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Abstract

We develop a (co)algebraic framework to study a family of process calculi with monadic
branching structures and recursion operators. Our framework features a uniform semantics of
process terms and a complete axiomatisation of semantic equivalence. We show that there are
uniformly defined fragments of our calculi that capture well-known examples from the literature
like regular expressions modulo bisimilarity and guarded Kleene algebra with tests. We also
derive new calculi for probabilistic and convex processes with an analogue of Kleene star.

1 Introduction

The theory of processes has a long tradition, notably in the study of concurrency, pioneered by
seminal works of Milner [1], [2] and many others [3]. In labelled transition systems, a popular
model of computation in process theory, processes branch nondeterministically. This means that
any given action or observation transitions a starting state into any member of a predetermined set
of states. In Milner’s CCS [2], nondeterminism appears as a binary operation that constructs from
a pair of programs e and f the program e+f that nondeterministically chooses between executing
either e or f . This acts precisely like the join operation in a semilattice. In fact, elements of a free
semilattice are exactly sets, as the free semilattice generated by a collection X is the set P+

ω X of
finite nonempty subsets of X [4]. This is our first example of a more general phenomenon: the
type of branching in models of process calculi can often be captured with an algebraic theory.

A second example appears in the probabilistic process algebra literature, where the process
denoted e +p f flips a weighted coin and runs e with probability p and f with probability 1 − p.
The properties of +p are axiomatised and studied in convex algebra, an often revisited algebraic
theory of probability [5]–[8]. The free convex algebra on a set X is the set DωX of finitely supported
probability distributions on X [8]–[10].

A third example is guarded Kleene algebra with tests (GKAT), where the process e +b f pro-
ceeds with e if a certain Boolean predicate b holds and otherwise proceeds with f , emulating the
if-then-else constructs of imperative programming languages [11]–[13]. If the predicates are
taken from a finite Boolean algebra 2At, the free algebra of if-then-else clauses on a set X is
the function space XAt. This explains why adjacency sets for tree models of GKAT programs take
the form of functions At→ X.

This paper proposes a framework in which these languages can be uniformly described and
studied. We use the algebra of regular behaviours (or ARB) introduced in [1] as a prototypical
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example. ARB employs nondeterministic choice as a branching operation, prefixing of terms by
atomic actions, a constant representing deadlock, variables, and a recursion operator for each
variable. Specifications are interpreted using structural operational semantics in the style of [14],
which sees the set Exp of all process terms as one large labelled transition system. This is captured
succinctly as a coalgebra, in this case a function

β : Exp→ P(V +A× Exp) (1)

Only finitely branching processes can be specified in ARB, so we will replace P with Pω in (1). From
a technical point of view, Pω is the monad on the category Sets of sets and functions presented
by the algebraic theory of semilattices with bottom.

By substituting the finite powerset functor in (1) with other monads presented by algebraic
theories, we obtain a parametrised family of process types that covers the examples above and
a general framework for studying the processes of each type. Instantiating the framework with
an algebraic theory gives a fully expressive specification language for processes and a complete
axiomatisation of behavioural equivalence for specifications.

One striking feature of many of the specification languages we construct is that they contain
a fragment consisting of nonstandard analogues of regular expressions. We call these expressions
star expressions and the fragment composed of star expressions the star fragment. Star fragments
extend several existing analogues of basic regular algebra found in the process theory literature,
including basic process algebra [15] and Andova’s probabilistic basic process algebra [5], by adding
recursion operators modelled after the Kleene star.

Milner is the first to notice the star fragment of ARB in [1]. He observes that the algebra of
processes denoted by star expressions is more unruly than Kleene’s algebra of regular languages,
and that it is not clear what the appropriate axiomatisation should be. He offers a reasonable
candidate based on Salomaa’s first axiomatisation of Kleene algebra [16], but ultimately leaves
completeness as an open problem. This problem has been subjected to many years of extensive
research [17]–[22]. A potential solution has recently been announced by Clemens Grabmayer and
will appear in the upcoming LICS.

Replacing nondeterministic choice with the if-then-else branching structure of GKAT, we
obtain the process behaviours explored in the recent rethinking of the language [23]. This makes
the open problem of axiomatising GKAT (without the use of extremely powerful axioms like the
Uniqueness Axiom of [24]), stated first in [24] and again in [23], yet another problem of axiomatising
an algebra of star expressions. Our general characterisation of star expressions puts all these
languages under one umbrella, and shows how they are derived canonically from a single abstract
framework.

In summary, the contributions of this paper are as follows:

• We present a family of process types parametrised by an algebraic theory (Section 2) together
with a uniform syntax and operational semantics (Section 3). We show how these can be
instantiated to concrete algebraic theories, including guarded semilattices and pointed convex
algebras. These provide, respectively, a calculus of processes capturing control flow of simple
imperative programs and a calculus of probabilistic processes.

• We define an associated denotational semantics and show that it agrees with the operational
semantics (Section 4). This coincidence result is important in order to prove completeness
of the uniform axiomatisation we propose for each process type (Section 5).

• Finally, we study the star fragment of our parameterised family and propose a sound axioma-
tisation for this fragment (Section 6). We show that star fragments of concrete instances of
our calculi yield known examples in the literature, e.g. Guarded Kleene Algebra with tests
(GKAT) [23], [24] and probabilistic processes of Stark and Smolka [25].

Related work is surveyed in Section 7, and future research directions are discussed in Section 8.
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2 A Parametrised Family of Process Types

In this section, we present a family of process types parametrised by a certain kind of algebraic
theory. The processes we care about are stateful, meaning they consist of a set of states and a
suitably structured set of transitions between states. Stateful systems fit neatly into the general
framework of universal coalgebra [26], which stipulates that the type of structure carried by the
transitions can be encoded in an endofunctor on the category Sets of sets and functions. Formally,
given a functor B : Sets → Sets, a B-coalgebra is a pair (X,β) consisting of a set X of states
and a structure map β : X → BX. A coalgebra homomorphism h : (X,β) → (Y, ϑ) is a function
h : X → Y satisfying ϑ ◦ h = B(h) ◦ β. Many types of processes found in the literature coincide
with B-coalgebras for some B, and so do their homomorphisms. For example, finitely branching
labelled transition systems are Pω(A × Id)-coalgebras, and deterministic Moore automata are
O × IdA-coalgebras [27].

In this paper, we consider coalgebras for functors of the form

BM := M(V +A× Id) (2)

for fixed sets V and A and a specific kind of functor M : Sets→ Sets. Intuitively, there are two
layers to the process behaviours we care about: one layer consists of either an output variable in V
or an action from A that moves on to another state, and the other layer (encoded by M) combines
output variables and action steps in a structured way.

Example 2.1. When M = Pω, we obtain Milner’s nondeterministic processes [1]. Coalgebras
for BPω are functions of the form β : X → Pω(V + A × X), or labelled transition systems with
an additional decoration by variables. Write x a−→ y to mean (a, y) ∈ β(x) and x ⇒ v to mean
v ∈ β(x). The image below posits a well-defined BPω -coalgebra

v x1 x2 x3
a1 a1 a2

Its state space is {x1, x2, x2}, A includes a1 and a2, and v is a variable in V .

Algebraic Theories and Their Monads We are particularly interested in BM -coalgebras
when M is the functor component of a monad (M,η, µ) that is presented by an algebraic theory
capturing a type of branching. A monad consists of natural transformations η : Id ⇒ M and
µ : MM ⇒ M , called the unit and multiplication respectively, satisfying two laws: µ ◦ ηM =
idM = µ ◦M(η) and µM ◦ µ = M(µ) ◦ µ. For our purposes, an algebraic theory is a pair (S,E)
consisting of a polynomial endofunctor S =

∐
σ∈I Idnσ on Sets called an algebraic signature and a

set E of equations in the signature S. An element σ of I should be thought of as an operation with
arity nσ. An algebraic theory (S,E) presents a monad (M,η, µ) if there is a natural transformation
ρ : SM ⇒M such that for any set X, (MX, ρX) is the free (S,E)-algebra on X. That is, (MX, ρX)
satisfies E and for any S-algebra (Y, ϕ) also satisfying E and any function h : X → Y , there is
a unique S-algebra homomorphism ĥ : (MX, ρX) → (Y, ϕ) such that h = ĥ ◦ η. This universal
property implies that any two presentations of a given algebraic theory are isomorphic, so we speak
simply of “the” monad presented by an algebraic theory.

Example 2.2. The finite powerset functor is part of the monad (Pω, {−},
⋃

) that is presented by
the theory of semilattices (with bottom). The theory of semilattices is the pair (1 + Id2,SL), since
the arity of a constant operation is 0 and + is a binary operation, and SL consists of

x+ 0
(SL1)
= x x+ x

(SL2)
= x x+ y

(SL3)
= y + x x+ (y + z)

(SL4)
= (x+ y) + z

Not every algebraic theory has such a familiar presentation as the theory of semilattices, but
it is nevertheless true that every algebraic theory presents a monad. If we let S∗X denote the set
of S-terms, expressions built from X and the operations in S, then (S,E) automatically presents

3



the monad (M,η, µ) where MX = (S∗X)/E := {[q]E | q ∈ S∗X} is the set of E-congruence classes
of S-terms, η computes congruence classes of variables, and µ evaluates terms. This is witnessed
by letting the transformation ρ be the restriction of µ to the operations of S on S-terms. We take
this to be the default presentation of an arbitrary algebraic theory.

Our aim is to develop a (co)algebraic framework for studying BM -coalgebras when M is the
functor part of a monad presented by an algebraic theory. We will make three assumptions about
the algebraic theories. First, we rule out the case of M being the constant 1 functor.

Assumption 1. The theory E is nontrivial, meaning that the equation x = y is not a consequence
of E for distinct x and y.

This is equivalent to requiring that the unit η is injective. That is, the E-congruence classes
[x]E and [y]E in MX are distinct for distinct variables x and y in X.

Second, we assume the existence of a constant symbol denoting deadlock, which might occur
when recursing on unguarded programs.

Assumption 2. Algebraic theories contain a designated constant 0.

Finally, to keep the specifications of processes finite, we make the following assumption despite
the fact that it has no bearing on the results presented before Section 5.

Assumption 3. Each operation from S has a finite arity.

We conclude this section with examples of algebraic theories and the monads they present.

Example 2.3. For a fixed finite set At of atomic tests, the algebraic theory of guarded semilattices
is the pair (1 +

∐
b⊆At Id2,GS), where GS consists of the equations

x+b x
(GS1)

= x x+At y
(GS2)

= x x+b y
(GS3)

= y +b̄ x (x+b y) +c z
(GS4)

= x+bc (y +c z)

Here, +b is the binary operation associated with the subset b ⊆ At, b̄ := At \ b, and bc := b ∩ c.
The theory of guarded semilattices is presented by the monad ((1 + Id)At, λξ.(−),∆∗), where
(λξ.x)(ξ) = x and ∆∗(F )(ξ) = F (ξ)(ξ). The idea is that +b acts like an if-then-else clause in
an imperative program. This is reflected in a free guarded semilattice ((1 + X)At, ρX), where for
a pair of maps h1, h2 : At→ X we define

ρX(h1 +b h2)(ξ) :=

{
h1(ξ) if ξ ∈ b
h2(ξ) otherwise

The theory of guarded semilattices dates back to the algebras of if-then-else clauses studied in
[11]–[13], [28]. For instance, guarded semilattices are examples of McCarthy algebras, introduced
by Manes in [11].1

Example 2.4. By deleting the second axiom of SL, we obtain the theory of commutative monoids
(Id2,CM). This theory presents the finite multiset monad (Mω, δ(−),

∑
), where

MωX = {m : X → N | {x | m(x) > 0} is finite}

and
δy(x) = [x = y?]

∑
(F )(x) =

∑
m∈MωX

F (m) ·m(x)

Example 2.5. The theory of pointed convex algebras studied in [29] is (1+
∐
p∈[0,1] Id2,CA), where

CA consists of the equations

x+p x
(CA1)

= x x+1 y
(CA2)

= x x+p y
(CA3)

= y +p̄ x (x+p y) +q z
(CA4)

= x+pq (y + qp̄
1−pq

z)

1More information on the theory of guarded semilattices can be found in Appendix A.
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Here, +p is the binary operation with index p ∈ [0, 1], p̄ := 1−p, and pq 6= 1. This theory presents
the pointed finite subprobability distribution monad (Dω(1 + Id), δ(−),

∑
), where

Dω(1 +X) =

{
θ : X → [0, 1]

∣∣∣∣ {x | θ(x) > 0} is finite∑
x∈X θ(x) ≤ 1

}
for any set X, and for any x ∈ X, θ ∈ Dω(1 +X), and Θ ∈ Dω(1 +Dω(1 +X)),

δx(y) = [x = y?]
∑

(Θ)(θ) =
∑
y∈X

Θ(θ) · θ(y)

This is witnessed by the transformation ρ that takes 0 to the trivial subdistribution and computes
the Minkowski sum ρX(θ +p ψ) = p · θ + (1− p) · ψ for each p ∈ [0, 1], θ, ψ ∈ Dω(1 +X).

