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ORIGINAL ARTICLE

2024 Recommendations for Validation of 
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Measurement Devices
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Stella S. Daskalopoulou , Alun D. Hughes , Azra Mahmud , Christopher C. Mayer , Jeong Bae Park , Gary L. Pierce , 
Aletta E. Schutte , Elaine M. Urbina , Ian B. Wilkinson, Patrick Segers , James E. Sharman , Isabella Tan ,  
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BACKGROUND: Arterial stiffness, as measured by arterial pulse wave velocity (PWV), is an established biomarker for cardiovascular 
risk and target-organ damage in individuals with hypertension. With the emergence of new devices for assessing PWV, it 
has become evident that some of these devices yield results that display significant discrepancies compared with previous 
devices. This discrepancy underscores the importance of comprehensive validation procedures and the need for international 
recommendations.

METHODS: A stepwise approach utilizing the modified Delphi technique, with the involvement of key scientific societies 
dedicated to arterial stiffness research worldwide, was adopted to formulate, through a multidisciplinary vision, a shared 
approach to the validation of noninvasive arterial PWV measurement devices.

RESULTS: A set of recommendations has been developed, which aim to provide guidance to clinicians, researchers, and device 
manufacturers regarding the validation of new PWV measurement devices. The intention behind these recommendations is 
to ensure that the validation process can be conducted in a rigorous and consistent manner and to promote standardization 
and harmonization among PWV devices, thereby facilitating their widespread adoption in clinical practice.

CONCLUSIONS: It is hoped that these recommendations will encourage both users and developers of PWV measurement 
devices to critically evaluate and validate their technologies, ultimately leading to improved consistency and comparability of 
results. This, in turn, will enhance the clinical utility of PWV as a valuable tool for assessing arterial stiffness and informing 
cardiovascular risk stratification and management in individuals with hypertension. (Hypertension. 2024;81:00–00. DOI: 
10.1161/HYPERTENSIONAHA.123.21618.) • Supplement Material.
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Arterial stiffness is established as an independent pre-
dictor for mortality and cardiovascular risk.1,2 Three 
consensus documents about the pathophysiology 

of arterial stiffness and its measurement have been 
previously developed and endorsed by scientific societ-
ies.3–5 In 2010, the Association for Research into Arterial 

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 22, 2023

http://crossmark.crossref.org/dialog/?doi=10.1161%2FHYPERTENSIONAHA.123.21618&domain=pdf&date_stamp=2023-11-17


Spronck et al Recommendations for Arterial PWV Device Validation

OR
IG

IN
AL

 A
RT

IC
LE

2  January 2024 Hypertension. 2024;81:00–00. DOI: 10.1161/HYPERTENSIONAHA.123.21618

Structure and Physiology formulated the first set of rec-
ommendations for the validation of arterial pulse wave 
velocity (PWV) measurement devices.6 These recom-
mendations were widely adopted and used for the valida-
tion of many devices. However, still, PWV as a parameter 
has not seen widespread clinical use. In addition, it has 
become apparent over the years that some aspects of 
these initial recommendations should be revised and 
further refined. The task of revision was adopted by 6 
scientific societies in the fields of hypertension and arte-
rial physiology. Collaboration was stimulated through the 
European Cooperation in Science and Technology Action 
VascAgeNet.7,8 The result is the present set of recom-
mendations, endorsed by those societies. A summary of 
the major differences between the previous and present 
recommendations is provided in Table 1.

METHODS
The authors declare that all supporting data are available within 
the article and its Supplemental Material. These recommenda-
tions were developed using the modified Delphi technique,9,10 
involving 3 main steps: (1) initial steps, (2) premeeting activities, 
and (3) a virtual consensus meeting. These steps are detailed 
in the Methods section in the Supplemental Material.

SCOPE
The scope of these guidelines (ie, which devices are 
encompassed) is summarized in Table 2. Further details 

can be found in the Scope section in the Supplemental 
Material.

