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One Sentence Summary (125 characters):  

A Review discussing how to overcome key challenges to enable early detection of cancer for 

earlier intervention and increased survival. 

PRINT SUMMARY  

Background 

When cancer is detected at the earliest stages, treatment is more effective, and survival 

dramatically improves. Yet around 50% of cancers are still detected at an advanced stage. 

Improved earlier detection of cancer could substantially increase survival rates. Although 

recent advances in early detection save lives, further innovations and development of early 

cancer detection approaches are needed. The field is evolving rapidly due to advances in 

biological understanding and an increasing pace of technological progress. 

 

 

 

Advances 

We highlight five challenges facing the field, current work in those areas and where more 

research is needed to move early detection towards reality.  

The first challenge is to build a greater understanding of the biology and behavior of early 

disease, which will help identify ways to distinguish between consequential, aggressive 

lesions and those inconsequential lesions that will not cause harm. Such insight will be 

crucial in realizing the potential for early detection to inform treatment decisions and impact 

on survival, while minimising the risk of over-treatment. Alongside studies in human 

samples, better models of disease are enabling identification of early signals of tumorigenesis 

and clarifying the contribution of the immune system and microenvironment to tumor 

development, which will be crucial to achieving this goal. 
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The second challenge is determining the risk of cancer; how can we use germline genomic 

susceptibility, family history, exposures and other risk factors, demographic and behavioral 

data to build nuanced risk models that may identify who should be tested for cancer and how 

test results should be interpreted and followed up.  Progress is being made against this 

challenge through advances in understanding of the genomics of cancer risk, integration of 

that insight with other risk factors and the development of large-scale population cohorts 

where risk models can be developed and validated.   

The third challenge is finding and validating biomarkers of early cancer. There is 

considerable difficulty in finding accurate signals of early cancer (which usually exist in very 

low amounts) amidst the noise of normal human physiology. While progress has historically 

been slow, many promising early detection markers are emerging, including circulating 

tumor DNA, circulating tumor cells, proteins, exosomes and cancer metabolites.  Advances in 

data analytic methodologies (such as machine learning) and integration across marker types 

in multi-modal tests are also accelerating progress.  

The fourth challenge is technological. It involves both the iterative improvement of existing 

approaches and the development of disruptive detection technologies that can very sensitively 

and specifically identify early biological changes, whether in tissue structure, biochemistry, 

or function. Powerful molecular biological analytic technologies and advanced imaging and 

histopathological methods are increasing the ability to sensitively find earlier tumors, while 

the use of synthetic markers may help to amplify their signal.  

The fifth challenge is how to most appropriately evaluate early detection approaches. 

Translation of biological insights into new diagnostic technologies and execution of clinical 

trials to validate those advances requires substantial time and money. We discuss ways in 

which that process might be improved.  

Outlook 
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For early detection to deliver transformative progress in cancer survival, wider skillsets 

beyond cancer biology are essential, e.g. engineers, chemists, physicists, technology 

developers, behavioral and computer scientists. Integrated, interdisciplinary collaboration 

will be key to bring new ideas to ultimately address the challenges of cancer early detection.  

We believe early detection of cancer is approaching a tipping point as biological insight and 

technological capacity are increasing at an unprecedented rate. This Review discusses the 

current state of the field and suggests constructive ways forward that build on current 

progress to deliver effective earlier detection of cancer and appropriate intervention.  

Figure title and short legend: 
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Abstract (125 words):  

Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced 

stage when diagnosed. Early detection of cancer or pre-cancerous change allows early 

intervention to try to slow or prevent cancer development and lethality. To achieve early 

detection of all cancers, numerous challenges must be overcome. It is vital to better understand 

who is most at risk of cancer. We also need to elucidate the biology and trajectory of early- and 

pre-cancer to identify consequential disease that requires intervention. Insights must be 

translated into sensitive, specific, early detection technologies and appropriately evaluated to 

support practical clinical implementation. Interdisciplinary collaboration is key: advances in 

technology and biological understanding highlight that it is time to accelerate early detection 

research and transform cancer survival. 

Introduction  

Cancer is a major global public health problem; there were 10 million deaths from cancer 

worldwide in 2020 (1). It is the second leading cause of death globally, causing one in six 

deaths (2). For nearly all cancers, the chances of survival increase significantly if the disease 

is detected, diagnosed and treated at an early stage (3) (Fig. 1).  

Early detection aims to detect consequential cancer or pre-cancerous change at the 

earliest time-point at which intervention could improve survival or reduce morbidity. 

Consequential disease will cause mortality or substantial morbidity within the individual’s 

expected remaining lifespan. Early detection can take place across several windows in the 

transition from normal cellular activity to dysregulation to cancer; this includes detecting 

cancer itself at an earlier point in its development, but also detecting precursor changes 

(Fig.2). Screening, which pro-actively tests asymptomatic people, is a subset of early 

detection measures. Many of the principles of early detection interact with other points in 

cancer care such as detection of minimal residual disease or disease recurrence (Fig. 2). This 
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Review focuses on early detection of primary cancers and pre-cancerous changes in both 

screening and symptomatic detection contexts.  

Cancer early detection research and development has produced tremendous health 

benefits e.g. through established screening approaches such as for cervical, breast and 

colorectal cancers, which are now diagnosed less frequently at later stages than those cancers 

without established screening (4) (Fig. 1). But many cancers, such as esophageal, pancreatic 

and ovarian, are still often diagnosed at advanced stages, when prognosis is extremely poor.  

While early detection confers survival advantages in all populations, approximately 

70% of cancer deaths occur in low- and middle-income countries (2), often with late 

diagnosis. For example, the rate of late-stage breast cancer diagnosis in black sub-Saharan 

African women remained well above 60% from the 1970s to 2011, whereas in the US, that 

rate of late diagnosis decreased from ~60% to 32% in black women over the same period (5). 