Example 2.6. The theory of pointed convex semilattices studied in [29]–[31] combines the theory
of semilattices and the theory of convex algebras. It has both a binary operation + mimicking
nondeterministic choice and the probabilistic choice operations +p indexed by p ∈ [0, 1]. Formally,
it is given by the pair (1 + Id2 +

∐
p∈[0,1] Id2,CS), where CS is the union of SL, CA, and the

distributive law

(x+ y) +p z
(D)
= (x+p z) + (y +p z)

This theory presents the pointed convex powerset monad (C, ηC , µC), where CX is the set of finitely
generated convex subsets of Dω(1 +X) containing δ0, and for x ∈ X and Q ∈ CCX,

ηC(x) = {p · δx | p ∈ [0, 1]} µC(Q) =
⋃

Θ∈Q

 ∑
U∈C0X

Θ(U) · θU

∣∣∣∣∣∣ (∀U ∈ C0X) θU ∈ U


The witnessing transformation ρC takes 0 to {δ0}, computes the Minkowski sum (extended to
subsets) in place of +p, and interprets the + operation as the convex union

ρCX(U + V ) = {p · θ1 + (1− p) · θ2 | p ∈ [0, 1], θ1 ∈ U, θ2 ∈ V }

3 Specifications of Processes

Fix an algebraic theory (S,E) presenting a monad (M,η, µ). In this section, we give a syntactic and
uniformly defined specification system for BM -coalgebras and an associated operational semantics.
We are primarily concerned with the specifications of finite processes, and indeed the process terms
we construct below denote processes with finitely many states. The converse is also true, that every
finite BM -coalgebra admits a specification in the form of a process term, but we defer this result
to Section 5 because of its relevance to the completeness theorem there.

The syntax of our specifications consists of variables from an infinite set V , actions from a set
A, and operations from S. The set Exp of process terms is given with the grammar

e, ei ::= 0 | v | σ(e1, . . . , en) | ae | µv e

where v ∈ V , a ∈ A, and σ is an S-operation. Abstractly, process terms form the initial ΣM -algebra
(Exp, α), where ΣM : Sets→ Sets is the functor defined by

ΣM := S + V +A× Id + V × Id

and the algebra map α : ΣMExp→ Exp evaluates ΣM -terms.
Intuitively, the symbol 0 is the designated constant of S denoting the deadlock process, which

takes no action. Output variables are used in one of two ways, depending on the expression in
which they appear. A variable v is free in an expression e if it does not appear within the scope of
µv and bound otherwise. If v is free in e, then v denotes “output v”. Otherwise, v denotes a goto
statement that returns the computation to the µv that binds v. The process σ(e1, . . . , en) is the
process that branches into e1, . . . , en using an n-ary operation σ as the branching constructor. The
expression ae denotes the process that performs the action a and then proceeds with e. Finally,
µv e denotes recursion in the variable v.
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ε(v) = η(v)

ε(ae) = η((a, e))

ε(σ(e1, . . . , en)) = σ(ε(e1), . . . , ε(en))

ε(µv e) = ε(e)[µv e//v]

Figure 1: Operational semantics of process terms. Here, v ∈ V , a ∈ A, and e, ei ∈ Exp.

Small-step Semantics Next we give a small-step (operational) semantics to process terms that
is uniformly defined for the process types in our parametrised family. Many of the algebraic theories
we consider lack a familiar presentation, which ultimately prevents the corresponding semantics
from taking the traditional form of a set of inference rules describing transition relations. We take
an abstract approach instead by defining a BM -coalgebra structure ε : Exp→ BMExp that mirrors
the intuitive descriptions of the executions of process terms above. The formal description of ε is
summarised in Fig. 1.

The operational interpretation of the recursion operators requires further explanation. Intu-
itively, µv e performs the process denoted by e until it reaches an exit in channel v, at which point
it loops back to the beginning. However, this is really only an accurate description of recursion in
v when e performs an action before exiting in v. For example, the process µv v not only never exits
in channel v, but it also never performs any action at all. Thus, the operational interpretation of
µv v is indistinguishable from that of deadlock. We deal with this issue as follows: if an exit in
channel v is immediately reached by a branch of e, then we replace that exit with deadlock in µv e.
Formally, we say that a variable v is guarded in a process term e if (i) e ∈ V \ {v}, (ii) e = af or
(iii) e = µv f for some f ∈ Exp, or (iv) either e = µu e1 or (v) e = σ(e1, . . . , en) and v is guarded in
ei for each i ≤ n. In our calculus, we syntactically allow for recursion in unguarded variables, but
one should keep in mind that those variables are ultimately deadlock under the recursion operator.

The operational interpretation of recursion is formally defined using a guarded syntactic sub-
stitution operator [g//v] : BMExp → BMExp,2 a variant of the usual syntactic substitution of
variables. Given g ∈ Exp, we first define [g//v] by induction on S∗(V +A× Exp) as

u[g//v] =

{
η(u) u 6= v

η(0) u = v

(a, f)[g//v] = (a, f [g/v])

σ(p1, . . . , pn)[g//v] = σ(p1[g//v], . . . , pn[g//v])

where u ∈ V , pi ∈ S∗(V + A× Exp), f ∈ Exp, and [g/v] replaces free occurrence of v with g. The
following lemma completes the description of the operational semantics of process terms.

Lemma 3.1. For any g ∈ Exp and v ∈ V , the map [g//v] factors uniquely through BMExp.

For more information on these substitution operators, see Appendix C.
Formally, the map ε assigns to each process term e an E-congruence class ε(e) of terms from

S∗(V +A× Exp). A term from S∗(V +A× Exp) is a combination of variables v and transition-like
pairs (a, ei), so there is often only a small conceptual leap from the coalgebra structure ε to a more
traditional representation of transitions as decorated arrows. We provide the following examples as
illustrations of this phenomenon, as well as the specification languages and operational semantics
of terms defined above.3

Example 3.1. The algebra of control flows, or ACF, is obtained from the theory of guarded
semilattices of Example 2.3 and M = (1 + Id)At. Given a structure map β : X → B(1+Id)AtX and

b ⊆ At, write x b|a−−→ y if β(x)(ξ) = (a, y) for all ξ ∈ b, and x b
=⇒ v if β(x)(ξ) = v for all ξ ∈ b.

The operational semantics returns the constant map λξ.v given a variable v ∈ V and interprets
conditional choice as guarded union. For example, let e = µw (a1(v+ba2w)+bu) and f = v+ba2e.
The process denoted by e is

u e f v

b | a1

b̄ | a2

b̄ b

2Technically, it is only partially defined. See Appendix C for details.
3See Appendix B.
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ζ(γ(v)) = [v]E

ζ(γ(a, t)) = [(a, t)]E

ζ(γ(σ(t1, . . . , tn))) = [σ(ζ(t1), . . . , ζ(tn))]E

ζ(γ(µv t)) = ζ(t){γ(µv t)//v}

Figure 2: The ΣM -algebra structure of (Z, γ). Here, v ∈ V , a ∈ A, t, ti ∈ Z for i ≤ n, and σ is an
n-ary operation from S. By Lambek’s lemma [34], ζ : Z → BMZ is a bijection, so the first three equations
determine γ : V + SZ +A× V → Z. The fourth is a behavioural differential equation [27].

Example 3.2. The algebra of probabilistic actions, or APA, is obtained from the theory of pointed
convex algebras of Example 2.5 and M = Dω(1 + Id). For a structure map β : X → BDω(1+Id)X,

write x k|a−−→ y when β(x)(a, y) = k and e k
=⇒ v when β(e)(v) = k. The operational semantics returns

the Dirac distribution δv for v ∈ V and interprets probabilistic choice as the Minkowski sum. The
process denoted by e = µv (a1u+ 1

2
(a2v + 1

3
w)) is

w e u u

1
2 | a1

1
3

1
6 | a2

1

Example 3.3. The algebra of nondeterministic probabilistic actions, or ANP, is obtained from
the theory of pointed convex semilattices of Example 2.6. For a structure map β : X → BCX,
write x →◦ k|a999K y to mean there is a θ ∈ β(x) such that θ(a, y) = k, and x k

=⇒ v to mean there

is a θ ∈ β(x) with θ(v) = k. The operational semantics returns ηC(v) given v ∈ V , interprets
nondeterministic choice as convex union, and replaces probabilistic choice with Minkowski sum.
For example, e = µv ((a1v + 1

3
a2w) + a2v) denotes

◦ e ◦ w w

1 | a2
1
3 | a1

2
3 | a2 1

4 Behavioural Equivalence and the Final Coalgebra

In this section, we relate the operational semantics arising from the coalgebra structure on Exp in
the previous section to a denotational semantics, which arises through the definition of a suitable
algebra structure on the domain of process behaviours.

For an arbitrary functor B : Sets→ Sets, a behaviour is a state of the final B-coalgebra (Z, ζ),
the unique (up to isomorphism) coalgebra (if it exists) such that there is exactly one homomorphism
!β : (X,β)→ (Z, ζ) from every B-coalgebra (X,β). It follows from general considerations that the
functor BM admits a final coalgebra [26]. The universal property of the final BM -coalgebra pro-
duces the homomorphism !ε : (Exp, ε) → (Z, ζ). The behaviour !ε(e) is called the final (coalgebra)
semantics of e, also known as its operational semantics [32].

For example, the final BPω -coalgebra consists of bisimulation equivalence classes of finite and
infinite labelled trees of a certain form [33]. In this setting, (Exp, ε) is a labelled transition system
and the final semantics !ε constructs a tree from a process term by unrolling. Intuitively, this
captures the behaviour of a specification by encoding all possible actions and outgoing messages
at each time-step in its execution.

In addition to forming the state space of the final BM -coalgebra, the set of process behaviours
also carries the structure of a ΣM -algebra (Z, γ), summarised in Fig. 2. Now, (Exp, α) is the
initial ΣM -algebra, which in particular means there is a unique algebra homomorphism db−ec :
(Exp, α) → (Z, γ). The behaviour dbeec is called the initial (algebra) semantics of e [35], and
provides a denotational semantics to our process calculus.

The algebra structure γ : ΣMZ → Z of (Z, γ) can be seen as a reinterpretation of the pro-
gramming constructs of the language Exp that mimics the operational semantics of process terms.
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The basic constructs are the content of the first three equations in Fig. 2: output variables are
evaluated so as to behave like the variables of (Exp, ε), the behaviour at performs a and moves on
to t, and σ(t1, . . . , tn) branches into the behaviours t1, . . . , tn with additional structure determined
by the operation σ. Interpreting recursive behaviours like µv t requires coalgebraic analogues of
syntactic and guarded syntactic substitution from Section 3.

For a given behaviour s ∈ Z and a variable v ∈ V , the behavioural substitution of s for v is the
map {s/v} : Z → Z defined by the identity

ζ(t{s/v}) =


ζ(s) ζ(t) = [v]E

[u]E ζ(t) = [u]E 6= [v]E

[(a, r{s/v})]E ζ(t) = [(a, r)]E

σ(ζ(t1{s/v}), . . . , ζ(tn{s/v})) ζ(t) = [σ(ζ(t1), . . . , ζ(tn))]E

for any t ∈ Z. The guarded behavioural substitution of s for v is constructed in analogy with
guarded syntactic substitution from the previous section. We start by defining guarded behavioural
substitution in S∗(V +A× Z) as

u{s//v} =

{
u u 6= v

0 u = v

(a, r){s//v} = (a, r{s/v})
σ(r1, . . . , rn){s//v} = σ(r1{s//v}, . . . , rn{s//v})

where u ∈ V , a ∈ A, and r, ri ∈ Z for i ≤ n. This map lifts to an operator BMZ → BMZ for the
same reason as the guarded syntactic substitution operator. This completes the description of the
algebraic structure of (Z, γ) in Fig. 2.

Theorem 4.1. Let db−ec be the unique algebra homorphism (Exp, α) → (Z, γ). For any process
term e ∈ Exp, we have !ε(e) = dbeec.

In other words, the final semantics given with respect to operational rules in Exp coincides with
the initial semantics given with respect to the programming constructs in Z. Consequently, we
write db−ec in place of !ε and simply refer to dbeec as the semantics of e.

5 An Axiomatisation of Behavioural Equivalence

An important corollary of Theorem 4.1 is that behavioural equivalence is a ΣM -congruence on
(Exp, α), meaning that it is preserved by all the program constructs of ΣM . This opens the door to
the possibility of deriving behavioural equivalences between process terms from just a few axioms.
The purpose of this section is to show that all behavioural equivalences between process terms can
be derived from the equations in E presenting (M,η, µ) as well as three axiom schemas concerning
the recursion operators.