REFERENCE STANDARDS
Choice of Reference Standard
Ideally, only 1 gold standard measurement (eg, invasively 
recorded PWV) should be used as a reference for the 
validation of all PWV devices. However, maximum care 
has to be taken when invasive measurements are per-
formed due to several potential issues.

• Standardization
○ Invasive PWV can be measured synchronously 

using 2 pressure sensors spaced apart on 1 
catheter (preferred) or sequentially using a single 
catheter (acceptable; pullback method). In the 
latter case, it is important to ensure that there 
is minimal variation (<5%) in heart rate or blood 
pressure (BP) during the sequential recordings 
(ie, hemodynamic stability), and readings should 
be made in varying sequence.

○ Catheters can be pressure tip (preferred) or fluid 
filled; fluid-filled catheters require due care with 
respect to calibration.11

○ Due to PWV beat-to-beat variability,12 at least 10 
heartbeats must be recorded.

NOVELTY AND RELEVANCE

What Is New?
Updated recommendations for the validation of 
devices measuring pulse wave velocity are provided.
Detailed instructions for different types of devices and 
their reference standards, study population, and data 
analyses are specified.

What Is Relevant?
Pulse wave velocity is an acknowledged measure of 
hypertension-related organ damage and is useful for 
cardiovascular risk stratification in general.

However, its use in clinical practice is limited due to a 
lack of standardization and homogeneity.

Clinical/Pathophysiological Implications?
Application of these recommendations by manufac-
turers and researchers will facilitate a widespread 
adoption in clinical practice of pulse wave velocity as 
a valuable tool for cardiovascular risk stratification in 
individuals with hypertension and beyond.

Nonstandard Abbreviations and Acronyms

baPWV brachial-ankle pulse wave velocity
BP blood pressure
cfPWV carotid-femoral pulse wave velocity
PWV pulse wave velocity

Table 1. Major Differences Between the Present and 2010 
Recommendations*

The present recommendations stipulate that 

  Devices must measure pulse wave velocity to fall within these recom-
mendations.

  Performance criteria are based on accuracy as measured using a toler-
able error, in line with guidelines for blood pressure device validation.

  A reporting checklist must be included.

  Procedures to follow in the case of a software update must be followed.

  Overall working principles of the device should be disclosed.

*XXX.
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○ See the Practical Considerations section for fur-
ther details.

• Trajectory mismatch: invasive PWV is typically mea-
sured from just above the aortic valve to just above 
the aortic bifurcation. This does not exactly match the 
carotid-femoral pathway, the most easily accessible 
pathway for the measurement of aortic PWV. More 
critically, for PWVs involving longer peripheral arte-
rial segments (eg, brachial-ankle PWV [baPWV] or 
finger-toe PWV), no corresponding invasive PWV can 
be measured.

In all cases, the reference standard must be relevant 
to the intended use of the test device. This means that 
devices claiming to measure aortic PWV should be pref-
erentially validated against invasive aortic PWV. For inva-
sive aortic PWV, low variability between 2 observers was 
demonstrated,13,14 as well as proven prognostic value.15 
Some technical requirements should be respected.

Frequency Content of the Recorded Signal
Detection of the diastolic foot for transit time estimation 
requires that the information in the pressure waveform is 
captured accurately and with an excellent signal-to-noise 
ratio. In particular, recording of at least 20 harmonics of 
the arterial pressure signal should be attainable,11 which, 
for a maximum heart rate of 180 bpm (3 Hz), amounts 
to a frequency of the 20th harmonic of 60 Hz. To prop-
erly capture this (1) the pressure sensor (in the case 
of a pressure-tip catheter) or the pressure sensor plus 
fluid-filled catheter- ystem (in the case of a fluid-filled 
catheter) should have a sufficiently wide and linear fre-
quency response to pass this frequency and (2) sampling 
frequency should be at least 120 Hz to adhere to the 
Nyquist criterion.