Some cancers that have effective early detection tests, such as cervical cancer, have much 

higher mortality rates in low human development index (HDI) countries (19.8 per 100,000) 

compared with high HDI countries (3.1 per 100,000), whereas other cancers without effective 

early detection tests differ less (e.g., stomach cancer, 5.0 per 100,000 in high versus 4.0 in 

low HDI countries). Detection of cancer at late stages is a global problem that is exacerbated 

in resource-poor settings; equity is a considerable challenge (6-8). Patients diagnosed with 

later-stage cancer can miss the window for curative intervention, and expensive later-stage 

systemic treatments are often associated with severe side effects and worse outcomes (Fig. 

1). Further research to build on early detection successes and extend into other cancer types 

could transform patient outcomes. 

The challenges facing early detection research fall into five broad categories: 

First, understanding the biology of early cancer; we know comparatively little about the 

earliest events in cancer genesis. What should we look for, and, once found, how can we 
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know which early lesions will progress to become aggressive, consequential disease versus 

indolent, inconsequential disease?  

Second, determining risk; populations differ from each other, and individuals even more so. 

There are great challenges in knowing which populations or individuals are at greater risk of 

having or developing cancer, and therefore deciding who should be tested and how tests 

should be interpreted and acted on.  

Third, finding and validating biomarkers; early tumors are miniscule – discovering sensitive 

markers of their presence and robustly validating them presents an archetypal needle-in-a-

haystack challenge.  

Fourth, developing accurate technologies; there is significant challenge in developing 

technologies sensitive enough to detect markers of early cancers. An equally important 

challenge is to ensure those technologies are also sufficiently specific to not raise false alarms 

or lead to over-treatment for inconsequential disease.  

Fifth, evaluating early detection approaches appropriately; the ultimate challenge is to 

robustly demonstrate that a new early detection approach can indeed detect cancers early, and 

ultimately save lives. The relative scarcity of cancer in the general population can make this a 

difficult, prolonged and extremely expensive process.   

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has 

highlighted the general need for accurate, early detection technologies that address the issues 

of cost, access and scaling, public acceptance of testing, and integration of diagnostics with 

public health infrastructure and decision-making. The point-of-care tools and privacy-

compliant telehealth solutions that have emerged to meet the pandemic crisis may also help 

advance the implementation of early cancer detection. 

Early detection approaches must ensure that they address, rather than exacerbate, health 

inequities, and that the balance of benefit to harm (through overdiagnosis, unnecessary 
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invasive follow-up and overtreatment for inconsequential disease) is positive. In this Review, 

we describe the diverse research challenges, and propose ways toward achieving early 

detection of cancer. 

Challenge 1: understanding the biology of early cancer  

There is a continuum in tumorigenesis from normal to dysregulated to cancerous; a key 

challenge is to understand this biology so that we can predict the future trajectory of the 

changes we detect and determine when early disease becomes consequential and/or lethal.  

The cancer continuum and transition to lethality. Cancer evolves from early 

inconsequential dysregulation in molecular and cellular phenotypes, to malignant 

transformation where critical changes in the cell’s genome or epigenome culminate in a 

hallmark series of abnormal features that define cancer, to potentially lethal invasion and 

metastasis, and ongoing cellular evolution and diversification (9). Windows of opportunity 

for cancer detection exist across this continuum, with challenges to each (Fig. 2). The 

transition rate through these stages depends on the cancer type and so understanding this 

timeline can help pinpoint the optimal time for detection and intervention.  

Annual screening may not detect fast, aggressive cancers that develop between 

screening visits (10). Conversely, slow-growing cancers undergoing malignant transition over 

several years can be tracked with active surveillance and screening of at-risk populations. 

Some cancers follow a clear path from precursor condition to malignancy, such as polyps 

preceding colon cancer. However, not all precursors will progress to cancer, and not all 

cancers will be consequential. For example, the pre-cancerous condition monoclonal 

gammopathy of undetermined significance (MGUS) has an average risk of developing into 

multiple myeloma (a lethal cancer) of only 1% per year (11), and the risk of Barrett’s 
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esophagus developing into cancer is 0.3% to 30% per year (12). We do not fully understand 

which lesions will progress to consequential disease, and which will not. 

What confers “lethality” and its timing? A cancer can theoretically be traced, via an 

evolutionary tree, back to a single cell. This single cell arises from a specific set of 

conditions, including the tissue microenvironment and the immune system. Each organ 

system presents a different environment, with some mutations causing a potentially lethal 

tumor in one organ context but not another (13). The picture also changes within individuals 

due to ageing.  A tumor-permissive environment can be created by cellular and molecular 

changes in non-cancerous cells during ageing, such as biophysical alterations in the 

extracellular matrix, changes in secreted factors and changes in the immune system (14). 

What are the transitions leading to that initial cancer cell, and then the changes that engender 

a consequential tumor, both within the cell and with its interactions with its 

microenvironment? The early evolution of most cancers cannot easily be observed in people 

due to clinical presentation at advanced disease stages, and tissue sampling difficulties when 

monitoring pre-cancers. Blood cancers are an exception, where the ease of blood sampling 

has allowed better understanding of clonal hematopoiesis (15). For example, all multiple 

myelomas will have progressed from MGUS. Chromosomal and other mutational changes 

can be monitored in MGUS patients and may highlight patients who are progressing from 

MGUS to smoldering myeloma to malignant multiple myeloma (16). Clinical trials suggest 

that patients who undergo early detection of MGUS progression may benefit from therapeutic 

intervention at the stage of smoldering myeloma, rather than waiting for symptomatic 

malignant myeloma with end-organ damage (17). This demonstrates how detection and 

molecular stratification of a pre-neoplastic lesion (Fig. 2) can trigger intervention before 

clinically-observed definite malignancy. Given that not all patients presenting with multiple 

myeloma will have a prior clinical diagnosis of MGUS, this will not catch every case, 
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although it does give a paradigm to study and exploit the biology of transition from pre-

cancer to cancer.  