The first two out of the three recursion axiom schemas are

(R1) µv e = e[µv e//v]
w not free in e

(R2)
µv e = µw (e[w/v])

Above, e[µv e//v] is the expression obtained by replacing every guarded free occurrence of v in e
with the expression µv e and every unguarded occurrence of v in e with 0, in analogy with the
operator on BMExp of the same name.4

The axiom (R1) essentially allows for a sort of guarded unravelling of recursive terms. This has
the effect of identifying µv v with 0, for example, as well as µv av with a(µv av). The latter satisfies
our intuition that µv av should solve the recursive specification x = ax in the indeterminate x.
The axiom (R2) allows for recursion variables to be swapped for fresh variables. This amounts to

4Indeed, the identity ε(e[µv e//v]) = ε(e)[µv e//v] holds for all e ∈ Exp and v ∈ V Lemma C.9.
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the observation that pairs of terms like µv av and µw aw should both denote the unique solution
to x = ax.

The third recursion axiom schema can be stated in the form of the proof rule

g = e[g/v] v guarded in e
(R3)

g = µv e

We let R denote the set of equations derived from (R1)-(R3), and we let ≡ denote the smallest
congruence in (Exp, α) containing the set of equations derived from E and R. When we refer to
examples like ARB, ACF, APA, and ANP, we are often identifying each of these with their associated
algebras (Exp/≡, α̂) of process terms modulo ≡.

Soundness We would like to argue that ≡ is sound with respect to behavioural equivalence,
meaning that dbeec = dbfec whenever e ≡ f . This is indeed the case, and can be derived from
the fact that the set of congruence classes of process terms itself forms a BM -coalgebra. For an
arbitrary function h : X → Y , call the set ker(h) := {(x, y) | h(x) = h(y)} the kernel of h.

Lemma 5.1. The congruence ≡ is the kernel of a coalgebra homomorphism.

We write [−]≡ : Exp→ Exp/≡ for the quotient map and (Exp/≡, ε̄) for the coalgebra structure
on Exp/≡ making [−]≡ a coalgebra homomorphism (there is at most one such coalgebra struc-
ture [26]). As db−ec is the unique coalgebra homomorphism (Exp, ε)→ (Z, ζ), and because there is
also a coalgebra homomorphism !ε̄ : (Exp/≡, ε̄)→ (Z, ζ), it must be the case that !ε̄ ◦ [−]≡ = db−ec.
By Lemma 5.1, if e ≡ f , then dbeec = !ε̄([e]≡) = !ε̄([f ]≡) = dbfec. This establishes the following.

Theorem 5.1 (Soundness). Let e, f ∈ Exp. If e ≡ f , then dbeec = dbfec.

Soundness allows us to derive at least a subset of all the behavioural equivalences between
process terms from the axioms in E and R. If our aspiration were simply to have a set of behaviour-
preserving code-transformations, then we could simply stop here and be satisfied, since in principle
we could see the axioms of E and R as rewrite rules that satisfy this purpose.

Completeness Aiming a bit higher than deriving only a subset of the behavioural equivalences
between process terms, we move on to show the converse of Theorem 5.1, that ≡ is complete with
respect to behavioural equivalence. We use [36, Lemma 5.1], which can be stated as follows.

Lemma 5.2. Let B : Sets → Sets be an endofunctor with a final coalgebra (Z, ζ), and let C be
a class of B-coalgebras. If C is closed under homomorphic images5 and has a final object (E, ε),
then !ε : E → Z is injective.

A subcoalgebra of a B-coalgebra (X,β) is an injective map ι : U ↪→ X such that β|U factors
through B(ι). A B-coalgebra is locally finite if every of its states is contained in (the image of) a
finite subcoalgebra. We instantiate Lemma 5.2 in the case where B = BM , (E, ε) = (Exp/≡, ε̄),
and C is the class of locally finite BM -coalgebras. Completeness of ≡ with respect to behavioural
equivalence follows shortly after, for if dbeec = dbfec, then !ε̄([e]≡) = !ε̄([f ]≡). By Lemma 5.2, !ε̄ is
injective, so [e]≡ = [f ]≡ or equivalently e ≡ f . To establish the converse of Theorem 5.1, it suffices
to show that our choices of (E, ε) and C satisfy the hypotheses of Lemma 5.2.

Before we continue, we would like to remind the reader of Assumption 3, that S only has
operations of finite arity, as up until now it has not been strictly necessary.

Lemma 5.3. The coalgebra (Exp, ε) is locally finite.

5Ie., if (X,β) ∈ C and h : (X,β)→ (Y, ϑ), then (h[X], ϑ|h[X]) ∈ C.
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The class of locally finite coalgebras is closed under homomorphic images: if (X,β) is locally
finite and h : (X,β) → (Y, ϑ) is a surjective homomorphism, then for any y ∈ Y and x ∈ X
such that h(x) = y, and for any finite subcoalgebra U of (X,β) containing x, h[U ] is a finite
subcoalgebra of (Y, ϑ) containing y [37]. Since y was arbitrary, it follows from Lemma 5.1 that
(Exp/≡, ε̄) is locally finite.

What remains to be seen among the hypotheses of Lemma 5.2 is that (Exp/≡, ε̄) is the fi-
nal locally finite coalgebra, meaning that for any locally finite coalgebra (X,β) there is a unique
coalgebra homomorphism (X,β) → (Exp/≡, ε̄). Every homomorphism from a locally finite coal-
gebra is the union of its restrictions to finite subcoalgebras, so it suffices to see that every finite
subcoalgebra of (X,β) admits a unique coalgebra homomorphism into (Exp/≡, ε̄).

To this end, we make use of an old idea, possibly originating in the work of Salomaa [16].
We associate with every finite coalgebra a certain system of equations whose solutions (in Exp/≡)
are in one-to-one correspondence with coalgebra homomorphisms into (Exp/≡, ε̄). Essentially, if a
system admits a unique solution, then its corresponding coalgebra admits a unique homomorphism
into (Exp/≡, ε̄). This would then establish finality.

Definition 5.1. A (finite) system of equations is a sequence of the form {xi = ei}i≤n where xi ∈ V
and ei ∈ Exp for i ≤ n, and none of x1, . . . , xn appear as bound variables in any of e1, . . . , en. A
system of equations {xi = ei}i≤n is guarded if x1, . . . , xn are guarded in ei for each i ≤ n. A
solution to {xi = ei}i≤n is a function φ : {x1, . . . , xn} → Exp such that

φ(xi) ≡ ei[φ(x1)/x1, . . . , φ(xn)/xn]

for all i ≤ n and x1, . . . , xn do not appear free in φ(xi) for any i ≤ n.

Every finite BM -coalgebra (X,β) gives rise to a guarded system of equations in the following
way: for each p ∈ S∗(V +A×X), define p† inductively as

v† = v (a, e)† = ae σ(f1, . . . , fn)† = σ(f †1 , . . . , f
†
n)

and for each x ∈ X, let px be a representative of β(x). The6 system of equations associated

with (X,β) is then defined to be {x = p†x}x∈X . We treat the elements of X as variables in these

equations, and note that by definition every y ∈ X is guarded in p†x.

Theorem 5.2. Let (X,β) be a finite BM -coalgebra and φ : X → Exp a function. Then the
composition [−]≡ ◦φ : X → Exp/≡ is a BM -coalgebra homomorphism if and only if φ is a solution
to the system of equations associated with (X,β).

As a direct consequence of Theorem 5.2, we see that a finite subcoalgebra U ↪→ Exp of (Exp, ε)
is a solution to the system of equations associated with (U, ε|U ).

Example 5.1. The system of equations associated with the automaton in Example 3.1 is the
two-element set {x1 = a1x2 +b u, x2 = v +b a2x1}. The map φ : {x1, x2} → Exp defined by
φ(x1) = µw (a1(v +b a2w) +b u) and φ(x2) = v +b a2 φ(x1) is a solution.

Theorem 5.2 establishes a one-to-one correspondence between solutions to systems and coal-
gebra homomorphisms as follows. Say that two solutions φ and ψ to a system {xi = ei}i≤n are
≡-equivalent if φ(xi) ≡ ψ(xi) for all i ≤ n. Starting with a solution φ : X → Exp to the system
associated with (X,β), we obtain the homomorphism [−]≡ ◦ φ using Theorem 5.2. A pair of so-
lutions φ and ψ are ≡-equivalent if and only if [−]≡ ◦ φ = [−]≡ ◦ ψ, so up to ≡-equivalence the
correspondence φ 7→ [−]≡ ◦ φ is injective. Going in the opposite direction and starting with a ho-
momorphism ψ : (X,β)→ (Exp/≡, ε̄), let ex be a representative of ψ(x) for each x ∈ X and define
φ := λx.ex. Then φ is a solution to (X,β), and [−]≡ ◦φ = ψ. Thus, up to ≡-equivalence, solutions
to systems are in one-to-one correspondence with coalgebra homomorphisms into (Exp/≡, ε̄).

6Technically speaking, there could be many systems of equations associated with a given coalgebra. We say “the”
system of equations because any two have the same set of solutions up to E.
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Say that a system admits a unique solution up to ≡ if it has a solution and any two solutions
to the system are ≡-equivalent. Since, up to ≡-equivalence, solutions to a system associated with
a coalgebra (X,β) are in one-to-one correspondence with coalgebra homomorphisms (X,β) →
(Exp/≡, ε̄), it suffices for the purposes of satisfying the hypotheses of Lemma 5.2 to show that
every finite guarded system of equations admits a unique solution up to ≡. The following theorem
is a generalisation of [1, Theorem 5.7].

Theorem 5.3. Every finite guarded system of equations admits a unique solution up to ≡.

The proof is a recreation of the one that appears under [1, Theorem 5.7] with the more general
context of our paper in mind. Remarkably, the essential details of the proof remain unchanged
despite the jump in the level of abstraction between the two results.

Completeness of ≡ with respect to behavioural equivalence is now a direct consequence of
Lemma 5.2 and Theorems 5.2 and 5.3.

Corollary 5.1 (Completeness). Let e, f ∈ Exp. If dbeec = dbfec, then e ≡ f .

One way to interpret this theorem is that the algebra (Exp/≡, α̂) of process terms modulo ≡ is
isomorphic to a subalgebra of (Z, γ), or dually (Exp/≡, ε̄) is a subcoalgebra of (Z, ζ). It is in this
sense that ARB, ACF, APA, and ANP are algebras of behaviours.

6 Star Fragments

In this section we study a fragment of our specification languages consisting of star expressions.
These include primitive actions from A, a form of sequential composition, and analogues of the
Kleene star. We do not aim to give a complete axiomatisation of behavioural equivalence for star
expressions, as even in simple cases this is notoriously difficult. Nevertheless, we think it is valuable
to extrapolate from known examples a speculative axiomatisation independent of the specification
languages from previous sections.

Fix an algebraic theory (S,E) and assume S consists of only constants and binary operations.
Its star fragment is the set SExp of expressions given by the grammar

e, ei ::= c | 1 | a | e1 +σ e2 | e1e2 | e(σ)

where a ∈ A, c is a constant in S, and σ is a binary S-operation.
The star fragment of an algebraic theory is a fragment of Exp in the sense that star expressions

can be thought of as shorthands for process terms, as we explain next. In this translation, we fix
a distinguished variable u ∈ V , called the unit, which will denote successful termination, and we
also fix a variable v distinct from the unit, which will appear in the fixpoint. The translation of
star expressions to process terms is defined to be

1 7→ u a 7→ au e1 +σ e2 7→ σ(e1, e2) e1e2 7→ e1[e2/u] e(σ) 7→ µv (e[v/u] +σ u)

Sequential composition of terms is associative and distributes over branching operations on the
right-hand side7: for any e1, e2, f ∈ SExp, (e1 +σ e2)f and e1f +σ e2f translate to the same process
term. Similarly, the intuitively correct identities 1e = e = e1 hold modulo translation, as well as
the identity 0e = 0.8

The operational semantics for star expressions is given by an LM -coalgebra (SExp, `) in Fig. 3,
where LM = M({X}+A× Id). Abstractly, the operational interpretation `(e) of a star expression
e is obtained by translating e into a process term (also called e) and then identifying u with X in
ε(e). While the notation is somewhat opaque at this level of generality, in specific instances the
map ` amounts to a familiar transition structure.

7But not on the left-hand side! Observe the difference between the processes a(b+ c) and ab+ ac here.
8But not e0 = 0! See also the previous footnote.
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`(c) = [c]E

`(1) = [X]E

`(a) = [(a, 1)]E

`(e1 +σ e2) = σ(`(e1), `(e2))

`(ef) = p(`(f), [(a1, e1f)]E, . . . , [(an, enf)]E)

`(e(σ)) = p([0]E, [(a1, e1e
(σ))]E, . . . , [(an, ene

(σ))]E) +σ [X]E

Figure 3: The coalgebra structure map ` : SExp → LMSExp. Here, c is a constant of S, σ is a binary
operation of S, a ∈ A, and e, ei ∈ SExp. In the last two equations, `(e) = [p(X, (a1, e1), . . . , (an, en))]E for
some p ∈ S∗({X}+A× SExp).

Example 6.1. The star fragment of ACF from Example 2.3 and Example 3.1 coincides with GKAT,
the algebra of programs introduced in [38] and studied further in [23], [24]. Instantiating SExp in
this context reveals the syntax

ei ::= 0 | 1 | a | e1 +b e2 | e1e2 | e(b)

for b ⊆ At and a ∈ A. This is nearly the syntax of GKAT, the only difference being the presence
of 1 and 0 instead of Boolean constants b ⊆ At. This is merely cosmetic, as we can just as well
define b := 1 +b 0.

