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A systematic review of clinical and biomechanical

engineering perspectives on the prediction of restenosis

in coronary and peripheral arteries
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Vanessa Díaz-Zuccarini, PhD,b,e London, United Kingdom
ABSTRACT
Objective: Restenosis is a significant complication of revascularization treatments in coronary and peripheral arteries,
sometimes necessitating repeated intervention. Establishing when restenosis will happen is extremely difficult due to the
interplay of multiple variables and factors. Standard clinical and Doppler ultrasound scans surveillance follow-ups are the
only tools clinicians can rely on to monitor intervention outcomes. However, implementing efficient surveillance
programs is hindered by health care system limitations, patients’ comorbidities, and compliance. Predictive models
classifying patients according to their risk of developing restenosis over a specific period will allow the development of
tailored surveillance, prevention programs, and efficient clinical workflows. This review aims to: (1) summarize the state-of-
the-art in predictive models for restenosis in coronary and peripheral arteries; (2) compare their performance in terms of
predictive power; and (3) provide an outlook for potentially improved predictive models.

Methods: We carried out a comprehensive literature review by accessing the PubMed/MEDLINE database according to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search strategy
consisted of a combination of keywords and included studies focusing on predictive models of restenosis published
between January 1993 and April 2023. One author independently screened titles and abstracts and checked for eligibility.
The rest of the authors independently confirmed and discussed in case of any disagreement. The search of published
literature identified 22 studies providing two perspectivesdclinical and biomechanical engineeringdon restenosis and
comprising distinct methodologies, predictors, and study designs. We compared predictive models’ performance on
discrimination and calibration aspects. We reported the performance of models simulating reocclusion progression,
evaluated by comparison with clinical images.

Results: Clinical perspective studies consider only routinely collected patient information as restenosis predictors. Our
review reveals that clinical models adopting traditional statistics (n ¼ 14) exhibit only modest predictive power. The latter
improves when machine learning algorithms (n ¼ 4) are employed. The logistic regression models of the biomechanical
engineering perspective (n ¼ 2) show enhanced predictive power when hemodynamic descriptors linked to restenosis
are fused with a limited set of clinical risk factors. Biomechanical engineering studies simulating restenosis progression
(n ¼ 2) are able to capture its evolution but are computationally expensive and lack risk scoring for individual patients at
specific follow-ups.

Conclusions: Restenosis predictive models, based solely on routine clinical risk factors and using classical statistics,
inadequately predict the occurrence of restenosis. Risk stratification models with increased predictive power can be
potentially built by adopting machine learning techniques and incorporating critical information regarding vessel
hemodynamics arising from biomechanical engineering analyses. (JVSeVascular Science 2023;4:100128.)
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Restenosis is the reoccurrence of stenosis, an abnormal
narrowing ($50%1) of blood vessels, causing limited
blood flow. Restenosis usually pertains to arteries that
have undergone surgical or endovascular procedures to
treat the vascular damage from atherosclerosis.2
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Some of the high-susceptibility sites subjected to
clinically significant atherosclerotic diseases are the
coronary3 (coronary artery disease [CAD]) and the periph-
eral arteries4 (peripheral artery disease [PAD]). Prelimi-
nary, conservative treatment for CAD and PAD includes
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Table I. Common demographic, clinical, angiographic, altered hemodynamics- and morphology-related risk factors
identified in the literature as increasing the risk of restenosis

Demographic, clinical, and angiographic risk factors

Patient-related Clinical: diabetes mellitus, older age, male sex,
hypertension, smoking

Biological: elevated CRP level, elevated levels of specific
complement components (C3a, C5a), genetic
variation in the vitamin D receptor, higher LDL-C, HDL,
TC, TGs levels, inhibition of platelet parameters (PDW,
PCT, MPV), history of restenosis, microalbuminuria,
neutrophil-lymphocyte ratio

Genetic: multivessel disease e indicating genetic
predisposition and potential identification of genetic
markers for restenosis

Lesion-related Long lesion length, small vessel diameter, minimal
lumen diameter after PCI alone/stenting, ACC/AHA
type C lesion, chronic total occlusion, tortuous and
calcified lesion, restenotic lesion

Procedure-related Treatment modality (PTA/PCI alone, with or without
DCB, BMS or DES implantation), implantation or
presence of multiple stents, stent overlapping, smaller
stent area

Hemodynamics and vessel morphology risk factors

Altered hemodynamics-related
(WSS-related indices)

Low TAWSS (<0.5 Pa) TAWSS: WSS averaged over an entire cardiac cycle

High OSI (>0.2) OSI: identifies regions on the vessel wall subjected to
highly oscillating WSS over the cardiac cycle

High RRT (<1.5 Pa) RRT: describes the residence time of a fluid particle
near the wall

Low HOLMES (<0.5 Pa�1) HOLMES: identifies regions on the vessel wall
simultaneously subjected to low TAWSS and high OSI

Morphology-related Native vessel curvature
and tortuosity

ACC/AHA, American College of Cardiology/American Heart Association; BMS, bare metal stent; CRP, C-reactive protein; DCB, drug-coated balloon;
DES, drug-eluting stent; HDL, high density lipoprotein; HOLMES, highly oscillatory and low magnitude shear; LDL-C, lipoprotein cholesterol; MPV,
mean platelet volume; OSI, oscillatory shear index; PCT, platelecrit; PDW, platelet distribution width; PCI, percutaneous coronary intervention; PTA,
percutaneous transluminal angioplasty; RRT, relative residence time; TAWSS, time-averaged WSS; TC, total cholesterol; TGs, triglycerides; WSS, wall
shear stress.
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risk factor modification combined with antiplatelet,
anti-thrombotic, and lipid-lowering medical therapy.5

Surgical and endovascular approaches might later be
adopted to restore blood flow. Surgical treatment
consists of bypass procedures, commonly using an
autologous healthy blood vessel (ie, saphenous vein,
radial, and mammary arteries).6 Endovascular proced-
ures are increasingly employed in revascularization
strategies for either CAD or PAD7,8 because they are
minimally invasive, require local over general anesthesia,
and have a quicker recovery period. These include
percutaneous transluminal angioplasty (PTA) alone
(percutaneous coronary intervention [PCI] for the
coronary arteries), with or without drug-coated balloons
(DCB), PTA or PCI with balloon-expandable stent, and
self-expandable stent implantation. Stenting might
involve bare metal stents (BMS), drug-eluting stents
(DES), or bioresorbable stents. Despite the advantages
of their minimally invasive nature, revascularization
treatments can lead to restenosis, sometimes
necessitating repeated intervention.9,10 Restenosis is a
complex, multifactorial phenomenon as well as a
challenging clinical problem with high prevalence,
occurring in up to 60% and 30% of cases at 1-year
follow-up for PAD10 and CAD treatment,11 respectively.
In some patients, restenosis leads to adverse conse-

quences, such as stable/unstable angina and acute
myocardial infarction in case of CAD or gangrene and
leg amputation in case of PAD, ordworst-case
scenarioddeath.
Different demographic, clinical, and angiographic risk

factors triggering the development of restenosis are
identified in the literature.9,12-16 This information is
routinely collected and commonly grouped under three
categories (Table I): patient-, lesion-, and procedure-
related predictors.9,15

In addition, altered hemodynamics in the arterial
(mechanical) environment with respect to the healthy



Table II. Definitions of clinical endpoints investigated by the reviewed papers for the development of predictive models

Different endpoints investigated by the reviewed studies

Restenosis: (1) recurrent diameter narrowing >50% at the first site dilated, (2) loss of at least 50% of the gain in the diameter
narrowing

Target lesion revascularization: defined as the need for repeatedminimally invasive revascularization or bypass graft placement for
stenosis in the treated lesion at the index endovascular procedure or occurring within 5 mm of the stent (“edge effect”)