As well as the biology of the affected cell itself, the transition from normal to cancer is also 

affected by the cell’s microenvironment. The microenvironment includes host immune cells, 

extracellular matrix, and secreted proteins, and it is in various states of hypoxia and pH. The 

microenvironment surrounding the would-be tumor cell can contribute to tumor progression, 

determining whether a tumor cell remains localized or spreads aggressively. An early tumor 

may also induce detectable changes in its microenvironment, generating potential biomarkers 

for detection. These changes could also indicate whether an initial lesion will become 

consequential.  

The immune system is a crucial regulator and indicator of the initiation and progression of 

early tumors (for example, the spatial positioning of tumor-infiltrating lymphocytes with 

regards to the tumor can, in some cancer types, indicate how invasive a tumor is (18)), and 

immune system markers may be used to identify residual disease post-therapy, or to predict 

response to therapies.  However it is becoming clear that the immune system may also may 

be useful as an early detection paradigm unto itself.  As discussed in Challenge 3 below, the 

very small size of the earliest tumors means that any markers they shed into the circulation 

will exist at very low levels, so impeding detection through test.  The human immune system 

is an exquisitely sensitive detection apparatus and can act as a signal amplifier (each tumor 

cell being potentially exposed to many immune cells), which might potentially be harnessed 

to signal the presence of a cancer. Immune system markers currently under investigation as 

cancer early detection approaches include autoantibodies and T cell repertoires.  
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Biological models of disease. Because we cannot easily observe the first tumor cell to 

emerge in humans, cancer models have been developed to probe the mechanisms underlying 

tumor initiation (19-22). However, there are few models of very early cancer or premalignant 

disease that faithfully reproduce somatic events leading to disease in immune-competent 

native tissue microenvironments.  

First-generation transgenic models of human cancer progression (23) afforded initial 

glimpses of tissue- and organ-specific biologies of neoplastic progression. Although such 

studies have revealed tumor cell-intrinsic (24, 25) and extrinsic characteristics (9, 26) that 

support the principal of malignancy, these models have substantial drawbacks e.g. rapid 

progression, and phenotypes that are frequently fully-penetrant. Therefore, these models do 

not accurately recapitulate human disease.  

Improvements involving immune-competent mouse models of human cancer with 

constitutive and conditional mutations in multiple cancer-associated genes, as well as 

embracing tumor microenvironment and epigenetic regulators, have improved models of 

early cancer. For example, mouse models allowing exploration of early tumorigenesis which 

more closely recapitulates human disease (including immune-competent and conditional 

expression models) now exist for non-melanoma squamous carcinoma (27), pancreatic 

adenocarcinoma (28), colon cancer (29) and lung adenocarcinoma (30, 31). The next 

wave of model system development using approaches including circulating tumor cell 

patient-derived explants (32, 33), patient-derived xenografts and creation of complex 

organoids involving multiple cell types (34) will enable further progress. However, many 

patient-derived xenograft models use samples from advanced human disease implanted 

into immunocompromised mice, which may not reflect truly early disease processes or the 

important role of the immune response to early lesions. With increasing sophistication, the 

interplay of patient-derived models and advanced non-human model systems can provide a 
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path to greater understanding of early cancer biology, early detection markers, and 

appropriate interventions for early cancers.  

Making progress against this challenge will require an integrated approach; early detection 

markers and tests must seek not only to detect an early cancer but to provide enough 

actionable information to predict the likely course of the detected lesion (consequential or 

inconsequential) and therefore to properly inform clinical decision making, e.g. to monitor 

or to treat?  Investigators in this field should seek to deliver this information through 

investigation of not only the cancer cell itself but also of the microenvironment and 

immune system, and the use of sophisticated model systems alongside human samples.  

Challenge 2: determining risk of cancer  

In order to understand whom to test, how and when to test, and also how test results should 

be interpreted, requires understanding of individual cancer risk so as to maximize benefit 

from early detection and to minimize the risk of harm (through over- or under-diagnosis and 

treatment).  

Early detection strategies will not be of equal value to everyone. Therefore, it is important to 

identify the people at elevated risk of cancer and to tailor an early detection strategy to that 

group to maximize the benefits and minimize the harms of early detection (35).   



Submitted Manuscript: Confidential 

13 

 

Risk models. Risk assessment models can identify individuals or populations at increased risk 

for a specific cancer or cancers. Risk stratification includes information about age, familial 

history, exposures, and lifestyle (36), which can be augmented by genetic screening to detect 

variants in genes associated with cancer. The strategy is exemplified by breast cancer risk 

prediction models used to stratify women into higher risk categories and towards genetic 

testing for inherited cancer susceptibility (37, 38). Women with inherited BRCA1 or BRCA2 

pathogenic variants that are associated with increased risk of breast and ovarian cancer are 

candidates for chemoprevention with selective estrogen receptor modifiers, risk-reducing 

surgery, or enhanced breast magnetic resonance imaging (MRI) screening to enable earlier 

detection. Currently, very few high-risk single genes (such as BRCA1 and BRCA2) trigger 

such action; increasingly the risk conferred by multiple genetic variants (called polygenic risk 

score) is being explored (39). The discovery and use of more informative markers of risk (be 

they genomic or phenotypic, e.g. breast density) integrated into models that consider family 

history, behavioral factors and germline variation will enable better precision in the 

identification of high-risk people who require screening or close surveillance and longitudinal 

testing for early cancer detection. It is crucial that risk models are evaluated using the 

appropriate methodologies (informed by statistical experts) and validated in independent data 

sets (40). 

