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Parallel window decoding enables scalable
fault tolerant quantum computation

Luka Skoric1 , Dan E. Browne1,2, Kenton M. Barnes1, Neil I. Gillespie1 &
Earl T. Campbell1,3

Large-scale quantum computers have the potential to hold computational
capabilities beyond conventional computers. However, the physical qubits are
prone to noise which must be corrected in order to perform fault-tolerant
quantum computations. Quantum Error Correction (QEC) provides the path
for realizing such computations. QEC generates a continuous stream of data
that decodersmust process at the rate it is received,which can be as fast as 1μs
per QEC round in superconducting quantum computers. If the decoder
infrastructure cannot keep up, a data backlog problem is encountered and the
computation runs exponentially slower. Today’s leading approaches to
quantum error correction are not scalable as existing decoders typically run
slower as the problem size is increased, inevitably hitting the backlog problem.
Here, we show how to parallelize decoding to achieve almost arbitrary speed,
removing this roadblock to scalability. Our parallelization requires some
classical feed forward decisions to be delayed, slowing-down the logical clock
speed. However, the slow-down is now only polynomial in the size of the QEC
code, averting the exponential slowdown. We numerically demonstrate our
parallel decoder for the surface code, showing no noticeable reduction in
logical fidelity compared to previous decoders and demonstrating the
predicted speedup.

Quantum error correction (QEC) generates a streamof syndrome data
to be decoded. An offline decoder collects and stores all the syndrome
data generated during a hardware run (often called a shot) and then
performs decoding as a post-processing step. Offline decoding is suf-
ficient for computations consisting solely of Clifford gates (e.g. CNOT
and Hadamard gates). However, fault-tolerant quantum computations
must adapt in response to certain logical measurement results, which
must be decoded to be reliable. For instance, when performing
T≔ diag(1, eiπ/4) gates using teleportation and a magic state1,2, wemust
decide whether to apply a Clifford S≔ diag(1, eiπ/2) correction before
performing the next non-Clifford operation (see Fig. 1). This logic
branching decision can only be reliably made after we decode the
syndrome data from the T gate teleportation3–5. Therefore, online, or
real-time, decoding is necessary for useful quantum computation.

Classical computation occurs at finite speed, so online decoders will
have some latency, but they need only react fast enough to enable
feed-forward and Clifford correction.

How fast do decoders need to be? A fundamental requirement
was first noted by Terhal4 in her backlog argument

“Let rproc be the rate (in bauds) at which syndrome bits are
processed and rgen be the rate at which these syndrome bits are
generated. We can argue that if rgen/rproc = f > 1, a small initial
backlog in processing syndrome data will lead to an exponential
slow down during the computation, …”

Terhal proved that quantum algorithms with T-depth k have a
running time lower bounded by cfk when f > 1 and c is some constant.
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Refs. 6,7 provide more detailed reviews of this backlog argument. As
we scale the device, for all known decoders the decoding becomes
more complex, the value of f increases and inevitablywe encounter the
backlog problem.

Herewe solve thisproblem, removing a fundamental roadblock to
scalable fault-tolerant quantum computation.We propose parallelized
window decoding that can be combined with any inner decoder that
returns an (approximately) minimum weight solution, presenting
results for minimum-weight perfect matching (MPWM)8–10 and union-
find (UF)11,12.

The previous leading idea to modify decoders to work online was
proposed by Dennis et al.8:

“…take action to remove only these long-lived defects, leaving
those of more recent vintage to be dealt with in the next
recovery step.”

Here defects refer to observed changes in syndrome. Dennis et al.
called this the overlapping recovery method8,13. Later, similar approa-
ches were adopted for decoding classical LDPC codes14, where this is
known as sliding window decoding. Roughly speaking, given a
sequence of defects proceeding in time one decodes over some con-
tiguous subset, or window. The decoder output gives only tentative
error assignments, and from these only a subset—those of an older
vintage—are committed. Here, committing means making a final cor-
rection decision for potential error locations, with all corrections
performed in software. One then slides thewindowup and the process
repeats.