In this context, M = (1 + Id)At, and so LM ∼= (2 + A× Id)At, which is the precise coalgebraic
signature of the automaton models of GKAT expressions. It is readily checked that the operational
semantics of GKAT also coincides with the operational semantics of the star fragment of ACF given
above.

Example 6.2. The star fragment of APA from Example 2.5 and Example 3.2 is a subset of
the calculus of programs introduced in [9], but with an iteration operator for each p ∈ [0, 1].
Instantiating SExp in this context reveals the syntax

ei ::= 0 | 1 | a | e1 +p e2 | e1e2 | e(p)

for p ∈ [0, 1] and a ∈ A. The process e(p) can be thought of as a generalised Bernoulli process
that runs e until it reaches X and then flips a weighted coin to decide whether to start from the
beginning of e or to terminate successfully.

We now provide a candidate axiomatisation for the star fragment while leaving the question
of completeness open. Say that a star expression e is guarded if the unit is guarded in e as an
expression in Exp. We define E∗ to be the theory consisting of E, the axiom schema

(E∗1) 1e = e1 = e

(E∗2) ce = c

(E∗3) e1(e2e3) = (e1e2)e3

(E∗4) (e+τ 1)(σ) = (e+τ 0)(σ)

and the inference rules

e is guarded
(E∗5)

e(σ) = ee(σ) +σ 1

g = eg +σ f e is guarded
(E∗6)

g = e(σ)f

In the specific cases where E = SL and E = GS, E∗ is equivalent to the candidate axiomatisations
for the star fragments of ARB [1] and ACF [23], [24].9

There is a difference between our axioms and the axioms in [1], [23], [24]: instead of (E∗5), all
equations of the form e(σ) = ee(σ)+σ1 appear in loc cit, even those where e is unguarded. We adopt
(E∗5) instead because the unrestricted version of (E∗5) fails to be sound for the star expressions

of APA. For example, if e = 1 + 1
3
a, then ee(1/2) + 1

2
1 7/12

===⇒ X while e( 1
2

) 1/2
==⇒ X. Secondly, the

9See Appendix F for details.
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unrestricted axioms can be derived from (E∗5) in the cases of Milner’s star fragment and the star
fragment of ACF.10

We are confident that a completeness result can be obtained in several instances of the frame-
work for the axiomatisation we have suggested above. However, in several cases this cannot happen.
For example, there is no way to derive the identity ((a+ 1

2
1) + b)∗ = ((a+ 1

2
0) + b)∗ from CS∗ (see

Example 2.6) despite these expressions being behaviourally equivalent. What is likely missing from
CS is a number of axioms that would allow 1 to be moved to the top level of every S-term (and
then replaced by 0 using (E∗4)). Algebraic theories where this is doable are called skew-associative,
which we define formally as follows.

Definition 6.1. An algebraic theory (S,E) consisting of constants and binary operations is called
skew-associative if for any pair of binary operations σ1, τ1, there is a pair of binary operations
σ2, τ2 such that σ1(x, τ1(y, z)) = τ2(σ2(x, y), z) appears in E.

Many of the examples we care about are skew-associative, including the theories of semilattices,
guarded semilattices, and convex algebras.

Question 1. Assume (S,E) is a skew-associative algebraic theory. If e and f are behaviourally
equivalent star expressions, is it true that E∗ ` e = f?

7 Related Work

Our framework can be seen as a generalisation of Milner’s ARB [1] that reaches beyond nonde-
terministic choice and covers several other process algebras already identified in the literature.
For example, instantiating our framework in the theory of pointed convex algebras produces the
algebra we have called APA (see Example 3.2), which only differs from the algebra PE of Stark and
Smolka [25] in the axiom (R1). In loc cit, the requirement that the variable be guarded in the re-
cursed expression is absent because recursion is computed as a least fixed point in their semantics.
This is not how we interpret recursion. We have included the guardedness requirement because
it is necessary for the soundness of the axiom in our semantics: for example, where e = u + 1

2
v,

we have µv e 1/2
==⇒ u and e[µv e/v] 3/4

==⇒ u. In contrast, both µv e and e[µv e/v] exit in u with

probability 1 in [25].
For another example, instantiating our framework in the theory CS of pointed convex semi-

lattices gives ANP (see Example 2.6), which differs from the calculus of Mislove, Ouaknine, and
Worrell [39] on two points. Firstly, their axiomatisation contains an unguarded version of (R1),
like in [25]. Secondly, the underlying algebraic theory of [39] corresponds to CS extended with the
axiom x +p 0 = 0. The resulting theory is known in the literature as that of convex semilattices
with top [9].

Star expressions for non-deterministic processes appeared in the work of Milner [1] as a fragment
of ARB and can be thought of as a bisimulation-focused analogue of Kleene’s regular expressions
for NFAs. While the syntaxes of Milner’s star expressions and Kleene’s regular expressions are the
same, there are several important differences between their interpretations. For example, sequential
composition is interpreted as the variable substitution ef := e[f/u] in Milner’s paper, which fails
to distribute over + on the left. A notable insight from [1] is that, despite these differences, an
iteration operator (−)∗ can be defined for Milner’s star expressions that satisfies many of the same
identities as the Kleene star. Given a variable v distinct from the unit and a process term e of
ARB in which at most the unit is free,

e∗ = µv (e[v/u] + u)

defines the iteration operator in Milner’s star fragment of ARB. In Section 6, we generalised this
construction of Milner for the more general process types that we considered in this paper. Our

10See Appendix F.
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proposed axiomatization is also inspired by Milner’s work. We expect completeness of our general
calculus will be a hard problem, as completeness in the instantiation to ARB was open for decades
despite the extensive literature on the subject [17]–[21].

There are clear parallels between our work and the thesis of Silva [40], in which a family of
calculi is introduced that includes one-exit versions of ARB, ACF, and APA (see Examples 2.2,
3.1 and 3.2). The main difference is that our framework is parametric on a finitary monad on
Sets whereas Silva’s is centered around one particular theory (semilattices). However, her work
considers general polynomial functors on Sets, which we have not yet done in our paper. We could
achieve a similar level of generality by replacing A× Id in our signatures ΣM , BM , and LM with
an arbitrary polynomial functor.

Our results are also in the same vein as the work of Myers on coalgebraic expressions [41]. Coal-
gebraic expressions generalise the calculi of [40] to arbitrary finitary coalgebraic signatures on a
variety of algebras, and furthermore have totally defined recursion operators similar to ours. How-
ever, the focus of the framework of coalgebraic expressions is on language semantics, achieved by
lifting the coalgebraic signature to a variety. This distinguishes the framework from our approach:
we focus on bisimulation semantics. This focus is also the reason we interpret our BM -coalgebras in
Sets and not in the Kleisli category of the monad M , as is done in [42] to capture trace semantics
of coalgebras.

Finally, there is also a notable connection to the iterative theories of Elgot [28], [43]–[45].
Theorem 5.3 in particular implies that our process algebras are examples of iterative algebras.

8 Future Work

In this paper, we introduced a family of process types whose branching structure is determined by
an algebraic theory. We provided each process type with a fully expressive specification language
paired with a sound and complete axiomatisation of behavioural equivalence.

There are several instantiations of our framework that we have not yet explored and are of inter-
est. For example, processes with multiset branching given by the theory of commutative monoids
produces nondeterministic processes with a simplistic notion of resources. Another example is
nondeterministic weighted processes with branching captured by the monad arising from the weak
distributive law between the free semimodule and powerset monads [46]. Yet another instantiation
arises from the theory of monoids (presenting the list monad), which produces processes related
to breadth-first search algorithms.

Star fragments offer a uniform construction of Kleene-like algebras for a variety of paradigms of
computing. However, our framework does not suggest an axiomatisation of the star fragment that
combines nondeterministic and probabilistic choice, as the theory CS is not skew-associative (see
Definition 6.1). We would like to expand our framework to include this fragment as it provides an
interesting but nonstandard interpretation of a part of the language ProbNetKAT used to verify
probabilistic networks [47].

We would also like to investigate the question at the end of Section 6 of whether E∗ is complete
for skew-associative theories. In particular, we believe that a connection can be made to the work
of Grabmayer and Fokkink [21] on LLEE-charts, which provides a completeness theorem for the
so-called 1-free expressions of the star fragment of ARB. Our process algebras also have uniformly
defined 1-free star fragments, and it is not difficult to give 1-free versions of the axiomatisation
E∗. We intend to suitably generalise LLEE-charts to arbitrary skew-associative theories and prove
completeness theorems for 1-free star fragments.

Finally, we would like to know whether our operational semantics for process terms is an
instance of the mathematical operational semantics introduced by Turi and Plotkin [48].
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A Notes on Guarded Semilattices

This appendix is here mainly to give an account of what is essentially the algebra of if-then-else
statements of a propositional imperative programming language. For a fixed finite set At, call a
structure (X, 0, {+b}b⊆At) consisting of an underlying set X, a constant 0 ∈ X, and a binary
operation +b : X2 → X for each b ⊆ At a guarded semilattice if (X, 0, {+b}b⊆At) satisfies all
instances of the equations (GS1)-(GS4) from Example 2.3. Guarded semilattices are examples
of the so-called McCarthy algebras of [11], and conversely every McCarthy algebra in finitely
many propositions is a guarded semilattice. We change the name to emphasise the presence of
finite Boolean guards, as well as the inherent order structure of guarded semilattices that will be
expanded upon in future work.

Let GS denote the category of guarded semilattices and their homomorphisms. We define the
functor F : Sets→ GS such that FX = ((1 +X)At, 0, {+b}b⊆At) for every set X, where 0 := λξ.0
and

h+b k := λξ.

{
h(ξ) ξ ∈ b
k(ξ) ξ 6∈ b

and given a function f : X → Y , F (f)(h) = (1 + f) ◦ h. It is straightforward to verify that FX is
indeed a guarded semilattice for any X.

Lemma A.1. Every guarded semilattice can be embedded into a guarded semilattice of the form
FX for some set X.

Proof. Let (X, 0, {+b}b⊆At) be a guarded semilattice and define the map η : X → (1 + X)At by
η(x) = λξ.x+ξ 0. Let At = {ξ1, . . . , ξn}. It follows from (GS4) and (GS2) that for any x ∈ X,

x = x+ξn (x+ξn−1 (. . . (x+ξ1 0)))

Whence, η is clearly injective, for if x +ξ 0 = y +ξ 0 for all ξ ∈ At, one can show by induction on
n that

x+ξn (x+ξn−1 (. . . (x+ξ1 0))) = y +ξn (y +ξn−1 (. . . (y +ξ1 0)))
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Hence, it suffices to see that η is an algebra homomorphism. Given x, y ∈ X and b ⊆ At, we have

η(x+b y)(ξ) = (x+b y) +ξ 0 = x+b∩ξ (y +ξ 0) =

{
x+ξ (y +ξ 0) ξ ∈ b
x+0 (y +ξ 0) ξ 6∈ b

=

{
x+ξ ξ̄(y +ξ 0) ξ ∈ b
y +ξ 0 ξ 6∈ b

=

{
x+ξ 0 ξ ∈ b
y +ξ 0 ξ 6∈ b

= (η(x) +b η(y))(ξ)

As a corollary, we obtain the following theorem, which essentially states that the theory of
guarded semilattices presents the monad (1 + Id)At.

Theorem A.1. Where U : GSL→ Sets is the forgetful functor taking an algebra to its underlying
set, there exists an adjunction F a U .

The unit of the adjunction Id ⇒ UF is the map η defined in the proof of Lemma A.1, and
where At = {ξ1, . . . , ξn}, the counit ε : FU ⇒ Id is given by

ε(h) 7→ h(ξn) +ξn (h(ξn−1) +ξn−1 (. . . (h(ξ1) +ξ1 0)))

Furthermore, the transformation ∆∗ : UFUF ⇒ UF , as it is defined in Example 2.3, is precisely
the transformation U(εF ).