Target lesion failure: defined as a composite multiple clinical endpoints such as cardiovascular death, target lesion
revascularization, and target vessel myocardial infarction
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vessel,17 caused by balloon inflation and/or stent or
bypass implantation, also seems to play a role in resteno-
sis progression (Table I). The vessel lumen is lined with
endothelial cells subjected to mechanical forces exerted
by the blood flow, determining their function, gene
expression, and structure.18 These mechanical forces
typically refer to the wall shear stress (WSS), defined as
the tangential force of the flowing blood over the endo-
thelial surface of the blood vessel. Under physiological
conditions, values of WSS range from 1 to 7 Pa in the pe-
ripheral arteries of the lower limbs19 and between 1 and
2 Pa in the coronary arteries.20 However, when the arte-
rial cross-section narrows due to plaque presence (drasti-
cally reduced but not entirely removed by endovascular
procedures), the blood speed rapidly increases, resulting
in significantly increased WSS21 values. On the other
hand, distal to the stenosis, WSS often becomes relatively
low (<0.5 Pa) due to flow separation and recirculating
vortical structures.21 Stent implantation also reduces
the compliance of the vascular segment, leading to a
compliance mismatch with other parts of the blood
vessel,22 which might affect blood flow. Intrusions of
the stent struts into the lumen can also cause local
flow separation and hence low WSS regions, which
may turn pathogenic.21

In general, vessel locations undergoing revascularization
exhibit disturbed flow and coincide with preferred sites
for restenosis to develop.3 More specifically, in regions
whereWSSvalues are lower than0.5Pa,19,23,24 aproathero-
genic endothelial phenotype is stimulated, and vascular
remodeling or neointimal hyperplasia (NIH) takes place
as a compensatory phenomenon to maintain the hemo-
dynamic value within the physiological range.
The native curvature and tortuosity of the vessel might

also have a significant role in hemodynamic changes25,26

and are considered geometric risk factors for vessel re-
occlusion over time27 (Table I).
Quantitative information on vessel lumen remodeling

and the distribution of WSS and WSS-related indices
along the vessel wall can be obtained by fusing medical
images and patient-specific computational fluid
dynamics (CFD) analyses. CFD is a powerful tool used to
study complex, pathophysiological flows by numerically
solving the continuity and Navier-Stokes equations
governing fluid motion. To be solved, boundary condi-
tions (BCs)dparameters or relationships describing the
hemodynamic conditions at the boundaries of the vessel
geometrydneed to be defined. These calculations allow
the computation of WSS and WSS-derived indices linked
to restenosis progression (Table I) and cannot be
measured or estimated otherwise.
However, some patients appear to be at increased risk

of developing restenosis than others, although the occlu-
sion’s timescale and extent cannot be identified a priori.
Determining whether a patient will develop restenosis is
currently not possible with available tools and methods.
Current clinical pathways impose standard clinical and

Doppler ultrasound (DUS) surveillance follow-ups to
check on patients’ conditions after revascularization.28,29

Nevertheless, implementing an efficient surveillance pro-
gram is not straightforward, especially in an over-
stretched health system dealing with large numbers of
patients with CAD and PAD.
Stratificationmodels could predict post-intervention in-

dividual risk of reocclusion within a defined time interval,
allowing tailored surveillance and developing more effi-
cient clinical workflows for both CAD and PAD.

Aim of the review. This review provides a critical evalu-
ation of available restenosis prediction models for CAD
and PAD. The focus is on studies providing either the
risk of restenosis or simulating reocclusion progression
over a prescribed period, after intervention. An overview
of the key advances in this area is provided by describing
how the models work, and also, by assessing their predic-
tion ability, with an outline of future developments
regarding their potential improvements in predictive
power.
METHODS
The papers reviewed herein were identified by access-

ing the PubMed/MEDLINE database according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The first author
(F.N.) searched published literature up to 2023,
combining the following keywords and Medical Subject
Headings (MeSH) terms: “prediction,” “models,” “resteno-
sis,” “neointimal hyperplasia,” “target lesion revasculariza-
tion,” “target lesion failure,” “stent,” “angioplasty,” “coronary
arteries,” “peripheral arteries,” “clinical variables,” “compu-
tational fluid dynamics,” “hemodynamics.”



Fig 1. Flow chart showing the process for the literature search and selection of the works. TLF, Target lesion failure;
TLR, target lesion revascularization.

4 Ninno et al JVSeVascular Science
2023
Selection criteria for article inclusion were publications
written in the English language addressing prediction
models of restenosis or, more widely, target lesion revas-
cularization (TLR)30 and target lesion failure (TLF)31

(Table II) for patients undergoing revascularization pro-
cedures in the coronary or peripheral arteries.
Both titles and abstracts of the publications identified

were reviewed using the aforementioned search strat-
egy. The first author (F.N.) independently checked eligi-
bility and discussed and confirmed with the rest of the
authors (J.T., S.B., V.D.Z.) in case of any disagreement.
Case reports, articles whose full-text manuscripts could
not be accessed, and review papers were excluded.
Fig 1 shows the flow chart of the literature search and
selection process. Risk of bias analysis for the included
studies using the Risk of Bias in Systematic Reviews
(ROBIS) tool32 was conducted to ensure the integrity
and reliability of the systematic literature review.
The authors classified the studies meeting eligibility

criteria into two groups (encompassing two different per-
spectives): clinical and biomechanical engineering,
based on considered predictors, methodology, and tools
used. The clinical perspective studies resulted in another
two sub-groups: studies using traditional statistical
models and those adopting more advanced predictive
tools, such as machine learning (ML) algorithms.
The performance of the prediction models for resteno-

sis was assessed based on discrimination and calibration
aspects. For models simulating reocclusion progression,
their performance was evaluated by direct comparison
with available clinical data acquired at specific time
points.

RESULTS
Eighteen clinical perspective studies were identified

and summarized in Table III. The common point of all
these works is that they consider clinical, demographic,
and angiographic variables as the only potential predic-
tors of restenosis.
Four biomechanical engineering perspective studies

were reported in this review and summarized in Table
IV. In this case, the common ground is the use of WSS-
related indices (Table I) as predictors of restenosis.
Further details are discussed in the following section,

together with a comparison regarding the predictive po-
wer of the models identified.
Most clinical studies1,33-45 appear to rely on traditional

statistics, although more advanced ML methods are
introduced in recent ones.46-49 The schemes followed
by the models adopting either methodology are illus-
trated diagrammatically in Fig 2.
Biomechanical engineering models for restenosis pre-

diction that include hemodynamic indices have
emerged only recently. This is probably due to the fact
that hemodynamic indices cannot be easily retrieved in
clinical practice, in contrast with clinical, angiographic,
and demographic information. These numerical investi-
gations require expertise in image processing, three-
dimensional (3D) vessel reconstruction, and CFD ana-
lyses, as shown schematically in Fig 3.



Table III. Clinical perspective studies predicting risk of restenosis, classified into studies using classical statistical models
and machine learning (ML) techniques respectively

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Traditional statistical models

Weintraub et al33

(1993)
Coronary arteries

PCI alone (single
lesion)

4006 patients
from the clinical
database at
Emory
University
(single-center
study)

Verify whether
clinical,
angiographic,
and procedural
variables
correlating with
restenosis e

identified from
the dataset e in
the learning
group could
predict
restenosis in a
validation group

Significant
variables from
the comparison
between
restenosis and
no restenosis
groups in the
learning group
used as
restenosis
predictors

Multivariable
stepwise logistic
regression
model

AUC ROC ¼ 0.62
Overlap index ¼
0.76 (P < .0001)

Correlation
between
average
predicted and
observed
restenosis rates
confirm the
goodness-of-fit
of the model

Clinical variables
provide limited
ability to predict
restenosis in a
particular
patient.
Probability of
restenosis can
be determined
with some
uncertainty in
well-
characterized
(ie, single lesion)
patients who
have already
undergone
angioplasty

de Feyter et al37

(1999)
Coronary arteries
PCI with balloon-

expandable,
self-expanding
stents (single
lesion)