Sliding window decoding is inherently sequential. Let us consider
a single code block (e.g. a surface code patch) with each QEC round
taking τrd seconds. If each window is responsible for committing error
corrections over ncom rounds of syndrome data, then it takes time
ncomτrd to generate all this data. If the time to decode each window is
τW, including any communication latency, then avoiding Terhal’s
backlog problem requires that τW< ncomτrd. Since τW typically grows
superlinearly with the decoding volume, this leads to a hard upper
bound on the achievable distance d. For example, a distance d surface
code has τW=Ω(ncomd2) and therefore we are restricted to d2 ≤O(τrd).
Scaling hardware based on a fixed device physics means τrd is fixed.
This imposes a hard limit on code distance. The reader should pause to
reflect how remarkable it is that the current leading proposal for fault-
tolerant quantum computation is not scalable.

As with sliding window decoding, our parallel window decoder
breaks the problem up into sets of overlapping windows. Rather than
solving these sequentially, some windows are decoded in parallel by
adapting how overlapping windows are reconciled. Through numeric
simulations, we find that sliding, parallelized and global approaches
differ in logical error rates by less than the error bars in our simula-
tions. We show that, by scaling classical resources, the parallel window
can achieve almost arbitrarily high rproc regardless of decoding time
per window τW. Furthermore, we show that while there is still an
inherent latency determined by τW leading to a slow-down of the

logical clock speed, this is only linear in τW, rather than the exponential
slowdown resulting from Terhal’s backlog argument. We conclude
with a discussion of the implications of this work for practical decoder
requirements and extensions to a number of other decoding pro-
blems. After making this work public, similar results were posted by
the Alibaba team15. The Alibaba numerics present the logical fidelity of
the decoder, but do not include numerical results on decoding speed
and improvements through increasing number of processors used.

Single-shot error correction is a different paradigm of decoding
that uses only the results of a single round of QEC measurements,
without any historical data. This type of decoding is only possible for
certain quantum codes, such as higher-dimensional topological
codes16–19 andquantum low-density parity-check codes (qLDPC)20,21. To
date, no such code has yet been able to reproduce the very high
threshold of the surface code. Furthermore, single-shot error correc-
tion is still susceptible to a backlog problem. In every analysis of single-
shot QEC, it has been assumed that the correction for previous QEC
rounds has already been performedbefore the next roundof decoding
is performed. However, if these decoding problems take longer to
solve than the time to perform a round of QEC, then even single-shot
QEC encounters a backlog problem. This situation is worse when the
backlog problem is encountered by a single-shot decoder, because it
cannot be alleviated by using the single-shot decoder in conjunction
with the parallel decoding methods proposed here.

Results
Matching decoders
Windowing techniques, both sliding and parallel, can be combined
with most decoders acting internally on individual windows. We will
refer to these as the inner decoders. The only property we assume of
the inner decoder is that it returns a correction that is (approximately)
the lowestweight correction.Weotherwise treat the inner decoder as a
black box. For brevity, in the main text we will describe the procedure
for the case ofmatching decoders, such asMWPM and UF. Amatching
decoder is applicablewhen any error triggers either a pair of defects or
a single defect. For example, in the surface code X errors lead to pairs
of defects (when occurring in the bulk) or a single defect (when
occurring at so-called rough boundaries of the code). To fully for-
mulate a matching problem, all errors must lead to a pair of defects.
Therefore, errors triggering a single defect are connected to a virtual
defect commonly called the boundary defect. We then have a graph
where the vertices are potential defects (real or boundary) and edges
represent potential errors. Given an actual error configuration, we get
a set of triggered defects and we can enforce that this is an even
number by appropriately triggering the boundary defect. A matching
decoder takes as input this set of triggered defects and then outputs a
subset of edges (representing a correction) that pair up the triggered
defects. Running a decoder on our entire defect data set at once (no
windowing)will be referred to as global decoding, but global decoding
is not compatible with the real-time feedback required for non-
Clifford gates.