Foot Detection at High Temporal Resolution
The aforementioned minimum sampling rate of 120 Hz 
amounts to a sampling interval of 8.3 ms. To minimize 
quantization errors, foot detection using the intersect-
ing tangent or diastole patching methods should be per-
formed at a subsample time resolution, for example, 1 ms. 
For further details,16 see the Foot Detection at High Tem-
poral Resolution section in the Supplemental Material.

Other Considerations
The arterial path length should be determined from the 
catheters themselves (ie, based on the length of the 
catheter wire for the pullback method measured in a res-
olution of millimeters) or, alternatively, from high-quality 
radiographic images obtained during the procedure.

Devices Measuring Carotid-Femoral PWV
About devices whose intended use is to measure 
carotid-femoral PWV (cfPWV), given the potential issues 
mentioned above and the complexity of invasive studies, 
a noninvasive gold standard is also recommended, using 
as reference devices for which cfPWV has been vali-
dated against invasive data and has also provided con-
sistent, robust clinical evidence in large population-based 
samples of association with future outcomes, such as 
cardiovascular events and mortality.1 Commercial devices 
that currently fulfill these criteria are, for example, the 
Complior Analyse device (Alam Medical, Saint Quentin 
Fallavier, France) and the original Sphygmocor system 
that used tonometry for both carotid and femoral pulse 
wave acquisitions (not sold anymore; ATCOR Medical, 
CardieX Pty, Ltd, Sydney, NSW, Australia). Using as a ref-
erence technique to validate devices, Doppler ultrasound 
or magnetic resonance imaging was not favored by the 
panel for reasons of data quality and heterogeneity of 
acquisition protocols. Nevertheless, magnetic resonance 
imaging along with computed tomography remains the 
gold standard for path length assessment, ideally using 
biplanar images for a 3D reconstruction of the center-
line. The list of devices that can be used as reference 
can be subjected to updates in the future if relevant 
data become available. Table 3 specifies measurement 
requirements for the reference standards.

Devices Involving the Use of a Femoral Cuff
Several recent cfPWV devices use a cuff (as opposed to 
a tonometer) to measure the femoral pressure waveform. 
In this case, the effective femoral pressure measurement 
location is more distal than with a tonometer, requiring a 
correction equation to convert the resulting PWV to a true 
cfPWV.17,18 Because of the need for such correction, devices 
using this method should not be used as reference devices 
for validation of other cfPWV devices but still should be vali-
dated according to the protocol proposed in these recom-
mendations. It is advisable that correction equations used 
are made public and undergo external validation in inde-
pendent study populations to fully ensure correspondence 
between the measured values and the true cfPWV. Valida-
tion in special populations (ie, children and adolescents) 
becomes particularly important for this kind of devices.

Devices Measuring PWV Along Pathways Other 
Than Carotid Femoral
Transit time-based PWV devices measuring differ-
ent pathways than cfPWV (eg, baPWV) are increas-
ingly used and have demonstrated association with 

Table 2. Devices Encompassed by These Recommendations

A device validated using these recommendations measures PWV. This is 
typically accomplished by measurement of the arrival of the (pressure or 
flow) pulse wave at 2 different arterial sites (eg, carotid-femoral,  brachial-
ankle). 

  The arrival time difference is a measure of the transit time of the pulse 
wave.

  PWV is obtained as PWV=Δx/Δt, with Δt being the transit time and Δx 
being the effective distance between the 2 recording sites.

  If a device does not directly measure a pulse arrival time difference, 
it should be explicitly substantiated how the device obtains a PWV 
estimate, and what information is used for this estimation.

  The measurement per se should not produce known physiological 
alterations that may influence accurate measurement of PWV.