858 patients from
3 registries and
2 randomized
trials on the
efficacy of a
pharmaceutical
agent on
restenosis
(multi-center
study)

Identify post-
stent
implantation
IVUS predictors
of stent
restenosis to
build a
reference chart
that predicts 6-
months
restenosis

Univariable
logistic
regression
analysis

Multivariable
logistic
regression
model

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .42)

Reference chart
predicts 6-
months
restenosis rate.
This is only
applicable for
stent
implantation in
short lesions in
relatively large
vessels.
Reliability of the
reference chart
must be
confirmed in a
prospective
study

(Continued on next page)
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Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Singh et al1 (2004)
Coronary arteries
PCI alone (single
lesion)

1224 patients
enrolled in the
angiographic
substudy of the
PRESTO trial
(multi-center
study)

First approach e

Construct a
simple risk
scoring system
to access pre-
procedural risk
of restenosis
including
variables
(clinical and
angiographic)
that have been
reported in
previous studies
to be strong
predictors of
restenosis

Second approach
e Building a
new model
including
PRESTO
dataset-driven
variables
(clinical and
angiographic)
that might be
predictors of
restenosis
development.
Internal
benchmark to
compare the
predictive
power of the
first risk score

First approach e

Variables
frequently
reported in the
literature to be
strong
predictors of
restenosis

Second approach
e

Significant
variables from
univariable
logistic
regression
analyses

First approach e

Multivariable
logistic regression

model
Second approach

e Multivariable
stepwise logistic

regression model

First approach e

AUC ROC ¼ 0.63
Hosmer-
Lemeshow
goodness-of-fit-
test (P ¼ .18)

Second approach
e AUC ROC ¼
0.63

Pre-procedural
clinical and
angiographic
variables
historically
correlated with
risk of restenosis
and those
derived from
PRESTO trial
have only
modest
predictive ability
at predicting
restenosis after
PCI

Stolker et al34

(2010)
Coronary arteries
PCI with DES
(single/multiple
lesion)

8829 patients
from the EVENT
registry (multi-
center study)
undergoing DES
implantation

Develop a risk
model for TLR
and late TLR
using
demographic,
clinical and
patient-level
angiographic
data from the
EVENT registry

Significant
variables from
univariable
logistic
regression
analyses and
variables
frequently
reported in the
literature to be
strong
predictors of
restenosis

Multivariable
backward
stepwise logistic
regression
model

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .95)

Risk model
incorporating 6
clinical and
angiographic
variables only
identifies
individuals at
extremely low
(<2%) and
modestly
increased (>7%)
risk of TLR
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Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Yeh et al38 (2011)
Coronary arteries
PCI with DES or

BMS (single/
multiple lesion)

27,107 patients
from
Massachusetts
Department of
Public Health
database (multi-
center study)

Develop and
validate a
model to
predict the
likelihood of TLR
after PCI with
either DES or
BMS
implantation,
within a large
population,
using variables
commonly
collected

Variables
identified based
on clinical
relevance

First model e
Only clinical

variables
considered
without
inclusion of
angiographic
variables

Second model e
Including

angiographic
variables as well

Multivariable
backward
stepwise logistic
regression
model

First model e
c-index ¼ 0.62

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .65)

Second model e
c-index ¼ 0.66

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .90)

Development
and validation
of a modest
predictive
model to
predict TLR after
PCI, allowing
the benefit
quantification of
PCI with DES
compared with
BMS. This might
support the
safer and more
cost-effective
application of
DES technology

Gai et al35 (2021)
Coronary arteries
PCI with DES

(single/multiple
lesion)

968 patients e not
specified where
data are
retrieved but
referred to the
Xinjiang
population

Develop a novel
prediction
model for
restenosis based
on platelet
parameters,
lipid levels,
clinical and
angiographic
characteristics

Significant
variables from
the comparison
between
restenosis and
no restenosis
groups in the
learning group
used as
restenosis
predictors and
confirmed by
univariable,
multivariable
logistic
regression
models and
ROC analyses
(AUC ROC >0.5)

Multivariable
forward
stepwise logistic
regression
model

AUC ROC ¼ 0.72
(95% CI: 0.64-
0.80)

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .655)

The prediction
model based on
PDW, TC, LDL-C,
SBP and
number of
lesions is an
effective model
to predict
restenosis and
conducting risk
stratification in
patients with
DES
implantation

He et al36 (2021)
Coronary arteries
PCI with DES

(single/multiple
lesion)

463 patients from
an observational
cohort study in
a high-volume
PCI center in
Henan Province,
China (single-
center study)

Use identified
clinical, lesion,
procedure
characteristics,
laboratory tests
and use of
medications
factors
correlated to
the risk of ISR to
develop and
validate an easy-
to-use clinical
risk prediction
nomogram to
predict the
probability of
ISR in patients
undergoing PCI

LASSO-
regression
analysis to select
restenosis
predictors

Multivariable
logistic
regression
model

AUC ROC e

validation set
¼ 0.662
Calibration plots e
concordance
performance
compared with
an ideal model
(P ¼ .417)

Development
and validation
of an easy-to-
use
individualized
prediction
nomogram
incorporating
five simple
clinical and
angiographic
characteristics
that should
facilitate early
identification
and improved
screening of
patients at
higher risk of
restenosis

(Continued on next page)
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Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Luo et al39 (2022)
Coronary arteries
PCI with DES
(single/multiple
lesions)

477 patients from
Enshi Central
Hospital (single-
center study)

Develop a new
preoperative risk
factor
nomogram
considering
preoperative
blood
biochemical
parameters for
PCI, Gensini (GS)
scores and
procedural
characteristics

LASSO
regression
analysis

Multivariable
logistic regression

model

AUC ROC ¼ 0.841
Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .609)

Calibration plots e
confirm no
divergence
between
predicted and
observed
probability

Creation of a
new prediction
model to help
clinicians
discern high-risk
restenosis
patients,
optimize
treatment, and
improve
prognosis. The
model is
satisfactory in
terms of
goodness-of-fit,
clinical
usefulness and
accuracy

Dai et al40 (2022)
Coronary arteries
PCI with DES
(single/multiple
lesions)

1653 patients from
Zhongshan
Hospital (single-
center study)

Develop and
validate an easy-
to-use
predictive
model for
repeat
vascularization
after DES
implantation in
patients with
CAD

Significant
variables (P <

.20) from
univariable
logistic
regression
analyses

Multivariable
stepwise logistic
regression
model

c-index ¼ 0.68
(95% CI, 0.619-
0.740)

Hosmer-
Lemeshow
goodness-of-fit
test (P ¼ .198)

Development
and validation
of a model
including 8
accessible
variables to
modestly
predict
restenosis after
DES
implantation. It
shows
advantages in
discriminative
ability and
clinical
usefulness
compared with
the empirical
model including
recurrent
angina only

Feng et al41 (2022)
Coronary arteries
PCI with 2nd
generation DES
(single/multiple
lesions)

235 patients from
Handan Central
Hospital (single-
center study)

Investigate the
restenosis
occurrence and
its predictive
factors in
patients with
CAD who
underwent PCI
with 2nd
generation DES
to provide
insights for
better
management of
restenosis

Significant
variables from
univariable
logistic
regression
analyses

Multivariable
forward
stepwise logistic
regression
model

AUC ROC ¼
0.863 (95% CI:
0.779-0.848)

The developed
restenosis risk
prediction
model exhibits
the potential as
a good marker
for restenosis
risk in patients
with CAD who
underwent PCI
with 2nd
generation DES

8 Ninno et al JVSeVascular Science
2023



Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Wu et al42 (2022)
Coronary arteries
PCI with DES

(single/multiple
lesions)

72 patients from
Second People’s
Hospital of
Guangdong
Province (single-
center study)

Construct a
prediction
model for in-
stent restenosis
when DESs are
implanted

Significant
variables from
multivariable
logistic
regression
analyses

Multivariable
stepwise logistic
regression
model

AUC ROC ¼ 0.924
(95% CI, 0.880-
0.967)