Sliding window decoding
Instead of decoding a full history of syndrome data after the compu-
tation is complete, sliding window decoding starts decoding the data
in sequential steps while the algorithm is running. At each step, a
subset (a window) of nW rounds of syndrome extraction is processed.
The window correction graph is acquired by taking all the vertices and
edges containing defects in the selected rounds. The measurement
errors in the final round of a window only trigger a single defect within
the window. Therefore, all final round defects are additionally con-
nected to the boundary defect, referred to as the rough top time
boundary.

Following the overlapping recovery method8,13, a window can be
divided into two regions: a commit region consisting of the long-

Fig. 1 | A gate-teleportation circuit to perform a T gate using a magic state
Tj i : =T +j i, including a classically controlled S gate depending on the mea-
surement outcome. In fault-tolerant implementations with logical qubits, the
logical Z measurement must be decoded before the S correction can be correctly
applied. This leads to a response time τ that is largely determined by the decoding
time but also includes communication and control latency.
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lived defects in the first ncom rounds, and a buffer region containing
the last nbuf rounds (nW = ncom + nbuf). An inner decoder (e.g. MWPM
or UF) outputs a subset of tentative correction edges within the
window. Only the correction edges in the commit region are taken as
final. Sometimes, the chains of tentative correction edges will cross
from the commit to the buffer region. Applying only the part of the
chain in the commit region will introduce new defects, referred to as
artificial defects along the boundary between the commit and buffer
regions.

The window is then moved up by ncom for the next decoding step
that now includes the artificial defects along with the unresolved
defects from the buffer region of the preceding step and new defects
in the following rounds. Figure 2 illustrates sliding window for the
simple example of a repetition code, naturally extending to surface
codes by adding another spatial dimension. Notice in Fig. 2 the crea-
tion of artificial defects where tentative corrections cross between
commit and buffer regions.

Due to these artificial defects, sliding window decoding (and also
parallel window decoding, described below) requires an inner deco-
der, which returns an approximately lowweight correction, such as UF
or MWPM. Decoders, such as those based on tensor network con-
tractions, identify the optimal homology class (all errors strings cor-
responding to contractible loops are in the same class) that contains a
low-weight correction. Once a homology class has been identified, we
can always efficiently select a representative correction from the class
but this could be a high-weight correction (e.g. containing many con-
tractible loops), leading to additional artificial defects at the boundary
of the committed region, and then to logical errors when the next
window is decoded. Therefore, additional modifications beyond those
discussed in this work would be needed to use homology-based inner
decoders.

Processing only a subset of the syndrome data at a time inevi-
tably reduces the logical fidelity of the decoder. However, a logical
fidelity close to that of the global decoder can be retained by making
the unaccounted failure mechanisms negligible compared to the

global failure rate. In particular, the error chains beginning in the
committed region need to be unlikely (compared to the global failure
rate) to span the buffer region and extend beyond the window. If the
measurement and qubit error rates are comparable, to achieve this
for distance d codes, it suffices to make the buffer region of the
same size nbuf = d8. In the Supplementary Note Section 3, we
demonstrate numerically that by choosing nbuf = ncom = d there is no
noticeable increase in logical error rate when applying the sliding
window algorithm. Indeed, in our numerics we saw some evidence
that one can use nbuf < d without significant degradation, provided
nbuf/d remains sufficiently large, though we do not thoroughly
investigate this in detail here.

Parallel window decoding
Here we present our main innovation to overcome the backlog pro-
blem, which we call parallel window decoding. We illustrate the
method in Fig. 3. As in Fig. 2, our illustration is for a repetition code
example. These figures are for illustrative purposes only, with all
numerical results using the natural generalization to the 3D decoding
problem of the surface code (further extensions discussed in Sec-
tion III).