B Examples from Section 3

• Consider M = (1 + Id)At and an expression e = µw (a1(v +b a2w) +b u). The BM -coalgebra
structure on this expression is given by:

ε(e) = ε(a1(v +b a2w) +b u)[e//w] = (λξ.(a1, v +b a2w) +b λξ.u)[e//w]

= (λξ.(a1, v +b a2w))[e//v] +b (λξ.u)[e//w] = λξ.(a1, v +b a2e) +b λξ.u

= λξ.(a1, f) +b λξ.u

• Consider M = Dω(1 + Id) and an expression e = µv (a1u+ 1
2

(a2v + 1
3
w)). The derivation of

the coalgebra structure for this expression is given by:

ε(e) = ε(a1u+ 1
2

(a2v + 1
3
w))[e//v] =

1

2
ε(a1u)[e//v] +

1

2
ε(a2v + 1

3
w)[e//v]

=
1

2
ε(a1u)[e//v] +

1

2
(
1

3
ε(a2v)[e//v] +

2

3
ε(w)[e//v])

=
1

2
δ(a1,u)[e//v] +

1

6
δ(a2,v)[e//v] +

2

6
δw[e//v]

=
1

2
δ(a1,u) +

1

6
δ(a2,e) +

2

6
δw

• Finally, consider M = C0 and an expression e = µv ((a1v+ 1
3
a2w) +a2v). The BM -coalgebra

structure is given by:

ε(e) = ε((a1v + 1
3
a2w) + a2v))[e//v] = conv(ε(a1v + 1

3
a2w)[e//v], ε(a2v)[e//v])

= conv(ε(a1v)[e//v] + 1
3
ε(a2w)[e//v], ε(a2v)[e//v]) = conv(ε(a1e) + 1

3
ε(a2w), ε(a2e))

= conv({1

3
δ(a1,e) +

2

3
δ(a2,w)}, {δ(a2,e)}) = conv({δ(a1,e)}+ 1

3
{δ(a2,w)}, {δ(a1,e)})
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C Notes on Substitution Operators

In this paper, several different kinds of substitution operators are used. We have left this appendix
to explain their properties and prepare for their use in proof later in the document.

The first kind of substitution that appears is syntactic substitution. Given two expressions e
and f and a variable v, we define the expression e[f/v] by induction on e as follows: For the basic
constructions,

u[f/v] =

{
f u = v

u u 6= v
(ae)[f/v] = a(e[f/v]) σ(e1, . . . , en)[f/v] = σ(e1[f/v], . . . , en[f/v])

but for the recursion case, we only let (µu e)[f/v] be well-defined if either u = v, in which
case (µv e)[f/v] = µv e (because v is not free in µv e), or u is not free in f , in which case
(µu e)[f/v] = µu (e[f/v]). Thus, [f/v] is a partial map Exp⇀ Exp.

We similarly define e[f1/v1, . . . , fn/vn] for a distinct list of variables v1, . . . , vn to be the simul-
taneous substitution of fi for vi, i = 1, . . . , n. For this kind of substitution,

u[f1/v1, . . . , fn/vn] =

{
fi u = vi

u (∀i ≤ n) u 6= vi

and if u = vi, then

(µu e)[f1/v1, . . . , fn/vn] = (µu e)[f1/v1, . . . , fi−1/vi−1, fi+1/vi+1, . . . , fn/vn]

and otherwise, if u is not free in fi for all i ≤ n, then

(µu e)[f1/v1, . . . , fn/vn] = µu (e[f1/v1, . . . , fn/vn])

Again, [f1/v1, . . . , fn/vn] defines a partial operation Exp⇀ Exp.

Lemma C.1. Let e, f ∈ Exp and v ∈ V . If no free variable of f is bound in e, then e[f/v] is
well-defined.

Proof. Variables bound in e are formally given by a function bv : Exp→ P(V ):

bv(v) = ∅
bv(ae) = bv(e)

bv(σ(e1, . . . , en)) = bv(e1) ∪ · · · ∪ bv(en)

bv(µv e) = {v} ∪ bv(e)

Similarly, the free variables of expression e are a function fv : Exp→ P(V ) defined as:

fv(v) = {v}
fv(ae) = fv(e)

fv(σ(e1, . . . , en)) = fv(e1) ∪ · · · ∪ fv(en)

fv(µv e) = fv(e) \ {v}

We prove the lemma by induction on e. We assume that fv(f) ∩ bv(e) = ∅.

• The variable case is trivial, as the syntactic substitution is always well-defined.

• For the prefixing case, assume that e = ag. By definition (ag)[f/v] = a(g[f/v]), so either
is well-defined whenever g[f/v] is well-defined. Since bv(ag) = bv(g), by the induction
hypothesis ag[f/v] is well-defined.

• Now suppose e = σ(e1, . . . , en). By definition, σ(e1, . . . , en)[f/v] = σ(e1[f/v], . . . , en[f/v]),
so substituting f for v is well defined for each e1, . . . , en. Since bv(ek) ⊆ bv(σ(e1, . . . , en))
for each subexpression ek, for any x ∈ fv(f) we have that x /∈ bv(σ(e1, . . . , ek, . . . , en)) and
therefore x /∈ bv(ek). By the induction hypothesis, ek[f/v] is well-defined for each ek. It
follows that e[f/v] is well-defined.
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• For the recursion case, assume that e = µu g. We consider two subcases.

– If u = v, then syntactic substitution is well-defined and is given by (µu g)[f/v] = µu g.

– Otherwise, u 6= v. By assumption we know that if x ∈ fv(f), then x /∈ bv(g) ∪ {u},
so u is not free in f . It follows that (µu g)[f/v] is well defined if and only if g[f/v] is
well-defined. By the induction hypothesis, for any x ∈ fv(f) we have that x /∈ bv(g).

Semantic substitution has a cousin that appears in the paper, namely guarded syntactic sub-
stitution. Given e, f ∈ Exp and v ∈ V , we define e[f//v] to be the expression

u[f//v] =

{
0 u = v

u u 6= v
(ae)[f//v] = a(e[f/v]) σ(e1, . . . , en)[f//v] = σ(e1[f//v], . . . , en[f//v])

Again, we only let (µu e)[f//v] be well-defined if either u = v, in which case (µv e)[f//v] = µv e,
or u is not free in f , in which case (µu e)[f//v] = µu (e[f//v]). Thus, [f//v] is yet another partial
map Exp⇀ Exp.

The first appearance of the guarded substitution operator in the paper is actually as a partial
operator on BM (Exp), however. Recalling that BM (Exp) = M(V +A×Exp) is the set S∗(V +A×
Exp) modulo E, it is defined first as a map V + A × Exp → BMExp as follows: given u ∈ V and
(a, e) ∈ A× Exp, let

u[f//v] =

{
[0]E u = v

[u]E u 6= v
(a, e)[f//v] = a(e[f/v])

We record the existence of a lift in the following lemma.

Lemma 3.1. For any g ∈ Exp and v ∈ V , the map [g//v] factors uniquely through BMExp.

Proof. By definition, [µv e//v] is obtained from the unique lifting of the partial map h : V + A×
Exp⇀ S∗(V +A× Exp) defined

h(u) =

{
u u 6= v

0 u = v
h(a, f) = (a, f [µv e/v])

to a partial S-algebra homomorphism h# : S∗(V + A × Exp) ⇀ S∗(V + A × Exp) by further
composing with the quotient homomorphism [−]E : S∗(V +A× Exp)→ BMExp (this factorisation
exists for partial maps because S∗ preserves monos). Thus,

ker([µv e//v]) = ker([−]E h
#) ⊇ ker([−]E) ∩ dom(h#)2

where for an arbitrary partial map f : X ⇀ Y , ker(f) = {(x1, x2) | f(x1) = f(x2)}. In other words,
[µv e//v] is constant on E-congruence classes. Since BM preserves monos and [−]E is surjective,
there is a unique BMExp⇀ BMExp such that the following diagram commutes.

S∗(V +A× Exp) S∗(V +A× Exp)

BMExp BMExp

	

h#

[−]E [µv e//v] [−]E

The two versions of guarded syntactic substitution interact as expected.

Lemma C.2. For any p ∈ S∗(V +A× Exp) and f ∈ Exp and v ∈ V , p[f//v] is well-defined if and
only if p†[f//v] is well-defined, and in such a case [p]E[f//v] = ε(p†[f//v]).

Proof. We proceed by induction on p.
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• Suppose that p = w for some w ∈ V . In this case, w† = w, so both w[f//v] and w†[f//v] are
trivially well-defined. For the desired identity, consider following subcases.

– If w = v, then [w]E[f//v] = ηM (0) = ε(0) = ε(w[f//v]) = ε(w†[f//v]).

– Otherwise, if w 6= v, then [w]E[f//v] = ηM (w) = ε(w) = ε(w[f//v]) = ε(w†[f//v]).

• Suppose that p = (a, e) for some a ∈ A and e ∈ Exp. Since (a, e)† = ae in this case, both
p[f//v] and p†[f//v] are well-defined when e[f/v] is. Therefore ae[f//v] is well-defined if and
only if (a, e)†[f//v] is well defined. Furthermore, we know [(a, e)]E[f//v] = [(a, e[f/v])]E, so
[(a, e)]E[f//v] = [(a, e[f/v])]E = ε(ae[f/v]) = ε((a, e)†[f//v]).

• Finally, suppose p = σ(p1, . . . , pn) for some p1, . . . , pn ∈ S∗(V + A × Exp), and recall that

σ(p1, . . . , pn)† = σ(p†1, . . . , p
†
n). Since σ(p1, . . . , pn)[f//v] = σ(p1[f//v], . . . , pn[f//v]), we have

σ(p1, . . . , pn)†[f//v] = σ(p†1[f//v], . . . , p†n[f//v])

By the induction hypothesis, pi[f//v] is well-defined if and only if p†i [f//v] is well-defined, for
1 ≤ i ≤ n. Towards the desired identity, recall that

[σ(p1, . . . , pn)]E[f//v] = σ([p1]E, . . . , [pn]E)[f//v] = σ([p1]E[f//v], . . . , [pn]E[f//v])

It follows from the induction hypothesis that

[σ(p1, . . . , pn)]E[f//v] = [σ(p1[f//v], . . . , pn[f//v])]E

= σ(ε(p†1[f//v])), . . . , ε(p†n[f//v]))

= ε(σ(p1, . . . , pn)†[f//v])

In the paper, we also introduced two versions of substitution for behaviours. Given t, s ∈ Z,
and v ∈ V , we define t{s/v} by a behavioural differential equation that depends on ζ(t) as follows:

ζ(t{s/v}) =


ζ(s) ζ(t) = [v]E

[u]E ζ(t) = [u]E 6= [v]E

[(a, r{s/v})]E ζ(t) = [(a, r)]E

σ(ζ(t1{s/v}), . . . , ζ(tn{s/v})) ζ(t) = [σ(ζ(t1), . . . , ζ(tn))]E

Note that unlike its syntactic relative, {s/v} is a total function Z → Z. Despite their differences,
however, behavioural substitution enjoys many of the important properties of syntactic substitu-
tion. The following theorem provides a simplified coinductive principle with which we can prove
these properties for our processes.

Theorem C.1. Let h, k : Z → Z. If h and k satisfy properties (i)-(iii) below, then h = k.

(i) if ζ(t) = [w]E, then ζ(h(t)) = ζ(k(t));

(ii) if ζ(t) = [(a, r)]E, then ζ(h(t)) = [(a, h(r))]E and ζ(k(t)) = [(a, k(r))]E; and

(iii) if ζ(t) = σ(ζ(t1), . . . , ζ(tn)), then

ζ(h(t)) = σ(ζ(h(t1)), . . . , ζ(h(tn))) and ζ(k(t)) = σ(ζ(k(t1)), . . . , ζ(k(tn)))

Proof. We proceed with a proof by coinduction. Namely, we will give the relation

R := ∆Z ∪ {(h(r), k(r)) | r ∈ Z}

22



a BM -coalgebra structure ρ : R → BMR such that the projections πi : R → Z, i = 1, 2, are
coalgebra homomorphisms. By finality of (Z, ζ), this then implies that π1 = !ρ = π2, which
establishes the identity we are hoping to prove.

Consider a t ∈ Z and let ζ(t) = [p(v1, . . . , vn, (a1, s1), . . . , (am, sm))]E for some p ∈ S∗(V +A×
Z). Along the diagonal, define

ρ(t, t) = [p(v1, . . . , vn, (a1, (s1, s1)), . . . , (an, (sn, sn)))]E

For the other pairs, assume [vi]E = ζ(h(ti)) = ζ(k(ti)) for i = 1, . . . , n using (i) and write

ρ(h(t), k(t)) = [p(v1, . . . , vn, (a1, (h(s1), k(s1))), . . . , (am, (h(sm), k(sm))))]E

using (ii) and (iii). To see that πi is a coalgebra homomorphism for each i = 1, 2, observe

BM (π1)(ρ(h(t), k(t))) = [S∗(π1)(p(v1, . . . , vn, (a1, (h(s1), k(s1))), . . . , (am, (h(sm), k(sm)))))]E

= [p(v1, . . . , vn, (a1, h(s1), . . . , (am, h(sm))]E

= ζ ◦ π1(h(r), k(r))

and similarly for π2.

For the following lemma, we say that a variable v is dead in a behaviour t if for any other
behaviour s, t{s/v} = t.

Lemma C.3. Let u, v ∈ V and r, s, t ∈ Z. If v is dead in t and u 6= v, then

r{s/v}{t/u} = r{t/u}{s{t/u}/v}

Proof. We use Theorem C.1, which requires us to verify (i)-(iii) for the maps {s/v}{t/u} and
{t/u}{s{t/u}/v}. Assume u, v, w are distinct variables, and let a ∈ A. There are several cases to
consider.