Constructing improved risk stratification models requires data and biological samples 

from large cohorts, ideally in pre-diagnostic populations that are followed for any cancer 

diagnoses. Current examples include the UK Our Future Health initiative, which will follow 

5 million volunteers (https://ourfuturehealth.org.uk/), Project Baseline in the US following 

10,000 volunteers (www.projectbaseline.com), the Asia Cohort Consortium following at least 

1 million volunteers (www.asiacohort.org) and the European EPIC study following over 

500,000 volunteers (https://epic.iarc.fr/). These longitudinal studies in healthy volunteers 

could help understand the hidden variability between healthy individuals and discover, 

validate, and contextualize early disease signals. Ultimately, these studies could identify 

factors to stratify healthy individuals into groups at risk of developing certain cancers.  

https://ourfuturehealth.org.uk/
http://www.projectbaseline.com/
http://www.asiacohort.org/
https://epic.iarc.fr/
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Screening at-risk populations. Once validated risk models have identified the at-risk 

populations, these individuals can be invited to participate in screening programs, where 

available. Screening aims to detect early cancer by inviting asymptomatic, ostensibly healthy 

people for testing. Ideally, cancer screening should be minimally invasive or non-invasive, 

low cost, and provide minimal false negatives and false positives to minimize harm and 

maximize benefits of screening. Several existing screening tests improve cancer-specific 

mortality or overall mortality, including mammography for breast cancer (41), the Pap smear 

for cervical cancer (42), colonoscopy for colorectal cancer (43), and low-dose computed 

tomography (CT) (44) for lung cancer. While effective, these technologies are not necessarily 

minimally invasive, low cost, or highly sensitive and specific. Nor do these tests reach all of 

the at-risk populations concerned. For example, in the US as of 2019 < 5% of all eligible 

individuals have been screened for lung cancer (45), due to incomplete implementation of 

screening in health systems and low individual compliance.  

For screening to be successful, the follow-up diagnostic workup must be feasible and 

risk-appropriate. For example, breast nodule biopsy (triggered by a positive mammogram) is a 

low-risk outpatient procedure. Conversely, lung biopsy (triggered by a positive lung CT screen) 

is highly invasive and relatively high-risk. The performance characteristics of the primary 

screening test, and the threshold set for a positive or negative test result, must be calibrated 

against the consequences of a positive result. Therefore, any early detection strategy should 

give rise to actionable evidence-based follow-up. 

Making progress against this challenge will likely require a broader and more integrated 

approach than is commonly adopted; investigators should seek to develop and evaluate early 

detection tests within a strong context of understanding of the risk of developing cancer.  This 

understanding needs to inform how and when tests are used, in whom, and how they are acted 

on. In order to best overcome this challenge, it is likely that researchers will need to 

increasingly adopt a multifactorial approach to understanding cancer risk, across risk factors 

such as the germline genome, phenotypic measures, family history, behavioral factors and 

more.  
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Challenge 3: finding and validating cancer detection biomarkers  

A key challenge is how to detect the very small signal of the earliest cancers amidst the noise 

of normal human biology. Two fundamental measures of a diagnostic test are sensitivity and 

specificity. Sensitivity is the ability of a test to correctly identify those with the condition 

being tested for (the true positive rate); a test with higher sensitivity will miss fewer cases 

(false negatives). Specificity is the ability of a test to correctly identify those individuals 

without the condition being tested for (the true negative rate); a test with high specificity does 

not give a positive result when the condition is not present (false positives) (46). Sensitivity 

and specificity depend on both the technology used in the test and also the biomarker/s being 

measured. Two other key measures are: Positive predictive value, which is the probability 

that individuals that test positive actually have the disease, and negative predictive value, 

which is the probability that individuals who test negative do not have the disease (47). The 

target values of these parameters will depend on the intended circumstance of use of the test 

and also on the prevalence of the particular cancer being tested for in a given population. 

Challenges in biomarker validation. Many biomarkers for early cancer detection have been 

proposed, but few have been validated in large trials. For example, elevated prostate specific 

antigen (PSA) in the blood was a candidate prostate cancer early detection biomarker. 

However, PSA varies greatly between individuals and within individuals as they age (or as 

they develop other non-malignant prostate conditions) leading to the potential for over-

diagnosis, unnecessary diagnostic workup (including invasive biopsy, which confers risk), 

and overtreatment of inconsequential disease (which incurs potential adverse effects without 

increasing survival) (48, 49). As such, there has been uncertainty as to the utility of PSA as a 

screening tool, and it is not generally recommended as a primary, population-level screen 

(Figure 3). Another example of a blood marker for cancer that showed promise was CA-125 

for ovarian cancer; while use of this marker increased the number of early stage diagnoses 
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and decreased the number of late stage diagnoses, this was not accompanied by improvement 

in mortality (50).  

Even if validated, highly specific biomarkers can display dichotomy when taken out 

of context. For example, in colorectal cancer KRAS mutations are strongly associated with 

disease progression (51), but in the pancreas, many neoplasms carrying KRAS mutations are 

not malignant (52). A useful biomarker must provide enough prognostic, actionable 

information to inform clinical decision-making.  

Promising biomarkers. Biomarkers of early cancer include visible structural changes to the 

tissue and biochemical changes. Minimally invasive sampling methods are preferred, 

especially where repeated samples from healthy and at-risk people are required. In practice 

this includes imaging, sampling body fluids such as blood, saliva, or urine (53), and sampling 

tissues via swabs or brushings. Exhaled breath is another source of biomarkers, specifically 

volatile organic compound (VOC) signatures of cancer and associated metabolites (54).  