Parallel windowdecodingproceeds in two layers. First, weprocess
a number of non-overlappingwindows in decode layer A concurrently.
As opposed to the sliding window approach, there are potentially
unprocessed defects preceding the rounds in an A window. We thus
need to include a buffer region both preceding and following the
commit regions. Additionally, we set both time boundaries to be
rough, connecting the first and last round of defects to the boundary
node. We set nbuf = ncom =w, giving a total of nW= 3w per window for
some constantw. Using the same reasoning aswith the sliding window
we set w = d. Note that in Fig. 3 we use w < d to keep the illustration
compact.

Having committed to corrections in adjacent windows and
computed the resulting artificial defects, in layer B we fill in the
corrections in the rounds between the neighbouring A commit

Fig. 2 | Sliding window decoding schematic for 2D decoding problem, for
example representing the repetition code with phenomenological noise. At
each decoding step a number of syndrome rounds (window) is selected for
decoding (orange region in left columns), and tentative corrections acquired. The
corrections in the older ncom rounds (green region in right columns) are of high
confidence and are committed to, while the corrections in the remaining (buffer)

nbuf rounds are discarded. Thewindow is thenmoved up to the edge of the commit
region and the process repeated.We decide to commit to the edges going from the
commit regionout of it, producing artificial defects defined by nodes outsideof the
region belonging to such an edge. All numerics performed using a generalisation of
this method to the 3D decoding problem representing the surface code with
circuit-level noise.
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regions. For convenience, we separate A windows by d rounds, so
that B windows also have nW = 3d rounds. As we have already
resolved the nearby defects preceding and succeeding each B win-
dows, the B windows have smooth time boundaries and do not
require buffers.

Crucially, if the size of buffer region in layer A is chosen
appropriately, we expect no significant drop in logical fidelity com-
pared to the global decoder. As with sliding windows, this is because
each error chain of length ≤d is guaranteed to be fully captured
within one of the windows. In Fig. 4a we verify this by simulating the
decoding process on a d × d ×Nrounds rotated planar code under
circuit-level noise (see Methods for the noise model details). We find
that the logical error rates of rotated planar codes using the global
MWPM and parallel windowMWPM are within the numerical error of
each other across a range of code sizes and number of measurement
rounds. The same holds for UF-based decoders, as well as different
noise models, with the data presented in the Supplementary
Note Section 3.

This approach is highly parallelizable: as soon as the last round of
window An has been measured, the data can be given to a worker
process to decode it. However, as the window Bn requires the artificial
defects generated by windows An and An+1 adjacent to it (see Fig. 3), it
can only start once both processes have completed. In the Supple-
mentary Figure 4, we sketch a schematic defining how the data pipe-
lining could be implemented in an online parallel window decoder to
achieve a high utilization of available decoding cores.

Assuming no parallelization overhead, the syndrome throughput
will scale linearly with the number of parallel processes Npar. In this
case, Nparncom rounds are committed to in layer A, and NparnW in layer
B. Each round takes τrd to acquire and the two layers of decoding take
2τW. To avoid the backlog problem, we need the acquisition time to be

greater than the decoding time:

Nparðncom +nWÞτrd ≥ 2τW: ð1Þ

Therefore, the number of processes needs to be at least:

Npar ≥
2τW

ðncom +nWÞτrd
: ð2Þ

In practice, the overhead of data communication among worker pro-
cesses needs to be considered. In the parallel window algorithm, each
process only needs to receive defect data before it is started, and
return the artificial defects and the overall effect of the committed
correction on the logical operators (see the Supplementary Note Sec-
tion 4). Thus, we expect the data communication overhead to be
negligible compared to the window decoding time. Indeed, in Fig. 4b
wedemonstrate this by simulating parallel windowdecoding in Python
usingMWPMas the inner decoder, showing howusingNpar = 8 leads to
nearly an 8x increase in decoding speed. Some sub-linearity can be
seen due to parallelization overheads in software, particularly for low-
distance codes where the decoding problem is relatively simple. In the
Supplementary Note Section 3, we repeat these simulations using UF
decoderwhere the overhead ismore noticeable due to faster decoding
of individual windows. However, hardware decoders such as FPGA
(Field Programmable Gate Array) and ASIC (Application-Specific
Integrated Circuit) are more suited to parallel data processing,
allowing a large number of processes without being bottle-necked
by the communication overheads (discussed further in the Supple-
mentary Note Section 4). Lastly, even with some sub-linearity, the
backlog can be averted provided arbitrary decoding speed is achieved
with a polynomial number of processors.