(i) If ζ(r) = [v]E, then ζ(r{s/v}) = ζ(s) and ζ(r{t/u}) = ζ(r). This means that

ζ(r{s/v}{t/u}) = ζ(s{t/u}) = ζ(r{s{t/u}/v}) = ζ(r{t/u}{s{t/u}/v})

(i’) If ζ(r) = [u]E, then ζ(r{s/v}) = ζ(r) and ζ(r{t/u}) = ζ(t). This means that

ζ(r{s/v}{t/u}) = ζ(r{t/u}) = ζ(t) = ζ(t{s{t/u}/v}) = ζ(r{t/u}{s{t/u}/v})

(i”) If ζ(r) = [w]E, then ζ(r{s/v}{t/u}) = ζ(r) = ζ(r{t/u}{s{t/u}/v}).

(ii) If ζ(r) = [(a, r′)]E, then ζ(r{s/v}) = [(a, r′{s/v})]E and ζ(r{t/u}) = [(a, r′{t/u})]E. It
follows that

ζ(r{s/v}{t/u}) = [(a, r′{s/v}{t/u})]E
and

ζ(r{t/u}{s{t/u}/v}) = [(a, r′{t/u}{s{t/u}/v})]E

(iii) Now let ζ(r) = σ(ζ(r1), . . . , ζ(rn)). By definition,

ζ(r{s/v}{t/u}) = σ(ζ(r1{s/v}{t/u}), . . . , ζ(rn{s/v}{t/u}))

and
ζ(r{t/u}{s{t/u/v}) = σ(ζ(r1{t/u}{s{t/u/v}), . . . , ζ(rn{t/u}{s{t/u/v}))

as desired.

Lemma C.4. For any r, s, t ∈ Z and v ∈ V , r{s/v}{t/v} = r{s{t/v}/v}.
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Proof. This also follows from Theorem C.1, where this time we take h = {s/v}{t/v} and k =
{s{t/v}/v}.

We also found the need to define a guarded version of behavioural substitution. Given u ∈ V
and (a, r) ∈ A× Z, we define

u{s//v} =

{
u u 6= v

0 u = v
(a, r){s//v} = (a, r{s/v})

and denote by {s//v} the unique lifting of this map to an operator on BMZ.11

Lemma C.5. Let v ∈ V and t, s ∈ Z. If v is dead in t, then ζ(t){s//v} = ζ(t).

Proof. Let ζ(t) = [p]E for some p ∈ S∗(V +A× Z). We proceed by induction on p.

• For the variable case, suppose p = w 6= v. We have [w]E{s//v} = [w]E = ζ(t).

• Now assume that p = (a, e) for some e ∈ Exp. Since v is dead in t, [(a, e)]E{s//v} =
[(a, e{s/v})]E = ζ(t{s/v}) = ζ(t).

• For the inductive step, assume that p = σ(ζ(t1), . . . , ζ(tn)). By the induction hypothesis,

ζ(t){s//v} = [σ(ζ(t1){s//v}, . . . , ζ(tn){s//v})]E
= [σ(ζ(t1), . . . , ζ(tn))]E = ζ(t)

Lemma C.6. Let u, v be distinct variables and s, t ∈ Z. If v is dead in s, then

(µv t){s/u} = µv (t{s/u})

Proof. The behaviour µv (t{s/u}) is (by definition) the unique solution to the behavioural differ-
ential equation

ζ(r) = ζ(t{s/u}){r//v} (*)

in the variable r. Thus, it suffices to see that r = (µv t){s/u} satisfies this equation. To this end,
there are a few cases to consider.

• If ζ(t) = [v]E, then ζ(µv t) = ζ(t){µv t//v} = [0]E. Hence,

ζ((µv t){s/u}) = [0]E = ζ(t){(µv t){s/u}//v} = ζ(t{s/u}){(µv t){s/u}//v}

since u is dead in t as well. Setting r = (µv t){s/u} satisfies (*), as desired.

• If ζ(t) = [u]E, then ζ(µv t) = ζ(t){µv t//v} = ζ(t). Taking r = (µv t){s/u}, we see that

ζ(r) = ζ(t{s/u}) = ζ(s) = ζ(s){r//v} = ζ(t{s/u}){r//v}

by Lemma C.5, since v is dead in s.

• Let w be distinct from u and v. If ζ(t) = [w]E, then trivially ζ(r) = [w]E = ζ(t) = ζ(t{s/u}) =
ζ(t{s/u}){r//v}.

• If ζ(t) = [(a, t′)]E, then ζ(µv t) = [(a, t′{µv t/v})]E. Where r := (µv t){s/u},

ζ((µv t){s/u}) = [(a, t′{(µv t)/v}{s/u}})]E
= [(a, t′{s/u}{(µv t){s/u}/v}})]E (Lemma C.3)

= [(a, t′{s/u})]E{r//v} = ζ(t{s/u}){r//v}

because v is dead in s.
11By Lambek’s lemma, ζ : Z ∼= BMZ, so {s//v} may also denote the corresponding operator ζ−1 {s//v} ζ on Z

(but we don’t really find occasion for this here).
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• Finally, let ζ(t) = [p(v1, . . . , vn, (a1, r1), . . . , (am, rm))]E. We have

ζ(r) = ζ((µv t){s/u})
= [p(w1, . . . , wn, (a1, r1{µv t/v}{s/u}), . . . , (am, rm{µv t/v}{s/u}))]E
= [p(w1, . . . , wn, (a1, r1{s/u}{r/v}), . . . , (am, rm{s/u}{r/v}))]E
= [p(v′1, . . . , v

′
n, (a1, r1{s/u}), . . . , (am, rm{s/u}))]E{r//v} = ζ(t{s/u}){r//v}

where v′i = vi if vi 6= u else v′i = u, and wi = v′i if v′i 6= v else wi = 0.

Lemma C.7. Let v ∈ V and e ∈ Exp. If v is not free in e, then v is dead in dbeec.

Proof. We show that ζ(dbeec{s/v}) = ζ(dbeec) for all s by induction on e.

• In the variable case, we only consider u 6= v. Here, ζ(dbuec) = [u]E, so ζ(dbu{s/v}ec) = dbuec.

• Now suppose the result is true for e. Since v is free in ae if and only if v is free in e, it
must be the case that v is not free in e. By the induction hypothesis, ζ(dbaeec{s/v}) =
[(a, dbeec{s/v})]E = [(a, dbeec)]E.

• Next, assume the result for e1, . . . , en, and let σ be an S-operation. Since v is not free
in σ(e1, . . . , en) if and only if v is not free in any of the ei, and ζ(dbσ(e1, . . . , en)ec) =
σ(ζ(dbe1ec), . . . , ζ(dbenec)) we have

ζ(dbσ(e1, . . . , en)ec{s/v}) = σ(ζ(dbe1ec{s/v}), . . . , ζ(dbenec{s/v}))
= σ(ζ(dbe1ec), . . . , ζ(dbenec)) = ζ(dbσ(e1, . . . , en)ec)

• Now assume the result for e and let u ∈ V . In this case, we consider the expression µu e and
the following two subcases.

– If u = v, then by assumption v is not free in µu e. Here, ζ(dbµv eec) = ζ(e){dbµv eec//v}.
Let p(v1, . . . , vn, (a1, t1), . . . , (am, tm)) ∈ S∗(V +A× Z) such that

ζ(dbeec) = [p(v1, . . . , vn, (a1, t1), . . . , (am, tm))]E

and set wi = 0 if vi = v else wi = vi. By definition,

ζ(dbµv eec) = ζ(e){dbµv eec//v}
= [p(w1, . . . , wn, (a1, t1{dbµv eec/v}), . . . , (am, tm{dbµv eec/v}))]E

because wi 6= v for any i ≤ n, and consequently,

ζ(dbµv eec{s/v})
= [p(w1, . . . , wn, (a1, t1{dbµv eec/v}{s/v}), . . . , (am, tm{dbµv eec/v}{s/v}))]E
= [p(w1, . . . , wn, (a1, t1{dbµv eec{s/v}/v}), . . . , (am, tm{dbµv eec{s/v}/v}))]E
= [p(w1, . . . , wn, (a1, t1), . . . , (am, tm))]E{dbµv eec{s/v}//v}
= ζ(dbeec){dbµv eec{s/v}//v}

Now dbµv eec is the unique solution to the behavioural differential equation ζ(r) =
ζ(dbeec){r//v} in the indeterminate r, and r = dbµv eec{s/t} satisfies this equation, so it
must be the case that dbµv eec = dbµv eec{s/v}. Hence, v is dead in dbµv eec.

– Now assume u 6= v. This means that v is free in µu e if and only if it is free in e, so by
the inductive hypothesis v is dead in dbeec. Again, we let

ζ(dbeec) = [p(v1, . . . , vn, (a1, t1), . . . , (am, tm))]E
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and wi = 0 if vi = v else wi = vi. In the previous case, we showed that u is dead in
dbµu eec, so we begin by showing that dbµu eec{s/v} = dbµu eec for each s ∈ Z such that
u is dead in s. We have

ζ(dbµu eec{s/v})
= [p(w1, . . . , wn, (a1, t1{dbµu eec/u}{s/v}), . . . , (am, tm{dbµu eec/u}{s/v}))]E
= [p(w1, . . . , wn, (a1, t1{s/v}{dbµu eec{s/v}/u}), . . . ,

(am, tm{s/v}{dbµu eec{s/v}/u}))]E (Lemma C.3)

= [p(v1, . . . , vn, (a1, t1{s/v}), . . . , (am, tm{s/v}))]E{dbµu eec{s/v}//u}
= ζ(dbeec){dbµu eec{s/v}//u} (v dead in dbeec)

Hence, r = dbµu eec{s/v} solves the behavioural differential equation defining dbµu eec,
so dbµu eec = dbµu eec{s/v}. The desired result follows from the following observation:
Both u and v are clearly dead in db0ec, so for arbitrary s ∈ Z we have

dbµu eec{s/v} = dbµu eec{db0ec/v}{s/v} = dbµu eec{db0ec{s/v}/v}
= dbµu eec{db0ec/v} = dbµu eec

It follows that v is dead in dbµu eec.

Lemma C.8. Let e, f ∈ Exp and v ∈ V . Assume that v is not free in f , and that no free variable
of f appears bound in e. Then dbeec{dbfec/v} = dbe[f/v]ec.

Proof. We proceed by induction on e.

• For the variable case, let u 6= v. There are cases to consider.

– First, suppose e = v. We have ζ(dbvec{dbfec/v}) = ζ(dbfec) = ζ(dbv[f/v]ec).
– Now assume e = u. Here, we have ζ(dbuec{dbfec/v}) = ζ(dbuec) = ζ(dbu[f/v]ec).

• For the inductive step, assume the result for e and consider the process term ae. We have
ζ(dbaeec{dbfec/v}) = [(a, dbeec{dbfec/v})]E = [(a, dbe[f/v]ec)]E) = ζ(dbae[f/v]ec).

• Now consider σ(e1, . . . , en) for ei ∈ Exp, i ≤ n, and assume the result for e1, . . . , en. We have

ζ(dbσ(e1, . . . , en)ec{dbfec/v}) = σ(ζ(dbe1ec{dbfec/v}), . . . , ζ(dbenec{dbfec/v}))
= σ(ζ(dbe1[f/v]ec), . . . , ζ(dben[f/v]ec))
= ζ(dbσ(e1, . . . , en)[f/v]ec)

• Finally, assume the result for e and consider µu e. Since no free variable of f is bound in
µu e, u in particular is not free in f . By Lemma C.7, u is therefore dead in dbfec. Where
dbeec = [p(v1, . . . , vn, (a1, t1), . . . , (am, tm))]E and wi = 0 if vi = u else wi = vi, this leads to
the computation

ζ(dbµu eec{dbfec/v})
= [p(w1, . . . , wn, (a1, t1{dbµu eec/u}{dbfec/v}), . . . , (am, tm{dbµu eec/u}{dbfec/v}))]E
= [p(w1, . . . , wn, (a1, t1{dbfec/v}{dbµu eec{dbfec/v}/u}), . . . ,

(am, tm{dbfec/v}{dbµu eec{dbfec/v}/u}))]E (Lemma C.3)

= ζ(dbeec{dbfec/v}){dbµu eec{dbfec/v}//u}
= ζ(dbe[f/v]ec){dbµu eec{dbfec/v}//u} (inductive hypothesis)

It follows that, r = dbµu eec{dbfec/v} satisfies the defining behavioural differential equation of
dbµu (e[f/v])ec. It follows that db(µu e)[f/v]ec = dbµu (e[f/v])ec = dbeec{f/v}.
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The last two lemmas of this section show that guarded syntactic substitution at the level of
Exp plays well with guarded syntactic substitution at the level of BMExp.

Lemma C.9. Let v ∈ V and e, g ∈ Exp. Assume that no free variable of g appears bound in e.
Then ε(e)[g//v] = ε(e[g//v]).

Proof. By induction on e.

• If u 6= v, then ε(u)[g//v] = [u]E = ε(u[g//v]) since v does not appear in u. Otherwise,
ε(v)[g//v] = [0]E = ε(v[g//v]).