PWV indicates pulse wave velocity.
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cardiovascular events and significant risk reclassifica-
tion.19 baPWV is systematically higher than cfPWV by 2 
to 9 m/s in studies from Asia and the United States.20 
The magnitude of this difference is clinically relevant 
(this panel agrees that 1.0 m/s is the minimum clini-
cally important difference for cfPWV1; see Sample 
Size and Selection of Participants section), but the 
evidence related to these aspects presents consider-
able heterogeneity. This appears to be caused not only 
by differences in path length assessment but also by 
the presence of more muscular arteries in the path 
for baPWV. Sugawara et al21 showed that baPWV 
recalculated using the magnetic resonance imaging–
based path length was 11% lower than that derived 
from the height-based path length but was still 45% 
greater than cfPWV. In such circumstances, the same 
reference standard for devices measuring cfPWV and 
baPWV could not be supported. We, thus, recommend 
that baPWV measured with a new device is validated 
against another device measuring baPWV, which has 
provided robust clinical evidence, in parallel with what 
is recommended for validating cfPWV devices. To date, 
the BP-203RPE device (Omron Healthcare Co, Ltd, 
Kyoto, Japan) fulfills these criteria.19

Notably, some devices measure a PWV over 1 arte-
rial segment and then estimate PWV for another arterial 
segment. For example, a device may measure baPWV 
and then estimate cfPWV using a conversion formula. 
We recommend that measured and estimated param-
eters are clearly and appropriately labeled by manufac-
turers and such conversion formulas are made public 
and undergo external validation in independent study 
populations.

The previous section specifies the requirements for a 
reference standard device. A technical validation study 
should always be performed by comparing a device 
under test to a reference standard device. This has an 
important implication; namely, once a device is validated, 
it does not automatically qualify as a reference standard 
device. This choice was made to limit the potential of 
error propagation.

Validation of Devices Based on Novel Principles 
and Arterial Segments
As outlined under the Scope section and in Table 2, this 
document mainly entails the validation of devices that 
directly measure the transit time. Some devices measure 
the transit time along an arterial segment for which no 
reference standard device is available.22,23 In this case, 
although a formal technical validation is not possible, 
we do recommend using the protocol outlined in these 
recommendations to make a comparison against an 
available device supported by clinical prognostic data; 
this comparison should be clearly reported in the valida-
tion document. Importantly, these devices cannot claim 
to measure cfPWV and aortic PWV; it should be clearly 
stated that they solely provide an estimation. It is advis-
able that algorithms and conversion formulas are made 
public and undergo external validation in independent 
study populations (in parallel to what was stated earlier 
for baPWV). Another class of devices typically reports 
a derived quantity instead of PWV, for example, cardio-
ankle vascular index.24 Validation of these devices is 
encompassed by these recommendations because this 
kind of measure complies with the scope of this docu-
ment. In this case, a comparison with the underlying 
PWV metric (heart-to-ankle PWV for cardio-ankle vas-
cular index) is recommended for the devices mentioned 
above. Since the measured parameter is intrinsically dif-
ferent from cfPWV, it is impossible to infer an equivalent 
predictive value and a similar clinical use. Specific clini-
cal investigations should be designed to ascertain the 
intended use of these metrics.

Several devices report a PWV value based on other 
information than a measured transit time, such as 
pressure waveform analysis acquired on a single site, 
combined with mathematical algorithms together with 
clinical variables, such as age, sex, and BP.25–27 Such 
devices do not provide a measured PWV but estimate it 
based on different parameters. Furthermore, an increas-
ing number of machine learning algorithms are devel-
oped for the estimation of PWV or more in general of 
vascular age.28,29 Indeed, the relationship between mea-
sured PWV and its estimate obtained by these methods 
may vary according to many known and unknown, acute 
and chronic, and physiological and pathological condi-
tions. The use of the validation protocol described in 
these recommendations, focused on the assessment of 
accuracy and precision,30 though encouraged for these 
devices too, does not address all the issues related to 
their reliability (eg, their ability to track PWV changes 
and their long-term prognostic value). To avoid confu-
sion, particularly for users new to the field, we encour-
age device manufacturers to specify clearly that the 
metric provided is an estimated PWV. Specific guidelines 
need to be developed for the validation of these kinds of 
devices or algorithms, in parallel to what has been done, 

Table 3. Measurement Requirements for Reference 
 Standards

Either invasive (catheter based) or noninvasive (application tonometry 
based) validation can be performed. 