Liquid biopsies (sampling of body fluids) can be used to identify a wide range of 

substances indicative of cancer, derived either from the tumor itself or from the body’s 

response to the tumor. For example, nucleic acid fragments enter the blood during cellular 

apoptosis or necrosis, termed cell-free DNA (cfDNA). In cancer patients, part of the cfDNA 

is derived from the tumor, termed circulating tumor DNA (ctDNA). Analysis of ctDNA has 

shown tremendous promise for personalized mutation profiling and longitudinal monitoring 

of patients with advanced cancers (53, 55), in whom ctDNA levels are relatively high. A key 

challenge is that ctDNA and indeed all biochemical cancer biomarkers are present at 

extremely low concentrations in early stage cancer. New approaches are needed to improve 

on current limits of detection to address this limitation. 

Human genome sequencing (56, 57) has provided unprecedented insights into cancer 

genomes (58, 59) and the identification of biomarkers in the genome. Although mostly 

focused on advanced cancer, these studies have elucidated patterns of genetic variants across 
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cancers, some of which may also be present in early tumors, and that can provide a basis for 

detection, stratification, and treatment of cancers (60). Liquid biopsy tests based on cancer-

associated mutations in ctDNA are showing promise in early detection (61). However, it is 

increasingly clear that phenotypically normal tissue also harbors a range of somatic mutations 

that might normally be considered indicative of cancer or to be drivers of cancer genesis (62); 

those developing early detection approaches must be mindful of this – how can we define 

what a normal background of mutations is, as distinct from a consequential cancer signal?  

Epigenetic modifications of DNA provide another source of early detection 

biomarkers. These include cancer-specific DNA methylation profiles (63), non-coding RNAs 

(64), small regulatory RNAs and the DNA modification 5-hydroxymethylcytosine (65). One 

promising approach analyzes methylation patterns of cfDNA in blood (66) and is now 

entering large-scale prospective clinical trials in the UK (NCT03934866) and the US 

(NCT04241796). Another emerging technique is based on the observation that fragmentation 

patterns in cfDNA differ between people with and without cancer and between different 

cancer types (67). 

Other potential detection biomarkers include circulating tumor cells (68), exosomes 

(69), cell fusions (70), metabolites (71) and proteins (72). These complement DNA 

sequencing for the discovery and exploitation of cancer-specific signatures (73-75). 

Furthermore, certain microbes may confer susceptibility to certain cancers (76-79), yielding 

another potential pool of biomarkers.  

Various types of signal modalities are in clinical use or under development for early cancer 

detection (Figure 4). It is possible that “multimodal” testing will ultimately achieve higher 

sensitivity and specificity for early cancer than a test that uses a single type of biomarker. 

Multimodal testing can be sequential or parallel. Sequential testing cascades from 

tests indicating risk to confirmatory test/s of another modality. While effective (e.g. 
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colorectal cancer screening (Figure 5)), this results in long, complex diagnostic journeys. 

Parallel testing measures different modalities and integrates those data to provide the 

diagnostic signal, for example detection of the same cancer via measurement of ctDNA, 

metabolomics, and imaging. Parallel testing has improved the accuracy of liquid biopsy tests 

in blood (75), urine (80), and cervical swabs (81). Another approach has been to profile both 

ctDNA mutations and serum protein biomarkers (75, 82), with further improvement by also 

adding positron emission tomography-computed tomography (PET-CT) imaging (83). A 

prominent example of a successful multimodal cancer detection test combines an assay for 

fecal blood with a test for known cancer-associated DNA mutations, for improved colorectal 

cancer screening (84) over the single fecal hemoglobin test and is now in clinical use.  
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Data analytic methods. Novel computational tools are important to analyze, integrate, and 

use the data generated by diagnostics. Artificial intelligence (AI) and machine learning (ML) 

approaches, such as support vector machine and neural network models, can discover cancer 

biomarkers, detect cancer-specific signatures in high-dimensional datasets, and build 

prospective statistical classifiers for evaluating diagnostic performance in independent 

cohorts (38).  Such approaches offer exciting avenues for progress but are also fraught with 

potential challenges, of which researchers should be mindful.  Many AI and ML models are 

criticized for being “black box” i.e. it is not possible to explain why the features (e.g. 

biomarkers) have been selected by the model; the creation of full interpretable models would 

be advantageous. Ai and ML models are often developed (or “trained”) on datasets derived 

from selected populations which do not represent the real population where the AI-derived 

test would be used, and as such, the model does not translate.  Some AI and ML models are 

of poor design and insufficient sample size, so risking bias and overfitting.  The quality of 

design and reporting of some trials of AI approaches can also be suboptimal, calling into 

question the validity of their claims; such trials may not be prospective, may be at high risk of 

bias, may lack appropriate transparency on data and code, may lack adequate comparator 

groups and may deviate from existing reporting standards. And in some cases, AI and ML 

methodology might simply not be advantageous over statistical methods such as logistic 

regression.  

The way forward to address these challenges is through rigorous study design informed by 

appropriate statistical and methodological expertise; the right analytic tool should be selected 

for the intended purpose. Investigators developing early detection markers should be mindful 

of variability between individuals with and without cancer, the specificity of their marker and 

the potential for false positives/over diagnosis. A promising approach is analysis of multiple 

biomarkers across modalities, which are integrated to produce a pattern indicative of cancer. 

Robust validation of markers is key; a significant challenge for the field is securing the 

funding for large-scale validation studies. 
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Challenge 4: developing accurate technologies for early detection 

Developing technologies with the sensitivity to detect the earliest tumors and the specificity 

to minimize false positives is a key challenge. The emergence of new technologies is 

enabling early cancer detection with increasing accuracy.  