Hosmer-
Lemeshow
goodness-of-fit
test (P¼.413)

The model has
high predictive
value for the
occurrence of
in-stent
restenosis. It
may be applied
to the early
prediction of
this

Chen et al43

(2023)
Peripheral arteries
PTA with DCB or

BMS (single/
multiple lesions)

181 patients from
First Affiliated
Hospital of Xi’an
JiaoTong
University
(single-center
study)

Development
and internal
validation of
nomograms for
predicting
restenosis after
endovascular
treatment of
PAD

LASSO
regression
analysis to select
restenosis
predictors

Cox regression
analysis

c-index ¼ 0.864
(95% CI, 0.801-
0.927)

Calibration plots e
predicted value
of the model is
in good
agreement with
the real value

This study
developed a
nomogram to
predict
restenosis after
endovascular
procedures in
patients with
PAD. The
nomogram
requires
external
validation to
determine the
model’s
applicability

Xi et al44 (2023)
Coronary arteries
PTA with DES

(single/multiple
lesions)

414 patients from
Fourth Affiliated
Hospital of
Zhejiang
University
School (single-
center study)

Establish a
nomogram
model to
predict the risk
of restenosis

LASSO
regression
analysis to select
restenosis
predictors

Multivariable
logistic
regression
analysis

AUC ROC ¼ 0.806
(95% CI, 0.739
e0.873)

Calibration plots e
no significant
deviation
between the
predicted
probability and
the actual
probability

Nomogram
model has good
accuracy, which
can better
identify the
high-risk
patients for
restenosis and
provide
practical
decision-
making
information for
the follow-up
intervention

Coughlan et al45

(2023)
Coronary arteries
PCI with DES

(single/multiple
lesions)

1986 patients from
two centers in
Germany (multi-
center study)

Development
and validation
of a model to
predict repeat
PCI for recurrent
DES restenosis
at 1-year follow-
up

LASSO
regression
analysis to select
restenosis
predictors

Multivariable
logistic
regression
analysis

c-index ¼ 0.61 Development of
the ISAR score, a
four-item
scoring system
that can be
used to
estimate the risk
of repeat PCI for
recurrent DES
restenosis at 1-
year follow-up

(Continued on next page)
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Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

ML models

Sampedro-
Gómez et al46

(2019)
Coronary arteries
PCI with DES or
BMS (single/
multiple lesion)

263 patients from
(GRACIA)-3 trial
(multi-center
study) for
patients
undergoing ST-
elevation acute
myocardial
infarction and
consequent PCI

Develop an ML
model using
daily available
demographic,
clinical, and
angiographic
data to predict
12-month
follow-up stent
restenosis better
than the state-
of-the-art
logistic
regression
models

Two strategies
pursued in
parallel:

1) Selection based
on ANOVA

2) Random forest
(RF) classifier
attributing
scores to each
predictor

Application and
comparison of 6
different ML
classifiers: RF,
ERT, GB, SVM,
L2-regularised
and non-
regularized
logistic
regression
trained with the
two different
selection
techniques for
restenosis
predictors (12
models in total)

AUC PR (ERT)
¼ 0.46 (95% CI,
0.29-0.63)

AUC ROC (ERT)
¼ 0.77 (95% CI,
0.66-0.89)

Development of
an ERT model
to predict stent
restenosis based
on variables
obtained in
routine clinical
practice. The
model, when
compared with
the state-of-the-
art logistic
regression ones,
shows increased
restenosis
prediction
power

Pachl et al47

(2021)
Coronary arteries
PCI with
bioresorbable
stent (single
lesion)

1975 patients from
post-market
study Biotronik
BIOSOLVE-IV to
access clinical
performance
and long-term
safety of the
device (multi-
center study)

Prediction of
TLF after stent
implantation
using a novel ML
approach and
an international
cohort

86 features used
in the study
regarding pre-
intervention,
intra-operation,
lesion and stent,
medications,
discharge
information,
and follow-up

Application and
combination in
an “ensemble
model” of nine
different ML
classifiers: ERTs,
GB, GP, KNN, L1-
and L2-logistic
regression, MLP,
RF and SVMs

AUC PR ranges
from 0.10 and
0.12 for the
different
pipelines and
the “ensemble
model”.

AUC ROC ranges
from 0.58 and
0.62 for the
different
pipelines and
the “ensemble
model”

Development of
a novel ML
model to
predict TLF
based on 86
variables
obtained in
routine clinical
practice. The
“ensemble
model,” being a
combination of
nine ML
classifiers,
outperforms all
the state-of-the-
art logistic
regression
models in terms
of predictive
power

Jiang et al48

(2022)
Coronary arteries
PCI with 2nd
generation DES
(single/multiple
lesions)

1501 patients from
Guizhou
Provincial
People’s
Hospital (single-
center study)

Test that RF
model has
better
performance
than logistic
regression
model in
restenosis
prediction due
to higher
robustness

Stepwise logistic
regression
model e
Stepwise Akaike
information
criterion

RF model e
Conditional

permutation
importance,
mean decrease
accuracy, mean
decrease Gini

1) Multivariable
stepwise logistic
regression
model

2) RF model

RF model has
larger AUC ROC
and PR than
logistic
regression
model

Development of
an ML model
using RF to
predict
restenosis in
patients
implanted with
2nd DES
generation. The
RF model shows
improved
predictive
performance as
compared with
logistic
regression
model due to its
robustness
(accuracy less
affected by
outliers)
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Table III. Continued.

Reference
Revascularization
procedure
Dataset

Aim of
the study

Restenosis
predictors
selection

Predictive
model

Model
evaluation Conclusions

Güldener et al49

(2023)
Coronary arteries
PCI with BMS or

DES (single/
multiple lesion)

10,004 patients
from two
centers in
Germany (multi-
center study)

Application of
SOMs to detect
patterns with
the aim of
better
predicting in-
stent restenosis
at surveillance
angiography 6
to 8 months
after PCI with
stenting

Two strategies
pursued in
parallel:

1) Conventional
multivariable
logistic
regression
analyses

2) SOM-based
approach

1) Conventional
model based on
multivariable
logistic
regression

2) SOM-based
model

AUC ROC ¼ 0.726
(P¼.3) e logistic
regression

AUC ROC ¼ 0.728
(P¼.3) e SOM-
based model

SOMs approach
identified
several novel
predictors of
restenosis after
PCI. However,
ML methods did
not improve
identification of
patients at high
risk for
restenosis after
PCI

ANOVA, Analysis of variance; AUC ROC, area under the receiver operating characteristic curve; BMS, bare metal stent; CAD, coronary artery disease; CI,
confidence interval; DCB, drug-coated balloon; DES, drug-eluting stent; ERT, extremely randomized tree; GB, gradient boosting; GP, Gaussian process;
ISR, in-stent restenosis; IVUS, intravascular ultrasound; KNN, K-nearest neighbors; LASSO, least absolute shrinkage and selection operator; LDL-C, low-
density lipoprotein cholesterol; MLP, multi-layer perceptron; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; PDW, platelet
distribution width; PR, precision recall; PTA, percutaneous transluminal angioplasty; RF, random forest; SBP, systolic blood pressure; SOM, self-
organizing map; SVM, support vector machine; TC, total cholesterol; TLF, target lesion failure; TLR, target lesion revascularization.
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Preliminary steps. Clinical perspective studies, inde-
pendently from traditional statistical or ML models,
entaildas a first stepddata screening by applying inclu-
sion and exclusion criteria to reduce the available data-
set to one suitable for analysis. Due to the applied
criteria but also to the lack of consistent data, a smaller
subset of data can be used for analysis. This highlights
one of the most significant limitations in using clinical
data: data collection is not standardized, potentially
leading to inadequate sample size for analyses and pre-
venting direct comparisons between models.
Once the dataset is identified, some initial data pre-

processing is required when using ML algorithms, to
make it amenable to these and to reduce bias in the
findings. For example, Sampedro-Gómez et al46 pre-
processed their data by 1-hot encoding in binary vari-
ables multicategory variables (ie, by representing every
variable as a sequence of 0 and 1 only) and filling missing
values with the median and the mode for each contin-
uous and categorical variable, respectively. Pachl et al47

corrected for differences in variable scales and outliers,
performed data normalization and oversampled (under-
sampled) for the underrepresented (overrepresented)
category of patients (not) presenting TLF.
Once the data are finalized, they are randomly split into

the so-called “learning” or “training” and “test” sets (Fig 2).
The “learning” set is usually larger since it is used to build
the model. The “test” set is used to evaluate the model’s
performance. In a few studies, no splitting is performed
and the whole dataset is used for “learning.”1,35,37,39,41,42