Proximal and distal measurement sites must be equal between reference 
standard and device under test.

Ideal: simultaneous recording using 2 catheters/tonometers; alternative: 
single catheter/tonometer using ECG gating.

For invasive validation: ideal: high-fidelity pressure tip catheters; alternative: 
fluid-filled catheters.

Recording sampling rate of at least 120 Hz.

Foot detection using intersecting tangent or diastole patching algorithm.

Pulse transit time averaged over at least 10 cardiac cycles.
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for example, for cuffless BP devices.31 Indeed, some of 
these new technologies fall more appropriately in the 
category of artificial intelligence–based prediction mod-
els because they are meant to accurately stratify individ-
ual cardiovascular risk rather than to measure a physical 
quantity such as PWV. For this category of devices too, 
additional clinical investigations to establish their clinical 
value need to be designed.

SAMPLE SIZE AND SELECTION OF 
PARTICIPANTS
The sample size for any validation procedure comparing 2 
PWV devices should be sufficiently large to estimate the 
probability of tolerable error reliably. We chose 1 m/s as a 
tolerable error for PWV measurement, with error defined 
as the mean difference between readings from device 1 
and device 2 over 3 measurements; see the Data Analy-
sis section. The 1-m/s value was chosen by the panel of 
experts as the minimum clinically important difference. In 
an individual-participant meta-analysis, a change in PWV 
of 1 m/s was associated with a hazard ratio for cardio-
vascular events of 1.07 (95% CI, 1.02–1.12) for a male 
aged 60 years with no risk factors.1 The panel of experts 
also decided that devices for which the error is >1.0 m/s 
but ≤1.5 m/s will be categorized as having acceptable 
performance. The choice of this threshold, while being 
wide, aligns with the findings on the reproducibility of a 
single device.32

In accordance with the standard used for BP-mea-
suring devices,33 at least 85% of the sample measure-
ments should be within the tolerable error. The Figure 
illustrates how the error varies as a function of the mean 
difference between 2 devices and the SD of this dif-
ference. Table S1 presents the acceptable limit for SD 
of the difference as a function of the mean difference. 
This probability, however, is subject to error when calcu-
lated from a sample, and the sample size should be large 
enough to determine it precisely. With a sample size of 
n≥85, one can be 90% confident that the probability of 
tolerable error does not exceed ±7% margin of error, or, 
in other words, the true probability of tolerable error is 
at least 78%. This same level of precision is used in the 
ANSI/AAMI standard for BP measurement devices.34 To 
account for dropout and ensure that n=85 individuals 
without missing data are available for final analyses, we 
recommend enrolling at least n=90 individuals.

A sufficient sample size is also needed to provide a 
reasonable range of measured values, but it should not 
be too large to be impractical. A consensus was reached 
that a validation study should include only participants 
aged >18 years. A further consideration is having a suffi-
cient range of reference PWV readings to detect any ten-
dency for the difference between devices to depend on 
the mean value. In case a cfPWV device is validated, the 

population shall have ≥5% of the reference PWV read-
ings ≤6 m/s, ≥5% with ≥10 m/s, and ≥20% with ≥8 m/s. 
When a device measures or estimates PWV for another 
arterial bed, these cutoffs should be scaled accordingly. 
Since age is the predominant determinant of PWV, we 
suggest a relatively even spread among the following 4 
age groups (with ≥10 individuals in any one age group): 
<30, 30 to 50, 50 to 70, and >70 years. Based on cur-
rent evidence, sex seems to have little impact on PWV,35 
but this may not be true for future techniques. Thus, we 
recommend a minimum of 40% of participants for male 
sex and female sex in each of the aforementioned age 
groups. Although heart rate may influence PWV, we 
do not recommend any specific ranges for heart rate 
because its effect seems to be mediated largely by the 
effect on BP.36