One early detection goal is to detect emerging solid tumors which are susceptible to therapy 

and unlikely to have metastasized e.g. prior to development of tumor microenvironments that 

support enhanced angiogenesis, and before programs suppressing anti-tumor immunity are 

established (22, 26, 85), when the tumor is roughly a millimeter in diameter (comprising 105 

to 106 cells). Such early lesions. Most imaging technologies in clinical development or use 

cannot achieve detection at this size, but new in vivo imaging instruments such as 10.5T MRI 

(86) are continuously pushing the limits.  

New technologies. Sensitivity is being improved by recent technologies that detect tumor 

metabolites and other secondary products (Fig. 4) that are relatively more abundant than 

tumor cells. This can be augmented by highly specific probes, such as tumor-specific 

antibodies or peptides that are radio-labelled to increase signal. Other strategies include 

engineered diagnostics that are selectively activated in the presence of disease, such as 

molecular (80, 87) and biological (88) sensors that profile the in vivo tumor 

microenvironment to generate synthetic biomarkers of disease. “Activity-based diagnostics” 

use enzyme activity to detect or generate exogenous biomarkers that signal the presence of 

cancer. For instance, nanoparticles have been developed that are cleaved by dysregulated 

protease activity in cancer cells or their microenvironments to generate urinary reporters (89), 

and cancer-associated enzymes can metabolize exogenous VOC probes to produce volatile 

reporters for non-invasive detection (87). New synthetic biology tools include engineered 

probiotic (90) and immune cell (91) diagnostics for tumor detection via amplified, activity-

based readouts.  

Developments in material engineering and microfabrication have yielded devices that 

can emulate physiological microenvironments to probe tumor biology and isolate circulating 

tumor cells (CTCs) and extracellular vesicles from patient samples. Notable examples include 
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label-free capture of CTC clusters (68, 92), and ultrasensitive detection of circulating exosomes 

with microfluidic chips or external hardware (93, 94). Miniaturization has enabled new sensing 

approaches using wearables and implantable devices where personalized health data can inform 

the prevention or interception of certain diseases (94). More robust integration of device 

engineering with downstream molecular profiling technologies will help validate the relevance 

of these approaches for early detection.  

 

Imaging technologies. Contemporary imaging technologies can only visualize tumors 

containing over 109 cells; this will miss many of the smaller, earliest tumors. Imaging of 

tissue morphology is currently used in breast cancer screening, in the form of X-ray 

mammography, and low-dose CT is increasingly being used to detect early-stage lung cancer 

in high-risk groups (99). Although these techniques can be used for screening, as they are 

relatively quick and low cost, they are subject to limited resolution and also confer risk to the 

patient due to their use of ionizing radiation.  More advanced imaging modalities are not 

currently routinely used in primary screening due to high cost and low availability.  

Molecular imaging technologies, such as MRI (95) and PET (96), can perform early diagnosis 

and staging.  Enhanced variations on these technologies provide the possibility of enhanced 

sensitivity, specificity or PPV, for example time-of-flight PET (97), where transit times of the 

photons emitted by the object generating the image signal provide a greater signal to noise 

ratio, and hyperpolarized MRI (98), where hyperpolarised carbon-13-containing moleculaes 

enable the collection of perfusion and metabolic information in addition to structural imaging.  

Using imaging to examine multiple properties of the lesion can enhance the detection 

and classification of early lesions. For example, multi-parametric MRI of the prostate 

provides information on prostate volume, cellularity, and vascularity; this can distinguish 
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benign lesions from aggressive tumors requiring intervention (100). Imaging has the 

advantage of being non-invasive and easily repeatable to detect growing tumors. For 

example, lung cancer screening with low-dose CT repeated over time can distinguish benign 

lung nodules of low malignant potential from early lung cancer nodules (99).  

The development of computer-assisted diagnostic systems help radiologists to 

interpret images (101). Computer-driven feature extraction can exploit differences in texture 

and shape that the naked eye cannot see. Digital attributes of the suspect lesion are called 

‘radiomic’ features and may contain indirect information about the underlying histopathology 

(102). This is where AI and machine learning may help detect cancer (103) and to predict risk 

of progression (104), although issues of transparency and reproducibility must be addressed 

(105). The application of AI in imaging will require large volumes of well-annotated image 

data, acquired under standardized conditions, representing all populations equitably, and 

made widely available via curated image repositories. 

Photo-acoustic imaging exposes the region of interest to pulsed laser light of a given 

wavelength, generating a sound that is measured by microphones or piezoelectric sensors. 

The level of detail and resolution of the tissue is higher than that of all other types of imaging 

and is free of ionizing radiation. The challenge is depth of penetration and miniaturization for 

clinical use (106). Visible light imaging through endoscopy has been a mainstay of early 

detection (e.g. in the colon and lung). The emerging fluorescence endoscopy technique, along 

with a fluorescent molecular imaging probe, has been used for enhanced detection of lesions 

in patients with Barrett’s esophagus (107) and of neoplastic polyps in the colon (108). 

Hyperpolarized MRI is another promising departure from conventional imaging. This 

technology allows the detection of cancers by their metabolic rather than morphological 

differences (109).  
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Histopathology and AI. Following initial detection by biomarkers and/or imaging, 

histopathology is a key confirmatory diagnostic and prognostic stage of the early detection 

paradigm. The application of machine learning techniques to digitized slides can increase 

sensitivity, reduce subjectivity and inter-reader variation and predict prognosis, recurrence 

and tumor susceptibility to treatment (110). In some cases, such as Barrett’s esophagus 

dysplasia, bowel polyps and cervical neoplasia, pathologists examine a pre-cancerous 

condition with the aim of identifying the transition to early cancer. Digital pathology and AI 

could help improve test turnaround times and diagnostic accuracy, detecting early signs of 

cancer and providing data for further research (111). Current challenges in digital pathology 

include handling artefacts, overcoming sample variability, lack of binary variables where a 

diagnosis may require a risk score and combining samples across multiple sites and cohorts.  