This leads to overly optimistic results in model perfor-
mance (overfitting), which might be corrected by boot-
strapping techniques (Table V). Bootstrapping has
emerged as a popular solution to correct optimistic per-
formance estimates of predictive models1,35,38-40,43-45

enhancing model reliability.
In ML approaches, the split into “training” and “test” sets

is performed by k-fold cross-validation46-48 (Table V). This
process can be replicated multiple times46,48 to coun-
teract highly unbalanced datasets, potentially biasing
the final model’s predictive results. This ensures that a
minimum number of minority cases (ie, patients present-
ing restenosis) is represented in both model training and
evaluation phases.
Moving to the biomechanical engineering perspective,

the first step consists of the acquisition of clinical images
(Fig 3), providing different information according to the
diagnostic technique. Two-dimensional (2D) X ray angi-
ography17 and computed tomography (CT)50-52 scans
allow 3D vessel reconstruction, giving information about
vessel geometry. DUS images provide information about
blood velocity waveforms and are used to define patient-
specific BCs, as explained in the Introduction.
Published biomechanical engineering studies often

deal with a considerably lower number of patients
when compared with clinical ones (Tables III and IV).
This is not surprising considering the data requirements
and computational costs involved in simulating
patient-specific hemodynamics or modeling restenosis
progression, making them complex and time-
consuming to model and analyze, and thus effectively
computationally intractable for very large datasets.
As a second step, vessel geometry reconstruction from

clinical images is crucial for CFD analyses and the
computation of the hemodynamic indices linked to
restenosis progression (Fig 3). CFD results are sensitive



Table IV. Biomechanical engineering perspective studies on restenosis detailing patient datasets, model details, and
findings
Reference
Revascularization pro-
cedure
Dataset

Aim of
the study

Predictive
model Restenosis predictors

Model
evaluation Conclusions

G}okg}ol et al17 (2019)
Peripheral arteries

(Femoro-popliteal
artery)

PTA alone or with self-
expandable (Nitinol)
stents

(single/multiple lesions)
20 patients (10

undergoing balloon
angioplasty alone and
the rest Nitinol stent
implantation)

(not known if single-or
multi-center study)

Angiographic data
acquired at baseline
and instances of
restenosis at 6-
months follow-up

Test if patient-specific CFD
simulations performed on
femoro-popliteal arteries
can provide hemodynamic
markers that are able to
predict the risk of
restenosis in 6-months
time

3 different logistic regression
models:

1) Including only non-flow
related patients’
characteristics;

2) Including only patient-
specific CFD-calculated
parameters;

3) Incorporating both non-
flow and CFD-calculated
parameters

First model: presence of
kinking, lesion
length, age, level of
calcification,
treatment method

Second model: low
TAWSS in straight
and flexed positions,
high TAWSS and OSI
in the straight
configuration

Third model: low
TAWSS in straight
and flexed positions,
high TAWSS and OSI
in the straight
configuration,
treatment method

Paired t-tests between
predicted values and
clinical data to assess
whether the model
produces statistically
significant differences
between restenosed and
non-restenosed arteries.

Accuracy estimated from
leave-out analyses.

The Mc Fadden pseudo R2 to
compare the predictive
strength between models.

Cessie-van Houwelingen-
Copas-Hosmer
unweighted sum of
squares test to determine
the goodness of fit of the
models

Logistic regression analysis
based solely on
hemodynamical markers
has an accuracy of 80%
and shows a statistically
significant difference
between restenosed and
non-restenosed arteries
(P ¼ .02). If treatment
method is included, the
difference between the
two groups becomes
strongly statistically
significant (P ¼ .002) and
the goodness of fit
increases (from 0.29 to
0.38)

Donadoni et al50 (2020)
Peripheral arteries

(Femoro-popliteal
artery)

Autogenous sapheneous
bypass graft

3 patientsundergoing
femoral-popliteal
saphenous bypass
(single-center study)

CT scans acquired at 8,
19, 24 months (for
patients 1-3,
respectively), Doppler
ultrasound scans
acquired immediately
after surgery

Simulation of NIH
progression using a
multiscale computational
framework and
comparison of results with
a patient-specific clinical
dataset

Multiscale computational
framework informed by
patient-specific imaging
data and hemodynamic
markers (TAWSS and
HOLMES) having as output
the predicted value of NIH
growth along the graft

Low TAWSS, high OSI
and HOLMES indices

Analysis of cross-sectional
areas of the lumen where
restenosis is most severe
and comparison with the
available CT scans

The simulation model
correctly predicts areas of
NIH growth, with values
similar to the stenosis
observed in the CT scans
with the use of the
HOLMES index (max
discrepancy 8% between
stenosis values observed in
patients 1-3 compared with
the CT scan)

Colombo et al51 (2021)
Peripheral arteries

(Superficial femoral
artery)

PTA with self-
expandable (Nitinol)
stents

(single/multiple lesions)
7 patients from Malcom

Randall VAMC
(Gainesville, FL, USA) e
total of 10 stented
lesions

(single-center study)
CT and Doppler

ultrasound images at
1-week (baseline) and
1-year post-
intervention follow-up

Analysis of the
relationships between the
local hemodynamics
computed at the baseline
and the lumen remodeling
occurring at 1-year follow-
up, taking into
consideration also some
demographic and clinical
information

Logistic regression models:
1) Simple logistic regression

between stent length and
success-failure at 2-year
follow-up;

2) Simple and multiple
logistic regressions
between the
hemodynamics descriptors
and success-failure at 2-
year follow-up;

3) Simple logistic regression
between age and success-
failure at 2-years follow-up.

Two-sided Fisher exact test to
compare the dichotomous
variables stent overlapping
and success-failure at 2-
years follow-up

Low TAWSS (below 33th
percentile of the
distribution), high
OSI and RRT (above
66th percentile of
the distributions)

First model: stent
length

Second model: TAWSS,
OSI, and RRT
singularly (in simple
logistic regression
model) and all
together (in multiple
logistic regression
model)

Third model: age and
stent overlapping for

Fisher exact test

Tjur’s pseudo R2 to
indicate the ability of the
model to clearly separate
between success-failure
groups

No significant relationship
between patients’ age and
treatment failure at 2-years
follow-up.

Stent length and stent
overlapping are predictors
of restenosis
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Table IV. Continued.