• In the prefixing case, assume the result for e and simply observe that (ae)[g//v] = ae[g/v].
Hence,

ε(ae)[g//v] = [(a, e[g/v])]E = ε(ae[g/v]) = ε((ae)[g//v])

• Now assume the result for e1, . . . en. We have

ε(σ(e1, . . . , en))[g//v] = σ(ε(e1)[g//v], . . . , ε(en)[g//v]) = σ(ε(e1[g//v]), . . . , ε(en[g//v]))

= ε(σ(e1[g//v], . . . , en[g//v])) = ε(σ(e1, . . . , en))[g//v]

• In the recursion step, assume the result for e and consider µu e. In particular, u is not free
in g. It follows that [g//v][g//v] = [g//v], that (µu e)[g//v] = µu (e[g//v]), and that the
operators [g//v] and [µu e[g//v]//u] commute. Thus,

ε(µu e[g//v]) = ε(e[g//v])[µu e[g//v]//u] = ε(e)[g//v][µu e[g//v]//u]

= ε(e)[g//v][µu e//u][g//v] = ε(e)[µu e//u][g//v][g//v] = ε(µu e)[g//v]

Lemma C.10. Let v ∈ V and e, g ∈ Exp. If v is guarded in e and no free variable of g appears
bound in e, then ε(e[g/v]) = ε(e)[g//v].

Proof. Suppose v is guarded in e. We proceed by induction on the construction of e.

• In the base case we only have to consider u 6= v. Here, ε(u[g/v]) = ε(u) = [u]E = [u[g//v]]E =
ε(u)[g//v].

• In the inductive step, assume the result for e and consider ae. We have ε(ae[g/v]) =
[(a, e[g/v])]E = [(a, e)]E[g//v] = ε(e)[g//v] as desired.

• In the branched case, assume the result for e1, . . . , en and that v is guarded in e1, . . . , en. We
have

ε(σ(e1, . . . , en)[g/v]) = ε(σ(e1[g/v], . . . , en[g/v])) = σ(ε(e1[g/v]), . . . , ε(en[g/v]))

= σ(ε(e1)[g//v], . . . , ε(en)[g//v])) = σ(ε(e1), . . . , σ(en))[g//v]

= ε(σ(e1, . . . , en))[g//v]

• Now assume the result for e and consider µu e. If v = u, then we have ε((µv e)[g/v]) =
ε(µv e) = ε(e)[µv e//v] = ε(e)[µv e//v][g//v] = ε(µv e)[g//v]. Otherwise, assume v is guarded
in e and compute

ε(µu e)[g//v] = ε(e)[µu e//u][g//v] = ε(e)[g//v][µu e[g//v]//u]

(i.h.)
ε (e[g/v])[µu e[g/v]//u] = ε(µu e[g/v])

Here, e[g//v] = e[g/v] precisely because v is guarded in e.
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D Proofs from Section 4

In this section, we aim to prove the following theorem, which states that the operational and
denotational semantics coincide.

Theorem 4.1. Let db−ec be the unique algebra homorphism (Exp, α) → (Z, γ). For any process
term e ∈ Exp, we have !ε(e) = dbeec.

The proof requires the following lemma.

Lemma D.1. Let p ∈ S∗(V +A×Exp), f ∈ Exp and v ∈ V . Assume no free variable of g appears
bound in any expression that appears in p. Then

BM (db−ec)([p]E){dbgec//v} = BM (db−ec)([p]E[g//v])

Proof. We proceed by induction on p.

• Suppose p = u.

– If u = v, then we have

BM (db−ec)([v]E){dbgec//v} = [v]E{dbgec//v} = [0]E = BM (db−ec)([0]E) = BM (db−ec)([v]E[g//v])

– If u 6= v, then

BM (db−ec)([u]E){dbgec//v} = [u]E{dbgec//v} = [u]E = BM (db−ec)([u]E) = BM (db−ec)([u]E[g//v])

• Now suppose p = (a, e) for some e ∈ Exp. We have that BM (db−ec)([(a, e)]E){dbgec//v} =
[(a, dbeec)]E{dbgec//v} = [(a, dbeec{dbgec/v}]E). By Lemma C.8,

BM (db−ec)([(a, e)]E){dbgec//v} = [(a, dbeec{dbgec/v}]E) = [(a, dbe[g/v]ec)]E
= BM (db−ec)([(a, e[g/v])]E) = BM (db−ec)([(a, e)]E[g//v])

• Now assume the result for p1, . . . , pn ∈ S∗(V +A× Exp) and suppose p = σ(p1, . . . , pn). We
have

BM (db−ec)([p]E){dbgec//v}
= σ(BM (db−ec)([p1]E), . . . , BM (db−ec)([pn]E)){dbgec//v}
= σ(BM (db−ec)([p1]E){dbgec//v}, . . . , BM (db−ec)([pn]E){dbgec//v})
= σ(BM (db−ec)([p1]E[g//v]), . . . , BM (db−ec)([pn]E[g//v]))

= BM (db−ec)([p]E[g//v])

Proof of Theorem 4.1. We prove the desired property by showing that db−ec is a BM -coalgebra
homomorphism between (Exp, ε) and (Z, γ). This amounts to showing that ζ ◦db−ec = BM (db−ec)◦ε,
which establishes the commutativity of the lower square in the diagram below.

ΣMExp ΣMZ

Exp Z

BMExp BMZ

ΣMdb−ec

α ∼=

ε

db−ec

ζ∼=
BMdb−ec

γ

To this end, we show ζ(dbeec) = BM (db−ec)(ε(e)) by induction on e.
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• In the base case, e = v, and

ζ(dbvec) = [v]E = BM (db−ec)([v]E) = BM (db−ec)(ε(v))

• Now assume the result for f and let e = af . We have

ζ(dbafec) = [(a, dbfec)]E = BM (db−ec)([(a, f)]E) = BM (db−ec)(ε(af))

• Next, assume the result for e1, . . . , en and let e = σ(e1, . . . , en). We have

ζ(dbeec) = σ(ζ(dbe1ec), . . . , ζ(dbenec)) = σ(BM (db−ec)(ε(e1)), . . . , BM (db−ec)(ε(en)))

= BM (db−ec)(σ(ε(e1), . . . , ε(en))) = BM (db−ec)(ε(e))

• Now assume the result for f and let e = µv f . We have

ζ(dbµv fec) = ζ(dbfec){dbµv fec//v} = B(db−ec)(ε(f)){dbµv fec//v}
= B(db−ec)(ε(f)[µv f//v]) (Lemma D.1)

= B(db−ec)(ε(µv f))

E Proofs from Section 5

Lemma 5.1. The congruence ≡ is the kernel of a coalgebra homomorphism.

The proof of this lemma requires the following lemma.

Lemma E.1. Let v ∈ V and g1, g2 ∈ Exp. If g1 ≡ g2, then for any term p ∈ S∗(V +A× Exp) we
have

BM ([−]≡)(p[g1//v]) = BM ([−]≡)(p[g2//v])

Proof. By induction on the construction of p.

• Suppose p = u. If u 6= v, then we have u[g1//v] = u = u[g2//v], because v is not free in u.
On the other hand, if u = v, then v[gi//v] = 0 for i = 1, 2 by definition.

• Now let p = (a, e). We have

BM ([−]≡)((a, e)[gi//v]) = BM ([−]≡)((a, e[gi/v])) = [(a, [e[gi/v]]≡)]E

for i = 1, 2. Since≡ is a congruence, e[g1/v] ≡ e[g2/v], so indeed (a, [e[g1/v]]≡) = (a, [e[g2/v]]≡)
as desired.

• In the branched case, assume the identity for p1, . . . , pn and compute

BM ([−]≡)(ε(σ(p1, . . . , pn))[gi//v])

= BM ([−]≡)(σ(p1[gi//v], . . . , pn[gi//v]))

= σ(BM ([−]≡)(p1[gi//v]), . . . , BM ([−]≡)(pn[gi//v]))

= σ(BM ([−]≡)(p1[gi//v]), . . . , BM ([−]≡)(pn[gi//v]))

for i = 1, 2. The desired identity now follows from the induction hypothesis, which states
here that BM ([−]≡)(pj [gi//v]) = BM ([−]≡)(pj [g2//v]) for j ≤ n.

Next we prove Lemma 5.1 using a technique that is similar in style to others that currently
exist in the literature, for example in [49] and [40].
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Proof. (of Lemma 5.1) At present, we are given the following three maps:

Exp Exp/≡

BMExp BMExp/≡

(∗)

[−]≡

ε

BM ([−]≡)

We will show that there is a map ε̄ : Exp/≡ → BMExp/≡ such that the resulting square commutes.
Since [−]≡ is surjective, there is at most one such map, because the existence of ε̄ is equivalent
to the statement that k := BM ([−]≡) ◦ ε is constant on ≡-equivalence classes of terms. Thus, it
suffices to show that if e ≡ f , then k(e) = k(f). We proceed by induction on the length of the
derivation of e ≡ f .

In the base case, e ≡ f is an instance of one of the axioms. That is, e ≡ f either (1) is an
instance of an axiom of E, (2) is an instance of (R1), or (3) is an instance of (R2).

(1) Suppose for the sake of argument that E ⊆ S∗X × S∗X and (t, s) ∈ E, and let ν : X → Exp

lift to ν# : S∗X → Exp. If we define the map h : Exp→ S∗(V +A× Exp) inductively as

h(v) = v

h(ae) = (a, e)

h(σ(e1, . . . , en)) = σ(h(e1), . . . , h(en))

h(µv e) = h(e)[µv e//v]

then ε = [−]E ◦ h. Hence, if e = ν#(t) and f = ν#(s), then

ε(e) = ε ◦ ν#(t) (def. e)

= [−]≡ ◦ h ◦ ν#(t) (def. ε)

= ([−]≡ ◦ h ◦ ν)#(t) (univ. property of (−)#)

= ([−]≡ ◦ h ◦ ν)#(s) ((Exp/≡, α̂) satisfies E)

= [−]≡ ◦ h ◦ ν#(s) (univ. property of (−)#)

= ε(f) (def. f)

where α̂ : ΣMExp/≡ → Exp/≡ is the quotient algebra of (Exp, α) by the congruence ≡. It
follows that if e ≡ f is an axiom of E, then ε(e) = ε(f), and therefore k(e) = k(f).

(2) Next we consider the equation µv e ≡ e[µv e//v] of (R1). By definition, ε(µv e) = ε(e)[µv e//v],
and by Lemma C.9 we know that ε(e)[µv e//v] = ε(e[µv e//v]). It immediately follows that
k(µv e) = k(e[µv e//v]).

(3) Thirdly, we consider the equation µv e ≡ µw e[w/v] of (R2), in which w does not appear
freely in e. This follows from Lemma E.1: We have

BM ([−]≡)(ε(µv e)) = BM ([−]≡)(ε(e)[µv e//v])

= BM ([−]≡)(ε(e)[µw e[w/v]//v]) (Lemma E.1)

= BM ([−]≡)(ε(e[w/v])[µw e[w/v]//w])

= BM ([−]≡)(ε(µw e[w/v]))

For the inductive step, we assume that the proof of e ≡ f ends either (1) with a deduction rule
from equational logic, (2) ends with one of the congruence-generating rules

(∀i ≤ n) ei ≡ fi
(S-cong)

σ(e1, . . . , en) ≡ σ(f1, . . . , fn)

e ≡ f
(A-cong)

ae ≡ af

or (3) ends with the rule (R3).
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(1) The inference rules of equational logic respect identities across function application, so this
case is trivial.

(2) If the last step is of the proof is (S-cong), then use the fact that ε = [−]E ◦ h# as in the first
step of the base case. If the last step is (A-cong), then observe that

BM ([−]≡)(ε(ae)) = BM ([−]≡)([(a, e)]E) = [(a, [e]≡)]E = [(a, [f ]≡)]E

= BM ([−]≡)([(a, f)]E) = BM ([−]≡)(ε(af))

(3) Now suppose the last rule is (R3), and assume that v is guarded in e. We have

BM ([−]≡)(ε(µv e)) = BM ([−]≡)(ε(e)[µv e//v]) (def. of ε)

= BM ([−]≡)(ε(e)[g//v]) (Lemma E.1)

= BM ([−]≡)(ε(e[g/v])) (Lemma C.10)

= BM ([−]≡)(ε(g)) (induction hypothesis)

It follows that ≡, which is equal to ker([−]≡), is contained in ker(B([−]≡) ◦ ε). Thus, there is a
unique map ε̄ : Exp/≡ → BM (Exp/≡) such that the resulting square (∗) commutes.

E.1 Completeness

In the following lemma, we assume that S only has operations of finite arity (this is Assumption 3).

Lemma 5.3. The coalgebra (Exp, ε) is locally finite.

Proof. Given an arbitrary e ∈ Exp, we will explicitly construct a subcoalgebra of (Exp, ε) that has
a finite set of states that includes e. To this end, define U : Exp→ Pω(Exp) by

U(v) = {v} U(ae) = {ae} ∪ U(e) U(σ(e1, . . . , en)) = {σ(e1, . . . , en)} ∪
⋃
i<n

U(ei)

U(µv e) = {µv e} ∪ U(e)[µv e//v] := {µv e} ∪ {f [µv e//v] | f ∈ U(e)}

Note that e ∈ U(e) for all e ∈ Exp, and that U(e) is finite. We begin with following claim, which
says that the derivatives of e can be given in terms of expressions from U(e): for any e ∈ Exp,
there is a representative S-term p ∈ ε(e) such that p ∈ S∗(V + A × U(e)). This can be seen by
induction on e. The only interesting case is the inductive step µv e, in which case we let p ∈ ε(e)
and note that p[µv e//v] is a representative of ε(µv e) in S∗(V +A× U(µv e)).