The fundamental challenge is to reduce the limits of detection such that the earliest tumors 

can be identified while minimizing false positive test results. Ways forward to address this 

challenge through technology include approaches to amplify biological signals, or to enable 

continuous monitoring, for example through wearable or implantable sensors. Advanced 

imaging and other noninvasive approaches also may lead towards a biopsy-free model of 

detection and characterization, so increasing public acceptability. 

Challenge 5: evaluating early detection approaches  

There are many challenges around the design and methodology of trials of early detection 

approaches. Trials must be carefully designed to address the relevant population and measure 

the appropriate endpoints in order to provide statistically robust evidence to change practice.  

Early detection trials differ from the better-known clinical trials for therapeutics and require 

specialist statistical expertise to inform study design and appropriately powered sample size.  

For example, early detection trials’ statistical power is affected by factors which do not exist 

in therapeutic trials, such as the number of times an individual is tested, the time between 

tests and the ages at which testing will be applied.   However, the main challenges to the 

delivery of early detection trials are in their scale and interpretation. 
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The scale of early detection trials. Currently, regulatory or reimbursement decisions on the 

adoption of cancer screening tests are generally based on impact on mortality; does the use of 

the screening test mean fewer deaths from cancer than in an unscreened population?  

Demonstrating this requires very large numbers of participants (given the comparatively low 

incidence rate of cancers in an asymptomatic population) and very long timelines (given the 

potential lag between commencement of the trial, a given individual developing cancer and 

that cancer resulting in death).  For example, the trials assessing low-dose CT screening for 

lung cancer in heavy smokers took 7 years and 53,454 participants in the US (112) and over 

10 years with 15,789 participants in Europe (113). In a more general population (lacking the 

greatly increased cancer risk of heavy smoking), even greater numbers of participants are 

needed. For example, trials assessing screening for ovarian and prostate cancers involved 

over 200,000 women (114) and 184,000 men, respectively (115). This scale makes most early 

detection trials multicenter by default. Clinical trial networks such as those sponsored by the 

European Organization for Research and Treatment of Cancer (EORTC) and the US-based 

National Cancer Institute (NCI) can help improve research capacity in trial sites, to facilitate 

and accelerate such large trials.  

Another attractive option is embedding research into screening programmes, which can take 

advantage of existing screening infrastructure.  This can, for example, be done using the 

stepped-wedge design, where initially observations are collected during a baseline period in 

which no participants are exposed to the intervention (i.e. the screening test under 

investigation). Following this, at regular intervals (or “steps”) participants (or groups of 

participants) are randomized to receive the intervention; these ascending steps continue until 

all participants have received the intervention (116). 

One way to decrease the length and size of trials is to power the study to detect 

changes in surrogate endpoints (e.g. a reduction in the absolute number of late-stage 

diagnoses versus controls) rather than mortality (117). Such trials are faster and require fewer 

participants to record enough events in a limited timeframe. However, most healthcare 

systems, regulatory agencies, and guideline bodies still require evidence of reduced mortality 

before approving tests for marketing, reimbursement or widespread use. Advice should be 

sought from the relevant agencies on which surrogate endpoints might be acceptable. Studies 

should be designed and powered, and endpoints chosen, based on the objectives of the study 
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(e.g. initial signal-finding trial versus technology validation versus confirmatory prospective 

trial) and the intended circumstances of use. Early detection technology must generate the 

evidence that is required by regulators, advisory bodies, and payers for research to achieve 

clinical impact; proper validation (118) and consideration of the pathway to implementation 

are crucial.  

Interpreting trial results. Clinical trial results of early detection technologies should be 

interpreted taking into consideration spectrum and lead-time biases. Spectrum bias arises 

when tests are assessed in a population that does not reflect the intended target population 

(119). For example, comparing a study population with established and advanced disease to a 

healthy control population (often young and without other chronic diseases which increase 

variability in the general population), which can confound the specificity of the test. 

Spectrum bias also arises when tests are developed using an at-risk population (e.g. heavy 

smokers) with high disease incidence, but the test is intended for use in the general 

population (with lower incidence). Such a test will lose sensitivity and even specificity in the 

real-world target population, which has lower prevalence of disease and other confounders. 

This can cause false positives and even over-diagnosis.  

Lead-time bias describes the time from early detection of disease to clinical 

presentation of signs and symptoms (when diagnosis would otherwise have taken place) (120, 

121). This makes survival seem longer when you detect cancer earlier by “artificially” 

moving the starting block back in time, even if early detection did not affect the point at 

which the individual died.  

Spectrum bias can be addressed by validating markers and tests in populations which 

appropriately represent the population of intended use of the test.  Lead time bias is a more 

complex issue; currently the method to address this bias is to conduct a trial designed to 

assess impact on mortality (e.g. are there fewer deaths overall in the screened group than in 

the unscreened group), however this then leads to the challenge of huge sample size and cost, 

as discussed above.  The way forward to address this challenge is through careful study 

design; dedicated experts in screening/diagnostic methodology must be involved and the 
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intended target audience for the results (e.g. regulatory and guideline-developing bodies) 

must be consulted, when designing trials to evaluate early detection approaches. If we are to 

increase the glacial pace at which new early detection/screening approaches are evaluated and 

reach the clinic, a re-think of the evidence threshold for adoption is required, perhaps based 

on an absolute reduction in late-stage diagnoses (or other well-validated surrogate outcomes), 

with mortality data then gathered post-implementation. 

Conclusions  

Early detection of cancer has the potential to transform patient survival and is increasingly 

recognized as an area of unmet need by the public, patients, policy makers and research 

funders. Many of these challenges will require a sustained effort to find practical, long-term 

solutions – we have suggested a framework that we believe will meaningfully accelerate 

progress (Figure 6). Several contextual issues must also be carefully considered to maximize 

the translation of early detection research into clinical impact.  