Reference
Revascularization pro-
cedure
Dataset

Aim of
the study

Predictive
model Restenosis predictors

Model
evaluation Conclusions

Corti et al52 (2022)
Peripheral arteries

(Superficial femoral
artery)

PTA with self-
expandable (Nitinol)
stents

(single/multiple lesions)
1 patient (single-center

study) e to access
framework feasibility

14 patients e to measure
monocyte gene
expression (single-
center study)

CT scans and Doppler
ultrasound images
acquired at baseline
(1-week post-
intervention) and at 1-
month follow-up for
the one-patient pilot-
study

Blood samples of 14
patients to perform
monocyte gene
expression analysis

Development of a novel
multiscale framework to
emulate patient-specific
cellular behaviours and
arterial wall remodeling
(leading to restenosis) in
response to local
hemodynamic indices
input and markers of
systemic inflammation
triggered by stenting

Patient-specific multiscale
framework of restenosis
consisting of CFD
simulations coupled with
an ABM of cellular
dynamics. The inputs are
the patient-specific
superficial femoral artery
geometry, the blood
velocity waveform (derived
from Doppler) and the
longitudinal data of the
patient’s monocyte gene
expression. The output is
the 1-month follow-up 3D
lumen geometry

Low WSS, systemic
inflammatory
response

The simulated lumen area
reduction for the stented
region at 1-month follow-
up is compared to the
patient’s 1-month follow-
up data

Predicted 1-month lumen
contours of the stented
region show no significant
differences when
compared with the
patient’s lumen area at 1-
month. In both simulated
and actual patient cases, a
significant lumen area
reduction is found at 1-
month with respect to the
condition immediately
after intervention (P < .05).
Model not fully able to
capture local lumen
geometrical variability
(especially at stented
portion proximal region)

ABM, Agent-based model; CFD, computational fluid dynamics; CT, computed tomography; HOLMES, highly oscillatory and low magnitude shear; NIH,
neointimal hyperplasia; OSI, oscillatory shear index; PTA, percutaneous transluminal angioplasty; RRT, relative residence time; TAWSS, time-averaged
WSS; WSS, wall shear stress.
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to both the geometry and applied BCs, thus an
accurate reconstruction of the vessel and patient-
specific BCs are required to compute reliable patient
hemodynamics.
Once the CFD simulation is performed, providing as

output WSS, post-processing allows the calculation of
WSS-related indices.

Models’ development/training. Almost all the clinical
perspective studies using traditional statistical methods
employed a multivariable logistic regression model
(Table V) to predict restenosis occurrence. This statisti-
cal model is the preferred method to analyze prognostic
studies53 when the goal is to quantify the risk of a future
event. This is probably because the model returns prob-
abilities as outputs and allows the classification of new
patients using both continuous and discrete measure-
ments, which is the case when dealing with clinical, de-
mographic, and angiographic predictors. Cox regression
analysis (Table V), adopted by Chen et al,43 is a valid
alternative providing as output the probability for that
event to occur at a defined time point.
When ML approaches are adopted, several models

(Table V) are usually built in parallel and eventually
compared in terms of performance.46-49

To select the potential restenosis predictors to develop/
train the model, different strategies were followed by the
clinical perspective studies adopting traditional statisti-
cal models and ML approaches.
Some statistical-based studies33,35 considered as reste-
nosis predictors the variables proved to be statistically
significantly different between the patients’ groups
(Table III), presenting and not presenting with restenosis.
Other studies considered variables either based on clin-

ical relevance38 or frequently reported in the literature as
restenosis markers.1 In some others, variables that
resulted as significant from univariable1,34,40,41 and/or
multivariable logistic regression analyses35,42 (Table V)
and satisfied a specific criterion for receiver operator
characteristic (ROC) curve analyses35 (Table VI) were
selected as predictors. The latter alternatives are more
data-driven and use logistic regression models to test
whether they are linked to restenosis (ie, variable consid-
ered as a predictor when P-value # .05).
An alternative approach to select restenosis predictors

is the least absolute shrinkage and selection operator
(LASSO) regression analysis36,39,43-45 (Table V). This re-
duces the number of potential predictors to a limited
set, improving model interpretability.
In ML-based studies, Sampedro-Gómez et al46 based

predictors’ selection following two parallel strategies: (1)
by performing univariate analysis of variance (ANOVA)
(ie, test whether the mean differences of variables be-
tween patients presenting/not presenting with restenosis
were statistically significantly different) to consider only
the variables having the strongest relationship with reste-
nosis; (2) by considering variable (feature) importance;
through a random forest (RF) classifier (Table V), a score



Fig 2. Methodological framework followed by clinical perspective studies to build restenosis predictive models for
classic statistical models and machine-learning (ML) methods.
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for each predictor was assigned, signifying its contribu-
tion towards restenosis occurrence. Pachl et al47 did
not explicitly mention any feature selection strategy,
implying that all identified variables were employed in
their model development. Jiang et al48 relied on the
stepwise Akaike information criterion (Table V) to assess
the quality of a set of multivariable stepwise logistic
regression models given a set of predictors, in order to
pick the one performing best. For the RF model that
they built in parallel, they computed the conditional per-
mutation importance, mean decrease accuracy, and
mean decrease Gini (Table V) for predictors’ selection.



Fig 3. Computational pipeline followed by biomechanical engineering perspective studies to build predictive
models for restenosis. CFD, Computational fluid dynamics; WSS, wall shear stress.
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Güldener et al49 introduced the use of a novel self-
organizing-maps (SOMs)-based approach for restenosis
predictors selection (Table V).
As for the biomechanical engineering studies, three

types of prediction models have been developed
(Fig 3): logistic regression, mechanistic, and models hav-
ing a stochastic component (ie, agent-based models).
Studies adopting logistic regression models17,51 (Table

IV) consider different sets of restenosis predictors to
test whether the introduction of hemodynamic indices
result in enhanced predictive power and identify which
variables contribute the most to restenosis. As reported
in Table IV, G}okg}ol et al17 implemented three different
multivariable logistic regression models: the first
excluding all hemodynamic indices as predictors; the
second, including only hemodynamic indices; and the
third one, combining clinical, demographic, angio-
graphic, and hemodynamics. Colombo et al51 imple-
mented two univariable logistic regression analyses as
part of a study investigating the impact of local hemody-
namics on restenosis in femoral arteries. These studies
were set to investigate if stent length and age correlated
with absence/presence of restenosis at 2-year follow-up.
In addition, univariable and multivariable logistic regres-
sions were also implemented, considering hemody-
namic predictors only. A two-sided Fisher exact test
(Table VII) was also conducted to assess whether stent
overlapping correlated with the absence or presence of
restenosis after 2 years from baseline.
Mechanistic and agent-based models simulate reste-

nosis progression. Donadoni et al50 developed a mecha-
nistic model based on mathematical descriptions of the
biological mechanisms leading to NIH growth. The four
mechanisms triggering NIH progression, namely smooth
muscle cell and collagen turnover, growth factors, and
nitric oxide production, were described by ordinary dif-
ferential equations and linked to computed WSS values.
Corti et al52 developed a framework coupling WSS
computation with a 2D agent-based model (ABM) simu-
lating cellular dynamics. This emulated cellular behavior
and vessel remodeling based on WSS computation and
systemic inflammatory response, triggered by the endo-
vascular intervention. Both models50,52 were intrinsically
designed so that low values of WSS enhanced smooth
muscle cells’ proliferative and synthetic activity, respon-
sible for vessel reocclusion due to NIH. The output of
both models82,84 was the ‘altered’ vessel geometry due
to restenosis progression. Donadoni et al50 returned a
3D geometry (ie, the new vessel coordinates in the 3D
space), whereas Corti et al52 returned the new lumen
cross-sections on which the disease was simulated and
from which the 3D geometry could be reconstructed.