Participants receiving vasoactive medications should 
not be excluded a priori. However, validation measure-
ments should not be recorded within the time window 
when there may still be effects from the acute adminis-
tration of vasoactive medications.4 Participants should be 
in sinus rhythm and not be pacemaker dependent at the 
time of measurement as beat-to-beat cardiac contrac-
tion variation, intermittent uncontrolled HR, and change 
in mean BP in atrial fibrillation could influence the reli-
able assessment of PWV.37 Similarly, individuals with a 
body mass index ≥40 kg/m2 are to be excluded from 
the regular validation population due to problems with 
accurate path length measurement,38 as well as those 
in whom palpation of the relevant arteries is impossible. 
Furthermore, patients with clinically relevant arterial ste-
nosis between the 2 sites of measurement or severe 
aortic valve stenosis are to be excluded due to the pos-
sibility of increased transit time because of the severe 
obstruction.39

A list of the subject selection criteria is presented in 
Table 4.

Special Populations
The present protocol is applicable also in special popula-
tions, which we defined as populations in which there 
is theoretical and clinical evidence of different accuracy 
of PWV devices. These include, for example, pregnant/
preeclamptic women,40 obese participants, and children/
adolescents.41 Further details can be found in the Sam-
ple Size and Selection of Participants in Special Popula-
tions section in the Supplemental Material.

PRACTICAL CONSIDERATIONS
General
• The investigators performing the validation study should 

be fully trained in the use of both the reference device 
and the device under test.
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• The testing environment should be quiet and provide 
enough privacy for the participants to feel comfortable. 
Participants should be made familiar with the PWV mea-
surement equipment to be used. It is suggested that at 
least 1 dummy recording is performed before the actual 
validation protocol is started.

• When sequential recordings referenced to the ECG 
are used, it is important to ensure that there is minimal 
variation (<5%) in heart rate or BP during the sequen-
tial recordings (ie, hemodynamic stability), and readings 
should be made in varying sequence.

• A minimum recording time of 10 cardiac cycles for each 
measurement site should be used.

• Transit time should be determined from the waveforms 
using an intersecting tangent algorithm or diastole patch-
ing algorithm, as these have been shown to be more 
accurate and less influenced by changes in wave shape 
or wave reflection than other (eg, second derivative 
based) methods.42,43

• PWV values should be recorded in a precision of at least 
tenths of meters per second (ie, 1 decimal when values 
are recorded in meter per second).

Carotid-Femoral PWV
•  Preference is given to recordings from the right carotid 

and right femoral arteries.
•  The carotid-femoral path length estimate used in cal-

culating the reference PWV should match the estimate 
that is used in the device under test. Commonly used 
estimates include the subtraction method (subtracting 
the sternal notch-to-carotid distance from the sternal 
notch-to-femoral distance) and the 80%-of-direct-dis-
tance method (multiplying the direct carotid-to-femoral 
distance by 80%). Reproducibility of distance measure-
ments should be reported too because it represents an 
important source of variability of PWV measurements.