Fig. 3 | Parallel window decoding schematic for 2D decoding problem, for
example representing the repetition code with phenomenological noise. The
decoding proceeds in two layers. In layer A, a number of non-overlapping windows
An is decoded in parallel. The high confidence corrections in the middle ncom
rounds of each window are committed to, while the corrections in the surrounding

nbuf. The artificial defects are passed on to layer B. Windows Bn in layer B are fully
committed to, resolving all the defects between the committed regions of layer A
and completing the correction. All numerics are performed using a generalisation
of this method to the 3D decoding problem representing the surface code with
circuit-level noise.
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Discussion
While we can achieve almost arbitrarily high syndrome processing
rates, there is still an inherent latency determined by the time to
decode each window τW. If τW is large compared to the physical QEC
round time τrd, we may slow down the logical clock of the quantum
computer to compensate for this latency. This slowdown is achieved
simplybyextending thedelay time τ as shown in Fig. 1. If wepickNpar as
described in Eq. (2), at every instance a block of nlag =Npar(ncom + nW)
rounds are being decoded at once. The last round for which the full
syndrome history has been decoded is therefore going to be nlag
rounds behind themost recentlymeasured syndromedata. Therefore,
we can set the response time after each T-gate (as defined in Fig. 1) to

τ =nlagτrd =Nparðncom +nWÞτrd ð3Þ

However, combining Eq. (2) and Eq. (3) the total response time is ≈ 2τW.
That is, for analgorithmwith k layersofT gates, the total response time
is τk ≈ 2kτW. This is in stark contrast to the exponential in k response
time observed by Terhal4. Furthermore, using an efficient decoder for
eachwindow, the average window decode time τW scales polynomially
with code size d, so τW =O(dα) for some constant α. Since code size is
poly-logarithmic in algorithm depth k and width W, d =Oðlog ðkW ÞβÞ
for some constant β. The response time per layer of T-gates is a poly-
logarithmic factor so τ =Oðlog ðkW ÞαβÞ. Strictly speaking, this addi-
tional overhead increases the decoding volume kW by a logarithmic
factor, but overall still gives a poly-logarithmic complexity.

We define logical clock time as how long it takes to execute one
logical non-Clifford gate. Using lattice surgery to perform T-tele-
portation— and assuming no bias betweenmeasurement and physical
errors — it takes dτrd time for lattice surgery and τ response time. This
gives a logical clock time of τclock≔ dτrd + τ. Alternatively, this time
overhead can be converted into a qubit overhead by moving Clifford
corrections into an auxiliary portion of the quantum computer22, for
example using auto-corrected T-gate teleportation2,23. In algorithm
resource analysis, a common assumption is that T gates are performed
sequentially 2,24–31 as thenonly a fewmagic-state factories are needed to
keep pace. Auto-correction gadgets enable us to perform the next T-

gate before the response timehaselapsed. Theprice is that anauxiliary
logical qubit must instead be preserved for time τ, after which it is
measured in a Pauli basis depending on the outcome of the decoding
problem. Therefore, instead of a time overhead we can add ⌈τ/dτrd⌉
auxiliary logical qubits. If we have an algorithmwith 100 logical qubits
and τclock = 10dτrd, then: without autocorrection we incur a 10 × time
cost; and with autocorrection we instead require 9 auxiliary logicals
qubits and so a 1.09 × qubit cost. Under these common algorithm
resource assumptions, we the find seemingly large time overheads
from parallel window decoding can be exchanged for modest qubit
overheads. Indeed, the auto-correction strategies trade time for space
resource, but the overall space-time volume is preferable under these
resource estimation assumptions (1.09 × insteadof 10 × ).Note that the
additional space-time volume required for magic state distillation will
depend only on the number of magic states produced and not on
whether we use auto-corrected teleportation.