Table V. Definitions of the technical terms related to clinical perspective predictive models development/training

Technical terms used for predictive models development/training

Bootstrapping: resampling of the available dataset. One patient’s information is sampled with replacement (ie, randomly and
allowing for its duplicate) from the selected dataset to obtain a new dataset (bootstrap sample) of the same dimensions as the
original one. This might be performedmultiple times, allowing the building of new prediction models for every bootstrap sample.
Then, the model’s performances on the bootstrap sample and on the original “learning” set are computed, together with the
model’s optimism (ie, the difference between the two performances). These steps are repeated for each bootstrap sample to
obtain a stable averaged estimate of the optimism, which is later subtracted from the initial overly estimated performance

K-fold cross-validation: it consists of randomly splitting the dataset into k-equally sized parts: k-1 folds act as the “training” folds,
whereas the remaining one is the “test” set. This is repeated so that every fold is used once for model evaluation and k-1 times for
training

Logistic regression: statistical model modeling the probability of a dichotomous event taking place by having the logarithm of the
odds (ratio of the number of events producing the outcome to the number that do not) for the event be a linear combination of
one (univariable) or more (multivariable) independent variables (predictors). A reduced number of predictive variables can be
selected automatically to build the best performing model (stepwise logistic regression) by adding (forward stepwise logistic
regression) or removing (backward stepwise logistic regression) the most or least significant ones one after the other by imposing
some criteria in terms of P-value (normally variable considered as a predictor when P-value # .05)

Cox regression analysis: statistical model that produces a function predicting the probability that the event of interest (ie,
restenosis) has occurred at a given time t for given values of the predictor variables

Least absolute shrinkage and selection operator (LASSO) regression analysis: regression analysis method that imposes a
regression penalty on all variable coefficients, such that relatively unimportant ones are excluded from the model

Stepwise Akaike information criterion: criterion comparing the quality of a set of statistical models to each other for a given set of
predictors. This allows ranking different models having different predictors from best to worst

Conditional permutation importance: measure of the decrease in a model score when a single predictor value is randomly
shuffled. A drop in the model score is indicative of how much the model depends on that predictor

Mean decrease accuracy: measure of how much accuracy the model loses by excluding each variable. The higher the value, the
higher the importance of the variable in the model

Mean decrease Gini: measure of how each variable contributes to the model. The higher the value, the higher the importance of
the variable in the model

ML models adopted:
Random forest (RF): classification algorithm consisting of many decision trees built during the training. Each tree spits a class
prediction and the class with the most votes becomes the model’s prediction

Extremely randomized tree (ERT): similar to RF with the difference that the decision rule during tree construction is randomly
selected

Gradient boosting (GB): prediction model in the form of an ensemble of weak prediction models, typically decision trees
Support vector machine (SVM): linear classificationmodel. The algorithm can create a line or a hyperplane separating the data into
classes

Gaussian process (GP): generalization of the Gaussian probability distribution which can be used as the basis for sophisticated non-
parametric machine learning algorithms for classification

K-nearest neighbours (KNN): the algorithm estimates how likely a data is to be a member of one group or the other, depending on
what group the data closest to it are in

L1- and L2- regularised logistic regression: logistic regression as explained above introducing regularisation terms to the equation
to reduce overfitting

Non-regularised logistic regression: normal logistic regression as explained above
Multi-layer perceptron (MLP): deep, artificial neural network composed of an input layer receiving data, an output layer making the
predictions and an arbitrary number of hidden layers in between capable to model the correlations between the inputs and the
outputs

Self-organizing maps (SOMs): a specific application of ML techniques helping to understand relationships in complex data. This
can be seen as a non-parametric regression technique that generates a non-linear representation of the data distribution and
orders the considered lesions by the overall similarity of their attribute vector (ie measured parameters related to restenosis
severity)
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Models’ performance evaluation. Prediction models’
performance is normally evaluated regarding two key as-
pects: discrimination and calibration.54

Discrimination refers to the model’s ability to distin-
guish between patients who will have restenosis and
those who will not. Computing the area under (AUC)
the ROC curve (also called “c-index”) (Table VI) is a popu-
lar choice to do this.53
As for the clinical perspective, Table III shows that the
values for the AUC ROC obtained with statistical-based
models ranged from 0.61 to 0.706 in most
studies,1,33,36,38,40,45 showing modest model discrimination
ability. However, a few statistical-based studies show high
AUC ROC values,35,39,41,42 up to 0.924. Nevertheless, this
should be interpreted with caution, because these last
set of models were tested using the same dataset used



Table VI. Technical terms used in the evaluation of clinical perspective predictive models

Technical terms used for predictive models evaluation

Evaluation in terms of discrimination:
Receiver operator characteristic (ROC) curve: plot of sensitivity (true positive (restenosis) rate of observations) against one minus

specificity (false positive rate of observations) for different varieties of probability thresholds above which the observation (the
patient) would be labelled as positive (presenting restenosis)

Area under (AUC) the ROC curve (also called “c-index”): area under the plot of sensitivity against one minus specificity for all
possible cut-offs of probability thresholds. If AUC ROC ¼ 1, the classifier is able to perfectly distinguish between all the positive and
the negative (patients presenting and not presenting restenosis, respectively) class points correctly. If AUC ROC ¼ 0.5 predictions
are no better than chance, whereas AUC ROC between 0.5 and 1 shows some predictive ability

Precision-recall (PR) curve: plot of the precision (aka positive predictive value, ie fraction of positive predictions that actually belong
to the positive (restenosis) class) against the recall (aka sensitivity) for a single classifier at a variety of thresholds, helping to
visualize how the choice of thresholds affects classifier performance and select the best threshold for a specific problem

Area under (AUC) the PR curve: area under the plot of precision against the recall for a single classifier at a variety of thresholds. This
is judged in the range of the value corresponding to a “baseline” classifier (determined by looking at the fraction of patients
belonging to the positive class, ie patients presenting restenosis) and 1. A classifier that provides some predictive value falls
between the “baseline” (meaning that predictions that are no better than chance) and the perfect classifier, having AUC PR ¼ 1

Overlap index: overlap between the distributions of the probability of the outcome (ie restenosis) in patients belonging to the
positive (ie presenting restenosis) and negative (ie patients not presenting restenosis) classes. An overlap equal to 1 means that the
median predicted probability of the outcome is the same for those belonging to positive and negative classes (no discrimination).
An overlap equal to 0means no overlap in the predicted probability of the outcome between those belonging to the positive and
negative class (perfect discrimination)

Evaluation in terms of calibration:
Calibration plots: linear regression of the plotted average predicted and observed positive (restenosis) rates of identified risk

subgroups and comparison (in terms of statistically significant difference) with the linear line of an ideal model in which the
observed probability exactly matches the predicted probability. P-values > .05 refer to strong concordance, whereas P-values <

.05 account for poor concordance
Hosmer-Lemeshow goodness-of-fit test: test for logistic regression models telling how well the data fit the model, ie if the

observed event rates match the predicted event rates in populations subgroups (patients presenting or not presenting restenosis).
P-values > .05 refer to good fit, whereas P-values < .05 account for poor fit
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for model development/training. Models’ performance on
an unseen dataset cannot be assessed.
Despite not being widely used in logistic regression

models, an alternative measure for model discrimination
is the overlap index (Table VI) between the predicted
probability distributions of restenosis for patients with
or without restenosis in the “test” set. The work of Wein-
traub et al33 is the only one to use this index, reporting
a value of 0.76, which confirms the model’s modest
discrimination power.
As for the ML-based models, their discrimination ability

is evaluated on each “test” set of the k-fold cross-
validation (Fig 2 and Table V). The results are then aver-
aged for every “test” set to ascertain the performance
on unseen data. This allows either selecting the best
model46 when developing them in parallel (as explained
in the “Models’ development/training” section) or
combining all individual predictions by the various
models into an “ensemble model.”47 The latter strategy
can integrate predictions from two or more models,
potentially reducing misclassification between patients
presenting or not presenting with restenosis. Then, both
the AUC ROC and the AUC under the precision-recall
(PR) curve (see Table VI) are computed. The AUC PR
value is more informative in classification problems
involving unbalanced datasets.55,56 In the work of Sam-
pedro-Gómez et al,46 the average value of AUC PR for
the best classifier was 0.46, whereas in Pachl et al,47 it
ranged from 0.10 to 0.12 for the nine different ML models
and the “ensemble model,” showing a good predictive
capacity in the first study, while only a modest predictive
power in the second one. This was also confirmed by the
AUC ROC values, equal to 0.7746 and ranging from 0.58-
0.62,47 respectively.
The prediction results from ML models were also

compared with some of state-of-the-art logistic regres-
sion models.1,34 The results showed that the extremely
randomized tree (ERT) model (Table V) developed by
Sampedro-Gómez et al46 outperformed the multivari-
able logistic regression models implemented by Singh
et al1 and Stolker et al,34 both in terms of AUC ROC and
PR. The “ensemble model” of Pachl et al,47 performed
better than the models from Singh et al1 and Stolker
et al.34 The RF model developed by Jiang et al48 showed
larger AUC ROC and PR values with respect to a devel-
oped logistic regression model considering the same
restenosis predictors. In contrast, Güldener et al49 re-
ported that the model developed using ML techniques
did not improve the identification of patients at high
risk of restenosis compared with a conventional multivar-
iable logistic regression one.
As for calibration (also called “goodness of fit”), this is

defined as finding a unique set of model parameters to
provide an accurate restenosis prediction. This is usually