To finish the proof of the lemma, fix an e ∈ Exp and define a sequence of sets beginning with
U0 = {e} and proceeding with

Un+1 = Un ∪
⋃

e0∈Un

{g | (∃a ∈ A)(∃p ∈ ε(e0) ∩ S∗(V +A× U(e0))) (a, g) appears in p}

Then U0 ⊆ U1 ⊆ · · · ⊆ U(e), and the latter set is finite. Hence U :=
⋃
Un is finite and contained in

U(e). We define a coalgebra structure εU : U → BMU by taking εU (e) = [p]E where if e ∈ Un, then
p is a representative of ε(e) in S∗(V +A×Un+1). Since S∗(V +A×Un+1) ⊆ S∗(V +A×U), this
defines a BM -coalgebra structure on U . Where ι : U ↪→ Exp, we have ε(ι(e)) = ε(e) = BM (ι)◦εU (e).
Thus, (U, εU ) is a finite subcoalgebra of (Exp, ε) containing e.

Theorem 5.2. Let (X,β) be a finite BM -coalgebra and φ : X → Exp a function. Then the
composition [−]≡ ◦φ : X → Exp/≡ is a BM -coalgebra homomorphism if and only if φ is a solution
to the system of equations associated with (X,β).

31



Proof. We begin by observing that ε̄ : Exp/≡ → BMExp/≡ is a bijection. Indeed, the map
(−)♥ : BMExp→ Exp/≡ defined

[v]♥E = [v]≡ [(a, e)]♥E = [ae]≡ [σ(p1, . . . , pn)]♥E = σ([p1]♥E , . . . , [pn]♥E )

is its inverse: Clearly ε̄([p]♥E ) = [p]E for any p ∈ S∗(V + A × Exp), so it suffices to see that
ε̄([e]≡)♥ = [e]≡ for all e ∈ Exp. This can be done by induction on e, but the only tricky case is
µv e. For this case, observe that

ε̄([µv e]≡)♥ = (BM ([−]≡)(ε(e)[µv e//v]))♥ = (BM ([−]≡)(ε(e[µv e//v])))♥

= (ε̄([e[µv e//v]]≡))♥ = (ε̄([e]≡)[[µv e]≡//v])♥ = ε̄([e]≡)♥[[µv e]≡//v]

(i.h.)
= [e[µv e//v]]≡ = [µv e]≡

where the fifth equality is the induction hypothesis and the last is (R1). We have also made use
of a lifting of syntactic substitution to BM (Exp/≡) that is defined in the usual way, as well as the
fact that this lifted syntactic substitution commutes with (−)♥, which can be proven by induction
on terms S∗(V +A× (Exp/≡)).

Now let {x = p†x}x∈X be the system of equations associated with the coalgebra (X,β). Observe

that for any x, y ∈ X, if y appears in px, then it is guarded in p†x. This means that φ : X → Exp is
a solution to {x = p†x}x∈X if and only if φ(x) ≡ p†x[φ(y)//y]y∈X . Now, if β(x) = [px]E, we see that

(BM ([−]≡ ◦ φ)(β(x)))♥ = (BM ([−]≡) ◦BM (φ)([px]E))♥

= (BM ([−]≡)([px]E[φ(y)//y]y∈X))♥

= ([px]E[[φ(y)]≡//y]y∈X)♥

= [p†x[φ(y)//y]y∈X ]≡

Thus, φ is a solution to the system {x = p†x}x∈X if and only if

[−]≡ ◦ φ(x) = (−)♥ ◦BM ([−]≡ ◦ φ) ◦ β(x) (3)

for every x ∈ X. The maps (−)♥ and ε̄ are inverse to one another, so Eq. (3) is equivalent to
the identity ε̄ ◦ [−]≡ ◦ φ = BM ([−]≡ ◦ φ) ◦ β. This identity is the defining property of a coalgebra
homomorphism of the form [−]≡ φ.

Theorem 5.3. Every finite guarded system of equations admits a unique solution up to ≡.

The following proof is a recreation of the one that appears under [1, Theorem 5.7] with the
more general context of our paper in mind. Remarkably, the essential details of the proof remain
unchanged despite the jump in the level of abstraction between the two results.

Proof. Let {xi = ei}i≤n be a guarded system of equations. We proceed by induction on n. In the
base case, n = 1. This case is straight-forward because φ(x1) := µx1 e1 is its unique solution up
to ≡ by (R3).

Now assume that every system of strictly fewer than n guarded equations has a unique solution
up to ≡. Define

fn = µxn en and fi = ei[fn/xn]

for each i < n. Since x1, . . . , xn are guarded in ei for i ≤ n, the system {xi = fi}i<n is also
guarded, and x1, . . . , xn−1 do not appear freely in any fi for i < n. By the induction hypothesis,
{xi = fi}i<n has a unique solution ψ : {x1, . . . , xn−1} → Exp up to ≡. Let gi = ψ(xi) for i < n and
note that xn is not free and does not appear bound in any of f1, . . . , fn−1 by construction. Now,

32



take gn = fn[g1/x1, . . . , gn−1/xn−1]. Then φ(xi) := gi for i ≤ n is indeed a solution of the desired
form, since

gn = fn[g1/x1, . . . , gn−1/xn−1] = (µxn en)[g1/x1, . . . , gn−1/xn−1]

= µxn (en[g1/x1, . . . , gn−1/xn−1]) (xn not free in gi)

≡ en[g1/x1, . . . , gn−1/xn−1][gn/xn] (R1),(xn guarded in gn)

= en[g1/x1, . . . , gn−1/xn−1, gn/xn] (xn not free in gi)

and for any i < n,

gi ≡ fi[g1/x1, . . . , gn−1/xn−1]

= ei[fn/xn][g1/x1, . . . , gn−1/xn−1] = ei[g1/x1, . . . , gn−1/xn−1][fn[g1/x1, . . . , gn−1/xn−1]/xn]

= ei[g1/x1, . . . , gn−1/xn−1, fn[g1/x1, . . . , gn−1/xn−1]/xn] = ei[g1/x1, . . . , gn−1/xn−1, gn/xn]

since xn is not free in gi for any i < n.
To see that the solution is unique, let θ(xi) = hi for i ≤ n be any other solution to {xi = ei}i≤n.

Then in particular, hn ≡ en[h1/x1, . . . , hn−1/xn−1, hn/xn] = en[h1/x1, . . . , hn−1/xn−1][hn/xn]
since xn is not free in any h1, . . . , hn−1. This means that hn ≡ µxn (en[h1/x1, . . . , hn−1/xn−1]) by
(R3) and guardedness of xn in en. Since xn is not free in hi for any i < n,

µxn (en[h1/x1, . . . , hn−1/xn−1]) = (µxn en)[h1/x1, . . . , hn−1/xn−1]

= fn[h1/x1, . . . , hn−1/xn−1]

This makes the restriction of θ to x1, . . . , xn−1 a solution to {xi = fi}i<n. By the induction
hypothesis, there is only one such solution, so hi ≡ gi for each i < n. It follows that that

hn ≡ µxn (en[h1/x1, . . . , hn−1/xn−1]) ≡ µxn (en[g1/x1, . . . , gn−1/xn−1]) = gn

via the congruence laws. Hence, hn ≡ gn, and overall θ ≡ φ.

F Proofs from Section 6

In this appendix, we are concerned with a particular statement made near the end of Section 6:
that the theory E∗ is equipotent to the axiomatisations found in the literature, in the particular
cases of E = SL and E = GS. This requires us to show that the unrestricted equations of the form
e(σ) = ee(σ) +σ 1 are derivable from E∗ in each of these two cases.

First let us consider the case of Milner’s star fragment. Write e → X if X ∈ `(e). Define the
operator ∂ : SExp→ SExp by induction as

∂0 = 0 = ∂1 ∂a = a ∂(e+ f) = ∂e+ ∂f ∂(ef) =

{
∂ef + ∂f e→ X
∂ef e 6→ X

Note that ∂e is guarded for all e. We have the following.

Lemma F.1. For any e ∈ SExp,

(i) If e→ X, then SL∗ ` e = ∂e+ 1, else SL∗ ` e = ∂e.

(ii) e∗ = (∂e)∗

In this proofs that follow, we write simply e = f in place of SL∗ ` e = f .

Proof. Statement (ii) follows directly from (i) and (S4). We prove statement (i) by induction on
e. The base cases hold by definition, so we proceed to the inductive step and assume (i) holds for
e and f .
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• If e+f → X, then either e→ X or f → X and the induction hypothesis directly applies. For
example, if e→ X and f → X, then e+f = (∂e+1)+(∂f +1) = ∂e+∂f +1 = ∂(e+f)+1.

• In case e+ f 6→ X, we simply have e+ f = ∂e+ ∂f = ∂(e+ f).

• If ef → X, then e→ X and f → X, and we have ef = (∂e+1)f = ∂ef+f = ∂ef+∂f+1 =
∂(ef) + 1.

• If ef 6→ X, then either e 6→ X or f 6→ X.

– In the first case, ef = ∂ef = ∂(ef).

– And in case e→ X but f 6→ X, ef = (∂e+ 1)f = ∂ef + ∂f = ∂(ef).

• Since e∗ → X, we need to see that e∗ = ∂(e∗) + 1. There are two cases to consider:

– If e→ X, then e∗ = (∂e+1)∗ = (∂e+0)∗ = (∂e)∗ = ∂e(∂e)∗+1 = ∂ee∗+1 = ∂(e∗)+1.

– Otherwise, we have e∗ = (∂e)∗
(S5)
= ∂e(∂e)∗ + 1 = ∂ee∗ + 1 = ∂(e∗) + 1.

Theorem F.1. For any e ∈ Exp, SL∗ ` e∗ = ee∗ + 1.

Proof. The statement is equivalent to (S5) if e 6→ X, so it suffices to show the case where e→ X.
Since ee∗ + 1→ X,

ee∗ + 1 = ∂(ee∗ + 1) + 1 = ∂(ee∗) + 1

= ∂ee∗ + ∂(e∗) + 1 = ∂ee∗ + ∂ee∗ + 1 = ∂ee∗ + 1 = e∗

Next we consider the case E = GS. Write e⇒ b if b = {ξ ∈ At | `(e)(ξ) = X}. We follow in the
footsteps of the previous proof and define the operator ∂ : SExp→ SExp inductively by

∂0 = 0 = ∂1 ∂a = a ∂(e+c f) = ∂e+c ∂f

and if e⇒ b,
∂(ef) = ∂f +b ∂ef ∂(e(c)) = 0 +b ∂ee

(c)

Note that ∂e⇒ ∅ for all e ∈ SExp.

Lemma F.2. For any e ∈ SExp, if e⇒ b, then

(i) GS∗ ` e = 1 +b ∂e

(ii) GS∗ ` e(c) = (0 +b ∂e)
(c)

Again, we will write e = f in place of GS∗ ` e = f in the following proofs.

Proof. Again, (ii) follows directly from (i), and we prove (i) by induction on e. The base cases
hold by definition, so it suffices to assume (i) for e and f . Let e ⇒ b1 and f ⇒ b2. Then since
e+c f ⇒ b1c ∪ b2c̄, setting b = b1c ∪ b2c̄ we derive

e+c f = (1 +b1 ∂e) +c (1 +b2 ∂f) = 1 +b1c∪b2c̄ (∂e+c ∂f) = 1 +b ∂(e+c f)

Next, if b = b1b2, then ef ⇒ b and we derive

ef = (1 +b1 ∂e)f = (1 +b2 ∂f) +b1 ∂ef = 1 +b1b2 (∂f +b1 ∂ef) = 1 +b ∂(ef)

Finally, e(c) ⇒ c̄, so

e(c) = (1 +b1 ∂e)
(c) = (0 +b1 ∂e)

(c)

= (0 +b1 ∂e)(0 +b1 ∂e)
(c) +c 1 (S5)

= (0 +b1 ∂ee
(c)) +c 1 = 1 +c̄ (0 +b1 ∂ee

(c)) = 1 +c̄ ∂(e(c))
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Theorem F.2. For any e ∈ SExp and b ⊆ At, GS∗ ` e(b) = ee(b) +b 1.

Proof. Suppose e⇒ c. Using the previous lemma, derive

ee(b) +b 1 = 1 +b̄ ∂(ee(b) +b 1) = 1 +b̄ (∂(ee(b)) +b 0) = 1 +b̄ ∂(ee(b))

= 1 +b̄ (∂e(b) +c ∂ee
(b)) = 1 +b̄ ((0 +c ∂ee

(b)) +c ∂ee
(b))

= 1 +b̄ (0 +c ∂ee
(b)) = 1 +b̄ ∂e

(b) = e(b)
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