Our proposed decoder admits several extensions. Error mechan-
isms (e.g. Y errors in the bulk of the surface code) sometimes trigger
more than a pair of defects, but reasonable heuristics can often be
used to approximately decorrelate these errors to produce a graphical
decoding problem. This decorrelation works well for the surface code.
However, many codes cannot be decorrelated and require a non-
matching decoder. Even when decorrelation approximations are pos-
sible, logical fidelities can be improved by using a non-matching
decoder that accounts for this correlation information32–35. Extensions
of parallel window decoding to non-matching inner decoders are
outlined in the Supplementary Note Section 2.

By judicious choice of window shapes and boundaries, one could
consider 3D-shaped windows that divide the decoding problem in
both space and time directions. Similarly, we can construct 3D-shaped
windows for parallel execution with only a constant number of layers.
When slicing in the time direction we only needed 2 layers of windows,
but when constraining window size in D dimensions a D + 1 layer
construction is possible, with the minimum number of layers being
determined by the colorability of some tiling (see the Supplementary
Note Section 1 for details). When performing computation by lattice
surgery, during merge operations the code temporally has an

Fig. 4 | Logical error rate and decoding frequency on a d ×d ×Nrounds rotated
planar code using Minimum Weight Perfect Matching (MWPM) under circuit-
level noise with p =0.5% (seeMethods). a Logical error rates as a function of the
number of rounds of syndrome extraction for different code sizes for both the
global offline MWPM (shaded bands), and using the parallel window algorithm
(points). The parallel window decoder has no numerically significant drop in
logical fidelity compared to the global decoder. Additional data with a different
noise rate p and using phenomenological noise is presented in Supplementary
Figures 2 and 3. b The decoding frequency (number of rounds decoded per

second) as a function of the number of decoding processes for the parallel win-
dow algorithm. The decoding frequency increases with the number of processes,
achieving approximately linear speed-up with the number of processes for harder
decoding scenarios (d ≥ 15). The sub-linearity most noticeable on small decoding
problems is due to the parallelization overhead in the software implementation.
Error bars represent standard deviation over samples. Where the error bars are
not visible, they are smaller than the marker size. Here we plot the decoding
frequency rdec, therefore the rate of syndrome processing is rproc = rdec(d2 − 1).
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extended size2,27,36,37, and windowing in the spatial direction will
become necessary to prevent the window decode time τW from sig-
nificantly increasing. Onemay alsowish to spatially window for a single
logical qubit with windows smaller than the code distance since the
decoder running time τW reduces with window size, and therefore the
logical clock time may decrease (alternatively auto-correction qubit
overhead may reduce). But there are subtle tradeoffs. For windows of
sizeω < d in either the spaceor timedirection, theremaybe adversarial
failure mechanisms of weight (ω + 1)/2 < (d + 1)/2 that are no longer
correctly decoded. One may speculate that this reduces the effective
code distance to ω. However, in practice, percolation theory
arguments38 show that for a distance d code, the largest error clusters
are typically of sizeOðpolylogðdÞÞ. This leaves open the possibility that
windows of size OðpolylogðdÞÞ<ω<d will suffice and be of practical
value for stochastic (even if not adversarial) noise, though substantial
further investigation is required. We remark that this discussion
assumes that measurement errors (that create vertical error chains)
have a comparableprobability as physical Pauli errors. If there is a large
measurement error bias, then we must appropriately scale the dura-
tion of lattice surgery operations and the vertical extent of our
windows.