Some funders of academic cancer research have invested in programs to specifically 

address early detection (e.g. the US National Cancer Institute (122, 123) or Cancer Research 

UK (124, 125)), but the proportion of overall cancer research funding attributable to early 

detection remains disproportionately low, in light of the potential health benefits. More must 

be done, particularly in supporting validation of markers and tests (118). A key part of this is 

the need to attract early career researchers to the field and enabling them to become 

established. The relatively long timelines of early detection research and test development 

necessitate a re-think about traditional fellowship/grant models of supporting and evaluating 

early career researchers to incentivize them to establish a career in this field.  

Furthermore, the pharmaceutical industry has proportionally invested little in early 

detection, as compared to the billions spent on drug development, often due to a historical 
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perception of an unattractive business model. However, there now appears to be an inflection 

(126) whereby investors and large corporations are increasingly willing to invest in this space 

(127, 128) and it is possible that there is a growing realization that early detection will change 

the business model for cancer treatment.  

An interdisciplinary culture is essential to early detection research and development, 

which inherently needs a convergence of biological understanding, clinical insight, 

technology innovation, data science, risk stratification and health systems research. Without 

any of these essential components, the goal of transforming cancer survival cannot be 

realized. The implementation of interdisciplinarity can be fostered by research funders.  

To have a meaningful impact on survival, early detection must be integrated into healthcare 

systems and must lead to evidence-based early interventions, either to prevent progression or 

to cure cancer. Lastly, and crucially, researchers must keep in mind that early detection 

should be accessible to all based on need, must not exacerbate health inequities, and must 

seek to do no harm (minimizing overdiagnosis and over-treatment).  

With the ever-increasing depth of biological insight and an ever-increasing pace of 

technological innovation, we are at the tipping point for early cancer detection research and 

its translation to the ultimate objective of early curative interventions and increased cancer 

survival.  
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FIGURES 

 

Fig. 1. Patients survive longer when cancer is detected at an early stage. 5-year survival 

data for bowel, breast, lung, ovarian, and esophageal cancer, and melanoma by stage of 

diagnosis from Public Health England (129) (A) and US Surveillance, Epidemiology and End 

Results (SEER) database (https://seer.cancer.gov) (B). Data from the International Agency 

for Research on Cancer (https://survcan.iarc.fr/indexsurvcan1.php) shows 5-year survival by 

stage of diagnosis for colon and breast cancers in Asian countries (C). International 

comparison (International Cancer Benchmarking Partnership data; 

https://gco.iarc.fr/survival/survmark) (D) across countries for 5-year survival of colon cancer 

shows similar trends in percentages of patients surviving early-stage compared to late-stage 

disease.   

Fig. 2.  Windows for early detection across the course of cancer progression.  Cancer 

evolves through various stages, offering multiple windows for early detection.  Detection at 

each stage presents different information and choices, with the consequences of detection 

dependent on the level of information provided by the subsequent test(s) and the level of 

certainty around whether the disease will be consequential. 

 

Figure 3. Prostate cancer detection is a cautionary tale for over diagnosis and over 

treatment 

There are various consequences of prostate-specific antigen (PSA) testing when it is used as a 

screening tool. A raised PSA level is not considered useful for prostate cancer screening due 

to false positives and detection of inconsequential cancers that will not cause harm in the 

individual’s lifetime. Subsequent biopsy is also imperfect because it does not always capture 

the tumor and may not distinguish indolent from aggressive cancers. The introduction of 

imaging biomarkers (e.g. multi-parametric magnetic resonance imaging - mpMRI) combined 

with pathology (at the junctures indicated by the + symbol in the figure) has improved 

prognosis through better stratification of disease.  

 

Fig. 4. Modalities of early cancer detection. There are a wide variety of biomarker 

modalities that are in use, or are being developed, for the early detection and diagnosis of 

cancer, alongside biomarkers that can be used to guide prognosis and monitoring of treatment 

response or recurrence.  This figure presents some of the main examples.  CT: Computed 
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Tomography. MRI: Magnetic Resonance Imaging. FOBT: Fecal Occult Blood Test. FIT: 

Fecal Immunochemical Test. PET: Positron Emission Tomography. PSA: Prostate Specific 

Antigen. ctDNA: Circulating tumor DNA. CTC: Circulating Tumor Cell.  

 

Figure 5. Colorectal cancer screening is an early detection success story. 

Screening for colorectal cancer (CRC) relies on a cascade of diagnostic tests (A – fecal 

screening to endoscopy to biopsy/histopathology)) that can lead to the detection of cancers at 

an earlier stage (B). This has transformed CRC into a treatable cancer with increased survival 

rates when the cancer is caught early (see Figure 1). Population screening programs have 

relied on fecal occult blood tests (FOBT) that measure gastrointestinal bleeding. In the UK, 

FOBT was recently replaced by the fecal immunohistochemical test (FIT – a more accurate 

method of detecting blood in feces) and in the US, screening also includes the Cologuard 

FIT-DNA test (which looks for cancer-associated DNA mutations in the feces, in addition to 

the FIT component). Positive results from fecal screening tests usually then cascade to 

endoscopic examination and where appropriate, intervention. The majority of CRC, however, 

is still diagnosed through presentation to primary care and urgent referral routes, where 

symptomatic presentation is often associated with later disease stage.   

 

 

Fig. 6. Overcoming barriers to enable early detection.  There are system-wide challenges 

(grey brick) that must be tackled to reach the goal of earlier cancer detection. The multiple 

facets of these challenges require a diverse set of approaches and enablers (light grey) and 

communities (colored outer segments) to overcome them. 
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