Figure. Measurement error (m/s) for which the probability of observing such error or less is 85% (numbers on colored 
background).
Colors (device validation outcome): green: good (error, ≤1.0 m/s); orange: acceptable (error, ≤1.5 m/s); and red: fail (error, >1.5 m/s). Before 
looking up a combination of mean per SD, round up both values to 0.05-m/s precision (eg, 0.41 m/s is rounded to 0.45 m/s; 0.47 m/s is 
rounded to 0.50 m/s). For example, a mean difference of 0.36 m/s (rounded to 0.40 m/s) and an SD of that difference of 0.44 m/s (rounded to 
0.45 m/s) correspond to an error of 0.88 m/s. This implies that, on average, 85% of the validation measurements are within ±0.88 m/s of the 
reference measurement. Because 0.88≤1.0 m/s, this device passes validation with good accuracy.
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CONFLICT OF INTEREST AND 
TRANSPARENCY PROMOTION
To avoid industry bias, the validation study should ideally 
be conducted by investigators who are independent of 
the manufacturers of the device being tested. In gen-
eral, any possible interest (eg, grants or contracts, con-
sulting fees, stocks, speaker honoraria, patents, or other 
commercial interests) must be declared. To improve 
the transparency and openness of science, we also 
recommend that the original data of validation stud-
ies are made available in a public repository. This also 
aligns with the emerging approach of Medical Devices 
Regulation frameworks, such as the publicly available 
EUDAMED database under Medical Devices Regulation 
(EU) 2017/745. Independent replication studies are also 
encouraged to improve reproducibility of results.

PROCEDURE
The procedure for PWV device validation is detailed in 
Table 5. It is important to describe in advance quality cri-
teria to consider a measurement as failed and report the 
number of measurements discarded from the analysis 
and for which reason.

DATA ANALYSIS
Data analysis and the associated calculations45 are 
described in the Supplemental Material. Briefly, the 
comparison of a device under test with a reference 
device is made as follows. If a simultaneous PWV mea-
surement using the device under test (T) and the ref-
erence device (R) is feasible, T and R measurements 
will be performed simultaneously, yielding 3 pairs of T 
and R measurements (R1 and T1, R2 and T2, and R3 and 

T3; Table 5). If simultaneous measurement is not fea-
sible, for each measurement of the device under test 
(T1, T2, and T3), the average of the 2 reference mea-
surements closest in time (R1, R2, R3, and R4) is used 
as a comparator (Table 5), in parallel to what is recom-
mended for validation of BP monitors.33,34 For a device 
to pass comparison to a reference device for a given 
measured mean difference in PWV, the SD should obey 
the respective cutoff value in Table S2, ensuring at least 
an 85% probability of a tolerable error of 1.0 m/s (good 
accuracy) or 1.5 m/s (acceptable accuracy), respec-
tively (Figure).

REPORTING
General
The overall principles behind the PWV measurement 
should be disclosed and illustrated. This includes, for 
example, a description of the fiducial point used on 
the waveform, the method used to detect this fidu-
cial point, and whether/which additional information is 
used to compute the PWV. If proprietary aspects play 
a role, this should be stated, and when applicable, ref-
erences to patents should be given. If algorithms used 
are trained based on experimental data sets (eg, neural 
networks, statistical regression models), it is suggested 
for such data sets to be disclosed. When the reported 

Table 4. Subject Selection Criteria for Validation Studies

Sample size ≥85 complete data sets (suggested recruitment n of 
≥90 to allow for 5% dropout) 

Sex distribution ≥40% for male sex and female sex

Age distribution, y ≥10 individuals in each of the following classes: <30, 
30–50, 50–70, and >70

PWV distribution ≥5% of the reference PWV readings ≤6 m/s, ≥5% 
with ≥10 m/s, and ≥20% with ≥8 m/s

Exclusion criteria Not in sinus rhythm

Pacemaker dependent

Pregnant

Body mass index ≥40 kg/m2

Clinically relevant arterial stenosis between the 2 sites 
of measurement

Severe aortic valve stenosis

• Age under 18 y (except when validating in children)

Specific criteria (if any) for the devices used

PWV indicates pulse wave velocity.

Table 5. Validation Protocol

Obtain informed consent, and familiarize participants with the procedure 
and devices. 

Record the following patient characteristics:

  Height, weight, and body mass index

  Date of birth, date of examination, sex (at birth), and age

  Medication use

Have participants rest for ≥15 min, during which proximal and distal arterial 
sites are palpated and suitable sites for measurement are identified and 
marked.

