexist in a pipeline relying on artificial
intelligence and data-driven approaches. In this scenario,
3D vessel reconstruction on large datasets would be
automatically obtained>®**° and the blood flow and
computation of the hemodynamic indices would be per-
formed in real-time, with high accuracy,®®®' by means of
deep-learning (ie, a subset of artificial intelligence, more
specifically of machine learning methods) and reduced
order modeling methods.°? These fast hemodynamic
computations, combined with the daily retrieved clinical,
demographic, and angiographic information, would
then be the input of a ML-based risk prediction model
able to stratify patients with PAD and CAD, targeting
and tailoring surveillance programs.

CONCLUSIONS

In both clinical and biomechanical approaches, the
resulting predictive power of models for restenosis is
modest at best. The literature reveals that restenosis pre-
dictors are usually considered in silos—always sacrificing
essential information contributing to what is undeniably
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a complex and multivariable phenomenon—resulting in
models with limited predicted power.

A more holistic approach integrating hemodynamic
indices and routinely collected variables into ML algo-
rithms would offer a first step towards the development
of innovative tools able to classify patients’ risk of resteno-
sis development in a defined time interval. This informa-
tion will help clinicians predict treatment outcomes to
better inform patients, enable the implementation of
tailored surveillance programs, and create more efficient
clinical workflows for both CAD and PAD.
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