Table VII. Definition of the technical terms used in evaluating biomechanical engineering perspective predictive models

Technical terms used for biomechanical engineering perspective predictive models

Two-sided Fisher exact test: statistical test used when two categorical variables are present and it is necessary to find out if
proportions for one categorical variable are different among values of the other one

Evaluation in terms of discrimination:
Tjur’s pseudo R2: difference between the mean predicted probability of the positive group (patients presenting restenosis) and the
negative group (patients not presenting restenosis). It ranges from 0 to 1, where 1 corresponds to a model which absolutely
separates patients presenting and not presenting restenosis

Evaluation in terms of calibration:
The McFadden pseudo R2: metric providing the predictive strength of logistic regression models. It can range from 0 to 1, with
values ranging from 0.2 and 0.4 to account for good model fit

Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test: test for logistic regression models telling how well the
data fit themodel, ie if the observed event rates match the predicted event rates in populations subgroups (patients presenting or
not presenting restenosis). P-values > .05 refer to good fit, whereas P-values < .05 account for poor fit
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done by analyzing the discrepancy between the model
predictions for restenosis and the actual occurrence
rates. A significant difference between the two implies
poor model calibration, potentially producing
misleading predictions. Calibration for logistic regression
models in clinical perspective studies was assessed using
calibration plots33,36,43,44 or Hosmer-Lemeshow good-
ness-of-fit test1,34,35 (Table VI). As shown in Table III, all
models evaluated in terms of calibration aspects showed
P-values > .05, indicating a good fit.
Moving to biomechanical engineering studies, G}okg}ol

et al17 evaluated their models’ discrimination by: (1) per-
forming paired t-tests between predicted values and
medical data to access statistical significant differences
between the two; (2) computing the prediction accuracy
with leave-one-out analyses (ie, by testing themodel on a
held-out number of patients); and (3) computing AUC
ROC. Calibration was assessed by computing the McFad-
den pseudo R2 (see Table VII) and the Houwlingen-
Copas-Hosmer unweighted sum of squares test (see
Table VII). The model including only WSS-related indices
showed promising results, which were further enhanced
by adding the treatment method (ie, PTA alone or with
Nitinol stent). Indeed, the multivariable logistic regres-
sion model including the treatment method and the
WSS-related indices as predictors showed the strongest
statistical significance, the highest accuracy, highest
AUC ROC, and the best optimal fit to the model (Table
IV). The one including only non-related-hemodynamic
markers did not show any statistically significant differ-
ence between the patients presenting and not present-
ing restenosis, had a lower accuracy, lower AUC ROC,
and a weaker predictive power.
In the work of Colombo et al,51 the models were only

evaluated in terms of discrimination using Tjur’s pseudo
R2 (see Table VII). There was no explicit testing of the
models on a held-out number of patients, but the vari-
ables contributing to restenosis were identified. More
specifically, the univariate logistic regression model
including only the stent length as a predictor was able
to perfectly discriminate between patients having (or
not) restenosis. The two-sided Fisher test also demon-
strated the statistically significant association between
stent overlapping and 2-year follow-up restenosis, mean-
ing that both stent length and overlapping are good pre-
dictors of disease occurrence. In contrast, only the
univariable logistic regression model using the total
area of the vessel subjected to low time-adjusted WSS
(TAWSS) (Table I) as a predictor, produced a nearly statis-
tically significant correlation, suggesting that low TAWSS
could be linked to restenosis development.
In studies,50,57 model accuracy was evaluated by

comparing the simulated results of reocclusion pro-
gression with actual medical images. In Donadoni
et al,50 the simulations were found to be able to cap-
ture the vessel restenosis shown in the medical im-
ages. In particular, CFD analyses showed that the
better-performing hemodynamic index was HOLMES
(Table I); all locations showing severe restenosis
exhibited altered values of the HOLMES index
compared with the baseline, suggesting that this he-
modynamic index could be a stronger predictor of
restenosis than other indices. In Corti et al,52 the pre-
dicted lumen contours for a single patient matched
those in medical images, although the local lumen
geometric variability, especially in the proximal region
of the stented portion, was not fully captured.

DISCUSSION
Clinical and biomechanical engineering models on

restenosis prediction are relatively narrow, each type
focused on only part of the evidence linked to restenosis
development. Traditional statistical modelsdused in
both clinical and biomechanical engineering
approachesdrely on predictions performed with rela-
tively easy-to-develop and interpretable models. These
normally consider a limited number of predictors,
selected by either traditional statistical methods or liter-
ature. However, these models are usually based on
strong assumptions and exhibit modest predictive
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power. In contrast, ML methods do not require a priori as-
sumptions and can include all available variables as pre-
dictors, although this is achieved by somewhat
sacrificing model interpretability. The drawback of such
a promising approach is that ML models need large
datasets for accurate predictions, which is a challenge
given the lack of standardized data collection. Neverthe-
less, ML-based clinical perspective studies show
enhanced predictive power compared with those using
only traditional statistical models.
From a biomechanical engineering perspective, when

patient-specific clinical, demographic, and angiographic
information is combined with hemodynamics in tradi-
tional statistical models, the highest predictive perfor-
mance is reported. However, the computation of
hemodynamic variables/indices requires a great deal of
expertise, is time-consuming, and is highly dependent
on the quality of the imaging data and available BCs.
Additionally, models simulating disease progression are
computationally expensive and complex and difficult
to calibrate and validate. Despite these challenges, an
undeniably strong advantage is that their nature allows
for interpretation of the underlying mechanisms of reste-
nosis progression. That been said, they do not provide cli-
nicians with a risk score for any given patient undergoing
vessel reocclusion at a defined follow-up.
The holy grail would be to ideally fuse clinical and he-

modynamic information in an ML-based model, running
on high-quality and large datasets. Currently, predictive
models do not consider all the retrievable information
for the complex, multifactorial phenomenon that is
restenosis, resulting in models with a modest ability to
risk-stratify patients.
In a fast-developing landscape, prediction models for

restenosis would coexist in a pipeline relying on artificial
intelligence and data-driven approaches. In this scenario,
3D vessel reconstruction on large datasets would be
automatically obtained,58,59 and the blood flow and
computation of the hemodynamic indices would be per-
formed in real-time, with high accuracy,60,61 by means of
deep-learning (ie, a subset of artificial intelligence, more
specifically of machine learning methods) and reduced
order modeling methods.62 These fast hemodynamic
computations, combined with the daily retrieved clinical,
demographic, and angiographic information, would
then be the input of a ML-based risk prediction model
able to stratify patients with PAD and CAD, targeting
and tailoring surveillance programs.

CONCLUSIONS
In both clinical and biomechanical approaches, the

resulting predictive power of models for restenosis is
modest at best. The literature reveals that restenosis pre-
dictors are usually considered in silosdalways sacrificing
essential information contributing to what is undeniably
a complex and multivariable phenomenondresulting in
models with limited predicted power.
A more holistic approach integrating hemodynamic

indices and routinely collected variables into ML algo-
rithms would offer a first step towards the development
of innovative tools able to classify patients’ risk of resteno-
sis development in a defined time interval. This informa-
tion will help clinicians predict treatment outcomes to
better inform patients, enable the implementation of
tailored surveillance programs, and create more efficient
clinical workflows for both CAD and PAD.
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