Perform 2 sequential dummy recordings, 1 with each device, to familiarize 
the participant with both measurement devices.

Measure blood pressure and heart rate twice immediately before the 
procedure with a validated device33 and according to recommendations.44 
Record SBP and DBP, mean arterial pressure (if available from the device; 
do not calculate from SBP/DBP), and heart rate.

If it is feasible to perform reference device (R) and test device (T) 
 measurements simultaneously (preferred)

  Perform 3 simultaneous PWV recordings using R and T, yielding paired 
measurements R1 and T1, R2 and T2, and R3 and T3.

If it is not feasible to perform R and T measurements simultaneously

  Perform 7 PWV recordings: 4 using R and 3 using T, alternating between 
both and starting and ending with the reference devices: R1, T1, R2, T2, 
R3, T3, and R4.

Measure blood pressure and heart rate again.

End of study.

DBP indicates diastolic blood pressure; PWV, pulse wave velocity; and SBP, 
systolic blood pressure.
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PWV is (partly) dependent on training or model fitting 
(eg, regression), the participants whose data were used 
for training should not be included in the validation study 
(ie, training and validation sets should be separate). A 
completed reporting checklist (Table S2) should accom-
pany each device validation study publication. The valida-
tion study results should be made publicly available by 
publication in the peer-reviewed literature. We strongly 
suggest that the validation study is openly available to 
maximize accessibility. Raw data should be deposited in 
a publicly accessible repository. Mean and SD of BP and 
heart rate, both before and after the procedure, should 
also be reported.

Comparison With Reference Device
A Bland-Altman plot46 (where the differences between 
the 2 techniques are plotted against the averages of the 
2 techniques) should be presented, including the mean 
difference (horizontal line and numerical value), SD of the 
difference (numerical value), and mean+2 SD to mean−2 
SD interval (horizontal dashed lines). We suggest also 
showing a regression line (and associated equation, R2, 
and P value) in the Bland-Altman plot, facilitating the 
assessment of a possible relationship between the mean 
difference and the (average) distance. Notably, a scatter-
plot of the raw data and the associated regression line, 
R2, and P value can be shown, but it should not be used to 
infer agreement between the device under test and the 
reference device.47 The analyses described here should 
be performed (1) on the full sample of participants, (2) 
stratified by sex, and (3) stratified by age category (<30, 
30–50, 50–70, and >70 years). An analysis stratified by 
the use of vasoactive drugs is also advisable.

Test-Retest Reproducibility
Precision can be determined as the reproducibility of the 
obtained data by a single device. In addition, for this end 
point, the maximum allowed difference between repeated 
measurements is a crucial point; the variation between 
measurements repeated with the same device (on the 
same participant and in similar conditions) should be 
lower than the minimum clinically important difference.

The Bland-Altman analysis with a predefined clinical 
agreement limit is recommended also for this valida-
tion.46 It is worth noting that negligible bias is expected 
for data obtained by the same device by the same 
observer. The precision of repeated measurements 
should also be reported in terms of coefficient of varia-
tion (SD of 2 measurements divided by their average).48

DEVICE SOFTWARE VERSION CONTROL
Studies have shown that changes in the software and 
hardware used in PWV devices may significantly alter 

their output.42,49 Hence, it is important that, in a valida-
tion study, a consistent software and hardware version 
of the device under test is used and reported. Recom-
mendations for handling device software changes are 
given in the Device Software Version Control section in 
the Supplemental Material.

Perspectives
The present document should serve as an updated 
guide for the validation of PWV devices. Broad accep-
tance and implementation of these recommendations 
will facilitate broader adoption of PWV systems within 
clinical practice and the market, including reimburse-
ment from public health care systems and health insur-
ance. This document will be periodically updated to 
include novel measurement modalities available in the 
future.
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