In summary, parallel window decoding avoids the exponential
backlog growth that is unavoidable (for large enough computations)
with sliding window decoders. For many leading hardware platforms,
such as superconducting devices, syndrome backlog can be a severe
practical obstacle, even for modest code sizes. In recent super-
conducting experiments a QEC round was performed every 1.1 μs by
Krinner et al.39 and every 921 ns by the Google QuantumAI team40. Our
results are applicable to all hardware platforms, but the speed of
superconducting quantum computers means these are amongst the
most challenging systems for real-time decoding. Indeed, both afore-
mentioned teams instead performed offline decoding, omitting a
crucial aspect of scalable error correction.

To meet this challenge, improving the speed of decoders is cur-
rently an area of intense research. For example, LILLIPUT41 is a recently
proposed fast online sliding window decoder, implemented as an
FPGA-based look-up table. Ford≤5 surface codes, the authors reported
that a round of syndrome data could be processed every 300 ns, fast
enough even for superconducting qubits. However, the memory
requirements of lookup tables scale exponentially in qubit number,
making this decoder impractical for all but the smallest code sizes. The
UF decoder scales favourably, and modelling of it on a dedicated
microarchitecture12 suggested it would be fast enough for distance
11 surface codes. However, the authors acknowledged that: “further
study is necessary to confirm the validity of ourmodel in a real device".
Riverlane recently showed real-time FPGA decoding of single windows
fast enough to beat the backlog problem without any further paralle-
lization up-to-distance 21 codes42. There have been other approaches
to accelerating decoders. A parallelized version of minimum weight
perfect matching (MWPM) has been proposed43 but never imple-
mented and its performance is unclear. Adding a predecoding stage
has also been identified as a way to further accelerate decoding and
potentially boost logical fidelity7,44–48, but this has not been tested in an
online setting. As such, for larger code distances, it is unclear whether
conventional decoding approaches will be fast enough.

On the other hand, a parallel window decoder, as introduced here
can achieve almost arbitrarily high decoding speed given enough
classical resources and some (polynomially scaling) quantum resource
overheads. Therefore, this approach resolves both fundamental scal-
ability issues and practical obstacles for hardware with rapid QEC
cycle times.

Methods
All simulations were performed on a standard D32as v4 Azure
instance. We used the PyMatching package10 to perform MWPM. For

UF we used a custom Python implementation of the algorithm
described in Ref. 11.

The decoding graph for each window is acquired by taking a
subset of edges between nodes belonging to vertices in the window.
Dependingon the roughbottom (top) timeboundaries,we further add
edges connecting each of the nodes in the first (last) round to the
boundary node. These are assigned a probability equal to the prob-
ability of triggering one of the edges connecting the given node in the
window to a node out of the window.

In all experiments,we compute the logical error rate of sliding and
parallel window methods for rotated planar code with different code
sizes and increasing number of decoding rounds. We use circuit-level
noise parametrized by p = 0.5% with the following noise model:

• p two-qubit depolarising noise after each two-qubit gate
• measurement results flipped with probability p
• p/10 depolarising noise after each single-qubit gate and reset

operation
• p/10 depolarising noise for any idling qubit while gates are

applied elsewhere

The syndrome data for the noise model has been sampled using Stim
simulation package49.

To compute the timing for Fig. 4b, we perform the decoding on
ð4maxNpar + 1Þd rounds to ensure a full utilizationofparallel resources
if both A andBdecoding steps.We assume initialisation and readout in
the Z basis, meaning that the initial and final rounds of defects are
smooth. Moreover, in parallel window decoding, we take the first
round to always belong to layer A, and the first 2d rounds of the first
window are committed to. The last round belongs to a layer B if the
total number of rounds ntot satisfies ntot mod 4d 2 ð�d,d�, in which
case the decoding is performed normally with the last B window
potentially being of reduced size. Otherwise, the last window belongs
to layer A and the commit region of the last window is from the bottom
of the regular commit region to the last round.

Data availability
The stim circuits and data that support the findings of this study are
available in Zenodo with the DOI identifier https://doi.org/10.5281/
zenodo.8422904.
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